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1. Introduction. Let k be a field of characteristic p Φ 0, G be a finite group
whose order is divisible by p and H be its normal subgroup. By 31 and 91 we
denote the radical of the group algebra KG and kH respectively. We know
9tc$ft by the theorem of Clifford [1]. Hence 2=kG-ϋi=(S{'kG is a two sided
ideal of kG contained in 31. We investigate in this note some properties between
31 and 8, (especially when [G: H]=p) and also we show if G is ^-solvable, 3lpn

=0, where pn is the order of a ^>-Sylow subgroup of G. Throughout this note,
we adhere to the above notation and the following conventions; modules are
finitely generated left modules, ® = ®kπ, and for a positive integer e and a module
M, eM means a direct sum of e copies of M. And finally, if M is a ΛG-module,
MH is the kH-moά\ήe obtained by restricting the operators to kH.

The author is indebted to H. Nagao and M. Harada for their directions and
for a generalization of his original result.

2. Lemma 1. Let M be an irreducible kG-module. If kH-module N is a
composition factor of MH, then M is a composition factor of NG=kG®N.

Proof. HomMG(NG, M)^UomkH(N, M). The right hand side is not 0,
since iV is a direct summand of MH. So there is a &G-epimorphism NG->M,
which shows our assertion.

Here we recall the theorem of Clifford [1].
Let N be any ^//-module. A conjugate of iV means g®N(dkG®N), con-

sidered naturally as &ff-module, where g^G. The inertia group of JV,
denoted by H*(N), means H*(N)= {g^G\g®N^N as β#-modules} ZDH.

Let M be an irreducible AG-module and TV be any irreducible ^ίf-submodule
of MH. Then we have ΛίH=β(iVr

1ΘiV2Θ θiV r), where the N/s are non iso-
morphic conjugates of N1=Ny r=[G: H*(N)]9 and e is a positive integer.

Lemma 2. We use the above notation. If H*(N)=H, then we have
NG^M, equivalently, if the inertia group of an irreducible kH-module N is H
itself, then NG is also irreducible.

Proof. r=[G:H] by the assumption. From lemma 1
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On the other hand, dim NG=[G:H] dim N and dim M=er dim N=e[G: H]
dim N. Therefore, we have dim iVG=dim M, that is NG^M and e=l.

Proposition 1. If [G:H] is prime to p, then 8=-Ji.

Proof. It is well known that in this case kG is just a semisimple extension of

kH. In other words, any &G-module is (kG, kH)-projecύvt in the sense of

Hochschild [5]. And so kGj^l is also a semisimple extension of kH/ίR by [6].

However, kHjΉi is a semisimple algebra in an usual sense, so is kG/%1. There-

fore, 2=31.

3. In the section, we assume k is a splitting field for kG and [G: H]—p.
Hence for any &ί/-module N, its inertia group is H or G.

Lemma 3. Let N be any irreducible kH-module. Then NG is either irredu-
cible or its composition factors are all ίsomorphic to each other, and the number of
them is equal to p. More precisely, the former case holds if H*(N)=H, and the
latter holds if H*(N)=G.

Proof. Anyway, there exists an irreducible &G-module M such that N
is a composition factor of MH. If H*(N)=H, then we have NG^M by lemma 2.
If H*(N)=G, then M=eN (since r = l ) . Suppose M appears a times as a
composition factor of NG, then αΦθ from lemma 1.

We have dimNG^a dim M^>ae dim TV, that is p dim N^ae dim N. On the
other hand, the group character of NG, as is easily to be shown, is 0. However
the distinct irreducible characters of G are linearly independent over k, since k is a
splitting field for G. Hence we have p \ a. Combining with the above inequality,
we have p^ae^p, that is a=p, e=l and dim NG=p dim NM. This completes
the proof.

REMARK. From the proof, we know for any irreducible &G-module M, MH

is either irreducible or its decomposed into a direct sum of non isomorphic
irreducible kH-modvλes.

Now let {U1 ••• Us, V1-~ Vt} be the full set of non isomorphic irreducible
&77-modules in which we assume H*(Ui)=H, and H*(Vj)=G. Then we have
«5Γ/3l=eΣ/ i . ϊ7 ί ΦΣ hjvj a n d fi = dimUg, h—άimVj. We put kGjSSί^A.
Clearly A^kG®kHI$i as ΛG-modules. Hence A^fΎUG®f2U

G® -fsU
G®

hΎVG®h2V
G® -htV

G.

Proposition 2. Vf is either indecomposable or completely reducible as an
A-module.

Proof. Since Vf is y4-projective, we can decompose VG=Aeλ®Ae2® •••
Aek, where {̂ } are primitive orthogonal idempotents of A. From lemma 3,
VG has p number of the composition factors which are isomorphic to each other.
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Especially we have Aβi^Aβj for all z, j . So if Aet is irreducible, then we have
k=py and Vf is completely reducible. If this is not the case, each Ae{ has the
same number of composition factors greater than one. Since p is a prime number,
we have k=l. This completes our proof.

For a brevity of notations, we put /if/?θ/ 2C/?θ — ®f3Uf=C0, hjVf
= Cj and ^4^Co©(?!©••• (&Ct. We identify each Ct with its isomorphic image
in A.

Theorem 1.

(1) Co is a semisimple algebra and each C{ is a block of A (i^ 1).

(2) A is a quasi-Frobenίus algebra over k.

(3) The composition factors of Sft/8 are those irreducible kG-modules which are also

irreducible as kH-modules. Conversely any irreducible kG-module, say M, which

is also irreducible as kFI-module appears as composition factor of 5H/8 with mul-

tiplicity (p—l) dim M.

Proof.
(1) We know from lemma 3 and the remark, for z'Φj, C, and Cj have no com-
position factor in common. Hence clearly C£ is a block of A for z'Ξ>l and Co

is a semisimple algebra.
(2) For i^> 1, C{ has only one irreducible module and Co is a semisimple algebra,
hence our assertion is clear from the definition.
(3) Since ϊl/3ΐ is the radical of A, it is contained in C1®C2@ — ®CV So the
first assertion is clear. Let M be an irreducible &G-module which is irreducible
as kH-moάu\e. Then MH^V£ for some /. We have d i m M = dimF t = /z, .
M appears ph{=pdimM times as a composition factor of A. On the other hand,
M appears dim M times in kG/31, since k is a splitting field for G. Hence M
appears (p— l)dimM times between 8 and Sft.

Lemma 4.

Proof. Let e be any primitive idempotent of A. Then by lemma 3 and
Theorem 1(1), Ae has at most p number of composition factors. Hence we
have (9fc/8)*έ?=0 and since e is arbitrary, (SK/8)*=0, that is

4. Theorem 2. // G is p-solvable, then ^lpn=0.

Proof. We may assume k is a splitting field for G. If G is a ^>-group of
order pn, our assertion is clear, since in this case dim Jiw=^M— 1 by [2]. (or [3]
p. 189) Generally, there exists a normal subgroup of G whose index is p or
prime to p. Using proposition 1 and lemma 4, it is easy to prove the theorem
by induction on the order of G.

REMARK. It will be necessary to remark that dim 3l^pn— 1 in general.
We may also assume k is a splitting field for G, since in the group algebra the
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radical is preserved by the extension of the coefficient field1). Then there

exists a primitive idempotent e of kG such that {kG)ej(ίle^k, Hence dirndl
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1) This is true in general if the structure constants are in a perfect field contained in the
coefficient field.




