

Title	Radicals of group algebras
Author(s)	Tsushima, Yukio
Citation	Osaka Journal of Mathematics. 1967, 4(1), p. 179–182
Version Type	VoR
URL	https://doi.org/10.18910/7995
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

RADICALS OF GROUP ALGEBRAS

YUKIO TSUSHIMA

(Received December 9, 1966)

1. Introduction. Let k be a field of characteristic $p \pm 0$, G be a finite group whose order is divisible by p and H be its normal subgroup. By \mathfrak{N} and \mathfrak{R} we denote the radical of the group algebra KG and kH respectively. We know $\mathfrak{R} \subset \mathfrak{N}$ by the theorem of Clifford [1]. Hence $\mathfrak{L} = kG \cdot \mathfrak{R} = \mathfrak{R} \cdot kG$ is a two sided ideal of kG contained in \mathfrak{N} . We investigate in this note some properties between \mathfrak{N} and \mathfrak{L} , (especially when [G: H] = p) and also we show if G is p-solvable, \mathfrak{N}^{p^n} = 0, where p^n is the order of a p-Sylow subgroup of G. Throughout this note, we adhere to the above notation and the following conventions; modules are finitely generated left modules, $\mathfrak{S} = \mathfrak{S}_{kH}$, and for a positive integer e and a module M, eM means a direct sum of e copies of M. And finally, if M is a kG-module, M_H is the kH-module obtained by restricting the operators to kH.

The author is indebted to H. Nagao and M. Harada for their directions and for a generalization of his original result.

2. Lemma 1. Let M be an irreducible kG-module. If kH-module N is a composition factor of M_H , then M is a composition factor of $N^G = kG \otimes N$.

Proof. Hom_{kG}(N^{G} , M) \cong Hom_{kH}(N, M). The right hand side is not 0, since N is a direct summand of M_{H} . So there is a kG-epimorphism $N^{G} \rightarrow M$, which shows our assertion.

Here we recall the theorem of Clifford [1].

Let N be any kH-module. A conjugate of N means $g \otimes N(\subset kG \otimes N)$, considered naturally as kH-module, where $g \in G$. The inertia group of N, denoted by $H^*(N)$, means $H^*(N) = \{g \in G | g \otimes N \cong N \text{ as } kH$ -modules $\} \supset H$.

Let M be an irreducible kG-module and N be any irreducible kH-submodule of M_H . Then we have $M_H = e(N_1 \oplus N_2 \oplus \cdots \oplus N_r)$, where the N_i 's are non isomorphic conjugates of $N_1 = N$, $r = [G: H^*(N)]$, and e is a positive integer.

Lemma 2. We use the above notation. If $H^*(N) = H$, then we have $N^G \cong M$, equivalently, if the inertia group of an irreducible kH-module N is H itself, then N^G is also irreducible.

Proof. r = [G: H] by the assumption. From lemma 1 dim $N^G \ge \dim M$.

Y. TSUSHIMA

On the other hand, dim $N^{c} = [G:H]$ dim N and dim $M = er \dim N = e[G:H]$ dim N. Therefore, we have dim $N^{c} = \dim M$, that is $N^{c} \cong M$ and e=1.

Proposition 1. If [G:H] is prime to p, then $\mathfrak{L}=\mathfrak{N}$.

Proof. It is well known that in this case kG is just a semisimple extension of kH. In other words, any kG-module is (kG, kH)-projective in the sense of Hochschild [5]. And so kG/\Re is also a semisimple extension of kH/\Re by [6]. However, kH/\Re is a semisimple algebra in an usual sense, so is kG/\Re . Therefore, $\Re = \Re$.

3. In the section, we assume k is a splitting field for kG and [G:H]=p. Hence for any kH-module N, its inertia group is H or G.

Lemma 3. Let N be any irreducible kH-module. Then N^G is either irreducible or its composition factors are all isomorphic to each other, and the number of them is equal to p. More precisely, the former case holds if $H^*(N)=H$, and the latter holds if $H^*(N)=G$.

Proof. Anyway, there exists an irreducible kG-module M such that N is a composition factor of M_H . If $H^*(N) = H$, then we have $N^G \cong M$ by lemma 2. If $H^*(N) = G$, then M = eN (since r = 1). Suppose M appears a times as a composition factor of N^G , then $a \neq 0$ from lemma 1.

We have dim $N^G \ge a \dim M \ge ae \dim N$, that is $p \dim N \ge ae \dim N$. On the other hand, the group character of N^G , as is easily to be shown, is 0. However the distinct irreducible characters of G are linearly independent over k, since k is a splitting field for G. Hence we have p|a. Combining with the above inequality, we have $p \ge ae \ge p$, that is a=p, e=1 and dim $N^G=p \dim NM$. This completes the proof.

REMARK. From the proof, we know for any irreducible kG-module M, M_H is either irreducible or its decomposed into a direct sum of non isomorphic irreducible kH-modules.

Now let $\{U_1 \cdots U_s, V_1 \cdots V_t\}$ be the full set of non isomorphic irreducible kH-modules in which we assume $H^*(U_i) = H$, and $H^*(V_j) = G$. Then we have $kH/\Re = \bigoplus \sum f_i U_i \bigoplus \sum h_j V_j$ and $f_i = \dim U_i$, $h_j = \dim V_j$. We put $kG/\Re = A$. Clearly $A \cong kG \otimes kH/\Re$ as kG-modules. Hence $A \cong f_1 U_1^G \oplus f_2 U_2^G \oplus \cdots f_s U_s^G \oplus h_1 V_1^G \oplus h_2 V_2^G \oplus \cdots h_t V_t^G$.

Proposition 2. V_i^G is either indecomposable or completely reducible as an *A*-module.

Proof. Since V_i^G is A-projective, we can decompose $V_1^G = Ae_1 \oplus Ae_2 \oplus \cdots Ae_k$, where $\{e_i\}$ are primitive orthogonal idempotents of A. From lemma 3, V_1^G has p number of the composition factors which are isomorphic to each other.

1**8**0

Especially we have $Ae_i \cong Ae_j$ for all i, j. So if Ae_i is irreducible, then we have k=p, and V_i^G is completely reducible. If this is not the case, each Ae_i has the same number of composition factors greater than one. Since p is a prime number, we have k=1. This completes our proof.

For a brevity of notations, we put $f_1U_1^G \oplus f_2U_2^G \oplus \cdots \oplus f_sU_s^G = C_0$, $h_jV_j^G = C_j$ and $A \cong C_0 \oplus C_1 \oplus \cdots \oplus C_t$. We identify each C_i with its isomorphic image in A.

Theorem 1.

(1) C_0 is a semisimple algebra and each C_i is a block of A ($i \ge 1$).

(2) A is a quasi-Frobenius algebra over k.

(3) The composition factors of $\mathfrak{N}/\mathfrak{Q}$ are those irreducible kG-modules which are also irreducible as kH-modules. Conversely any irreducible kG-module, say M, which is also irreducible as kH-module appears as composition factor of $\mathfrak{N}/\mathfrak{Q}$ with multiplicity $(p-1) \dim M$.

Proof.

(1) We know from lemma 3 and the remark, for $i \neq j$, C_i and C_j have no composition factor in common. Hence clearly C_i is a block of A for $i \ge 1$ and C_0 is a semisimple algebra.

(2) For $i \ge 1$, C_i has only one irreducible module and C_0 is a semisimple algebra. hence our assertion is clear from the definition.

(3) Since $\mathfrak{N}/\mathfrak{R}$ is the radical of A, it is contained in $C_1 \oplus C_2 \oplus \cdots \oplus C_t$. So the first assertion is clear. Let M be an irreducible kG-module which is irreducible as kH-module. Then $M_H \cong V_i$ for some i. We have dim $M = \dim V_i = h_i$. M appears $ph_i = p \dim M$ times as a composition factor of A. On the other hand, M appears dim M times in kG/\mathfrak{R} , since k is a splitting field for G. Hence M appears $(p-1) \dim M$ times between \mathfrak{R} and \mathfrak{R} .

Lemma 4. $\mathfrak{N}^{p} \subset \mathfrak{L}$

Proof. Let *e* be any primitive idempotent of *A*. Then by lemma 3 and Theorem 1(1), *Ae* has at most *p* number of composition factors. Hence we have $(\mathfrak{N}/\mathfrak{P})^p e=0$ and since e is arbitrary, $(\mathfrak{N}/\mathfrak{P})^p=0$, that is $\mathfrak{N}^p \subset \mathfrak{P}$.

4. Theorem 2. If G is p-solvable, then $\mathfrak{M}^{p^n}=0$.

Proof. We may assume k is a splitting field for G. If G is a p-group of order p^n , our assertion is clear, since in this case dim $\mathfrak{N}^n = p^n - 1$ by [2]. (or [3] p. 189) Generally, there exists a normal subgroup of G whose index is p or prime to p. Using proposition 1 and lemma 4, it is easy to prove the theorem by induction on the order of G.

REMARK. It will be necessary to remark that dim $\mathfrak{N} \ge p^n - 1$ in general. We may also assume k is a splitting field for G, since in the group algebra the radical is preserved by the extension of the coefficient field¹). Then there exists a primitive idempotent e of kG such that $(kG)e/\Re e \cong k$. Hence dim $\Re \ge \dim \Re e \ge \dim (kG)e - 1 \ge p^n - 1$.

OSAKA CITY UNIVERSITY

References

- [1] A.H. Clifford: Representations induced in an invariant subgroup, Ann. of Math. 38 (1937), 533-550.
- [2] S.A. Jennings: The structure of the group ring of a p-group over a modular field, Trans. Amer. Math. Soc. 50 (1941), 175–185.
- [3] C.W. Curtis and I. Reiner: Representation theory of finite groups and associative algebras, Wiley, New York, 1962.
- [4] H. Cartan and S. Eilenberg: Homological algebra, Princeton, 1956.
- [5] G. Hochschild: Relative homological algebra, Trans. Amer. Math. Soc. 82 (1956), 246–269.
- [6] A. Hattori: Semisimple algebra over a commutative ring, J. Math. Soc. Japan 15 (1963), 404–419.

182

¹⁾ This is true in general if the structure constants are in a perfect field contained in the coefficient field.