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1. Introduction. Letk be afield of characteristic p=0, G be a finite group
whose order is divisible by p and H be its normal subgroup. By 3t and R we
denote the radical of the group algebra KG and kH respectively. We know
RN by the theorem of Clifford [1]. Hence 8=kG-R=R-kG is a two sided
ideal of kG contained in . We investigate in this note some properties between
N and &, (especially when [G: H]=p) and also we show if G is p-solvable, R*"
=0, where p” is the order of a p-Sylow subgroup of G. Throughout this note,
we adhere to the above notation and the following conventions; modules are
finitely generated left modules, ® = ® ., and for a positive integer ¢ and a module
M, eM means a direct sum of e copies of M. And finally, if M is a kG-module,
M is the kH-module obtained by restricting the operators to kH.

The author is indebted to H. Nagao and M. Harada for their directions and
for a generalization of his original result.

2. Lemma 1. Let M be an irreducible kRG-module. If kH-module N is a
composition factor of My, then M is a composition factor of N°=kGQN.

Proof. Hom,;(N¢, M)=Hom,y(N, M). The right hand side is not 0,
since N is a direct summand of M. So there is a kG-epimorphism N¢—M,
which shows our assertion.

Here we recall the theorem of Clifford [1].

Let N be any kH-module. A conjugate of N means gQN(CRGQN), con-
sidered naturally as kH-module, where g&G. The inertia group of N,
denoted by H*(N), means H*(N)={ge G|gQN =N as kH-modules} DH.

Let M be an irreducible #G-module and N be any irreducible kH-submodule
of M. Then we have My=e(N,PN,P--BN,), where the N,’s are non iso-
morphic conjugates of N,=N, r=[G: H¥(N)], and e is a positive integer.

Lemma 2. We use the above notation. If H*(N)=H, then we have
NC=M, equivalently, if the inertia group of an irreducible kH-module N is H
itself, then N€ is also irreducible.

Proof. r=[G: H] by the assumption. From lemma 1 dim N¢=dim M.
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On the other hand, dim N°=[G: H] dim N and dim M=er dim N=¢[G: H]
dim N. Therefore, we have dim N¢=dim M, that is N®~M and e=1.

Proposition 1. If [G:H] is prime to p, then L=N.

Proof. It is well known that in this case kG is just a semisimple extension of
kH. In other words, any kG-module is (kG, kH)-projective in the sense of
Hochschild [5]. And so RG/R is also a semisimple extension of kH/R by [6].

However, kH|R is a semisimple algebra in an usual sense, so is kG/N. There-

fore, L=N.

3. In the section, we assume k is a splitting field for kG and [G: H]=p.
Hence for any kH-module N, its inertia group is H or G.

Lemma 3. Let N be any irreducible kH-module. Then N€ is either irredu-
cible or its composition factors are all isomorphic to each other, and the number of
them is equal to p. More precisely, the former case holds if H¥(N)=H, and the
latter holds if H¥(N)=G.

Proof. Anyway, there exists an irreducible kG-module M such that N
is a composition factor of M. If H¥(N)=H, then we have N°=~M by lemma 2.
If H¥(N)=G, then M=eN (since r=1). Suppose M appears a times as a
composition factor of N, then a=0 from lemma 1.

We have dim N°=adim M =ae dim N, that is p dim N=ae dim N. On the
other hand, the group character of N, as is easily to be shown, is 0. However
the distinct irreducible characters of G are linearly independent over £, since k is a
splitting field for G. Hence we have p|a. Combining with the above inequality,
we have p=ae=p, that is a=p, e=1 and dim N°=p dim NM. This completes
the proof.

ReEMARK. From the proof, we know for any irreducible kG-module M, My
is either irreducible or its decomposed into a direct sum of non isomorphic
irreducible ZH-modules.

Now let {U, --- U, V,--- V,} be the full set of non isomorphic irreducible
kH-modules in which we assume H*(U,)=H, and H*¥(V ;)=G. 'Then we have
RHIR=PI [, UP> h,V, and f;=dimU;, hy=dimV ;. We put kG/N=A.
Clearly A=~kGREH|/R as kG-modules. Hence A=f,USPH f,USP - fUD
MWVEPhVEPD -+ V.

Proposition 2. V¢ is either indecomposable or completely reducible as an
A-module.

Proof. Since V¢ is A-projective, we can decompose V{=Ae P Ae,P -+

Ae,, where {¢;} are primitive orthogonal idempotents of 4. From lemma 3,
p g p

V¢ has p number of the composition factors which are isomorphic to each other.
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Especially we have Ae;=Ae; for all 7, j. So if Ae; is irreducible, then we have
k=p, and V¢ is completely reducible. If this is not the case, each Ae; has the
same number of composition factors greater than one.  Since p is a prime number,
we have k=1. 'This completes our proof.

For a brevity of notations, we put fLUSPDLUSPH - @f,UT=C,, k;V§
=C;and A=C,DC,D---DC,. We identify each C; with its isomorphic image
in 4.

Theorem 1.
(1) C, s a semisimple algebra and each C; is a block of A (i=1).
(2) A is a quasi-Frobenius algebra over k.
(3) The composition factors of N|Q are those irreducible kG-modules which are also
trreducible as kRH-modules. Conversely any irreducible kG-module, say M, which
is also irreducible as kH-module appears as composition factor of N/ with mul-

tiplicity (p—1) dim M.

Proof.
(1) We know from lemma 3 and the remark, for = j, C; and C; have no com-
position factor in common. Hence clearly C; is a block of 4 for =1 and C,
is a semisimple algebra.
(2) Fori=1, C; has only one irreducible module and C, is a semisimple algebra.
hence our assertion is clear from the definition.
(3) Since M/R is the radical of 4, it is contained in C,HC,PH---PC,. So the
first assertion is clear. Let M be an irreducible kG-module which is irreducible
as kH-module. Then My=T,; for some ;. We have dim M =dimV,= ;.
M appears ph;=pdim M times as a composition factor of 4. On the other hand,
M appears dim M times in RGN, since k is a splitting field for G. Hence M
appears (p—1)dim M times between £ and N.

Lemma 4. N?cC8

Proof. Let e be any primitive idempotent of 4. Then by lemma 3 and
Theorem 1(1), Ae has at most p number of composition factors. Hence we
have (N/8)?e=0 and since e is arbitrary, (R/8)?=0, that is N?CL.

4. Theorem 2. If G is p-solvable, then N*"=0.

Proof. We may assume % is a splitting field for G. If G is a p-group of
order p”, our assertion is clear, since in this case dim N"=p”"—1 by [2]. (or [3]
p- 189) Generally, there exists a normal subgroup of G whose index is p or
prime to p. Using proposition 1 and lemma 4, it is easy to prove the theorem
by induction on the order of G.

ReEMARK. It will be necessary to remark that dim R=p"—1 in general.
We may also assume £ is a splitting field for G, since in the group algebra the
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radical is preserved by the extension of the coefficient field). Then there
exists a primitive idempotent e of kG such that (kG)e/Jte=k. Hence dim N
=dim Ne= dim (kG)e—1=p"—1.
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1) This is true in general if the structure constants are in a perfect field contained in the
coeflicient field.





