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Introduction

Let M be a compact, connected, simply connected Riemannian manifold
with a metric d and denote by K the sectional curvature of M. Then it is known
that if K satisfies the following inequality:

there exists a homeomorphism h of M onto Sn, the standard unit w-sphere
([1, 4, 6, 8]).

On the other hand, we also know that there is defined a positive I (k) (^1)
for a homeomorphism h between two compact Riemannian manifolds, such
that if \{h) is sufficiently near to unity, that is, (l^S) l(h)<l-\-£(n) (S(n) is a
positive depending on n), then h is approximated arbitrarily by diίfeomor-
phisms ([5]).

Our main aim in the note is to investigate a relation between \{h) and the
sectional curvature K to obtain an evaluation of I (h) as in the following Proposi-
tion,

Proposition 1. If K is ^-pinched, that is,

then with a constant c, I(h) satisfies the following:

Therefore making (1—δ) so small as to satisfy

we get a diffeomorphism between M and (the standard) Sn.

Theorem 1. If a compact, connected, simply connected Riemannian mani-

fold M is δ-pinched with

i-(eic)2<s
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then M is diffeomorphic to the standard n-sphere.

Unfortunately, our evaluation itself is not as good as that of D. Gromoll
[2], though our method might allow to generalize the pinching problem and make
it possible to treat the problem from an interesting point of view.

1. Preliminary remarks

Lemma 1. Let hbea homeomorphism between complete Rίemannian manifolds

Mι(l=\, 2), with metrics dι(l=l, 2) and let {£/,.} be an open covering of Mx.

Then if h satisfies on each open set U£ the following inequality

dx{x, y)lk^d2{h{x)y hiy^kd^x, y) (*, j G U{),

we have

Proof. For two points p, q^M19 take the minimizing geodesic g(t) from p

to q. It is possible to choose tj(j=O , , N) such that the geodesic segment

g([tj-1} tj]) lies completely in one of open sets £/,.

Therefore we have,

^kdlp, q) .

Also we have in quite a similar way (just replacing hby h'1) that

finishing the proof.
The condition that C/f is open may be replaced by an assurance that the

subdivision of a geodesic segment by Ut consist only of finite segments.

Therefore we get the following version of Lemma 1:

Corollary 1. Let {Kλ, / ) , (K2, g) be differentiable triangulations of M19 M2,

respectively, and assume that h satisfies the following 1), 2).

1) d2(h(p), hζqty^kd^p, q)> for any p, q of each n-simplex Δx of K1.

2) d1(h~1{p), h-\q))<,kd2(py q), for anyp, q of each n-simplex Δ2 of K2.

Then we have

Lemma 2. Suppose that there exist coordinate systems {[/,•,/,.}, {[/,., g£} on

M1, M2, having the same Euclidean open sets JJi as local parameter systems, and



DIFFER EN τi ABLE PINCHING PROBLEM 281

that the homeomorphism h is given by gi'ff1 on each open set fi(U^). Then if

the line elements dsλ, ds2 (written in the parameter system of U£) satisfy that

we also have

Corollary 2. If h is pίecewise differentiable on differentiable triangulatίons

(Kf / ) , (K, g) of Mly M2y then Lemma 2 holds when h is given by g f'1 on each

n-sίmplex ΔoίK and the line elements dsλ, ds2 (written in the coordinate of A) satisfy

dsjk <L ds2 <Ξ kdsx on each Δ e K .

2. The computation of l(h)

For a 1/4-ρinched compact simply connected Riemannian manifold, the
following facts i), ii) are known in [1, 4, 6, 8].

i) There are points p, q^M and a positive a, satisfying πl2\/~δ<^a^π with
δ=min K such that

1) The open sets U, VdM defined by

U = {xtΞMjd(x, p)<a}, V = {y(=Mld(y, q)<a)

cover M, that is, U{JV=M.
2) The exponential maps defined at p, q^M send the open balls

{XeTp(M)l\X\<a}, {Y^Tg(M)l\Y\<a} diffeomorphically onto [/and V,
respectively,
ii) Let N be a point set defined by

then N possesses the following properties:
1) iV is a differentiable submanifold of M and lies in U f]V.
2) For every xEίN there are a unique minimizing geodesic from p to x and

a unique minimizing geodesic from q to x, we denote the initial directions of
these geodesies by g+(x)^ Tp(M), g-(x)^ Tq(M), respectively.

3) Every geodesic segment of length a starting at p of initial direction X
cuts iV exactly at one point which we denote by f+(X). Also every geodesic
segment of length a starting at q of initial direction Y cuts N exactly at one point
which we denote by/_( Y).

Using the facts i), ii), a homeomorphism h of the standard unit w-sphere Sn

onto M is constructed through following steps a)-e):
a) Let P, Q be the north pole and the south pole of Sn and express a point
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x of the northern hemi-sphere E+ by the standard polar coordinate system at P :

x = (G+(x), R+(x)), G+(x)<= TP(S"), 0^R+(x)^πl2 .

Also write a point y in the southern'hemi-sphere E_ by the polar coordinate
system at Q:

y = (G_(y), R_(y)), G_(y)ϊΞ ΓQ(S»), 0<£*_(y)^*/2 .

b) For a direction Z G Tp(Sn)y denote by F+(X) the point in the equator
E at which the geodesic segment of initial direction X crosses E:

F+(X) = (X, π/2).

Also define F_(Y) (Y<Ξ TQ(Sn)) to be the point in E at which the geodesic
segment of initial direction y cuts E:

c) Take a linear isometry a of TP(Sn) onto TP(M) and define an one to
one map β of TQ(Sn) onto Tg(M) by

\\Y\β(YI\Y\) otherwise,

d) Define an one to one map γ+ of Tp{M) onto itself by

also define γ_(Y) on Tq(M) by

e) Now the homeomorphism h of 5W onto M is given by

h(χ) = ( exp (p)oy+o<χo exp (P)" 1^), 2/

^ ) , if x(ΞE_ .

In order to prove that A is approximated by diffeomorphisms if the
sectional curvature K of M is sufficiently pinched, we evaluate I (A) relative to
the standard metric on Sn and the given Riemannian metric on M. The evalu-
ation is done through the three steps: first we evaluate I(exp (p)octoexp (P)"1),
next I(exρ (/>)oγ+oexp (p)'1) and I(exp (<7)oγ_oexp (g)"1), and finally we evaluate
I (exp (̂ )oyQoexp (Q)'1). Since in general we know that

for any maps A, B, these three steps complete our evaluation.
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2.1 First step, on I(exρ (p)oaoexp (P)"1)*.

Take orthogonal directions X, Y G Tp(M), then because of i) 2), we may
apply Rauch's comparison theorem to the arc c(θ)=r(X cos θ-\-Y sin0) (t^θ
<Lt29 O^r^τr/2) and to Sn, M, a. We get that

L(exp (PJoα^o^Z^exp (/>)o^),

where L(φ) denotes the length of the arc <p.
Let Sn(S) be the sphere of constant curvature δ(δ is the positive pinching of

the sectional curvature K of M from below; 8^K^1), then we also can
apply Rauch's theorem to c(θ), M, Sn(8) and a linear isometry a' of TP(Sn(8))
onto Tp{M\ to get that

L(exp (p)oc)^L(exp {P)oa'~
ιoc)

Since it is elementary to show that

L(exρ (P)oa~1oc) = (f2—0 sin r

= ί^-Jil sin
\/δ

we deduce that

In order to have an evaluation of the ratio of the line elements on S" and
M, consider the submanifold M(X> Y) of M consisting of elements of the form
exp (p) (rX cos θ+rY sin θ) and parametrize the plane of X> Y by (r, θ). The
line element of M restricted on M(X, Y), then, is written in the form dr2+μ2

(r, θ)dθ2. Since the function μ(r, θ) is nothing but the limit of L(exp {pyήfa—θ
when t1-^θi the above inequality yields that

<fr2+sin2 rdθ2^dr2+μ2(r, Θ)dθ2^dr2+— sin2 /
δ

Therefore we get that for any X, Y<= Tp(M) it holds that

(dr2+sin2rdθ2^dr2+μ2(r, Θ)dθ^
δ

on M(Xy Y). Thus we may conclude that

I (exp (^)oαoe

by virtue of Lemma 2.

* The description in section 2.1, is due to professor Y. Tsukamoto and improves the
author's original (less complete) one.
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2.2 Second step, on I(exp (#)oγ+oexp (q)'1)

The following fact iii) also is known for a compact connected δ-pinched
simply connected manifold M(δ>l/4),

iii) 1) π^ diam (M)^π\\/δ~

2) Let p, q be the points in i) 2), then for any

d(p, *)^zr/2vT or % , x)^

In order to evaluate I(exp (^)oγ+oexp (q)'1), we first consider the differential
in X of the function λ defined by

\{X)= \ry+{X)\l\X\.

Take x, y^N and let APAB, AQA'B' be triangles in euclidean space such that

d(p, x) = rf(P, ̂ ) , d(p, y) = rf(P, β), d(x, y) = d(A, B)

A'), d(q,y) = d(Q,B'), d(x, y) = d(A', B').

Suppose Z-A'tίZLB' for instance, in l\QA'B\ we then have by
Toponogov's comparison theorem that

7C-Z.Q =

Since, in general, it holds that

Zqyχ+ Δχyp+

we get that

πβ- ZP/2^ ^PBA^Zpyx^πβ+ ZP/2+(τr-

hence we see that in APBA

πβ-3ZPβ-(π-Zpyq)^ZPAB=

Therefore we have that

, x)-d(p, y)\ = \d(P, A)-d(P, B)|

2 sin ZPβ sin (ZPABβ- ZPBAβ)

sin ZPBA

^r|sin ZPβtanUP+(*-έPyq))\IVδ'

Let now x=f+(X), y=f+(X+dX)f then the inequality above yields that

tan

On the other hand, Toponogov's theorem applied to the geodesic triangle

Apyq, on which
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π^d(p, q), d(p, y) = d(q, y^πβVY ,

yields that

cos Zpyq^l-d\p9 q)l2d%p, y)^l-2δ .

Thus we get that

Since the homeomorphism exp (p)°y+oexp (p)"1 leaves the submanifold
M(Xy Y) of (2, 1) for orthogonal directions X, Y invariant, we may evaluate the
effect of (exp (^>)oγ+oexp (p)'1)* on the line element ds of M(X, Y), in order to
get an evaluation of I(exp (p)oγ+oexp (p)'1). We compare two quadratic forms
I(x, y), I0(x, y) given by

I{x, y) = (\(θ)x)2+2x'(θ)X(θ)rxy+{μχθ, \(θ)r)+(\\θ)r)*)}y*,

io(*>y) = *?+μ2φ>r)y,

to get the following; If a positive k satisfies that

1)

2)
μ(θ, r)

then the quadratic form klo(x, y) dominates I(x, y)> that is,

/(#, y)<:klo(x, y) for any x, y .

Since we have that

δ sin r^μ(r, θ)^~ sin r, 1 ̂ λ ^ 1/Vδ"
δ

from (2. 1) and from iii) 1), 2), we see that the condition 2) above is fulfilled
with k such that

Thus we have that, if δ^99/100 e.g., then with A ^ ί l + ^ V ί ^ / S 3 , it
holds that

(exp (p)oy

Quite similarly, we also have that with &2=δ(l— 4zr>/l— δ), it holds that

(exp (/>)oγ+oexp
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Thus we may conclude that

I(exp (ρ)oΎ+oexp (p)

where A0=max (kly ljk2).

As in the same way above, we get that

I(exp (q)oy^

2.3 Third step, on I(exp (q)oβoeχp (Q)'1).

We take two points x9 y in E_ with polar coordinates (X, r) (Γ, r) (X, Y
G TQ(Sn)y O^r^τr/2). Apply the evaluation in 2. 1 and 2. 2 to points F_(X),
F_(Y)^E, where two maps A+=exρ (/))oγ+o^oexp (P)"1 and A_=exρ (q)oy_oβo
exp (Q)'1 coincide, to get that

^ ( X ) h F ( Y ) )
- 0/1 °- d(F_(X),F.(Y))

On the other hand, Rauch's theorem applied to a linear isometry β of
TQ(Sn) onto Γβ(M) and to 5"(or Sn(8)), M yields that

( Q ) - » , exp (g)o/9 oexp1 ̂  ^
d(a, b) ~

for a, όe£_. Let ξ^β-'βiX), v=$~^(Y), then we have that

where A=exp (q)oβoeχp (Q)'1. Substitute s by π/2 and by r in the inequality
above to have that

/ y ^ ( e x p (Q)(rξ), exp (Q)(ry))
d(ί (f) ffo)) d{h{χ),h{y))

Since the ratio

d(exp(Q)(rξ),exp(Q)(r(ξ+dξ)) = g i n r

depends only on r, we get that if Y is sufficiently near to X, then

d(h(x)y H(γ)) d(HohoF_(X),
k0

 =d(hoF_(X), hoF_{Y)) d(x, y) = δ f

where H=exp (g)oγ_oexρ (q)'1. Combining this with the result of 2.2, we
have that
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δ
K~ d{x,y)

Thus we conclude that

because h preserves length along longitude.
Consequently we get that

Therefore we finally have that

from Corollary 1, finishing the proof of Proposition 1 at the beginning.
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