<table>
<thead>
<tr>
<th>Title</th>
<th>D1-3 Superlatices and their Applications (Discussions and Concluding Remarks, Session 1: Creation and Processing of High Function Materials, SIMAP'88 Proceedings of International Symposium on Strategy of Innovation in Materials Processing–New Challenge for the 21st Century–)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>YAMAMOTO, R.</td>
</tr>
<tr>
<td>Citation</td>
<td>Transactions of JWRI. 17(1) P.53–P.53</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1988-05</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/8008</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td>本文データはCiNiiから複製したものである</td>
</tr>
</tbody>
</table>
part are a sort of complement and they cannot be done by the laser. On the other hand, I look back the utilization of laser to change the semi-conductor industry by using the lasers as a heat source and it seems to me that, that was something pushed about seven or eight years ago, and it has never really come to the whole front. Because another competing mechanism was judged to be much more economical.

“Superlattices and their Applications”

Prof. R. Yamamoto

Question (Prof. Shinjo):
Thank you, prof. Yamamoto, especially because you have included some of my results in your talk. Unfortunately the time is too short, so I will ask you to summarize again your opinion about the sample preparation technique. Because we are preparing actually many Kind of multilayers but we have only used the vacuum deposition technique.
However you’re using a lot of techniques not only the vacuum deposition, but also sputtering and films. So, in case of metallic films to prepare the artificial superlattices with best quality.
How is your opinion? This is my first question.

Answer (Prof. Yamamoto):
We’re using the various techniques to compare the advantage and disadvantage of each method. I think the advantage and disadvantage depend on the superlattices themselves and depend on the problem itself. So far as to synthesize the more idealize superlattices, the molecular beam epitaxy is much better than the radio frequency method. I suppose prof. Shinjo would like to stress that the temperature of the substrate should be lower than the room temperature, that is liquid nitrogen temperature. However, some researchers emphasize that a substrate temperature should be higher than room temperature. But I don’t know exactly which is correct.

Question (Prof. Shinjo):
Another small question is about your last table. I didn’t see the super modulus effect. It is really, as you mentioned, one of the very interesting special property of the multilayers and actually you have shown some examples, but I don’t know if it is really useful for technical or practical use.

Answer (Prof. Yamamoto):
I think it’s useful in future such as multilayer ceramic coating for tools fields.

Comment (Prof. Shinjo):
I’d like to make a small comment. I am also making many types of multilayers and we confirm there is a lot of possibilities to make new materials, so as prof. Yamamoto said already. I think we have still good possibility to find new superconducting materials in the metallic systems. Nowadays, oxyside superconductors have gathered too much attention but in metallic system also we have a hope to find another type of superconductors. That is my comment. Thank you very much.

Question (Prof. Iwamoto):
What kind of ceramic multilayer material do you think applicable?

Answer (Prof. Yamamoto):
In the near future, so many researchers will produce the many kinds of ceramic superlattices, including an oxide-oxide superlattice, oxide-nitride superlattice. And they will intend to synthesize a new oxide superconductors or ceramic sensors. Some ceramics are heterointerfaces can be used to sensor of water concentration. So, we can use a ceramic multilayer film for many applications. So, sensors and multilayer coatings and multilayer coated electrode.

Question (Prof. Wallach):
I would like to ask another question. The comprosis of strategy for innovation and in the lots of paper by Prof. Yamamoto, Prof. Shinjo said about superconductors and perhaps the lots of work could be done.
To either of the people or anybody else here have a feeling of strategy for doing this. It seems to somebody not in the field but everybody wants to work in this area and they all followed the low instinct but there isn’t yet a strategy as such. So if you have any comments on or how you’re interested in.

Answer (Prof. Yamamoto):
Our group now synthesize oxide superlattice. Because we imagine most of the oxide superconductors are layered compound. So Yttrium case or Bismos system or the compound on the layered compound. I think if we control layering period, we can enhance the transition temperature or critical current by using the oxide superlattice. We are producing the oxide superlattice, this is a one-point.
And the second strategy is that we’re also trying to synthesize the metal and organic superlattice. Third strategy is to synthesize a compound semi-conductors and the metal superlattice. This superlattice was investigated in detail by Prof. Kobayashi at Osaka University.