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Abstract
We study the asymptotic stability of nonlinear waves for damped wave equations

with a convection term on the half line. In the case where the convection term satisfies
the convex and sub-characteristic conditions, it is known by the work of Ueda [7] and
Ueda–Nakamura–Kawashima [10] that the solution tends toward a stationary solution.
In this paper, we prove that even for a quite wide class of the convection term, such
a linear superposition of the stationary solution and the rarefaction wave is asymptot-
ically stable. Moreover, in the case where the solution tendsto the non-degenerate
stationary wave, we derive that the time convergence rate ispolynomially (resp. ex-
ponentially) fast if the initial perturbation decays polynomially (resp. exponentially)
as x !1. Our proofs are based on a technicalL2 weighted energy method.

1. Introduction

We consider the initial-boundary value problem on the half line for a damped wave
equation with a nonlinear convection term:

8���<
���:

ut t � uxx C ut C f (u)x D 0, x > 0, t > 0,
u(0, t) D u�, t > 0,
lim

x!1 u(x, t) D uC, t > 0,

u(x, 0)D u0(x), ut (x, 0)D u1(x), x > 0,

(1.1)

where the functionf D f (u) is a givenC2 function satisfying f (0) D 0 and u� are
given constants withu� < uC. In this problem, we assume that the initial datau0(x)
satisfiesu0(0)D u� and limx!1 u0(x) D uC as the compatibility conditions. Through-
out this paper, we impose the convex and sub-characteristicconditions at the origin:

(1.2) f 00(0)> 0, j f 0(0)j < 1, f (u) > f (0)D 0 for u 2 [u�, 0).

2010 Mathematics Subject Classification. Primary 35L71; Secondary 37L40.�The research of the second author is partially supported by aGrant-in-Aid for Young Scientists
(B) No. 21740111 from Japan Society for the Promotion of Science.
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For the viscous conservation laws on the half line, Liu–Matsumura–Nishihara [3]
investigated the case where the flux is convex and the corresponding Riemann prob-
lem for the hyperbolic part admits the transonic rarefaction wave. More precisely, it
was shown in [3] that depending on the signs of the characteristic speeds, the large-
time behavior of the solutions is classified into three cases. On the other hand, Ueda–
Kawashima [9] and Ueda [7, 8] suggested that the dissipativestructure of (1.1) is similar
to one of viscous conservation laws. Indeed, Ueda [7] considered the problem (1.1) with
uC D 0 and showed that if the fluxf (u) of (1.1) satisfies

(1.3) f 00(u) > 0, j f 0(u)j < 1 for u 2 [u�, 0],

then the solution of (1.1) tends toward the stationary solution �, provided that the ini-
tial perturbation is suitably small. Here, the stationary solution � D �(x) is defined by
the solution of the stationary problem corresponding to (1.1):

(
f (�) D �x, x > 0,�(0)D u�, lim

x!1 �(x) D 0.(1.4)

In the case where the flux is not necessarily convex, Liu–Nishihara [4] and Hashimoto–
Matsumura [1] studied respectively the asymptotic stability of a viscous shock wave and
superpositions of stationary solution and rarefaction wave. Especially, in order to obtain
the stability result, Hashimoto–Matsumura [1] introduced auseful weight function and
handled the weightedL2 energy method.

Under the above consideration, we can expect that the asymptotic stability of the
nonlinear waves holds true for the problem (1.1) under the non-convex condition (1.2).
Therefore, we first treat the caseu� < 0< uC and the condition (1.2) withf 0(0)D 0,
and derive that the solution of (1.1) tends to the superposition of the stationary solution� connectingu� and 0 and the rarefaction wave R connecting 0 anduC. Here, the
rarefaction wave R D  R(x=t) is concretely given by

 R

�
x

t

� D
8��<
��:

0, x � 0,

( f 0)�1

�
x

t

�
, 0� x � f 0(uC)t,

uC, x � f 0(uC)t .

(1.5)

We emphasize that the sub-characteristic condition is enough to be imposed only on
u D 0.

Additionally, Ueda [7] and Ueda–Nakamura–Kawashima [11] considered the con-
vergence rate to the stationary solution for the problem (1.1) with uC D 0. Ueda [7]
derived the polynomially and exponentially convergence rate to the non-degenerate sta-
tionary solution, and Ueda–Nakamura–Kawashima [11] obtained the polynomially con-
vergence rate to the degenerate stationary solution under the condition (1.3). At the



ASYMPTOTIC BEHAVIOR FOR DAMPED WAVE EQUATIONS 39

second and third results of the present paper, we focus on thestationary solution and
show the convergence rate under the non-convex condition (1.2).

This paper is organized as follows. The main theorems are given in Section 2.
In Section 3, we reformulate our initial-boundary value problem (1.1) and state some
preliminaries. In Section 4, we prove the asymptotic stability result under the non-
convex condition (1.2) by using the weighted energy method.Finally, we focus on the
stationary solution and obtain the polynomially and exponentially convergence rate of
the solutions by using the space-time weighted energy method in Section 5.

NOTATIONS. We denote byL2 D L2(RC) the usual Lebesgue space overRC with
the norm k � kL2, and H1 D H1(RC) the corresponding first order Sobolev space
with the normk �kH1. Moreover,H1

0 D H1
0 (RC) denotes the space of functoinsf 2 H1

with f (0)D 0, as a subspace ofH1.
For� > 0, L2� D L2�(RC) denotes the polynomially weightedL2 space with the norm

k f kL2� WD
�Z 1

0
(1C x)�j f (x)j2 dx

�1=2
,

while L2�,expD L2�,exp(RC) denotes the exponentially weightedL2 space with the norm

k f kL2�,exp
WD �Z 1

0
e�xj f (x)j2 dx

�1=2
.

Similarly, we define the corresponding weighted Sobolev spaces H1� D H1� (RC) and
H1�,expD H1�,exp(RC).

For an intervalI and a Banach spaceX, Ck(I I X) denotes the space ofk-times
continuously differentiable functions on the intervalI with values inX. Finally, letters
C and c in this paper are defined as positive generic constants unless they need to
be distinguished.

2. Main theorems

In this section, we state our main results. The first theorem is the asymptotic sta-
bility of the superposition of the stationary solution and the rarefaction wave under the
condition (1.2).

Theorem 2.1. Suppose that u� < 0< uC, f 0(0)D 0 and (1.2) hold. Assume that
u0 � uC 2 H1 and u1 2 L2. Let �(x) be the stationary solution satisfying the problem
(1.4) and  R(x=t) be the rarefaction wave given by(1.5). Then there exists a positive
constant"0 such that, if uC � "0 and ku0 � � �  R( � )kH1 C ku1kL2 � "0, then the
initial-boundary value problem(1.1) has a unique global solution in time u satisfying

u � uC 2 C0([0, 1)I H1), ux, ut 2 L2(0,1I L2),
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and the asymptotic behavior

(2.1) lim
t!1 sup

x>0

����u(x, t) � �(x) �  R

�
x

t

����� D 0.

When we consider the caseuC D 0, we obtain the following corollary.

Corollary 2.2. Suppose that uC D 0 and (1.2) hold true. Assume that u0 � � 2
H1 and u1 2 L2. Let �(x) be the stationary solution satisfying the problem(1.4). Then
there exists a positive constant"1 such that, if ku0 � �kH1 C ku1kL2 � "1, then the
initial-boundary value problem(1.1) has a unique global solution in time u satisfying

u � � 2 C0([0, 1)I H1
0 ), (u � �)x, ut 2 L2(0,1I L2),

and the asymptotic behavior

(2.2) lim
t!1 sup

x>0
ju(x, t) � �(x)j D 0.

The proof of Corollary 2.2 is completely same as in Theorem 2.1 and omitted here.
The second purpose of this paper is to get the convergence rates of the solutionu to-
ward the stationary wave�. Both theorems are concerned with the non-degenerate case
f 0(0) < 0. Theorem 2.3 and 2.4 give the polynomial and the exponential stability re-
sult, respectively.

Theorem 2.3. Suppose that uC D 0, f 0(0) < 0 and (1.2) hold true. Let�(x)
be the stationary wave of the problem(1.4), and u(x, t) be the global solution to the
problem (1.1) which is constructed inCorollary 2.2. If u0 � � 2 H1� and u1 2 L2� for� � 0, then we have

ku(t) � �kH1 � C E�(1C t)��=2(2.3)

for t � 0, where C is a positive constant and E� WD ku0 � �kH1� C ku1kL2� .
Theorem 2.4. Suppose that the same conditions as inTheorem 2.3hold true.

Then, if u0 � � 2 H1�,exp and u1 2 L2�,exp for � > 0, then we obtain

ku(t) � �kH1 � C E�,expe
��t

for t � 0, where� is a positive constant depending on�, C is a positive constant and
E�,exp WD ku0 � �kH1�,exp

C ku1kL2�,exp
.

REMARK . Corollary 2.2 and Theorems 2.3, 2.4 become the extensions of the
asymptotic stability result in [7].
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3. Reformulation of the problem

In this section, we make preparations for the proofs of Theorem 2.1, 2.3 and 2.4.
Let �(x) be the stationary solution satisfying (1.4) and let R(x=t) be the rarefaction
wave given by (1.5). As in the previous works, we introduce a smooth approximation (x, t) of  R(x=t) and define

(3.1) 8(x, t) D �(x)C  (x, t)

as an approximation of our asymptotic solution�(x)C  R(x=t). Then we reformulate
our problem (1.1) by introducing the perturbationv(x, t) by

(3.2) u(x, t) D 8(x, t)C v(x, t).

This is the standard strategy for solving our stability problem.
To complete this procedure, we first review the fundamental properties of the sta-

tionary solution�(x) which satisfies (1.4). For its proof, we refer the reader to [3, 4, 7].

Lemma 3.1. Suppose that(1.2). Then the stationary problem(1.4) has a unique
smooth solution�(x) satisfying u� < �(x) < 0 and �x(x) > 0 for x > 0. Moreover, for
the non-degenerate case f0(0)< 0, we have

j�k
x�(x)j � Ce�cx, x � 0

for each nonnegative integer k. On the other hand, for the degenerate case f0(0)D 0,
we obtain

j�k
x�(x)j � C(1C x)�k�1, x � 0

for each nonnegative integer k.

Next we introduce a smooth approximation of our rarefactionwave R(x=t). We
use the approximation due to Matsumura and Nishihara [5], which is defined by

(3.3)  (x, t) D ( f 0)�1(!(x, t))jx�0,

where!(x, t) is the smooth solution of the following Cauchy problem for the Burgers
equation:

�wt C wwx D 0, x 2 R, t > 0,w(x, 0)D f 0(uC) tanhx, x 2 R.

We note that our approximation (x,t) in (3.3) is well-defined if f (u) is strictly convex
on [0,uC]; this is true even in the case (1.2) ifuC is suitably small. Then, by a simple
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calculation, we see that (x, t) satisfies

� t C f ( )x D 0, x > 0, t > 0, (0, t) D 0, t � 0.
(3.4)

Let  0(x) WD  (x, 0) D ( f 0)�1(!(x, 0))jx�0. Furthermore, the approximation (x, t)
satisfies the following properties which are proved in [5].

Lemma 3.2. Suppose that(1.2) with f 0(0) D 0 and f(u) is strictly convex on
[0, uC]. Then we have:
1) 0<  (x, t) < uC and  x(x, t) > 0 for x > 0 and t> 0.
2) For 1� p � 1, there exists a positive constant C such that

k x(t)kL p � C min{uC, u1=pC (1C t)�1C1=p},

k xx(t)kL p � C min{uC, (1C t)�1},

k xxx(t)kL p � C min{uC, (1C t)�1}.

3)  (x, t) is an approximation of R(x=t) in the sense that

lim
t!1 sup

x>0

���� (x, t) �  R

�
x

t

����� D 0.

We consider our approximation8(x, t) defined by (3.1). By using (1.4) and (3.4),
we find that8(x, t) satisfies

(3.5)

�8t t �8xx C8t C f (8)x D h, x > 0, t > 0,8(0, t) D u�, t � 0,

where the error termh is

(3.6)

h WD ( f (8) � f (�) � f ( ))x C  t t �  xx

D ( f 0(� C  ) � f 0(�))�x C ( f 0(� C  ) � f 0( )) x C  t t �  xx

D O(j jj�xj C j�jj xj C j t t j C j xxj).
Also, we note thatu� < 8(x, t) < uC and8x(x, t) > 0 for x > 0 and t � 0. Moreover,
using the estimates in Lemmas 3.1 and 3.2, we can estimate theerror termh in (3.5)
as follows.

Lemma 3.3. For the error term h defined by(3.6), we estimate

kh(t)kL p � C min{uC, � (t)(1C t)�1}

for 1� p � 1, where� (t) D log(2C t) for p D 1 and � (t) D 1 for 1< p � 1, and
C is a positive constant independent of uC.
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We omit the proof and refer the readers to [3, 1].
Finally we introduce the perturbationv(x, t) by (3.2) and rewrite our original prob-

lem (1.1) as

8<
:
vt t � vxx C vt C { f (8C v) � f (8)}x C h D 0, x > 0, t > 0,v(0, t) D 0, t > 0,v(x, 0)D v0(x), vt (x, 0)D v1(x), x > 0.

(3.7)

where we putv0(x) WD u0(x)�80(x) with 80(x) WD �(x)C 0(x) andv1(x) WD u1(x). We
will discuss this reformulated problem in Sections 4 and 5 toprove our main theorems.

In order to derive the existence of the global solution in time described in The-
orem 2.1, we need the local existence theorem. For this purpose, we define the solution
space for any intervalI � RC and M > 0 by

XM (I ) WD �v 2 C0(I I H1
0 (RC))I vt 2 C0(I I L2(RC)),

sup
t2I

(kv(t)kH1 C kvt (t)kL2) � M

�
.

For the solution spaceXM (I ), the local existence theorem of the solutionv for (3.7)
is stated as follows.

Proposition 3.4 (local existence). For any positive constant M, there exists a pos-
itive constant t0 D t0(M) such that ifkv0kH1 C kv1kL2 � M, then the initial boundary
value problem(3.7) has a unique solutionv 2 X2M ([0, t0]).

We prove Proposition 3.4 by using a standard iterative method and omit the proof.

4. Asymptotic stability of nonlinear waves

The aim of this section is to prove Theorem 2.1. For this purpose, it is import-
ant to derive the following a priori estimate of solutionsv for (3.7) in the Sobolev
spaceH1.

Proposition 4.1 (a priori estimate). Suppose that the same assumptions as inThe-
orem 2.1hold true. Then, there exists a positive constant"2 such that ifv 2 X"2([0, T ])
is the solution of the problem(3.7) for some T> 0, then it holds

(4.1)
kv(t)k2

H1 C kvt (t)k2
L2 C Z t

0
(kvt (� )k2

L2 C kvx(� )k2
L2 C kp8xv(� )k2

L2) d�
� C(kv0k2

H1 C kv1k2
L2 C kuCk1=6)

for t 2 [0, T ], where C is a positive constant independent of T .



44 I. HASHIMOTO AND Y. UEDA

Before proceeding to the proof of Proposition 4.1, we give some preparations for a
weight function. Sincef 00(0)> 0 andj f 0(0)j< 1 by (1.2), there exist positive constants
r and � such that

f 00(u) � � and j f 0(u)j < 1 for juj � r .

We also assume thatu� < 0 < uC < r throughout this section. In this situation, we
choose the weight function as

(4.2) w(u) D f (u)C Æg(u) for u 2 [u�, r ],

where g(u) is defined byg(u) D �u2m C r 2m, and Æ and m are positive constants de-
termined later. For the weight function (4.2), we obtain thefollowing lemma.

Lemma 4.2 (Hashimoto–Matsumura [1]).Suppose that f(u) satisfies(1.2). Letw(u) be the weight function defined in(4.2). Then, for suitably smallÆ > 0 and suit-
ably large integer m, there exist positive constants c and C such that

c � w(u) � C, ( f 00w � fw00)(u) � c

for u 2 [u�, r ].

For the proof, readers are referred to [1]. Furthermore, we prepare the key lemma
for the weight function (4.2) as follows.

Lemma 4.3. Suppose that the same conditions as inLemma 4.2hold true. Then,
for suitably smallÆ > 0, we obtain the inequality

(4.3) (f 0w � fw0)(u)2 < w(u)2

for u 2 [u�, r ].

Proof. By the definition ofw, we rewrite (4.3) as

(4.4) Æ2{( f 0g� f g0)(u)}2 < {( f C Æg)(u)}2.

Thus, the inequality (4.4) is enough to derive the inequality (4.3). In order to get the
inequality (4.4), we divide the interval [u�, r ] into [u�, �r ] and [�r, r ]. We first con-
sider the interval [�r, r ]. By the conditionj f 0(u)j < 1 and (f g)(u) � 0 for u 2 [�r, r ],
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we chooseÆ suitably small, obtaining

{( f C Æg)(u)}2 � Æ2{( f 0g� f g0)(u)}2

D Æ2g(u)2(1� f 0(u)2)C f (u)2(1� Æ2g0(u)2)C 2Æ( f g)(u)(1C Æ( f 0g0)(u))

� Æ2g(u)2(1� f 0(u)2)C f (u)2

�
1� Æ2 max

u2[�r,r ]
jg0(u)j2�

C 2Æ( f g)(u)

�
1� Æ max

u2[�r,r ]
j f 0g0(u)j�

> 0 for u 2 [�r, r ].

Next, we consider the interval [u�, �r ]. Taking Æ sufficiently small, we have

( f C Æg)(u) � min
u2[u�,�r ]

f (u) � Æ max
u2[u�,�r ]

jg(u)j � 1

2
min

u2[u�,�r ]
f (u)

for u 2 [u�, �r ]. Therefore, using the inequality

Æ2{( f 0g� f g0)(u)}2 � Æ2 max
u2[u�,�r ]

j( f 0g� f g0)(u)j2
and choosingÆ suitably small such that

Æ max
u2[u�,�r ]

j( f 0g� f g0)(u)j � 1

2
min

u2[u�,�r ]
f (u),

we obtain the desired inequality (4.4) foru 2 [u�, �r ] and complete the proof.

Using Lemmas 4.2 and 4.3, and the technical weighted energy method given by
[1], we prove Proposition 4.1.

Proof of Proposition 4.1. We introduce a new unknown function Qv as

(4.5) v(x, t) D w(8(x, t)) Qv(x, t),

wherew is the weight function defined by (4.2). Substituting (4.5) into the equation
of (3.7), we obtain

(w(8) Qv)t t � (w(8) Qv)xx C (w(8) Qv)t C { f (8C w(8) Qv) � f (8)}x C h D 0.(4.6)

Multiplying (4.6) by Qv, we get
(4.7)�

1

2
(wCwt )(8) Qv2Cw(8) Qvt Qv

�
t

�w(8) Qv2
t Cw(8) Qv2

xC 1

2
(wt t �wxxCwt )(8) Qv2

C8x

Z Qv
0

f 0(8Cw(8)�)� f 0(8) d�C8x

Z Qv
0

f 0(8Cw(8)�)w0(8)� d�CFx D �Qvh,
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where we defineF as

F D �1

2
w(8)x Qv2 � w(8) Qv Qvx C ( f (8C w(8) Qv) � f (8)) Qv

� Z Qv
0

f (8C w(8)�) � f (8) d�.

By using the equation (3.5) and the condition8x D f (8)CO(j jCj xj), we find that

(wt t � wxx C wt )(8) D w0(8)(8t t �8xx C8t )C w00(8)(82
t �82

x)

D w0(8)(h � f (8)x)C w00(8)(82
t �82

x)

D �{w00(8)8x C ( f 0w0)(8)}8x C w00(8)82
t C w0(8)h

D �( fw00 C f 0w0)(8)8x C O(j j C j xj)8x C O(jhj C j xj2).

(4.8)

Moreover, by the straightforward calculation, we have

8x

Z Qv
0

f 0(8C w(8)�) � f 0(8) d�C8x

Z Qv
0

f 0(8C w(8)�)w0(8)� d�
D 1

2
( f 00w C f 0w0)(8)8x Qv2 C O(j Qvj)8x Qv2.

(4.9)

Therefore substituting (4.8) and (4.9) into the equality (4.7), we obtain

(4.10)

�
1

2
w(8) Qv2 C w(8) Qvt Qv C O(j xj) Qv2

�
t

C w(8) Qv2
x C 1

2
( f 00w � fw00)(8)8x Qv2 � w(8) Qv2

t C Fx

D �QvhC O(j Qvj C j j C j xj)8x Qv2 C O(jhj C j xj2) Qv2.

Next, we multiply (4.6) by 2Qvt , obtaining

(4.11) Gt C 2w(8) Qv2
t CH � (2w(8) Qvt Qvx)x D �2Qvt h,

whereG andH are defined by

G D w(8) Qv2
t C w(8) Qv2

x C (wx(8) Qv2)x C (wt t � wxx C wt )(8) Qv2

C 28x

Z Qv
0

f 0(8C w(8)�) � f 0(8) d�C 28x

Z Qv
0

f 0(8C w(8)�)w0(8)� d�,

H D 3wt (8) Qv2
t � wt (8) Qv2

x � (wt t � wxx C wt )t (8) Qv2

C 2{ f 0(8C w(8) Qv)w(8) � wx(8)} Qvt Qvx

� 28x

Z Qv
0

{ f 0(8C w(8)�) � f 0(8)}t d� � 28x

Z Qv
0

{ f 0(8C w(8)�)w0(8)�}t d�.
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Applying the relations (4.8) and (4.9), we rewriteG as

(4.12)
G D w(8) Qv2

t C w(8) Qv2
x C (wx(8) Qv2)x C ( f 00w � fw00)(8)8x Qv2

C O(j Qvj C j j C j xj)8x Qv2 C O(jhj C j xj2) Qv2.

On the other hand, making use of the equality

f 0(8C w(8) Qv)w(8) � wx(8) D ( f 0w � fw0)(8)C O(j Qvj C j j C j xj),
we have

(4.13)
H D 2( f 0w � fw0)(8) Qvt Qvx C O(j Qvj C j j C j xj) Qvt Qvx C O(j Qvj2)8t8x

C O(j xj)( Qv2
t C Qv2

x)C O(j xj2 C j xxj C j xj3 C j x xxj C j xxxj) Qv2.

Summing up (4.10) and (4.11), and substituting (4.12) and (4.13) into the resultant
equation, we obtain

( QE C R1)t C QD C QF x D R1 C R2 � ( Qv C 2Qvt )h,(4.14)

where QE, QD, QF , QR1 and QR2 are defined by

QE D w(8)

�
1

2
Qv2 C Qv2

t C Qv2
x C Qv Qvt

�C ( f 00w � fw00)(8)8x Qv2,

QD D w(8)( Qv2
x C Qv2

t )C 2( f 0w � fw0)(8) Qvt Qvx C 1

2
( f 00w � fw00)(8)8x Qv2,

QF D �1

2
w(8)x Qv2 � w(8)( Qv Qvx C 2Qvt Qvx)

C ( f (8C w(8) Qv) � f (8)) Qv � Z Qv
0

f (8C w(8)�) � f (8) d�,

R1 D O(j Qvj C j j C j xj)8x Qv2 C O(jhj C j xj2) Qv2,

R2 D O(j Qvj C j j C j xj) Qvt Qvx C O(j xj)( Qv2
t C Qv2

x)

C O(j xxj C j xj3 C j x xxj C j xxxj) Qv2.

Therefore, integrating the equation (4.14) overRC, we get the energy equality

d

dt

Z 1
0

QE C R1 dxC Z 1
0

QD dx D Z 1
0

R1 C R2 � ( Qv C 2Qvt )h dx.(4.15)

Here, calculating the discriminants and using Lemmas 4.2 and 4.3, we have the
condition Z 1

0

QE dx� k( Qv, Qvx, Qvt ,
p8x Qv)k2

L2,
Z 1

0

QD dx � k( Qvx, Qvt ,
p8x Qv)k2

L2.(4.16)
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We next consider the remainder terms. We first estimate the third term on the right hand
side of (4.15). Using Lemma 3.3 and the Sobolev and Young inequalities, we obtain
(4.17)Z 1

0
j( QvC2Qvt )hj dx � Z 1

0
j Qvhj dxC2

Z 1
0
j Qvt hj dx

� Ck Qvk1=2
L2 k Qvxk1=2

L2 khkL1 C "k Qvtk2
L2 CC"khk2

L2

� "�k Qvxk2
L2 Ck Qvtk2

L2

�CC"�k Qvk2=3
L2 khk4=3

L1 Ckhk2
L2

�
� "�k Qvxk2

L2 Ck Qvtk2
L2

�
CC"{k Qvk2=3

L2 juCj1=6(1C t)�7=6 log6=7(2C t)CjuCj1=2(1C t)�3=2}
for any " > 0, whereC" is a positive constant depending on". By Lemmas 3.1, 3.2
and 3.3, and the same computation as in (4.17), we estimateR1 and R2 as

(4.18)

Z 1
0
jR1j dx � C

Z 1
0

(j Qvj C j j C j xj)8x Qv2 dxC C
Z 1

0
(jhj C j xj2) Qv2 dx

� C(k QvkL1 C juCj)kp8x Qvk2
L2 C Ck QvkL2k QvxkL2

�khkL1 C k xk2
L2

�
� C(k QvkL1 C juCj)kp8x Qvk2

L2 C "k Qvxk2
L2

C C"k Qvk2
L2{juCj1=6(1C t)�11=6 log11=6(2C t)C juCj2(1C t)�2}

and

(4.19)

Z 1
0
jR2j dx

� C
Z 1

0
(j Qvj C j j C j xj) Qvt Qvx dxC C

Z 1
0
j xj( Qv2

t C Qv2
x) dx

C C
Z 1

0
(j xxj C j xj3 C j x xxj C j xxxj) Qv2 dx

� C(k QvkL1 C juCj)�k Qvtk2
L2 C k Qvxk2

L2

�C Ck Qvk3=2
L2 k Qvxk1=2

L2 (k xxkL2 C k xxxkL2)

C Ck QvkL2k QvxkL2

�k xk3
L3 C k xkL1k xxkL1

�
� C(k QvkL1 C juCj)�k Qvtk2

L2 C k Qvxk2
L2

�C "k Qvxk2
L2

C C"k Qvk2
L2

�k xxk4=3
L2 C k xxxk4=3

L2 C k xk6
L3 C k xk2

L1k xxk2
L1

�
� C(k QvkL1 C juCj)(k QvtkL2 C k QvxkL2)C "k Qvxk2

L2

C C"k Qvk2
L2{juCj1=6(1C t)�7=6 C juCj3(1C t)�3 C juCj2(1C t)�2}

for any " > 0, whereC" is a positive constant depending on". Therefore, integrat-
ing (4.15) over (0,t), substituting (4.17), (4.18) and (4.19) into the resultant equality
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and taking" and sup0�t�Tkv(t)kH1 C juCj sufficiently small, we obtain

k Qvk2
H1 C k Qvtk2

L2 C Z t

0
k Qvxk2

L2 C k Qvtk2
L2 C kp8x Qvk2

L2 d�
� C

�k Qv0k2
H1 C k Qv1k2

L2 C juCj1=6�.
Finally, by the positivity ofw in Lemma 4.8 and the simple relationsvx D wx QvCw Qvx and vt D wt Qv C w Qvt , we find thatkvkL2 � k QvkL2 and

kvxkL2 � C(kp8x QvkL2 C k QvxkL2), k QvxkL2 � C(kp8xvkL2 C kvxkL2),

kvtkL2 � C(kp8x QvkL2 C k QvtkL2), k QvtkL2 � C(kp8xvkL2 C kvtkL2).

Thus, by using the above inequalities, we have the desired estimate (4.1) and complete
the proof of Proposition 4.1.

Proof of Theorem 2.1. The global existence of solutions to the initial-boundary
value problem (1.1) can be proved by the continuation argument based on a local ex-
istence result in Proposition 3.4 combined with the corresponding a priori estimate in
Proposition 4.1. We omit the details and refer the readers to[1, 7].

5. Convergence rates of stationary solutions

In this section, we prove Theorems 2.3 and 2.4. The main idea of the proofs are due
to Ueda [7]. We use the space-time weighted energy method introduced in Kawashima–
Matsumura [2]. Before stating the proofs, we give a preparation. The following lemma
is concerning the inequality of the nonlinear termf and the weight functionw.

Lemma 5.1. Suppose that f(u) satisfies(1.2) and f0(0) < 0. Let w(u) be the
weight function defined by(4.2). Then, for suitably large integer m, there exists a pos-
itive constant c such that

( fw0 � f 0w)(u) � c(5.1)

for u 2 [u�, 0].

Proof. By the definition of weight functionw, we have

( fw0 � f 0w)(u) D Æ( f g0 � f 0g)(u).

In order to derive the desired inequality, we decompose the interval [u�, 0] into [u�,�r ],
[�r,�r =2] and [�r =2, 0]. We first consider the case [u�,�r ]. For u 2 [u�,�r ], we have

( f g0 � f 0g)(u) D �{2mu2m�1 f (u)C f 0(u)(�u2m C r 2m)}

D �2mu2m�1

�
f 0(u)

��1C ���� ru
����
2m� u

2m
C f (u)

�
.

(5.2)
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Here, we note thatjr =uj � 1 and f (u) � c0, j f 0(u)j < C for u 2 [u�, �r ], where c0

and C are positive constants. Thus we can choosem sufficiently large such that

f 0(u)

��1C ���� ru
����
2m� u

2m
C f (u) � c0

2
.(5.3)

Therefore, (5.2) and (5.3) imply the following inequality

( f g0 � f 0g)(u) � c0mr2m�1 > 0.(5.4)

For the caseu 2 [�r,�r =2], since f > 0, g0 > 0 and f 0 < 0� g, it immediately holds

( f g0 � f 0g)(u) � ( f g0)(u) � ( f g0)�� r

2

� > 0.(5.5)

Finally, for the caseu 2 [�r =2, 0], since f > 0, g0 � 0 and f 0 < 0< g, we get

( f g0 � f 0g)(u) � ( f 0g)(u) � min
u2[�r =2,0]

j( f 0g)(u)j > 0.(5.6)

Thus combining (5.4), (5.5) and (5.6), we obtain the desiredestimate (5.1).

Proof of Theorem 2.3. When we consider the caseuC D 0, the solution of (1.1)
converges to the stationary solution�. In this case, applying the weighted energy method,
we obtain the equation (4.14) with D 0. More precisely, we get the following differ-
ential equality.

( NE C NR1)t C ND C NFx D NR1 C NR2,(5.7)

where NE, ND, NF , NR1 and NR2 are defined by

NE D w(�)

�
1

2
Qv2 C Qv2

t C Qv2
x C Qv Qvt

�C ( f 00w � fw00)(�)�x Qv2,

ND D w(�)( Qv2
x C Qv2

t )C 2( f 0w � fw0)(�) Qvt Qvx C 1

2
( f 00w � fw00)(�)�x Qv2,

NF D �1

2
w(�)x Qv2 � w(�)( Qv Qvx C 2Qvt Qvx)

C ( f (� C w(�) Qv) � f (�)) Qv � Z Qv
0

f (� C w(�)�) � f (�) d�,

NR1 D O(j Qvj)�x Qv2, NR2 D O(j Qvj) Qvt Qvx.
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Here, we note that the perturbationv is defined byv D u � � and Qv is defined byv D w(�) Qv. Applying Lemma 5.1 to NF , we calculate NF as

(5.8)
� NF D 1

2
( fw0 � f 0w)(�) Qv2 C w(�)( Qv Qvx C 2Qvt Qvx)C O(j Qvj3)

� c Qv2 � C( Qv2
x C Qv2

t )C O(j Qvj3),

wherec and C are positive constants.
Let 
 and � be any positive constants satisfying 0� 
 , � � �. We multiply the

equality (5.7) by (1C t)
 (1C x)� , obtaining
(5.9)

{(1C t)
 (1C x)�( NE C NR1)}t � 
 (1C t)
�1(1C x)�( NE C NR1)C (1C t)
 (1C x)� ND
C {(1C t)
 (1C x)� NF}x � �(1C t)
 (1C x)��1 NF D (1C t)
 (1C x)�( NR1 C NR2).

Substituting (5.8) into (5.9), integrating the resultant inequality overRC � (0, t) and
taking sup0�t�T jv(t)jL1 sufficiently small, we have

(1C t)
 k( Qv, Qvt , Qvx)(t)k2
L2� C

Z t

0
(1C � )
 �k( Qvt , Qvx,

p�x Qv)(� )k2
L2� C �k Qv(� )k2

L2��1

�
d�

� C E2� C 
C
Z t

0
(1C � )
�1k( Qv, Qvt , Qvx)(� )k2

L2� d� C �C
Z t

0
(1C � )
 k( Qvt , Qvx)(� )k2

L2��1
d�

for an arbitrary
 and � with 0 � 
 , � � �, where C is a constant independent of
 and �. For the above estimate, applying the induction argument, we can obtain the
desired estimate (2.3) in Theorem 2.3. For the details, we refer the readers to [6, 7].

Finally, we prove Theorem 2.4 by using the space-time weighted energy method.

Proof of Theorem 2.4. Let�, � > 0. Multiplying (5.7) by e�te�x, we obtain

(5.10)
{e�te�x( NE C NR1)}t � �e�te�x( NE C NR1)C e�te�x ND C {e�te�x NF}x � �e�te�x NF
D e�te�x( NR1 C NR2).

Substituting (5.8) into (5.10), integrating the resultantinequality overRC � (0, t) and
taking sup0�t�Tkv(t)kL1 sufficiently small, we get

e�tk( Qvt , Qvx, Qv)(t)k2
L2�,exp

C Z t

0
e��k( Qvt , Qvx)(� )k2

L2�,exp
d� C � Z t

0
e��k Qv(� )k2

L2�,exp
d�

� C E2�,expC �C0

Z t

0
e��k Qv(� )k2

L2�,exp
d� C (� C �)C1

Z t

0
e��k( Qvt , Qvx)(� )k2

L2�,exp
d� ,
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whereC0, C1 and C are positive constants independent of� and�. Taking � > 0 and� > 0 suitably small such that�C0 � � and (� C �)C1 � 1, we obtain the desired
estimate in Theorem 2.4 and complete the proof.
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