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1. Introduction

Let R"*!=R"xR be the (n+1)-dimensional Euclidean spase
(n>1). We consider the heat equation

Lu: =a—u—Au=0
ot

and its nonnegative solutions (called parabolic functions). For an
unbounded domain Q in R"*! a nonnegative parabolic function u in Q
is called a kernel function at infinity (resp. at a point (y,5)€0,Q) if u is
not identically equal to zero and if u vanishes continuously on 9,Q (resp.
on 0,2\{(y,5)}), where 0,Q denotes the parabolic boundary of Q

We study the existence and uniqueness of kernel functions for the
domains of the following form:

Q,(D)={(x,H)eR"x R; t<0, (—t) *xeD},

where aeR and D is a bounded starlike Lipschitz domain in R" with
center 0, that is, D is starlike with center 0 and for every point x,€0D,D
is defined by a Lipschitz graph in some neighborhood of x, such that
the ray x,0 is its axis(see [3,p. 513]).

J.T. Kemper [5] has studied kernel functions at finite boundary
points, but our concern is ones at infinity, as discussed in [7], [8] and
[4]. It has been shown that Q (D) has a unique kernel function at infinity
if n=1, a<1 ([8])and if n>1, a<1/2 ([7]). Here we use the convention

tPartially supported by Grand-in-Aid for Encouragement of Young Scientist (No. 04740094 of
Ministry of Education of Japan.



332 M. NisHio anp N. Suzuki

that a kernel function at a point is “unique”’ if any two kernel functions
at the point differ only by a multiplicative constant.

The aim of this paper is to show the following theorem, which
completes the above assertion.

Theorem A. QD) has a unique kernel function at infinity if and only
if a<l1.

Remark that if a>1, then Q, (D) has infinitely many kernel functions
at infinity which are not proportional each other (cf. [8]).
Now we consider the Appell transformation &: Put

oA (e, t)=(—t tx,—t™ 1)
for (x,t)e R" x (— 00,0) and
u(x,t)=(4nt) ""? exp(—|x|2(4t) " Vu(t ™ x,—t™ 1)

for a function 4 on a domain QcR"x (—00,0) and for (x,t)e L (Q):=
{(x,1); (x,6)€Q}. Then o (Q(D))={(x,t);t>0, * 'x€ D} and /u is the
kernel function on &/(Q,(D)) at the origin if u is a kernel function on
Q,(D) at infinity (see [1, p.283]). Therefore Theorem A is easily deduced
from the following

Theorem B. Put Q¥(D)={(x,t);t>0,t " Pxe D}. Then QD) has a
unique kernel function at the origin if f>0.

To prove the existence of kernel functions we prepare a kind of the
boundary Harnack principle in §3. In §4 we show that a certain
nontangential set is ‘“‘minimally thick’, i.e., it is not thin with respect
to minimal kernel functions, which plays an important role to examine
the uniqueness of kernel functions. This idea was first used in Hunt
and Wheeden [3] for harmonic functions. Theorem B is proved in
§5. Some comments on the boundedness of kernel functions at infinity
are made in §6.

2. Preliminaries

For a domain Q in R"*! we denote by 0,2 the set of (y,s) € 0Q (=the
boundary of Q) satisfying VNnQNR" x (s,00)#0 for every neighborhood
V of (y,5). This is called the parabolic boundary of Q. For (x,t)eQ,

we denote by w*? the parabolic measure at (x,t) with respect to Q. The

parabolic measure w$" is supported by 0,QNR" x (—0,t] and for any

bounded continuous function f on 9,0, the function j fdoG? of (x,t) is
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the solution of the Dirichlet problem with boundary value f. For the
detail of potential theory for the heat equation, see [1] or [10].

A boundary point (y,s) € 0, is said to be regular if for every bounded
continuous function f on 9,9,

lim | fdo@9=f(y,s).

(x,t)e2=(y,s)

For a nonempty open set B in R", (y,s)e R"*! and for >0, we define
tusk cones with vertex (y,s) as follows:

Ty.o5B,r)={(x,0;0<t—s<r(t—s) *(x—y)e B}
and
TE o(B,n){(x,1);0<s—t<r,(s—t)~ "*(x—y)e B}.
It is well-known that a boundary point (y,s) of a domain Q is regular if
T% (B, " Q=0
with some open set B#0 and »>0 (cf. [2]).

DEFINITION 1. A domain Q in R"*! is called uniformly regular if
there exist a nonempty open set B in R" and r>0 such that for every
point (y,s)€0,0,

TE o(PBr)n Q=0
with some orthogonal transformation P on R".

We describe the assumptions for domains which will be considered
in the later sections. These are adequate for domains Q#(D), 0<f<1/2
(see the proof of Theorem 2 below).

DEFINITION 2. Let Q be a domain in R"*!'=R"x (0,00). We say
that Q satisfies Condition (*) if the following conditions are satisfied:

(1) There exist a constant 7>0 and an upper semicontinuous
function ¢ >0 on R" such that

Q={(x,0); T>1t>p(x)}.

(2) liminf,,  ¢@(x)>0.
(3) lim sup,_ |x|"2p(x) < .
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(4) Q is uniformly regular.
(5) There exist constants r,>7;>0 such that for every (y,s)
€0,Q\{(0,0)} with 0<s<r,,

T(y,s)(B(_ |y| - eryarl))r; 2|y|2) CQ)

where B(x,r) is the open ball in R" with center x and radius r>0.
(6) lim,o sup{lx;p(x) <1} =0.

3. Boundary Harnack principle

Throughout this section Q is a domain in R%"' which satisfies
Condition (*). Fix 0<a <1 and take a constant r, with ;> lim sup,_,,
|x| “2¢(x). For each 1>0, we put

A.=(0,at)eQ,
E()={(x,t);t<t<(a+1)t,rolx|* <t},
E'(t)={(x,t);0 <t<at,ro|x|* <t+1},

E"(t)={(x,t);70|x|* <at—t <at}

and choose a number #(7) >0 such that
{(x,t)eQ;t<t(1)} <E"(1/2).

Then by the similar manner to the proof of Lemma 4 in [7] (see also
[6, Lemma 5]) we have

wgr'\t}t>t(t)) (B x {t(T)}) < Const w?)tr\(t>!(t)) (B x {t(T)})

for (x, 1)eQ\E"(t) and for every open ball B in {x;(x,t(1))eQ}. This
esttimate yields the following boundary Harnack principle (cf. [7, Lemma

5]).

Lemma 1. There is a constant C,>0 such that for every parabolic
function u>0 on Q vanishing continuously on 0,Qn {t>1(1)}, we have

u(x,t) < C u(A)wGNE (1) noQ) on Q\E"(1).

By Lemma 1 and the standard argument (see the proof of Proposition
2 in [7]), we can see the following

Lemma 2. There is a kernel function on Q at the origin.
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4. Minimal thickness

A nonnegative parabolic function u on a domain Q is called minimal
if every parabolic function v satisfying 0 <v<wu is a constant multiple of
u. A nonnegative lower semicontinuous function u on Q is called
superparabolic if Lu>0 in the distribution sense. For a superparabolic
function u on Q and an open set F in Q, Ryu denotes the reduced function
of u on F, that is, the minimum superparabolic function on Q with Rpu=

u on F.
The following assertion means ‘“‘minimal thickness’’ of a nontangential
set.

Lemma 3. Let Q be a domain in R"*! satisfying Condition(*). For
a decreasing sequence {t1,,};— in R, tending to 0, we put

F=F({tafze:= U B

If u is a minimal kernel function on Q at the origin, then Rpu=u on Q.  Here
E(t) is the set defined in §3.

Proof. Let (0, t5)€Q. We may assume that u(0,t;)=1. For each
me N, put

[e o]

F,= ) E@).

j=m

Then Ry u decreases to some parabolic function v>0 as m— 00 because
F,, decreases to the empty set. Since v<u and u is minimal, v=*ku for
some constant k>0. By the (parabolic) Harnack inequality, for 0 <t <t,,

Rpyu=u>Cu(A,) on QN E(z)
with some constant C>0, so that
Rpeu(x,t+7) > Cu(A,) )03 (0Q N E'(1)).
On the other hand, Lemma 1 shows
1=u(0,t,) < C,u(A)0§"(0QN E'(1)).
Hence

2(0,t0) =lim,, , o, Ry 1(0,20+Tp)
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>lim inf,,_, ., Rgq, u(0,to+1,)=>CC;'>0,
which implies £>0. Since Ryu+ Rpv—v=u on F, we see
Rru+Rpv—v>Rpu on Q.
This shows Rpv=v, so that
Rpu=Rp(v/k)=(Rpv)/k=v/k=u

on Q. The lemma is proved.

5. Uniqueness of kernel functions

We begin with the following

Theorem 1. Let Q be a domain in R"'! satisfying Condition (*)
and let (0, ty)€Q. Then there exists a unique kernel function u on Q at
the origin with u(0, ty)=1.

Proof. The existence of the kernel functions at the origin is stated
in Lemma 2. To show the uniqueness, we denote by H(Q) the space
of all parabolic functions on Q endowed with the topology of uniform
convergence on compact sets and set

Hg (Q)={ue H(Q);u>0, continuously vanishes on 9,Q\ {(0,0)}
and u(0,t,)=1}.

Then with the aid of the Harnack inequality and Lemma 1, we see that
Hg(Q) is a compact convex set in H(2). Hence by the Krein-Milman
theorem, it is sufficient to show the uniqueness of the minimal kernel
functions at the origin. Let u;,i=1,2, be minimal kernel functions at
the origin with #;(0,t,)=1. We may assume that there is a decreasing
sequence {1,}X-, tending to 0 such that

uy(4,,) 2uy(4,,)

for each integer m>1. By the Harnack inequality and Lemma 1 again,
there is a constant C>0 such that

u; >Cuy on F({t,}%-1).
Thus Lemma 3 leads to

uy; >Cu, on Q.
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Since u; minimal, we have u; =C'u, for some constant C'>0, which
implies u; = u,. This completes the proof.

Now we turn to Theorem B. According to the result in [7], only the
case 0 < f <1/2 must be handled, but this case follows from the following

Theorem 2. Let D be a bounded starlike Lipschitz domain in R"
with center 0 and let y be a lower semicontinuous and increasing function
on an open interval(0,ty). If lim inf,_ ot~ Y2y(t)>0, then Q(),D) has a
unique kernel function at the origin, where

Q,D)={(x,t);0<t<to,(t) ‘xe D}.

Proof. If lim, W (#)>0, the assertion is verified easily. In case
lim,,o¥(t)=0, by Theorem 1, it is sufficient to check that the domain
Q(,D) satisfies Condition(*). Because Y is lower semicontinuous and
increasing, Q(y,D) can be written

QY,D) = {(x,t);to>t> @(x)}

for some upper semicontinuous function ¢ such that ¢(x)=1, when
(lim,, . Y (2))~ !x¢ D. This implies (1) and (2). The condition (3) follows
from lim inf, ot~ Y2y(#)>0. Since D is Lipschitz and y is increasing,
we see easily (4) and (5). The remained condition (6) follows from
lim,_, oY()=0.

6. Bounded kernel functions

In this section we consider the case that the origin is an irregular
boundary point with respect to the adjoint heat equation (coirregular
point). Then we can construct a kernel function at the origin in the

following way.
For a domain Q in R"*! with 0€0Q, put

uﬂ(x’t) = W(xlt) - f deg’t))

where W is the fundamental solution of the heat equation, that is,
)2 |2

(4mt)~™ exp(—4—) fort>0

t

W(x,t)= { .
0 fort<0
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If Q is regular, i. e., every parabolic boundary point is regular, then ug
is a kernel function at the origin provided that u,#0.

ReMARK. u,p#0 if and only if the origin is a coirregular boundary
point of Q (cf. [9, Lemma 3]).

By Theorem 1 we have

Proposition 1. Let Q be a domain in R"'! satisfying Condition
(*). If the origin is coirregular, then ug is the unique kernel function at
the origin.

Applying the Appell transformation &/, we can give a criterion
whether a domain has a bounded kernel functions at infinity. Note that
o ug=1—w$;?(0Q) and that a kernel function at infinity is a barrier
function at all parabolic boundary points.

Proposition 2. A4 domain Q in R"*! has a bounded kernel function
at infinity if and only if L (Q)NR" X (—00,0)) is regular and the origin is
a coirregular point of A (Q)NR"x(—0,0)). In fact, 1 —§" (0Q) is a
bounded kernel function on Q at infinity.

As an example, we now consider domains
Q={(x,t);t <0, |x|*> < —2nt log(—1)}
and for >0
Quy={(,0);¢t <0, |x|>< —kt log log(—1?)}.

Theorem 1 and the Appell transformation again show that these domains
have a unique kernel function at infinity. Furthermore since the origin
is a coirregular point of /(Q) and of /(Q,)) for k>4 (see [1, pp.
338-340]), the present kernel function is bounded. On the other hand
for 0<k<4,Q; does not have any bounded kernel function at
infinity. This observation justifies the comments in [4, p. 869].
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