<table>
<thead>
<tr>
<th>Title</th>
<th>On some doubly transitive permutation groups in which socle(Gα) is nonsolvable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hiramine, Yutaka</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 1979, 16(3), p. 797-816</td>
</tr>
<tr>
<td>Version Type</td>
<td>VoR</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/8021</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University
ON SOME DOUBLY TRANSITIVE PERMUTATION GROUPS IN WHICH SOCLE(G_α) IS NONSOLVABLE

YUTAKA HIRAMINE

(Received July 3, 1978)

1. Introduction

Let G be a doubly transitive permutation group on a finite set Ω and α ∈ Ω. In [8], O'Nan has proved that socle(G_α) = A × N, where A is an abelian group and N is 1 or a nonabelian simple group. Here socle(G_α) is the product of all minimal normal subgroups of G_α.

In the previous paper [4], we have studied doubly transitive permutation groups in which N is isomorphic to PSL(2,q), Sz(q) or PSU(3,q) with q even. In this paper we shall prove the following:

Theorem. Let G be a doubly transitive permutation group on a finite set Ω with |Ω| even and let α ∈ Ω. If G_α has a normal simple subgroup N* isomorphic to PSL(2,q), where q is odd, then one of the following holds.

(i) G_Ω has a regular normal subgroup.

(ii) G_Ω = A_6 or S_6, N* = PSL(2,5) and |Ω| = 6.

(iii) G_Ω = M_{11}, N* = PSL(2,11) and |Ω| = 12.

In the case that G_α has a regular normal subgroup, by a result of Hering [3] we have (|Ω|, q) = (16, 9), (16, 5) or (8, 7).

We introduce some notations:

F(X): the set of fixed points of a nonempty subset X of G
X(Δ): the global stabilizer of a subset Δ(⊆ Ω) in X
X_Δ: the pointwise stabilizer of Δ in X
X^\Delta: the restriction of X on Δ
m|n: an integer m divides an integer n
X^H: the set of H-conjugates of X
|X|_p: maximal power of p dividing the order of X
I(X): the set of involutions in X
D_m: dihedral group of order m

In this paper all sets and groups are finite.
2. Preliminaries

Lemma 2.1. Let \(G \) be a transitive permutation group on \(\Omega, \alpha \in \Omega \) and \(N^\alpha \) a normal subgroup of \(G^\alpha \) such that \(F(N^\alpha) = \{\alpha\} \). Let the subgroup \(X \leq N^\alpha \) be conjugate in \(G^\alpha \) to every group \(Y \) which lies in \(N^\alpha \) and which is conjugate to \(X \) in \(G \). Then \(N^\alpha(X) \) is transitive on \(\Delta = \{\gamma \in \Omega \mid X \leq N^\gamma\} \).

Proof. Let \(\beta \in \Delta \) and let \(g \in G \) such that \(\beta g = \alpha \). Then, as \(X \leq N^\beta \), \(X^g \leq N^{\beta g} = N^\alpha \). By assumption, \((X^g)^h = X \) for some \(h \in G^\alpha \). Hence \(gh \in N^\alpha(X) \) and \(\alpha^{(gh)^{-1}} = \alpha^{-1} = \beta \). Obviously \(N^\alpha(X) \) stabilizes \(\Delta \). Thus Lemma 2.1 holds.

Lemma 2.2. Let \(G \) be a doubly transitive permutation group on \(\Omega \) of even degree and \(N^\star \) a nonabelian simple normal subgroup of \(G^\star \) with \(\alpha \in \Omega \). If \(C_G(N^\star) \neq 1 \), then \(N^\star \cap N^\beta \) for \(\alpha \neq \beta \in \Omega \) and \(C_G(N^\star) \) is semiregular on \(\Omega \) except \(\{\alpha\} \).

Proof. See Lemma 2.1 of [4].

Lemma 2.3. Let \(G \) be a transitive permutation group on \(\Omega \), \(H \) a stabilizer of a point of \(\Omega \) and \(M \) a nonempty subset of \(G \). Then
\[
|F(M)| = |N^\alpha(M)| \times |M^\alpha \cap H| \times |H|.
\]
Here \(M^\alpha \cap H = \{g^{-1}Mg, g^{-1}Mg \subseteq H, g \in G\} \).

Proof. See Lemma 2.2 of [4].

Lemma 2.4. Let \(G \) be a doubly transitive permutation group on \(\Omega \) and \(N^\alpha \) a normal subgroup of \(G^\alpha \) with \(\alpha \in \Omega \). Assume that a subgroup \(X \) of \(N^\alpha \) satisfies \(X^{G^\alpha} = X^{N^\alpha} \). Then the following hold.

(i) \(|F(X) \cap \gamma N^\alpha| = |F(X) \cap \gamma N^\alpha| \) for \(\beta, \gamma \in \Omega \) for \(\alpha \neq \beta \in \Omega \).

(ii) \(|F(X)| = 1 + |F(X) \cap \beta N^\alpha| \times r \), where \(r \) is the number of \(N^\alpha \)-orbits on \(\Omega \) for \(\{\alpha\} \).

Proof. Let \(\Gamma = \{\Delta_1, \Delta_2, \ldots, \Delta_r\} \) be the set of \(N^\alpha \)-orbits on \(\Omega \) for \(\{\alpha\} \). Since \(G^\alpha \) is transitive on \(\Omega \) for \(\{\alpha\} \) and \(G^\alpha \trianglelefteq N^\alpha \), we have \(|\Delta_i| = |\Delta_j| \) for \(1 \leq i, j \leq r \). By assumption, \(G^\alpha = N^{G^\alpha}(X)N^\alpha \) and so \(N^{G^\alpha}(X) \) is transitive on \(\Gamma \). Hence for each \(i \) with \(1 \leq i \leq r \) there exists \(g \in N^{G^\alpha}(X) \) such that \((\Delta_i)^g = \Delta_j \). Therefore \(|F(X) \cap \Delta_i| = |F(X^\alpha) \cap (\Delta_i)^g| = |F(X) \cap \Delta_j| \). Thus (i) holds and (ii) follows immediately from (i).

Lemma 2.5 (Huppert [5]). Let \(G \) be a doubly transitive permutation group on \(\Omega \). Suppose that \(\theta(G) \neq 1 \) and \(G^\alpha \) is solvable. Then for any involution \(z \in G^\alpha \), \(|F(z)|^2 = |\Omega| \).

We list now some properties of \(PSL(2, q) \) with \(q \) odd which will be required
Lemma 2.6 ([2], [6], [10]). Set $N = \text{PSL}(2, q)$ and $G = \text{Aut}(N)$, where $q = p^*$ and p is an odd prime. Let z be an involution in N. Then the following hold.

(i) $|N| = (q - 1)q(q + 1)/2$, $I(N) = z^N$ and $C_N(z) = D_{q - 1}$, where $q \equiv \varepsilon \in \{ \pm 1 \} (\text{mod } 4)$.

(ii) If $q \pm 3$, N is a nonabelian simple group and a Sylow r-subgroup of N is cyclic when $r \neq 2, p$.

(iii) If X and Y are cyclic groups of N and $|X| = |Y| = 2, p$, then X is conjugate to Y in $\langle X, Y \rangle$ and $N_N(X) = D_{q^2}$.

(iv) If $X \leq N$ and $X = Z_2 \times Z_2$, $N_N(X)$ is isomorphic to A_4 or S_4.

(v) If $|N|_2 = 8$, N has two conjugate classes of four-groups in N.

(vi) There exist a field automorphism f of N of order n and a diagonal automorphism d of N of order 2 and if we identify N with its inner automorphism group, $\langle d \rangle N = \text{PGL}(2, q)$, $\langle f \rangle \langle d \rangle N = G$ and $G|N = Z_2 \times Z_2$.

(vii) $C_N(d) = D_{q^2}$ and $C_{dN}(z) = D_{q^2}$.

(viii) Suppose $n = mk$ for positive integers m, k. Then $C_N(f^m) = \text{PSL}(2, p^m)$ if k is odd and $C_N(f^m) = \text{PGL}(2, p^m)$ if k is even.

(ix) Assume n is even and let u be a field automorphism of order 2. Then $I(G) = I(N) \cup d^n \cup u \langle d \rangle N$. If n is odd, $I(G) = I(N) \cup d^n$.

Lemma 2.7. Let G, N, d and f be as defined in Lemma 2.6 and H an $\langle f, d \rangle$-invariant subgroup of N isomorphic to $D_{q - 1}$. Let W be a cyclic subgroup of $\langle d \rangle H$ of index 2 (cf. (vii) of Lemma 2.6) and set $Y = \langle f \rangle W \cap H$. Then $C_H(Y) = W \cdot C_{\langle f \rangle}(Y)$.

Proof. By (viii) of Lemma 2.6, we can take an involution t satisfying $\langle d \rangle H = \langle t \rangle W$ and $[f, t] = 1$. Since $N_G(Y) = \langle f, d \rangle N_N(Y) = \langle f, d \rangle H$, $C_G(Y) = C_{\langle f, d \rangle H}(Y) = W \cdot C_{\langle f \rangle}(Y)$. Suppose $ht \in C(Y)$ for some $h \in \langle f \rangle$. Since t inverts Y, h also inverts Y and so h^2 centralizes Y. Hence some nontrivial 2-element $g \in \langle h \rangle$ inverts Y, so that $C_H(g)$ contains no element of order 4, contrary to (viii) of Lemma 2.6.

Throughout the rest of the paper, G^0 will always denote a doubly transitive permutation group satisfying the hypothesis of our theorem and we assume G^0 has no regular normal subgroup.
Notation. \(C^*=C_G(N^*) \), which is semi-regular on \(\Omega-\{\alpha\} \) by Lemma 2.2. Let \(r \) be the number of \(N^* \)-orbits on \(\Omega-\{\alpha\} \).

Since \(G_\beta \geq N^* \), \(|\beta N^*| = |\gamma N^*| \) for \(\beta, \gamma \in \Omega-\{\alpha\} \) and so \(|\Omega|=1+r \times |\beta N^*| \). Hence \(r \) is odd and \(N^*_\beta \) is a subgroup of \(N^* \) of odd index. Therefore \(N^*_\beta \) is isomorphic to one of the groups listed in (x) of Lemma 2.6. Accordingly the proof of our theorem will be divided in six cases.

Lemma 2.8. Let \(Z \) be a cyclic subgroup of \(N^*_\beta \) with \(|Z| \neq 1, p \). Then

(i) If \(|Z|=2 \), \(|F(Z)|=1+(q-\varepsilon)|I(N^*_\beta)|/|N^*_\beta| \).

(ii) If \(|Z|=2 \), \(|F(Z)|=1+|N^*_\beta(Z)|/|N^*_\beta(Z)| \).

Proof. It follows from Lemma 2.3, 2.4 and 2.6 (i), (iii).

Lemma 2.9. If \(N^*_\beta \neq D_{q+1} \) and \(Z \) is a cyclic subgroup of \(N^*_\beta \) with \(|Z| \neq 1, p \) and \(N_G(Z)^{F(Z)} \) is doubly transitive. Then \(C^*=1 \) and one of the following holds.

(i) \(N_G(Z)^{F(Z)} \leq AGL(1,q_i) \) for some \(q_i \).

(ii) \(C_G(Z)^{F(Z)} \geq PSL(2,p_i), r=1 \) and \(|F(Z)|=1+|N^*_\beta(Z)|/|N^*_\beta(Z)| \).

(iii) \(N_G(Z)^{F(Z)}=R(3), \) the smallest Ree group, \(|F(Z)|=28 \).

Proof. Set \(N_G(Z)=L^* \) and \(F(Z)=\Delta \). By Lemma 2.6 (iii), \(L \cap N^*=D_{q+1} \) and \(L \cap N^*=\langle t \rangle Y \geq Y \geq Z \), where \(0(t)=2, Y \simeq Z_{(q+1)/2} \).

If \((L \cap N^*)^A = 1 \), then \(L \cap N^*=N^*_\beta \) because \(L \cap N^* \) is a maximal subgroup of \(N^* \). Since \(|N^*: N^*_\beta| \) is odd, \(L \cap N^*=N^*=D_{q+1} \), contrary to the assumption. Hence \((L \cap N^*)^\Delta \neq 1 \) and as \(L_a \geq L_a \cap N^* \) and \(L_a \geq Y, (L_a)^A \) has a nontrivial cyclic normal subgroup. By Theorem 3 of [1], one of the following occurs:

(a) \(L^* \) has a regular normal subgroup

(b) \(L^* \geq PSL(2,p_i), |\Delta|=p_i+1 \), where \(p_i \geq 5 \) is a prime

(c) \(L^* \geq PSL(3,p_i), p_i \geq 3, |\Delta|=(p_i)^3+1 \)

(d) \(L^*=R(3), |\Delta|=28 \).

Suppose \(C^* \neq 1 \). Then there exists a subgroup \(D \) of \(C^* \) of prime order such that \((L_a)^D \geq D^* \). Since \([L_a, D] \leq D \cdot D_a \cap C^*=D(L_a \cap C^*)=D, D \) is a normal subgroup of \(L_a \). By (i) and (iii) of Lemma 2.6, \(G_a=L_a \cdot N^* \) and so \(D \) is a normal subgroup of \(G_a \). By Theorem 3 of [1], \(G^a \) has a regular normal subgroup, contrary to the hypothesis. Thus \(C^*=1 \).

If (a) occurs, \(L^* \) is solvable because \(L_a/L \cap N^*=L_a N^*/N^* \leq \text{Out}(N^*) \) and \(L \cap N^*=D_{q+1} \). Hence by [5], (i) holds in this case.

If (b) occurs, we have \(Y^A \neq 1 \), for otherwise \((L \cap N^*)^A = 1 \) and \(N^*_\beta = L \cap N^*=D_{q+1} \), a contradiction. Hence \(1 \neq C_G(Z)^A \leq L^* \) and so \(C_G(Z)^A \geq PSL(2,p_i) \) and \(Y^A \geq Z_{p_i} \). Therefore \(|\Delta \cap \beta N^*|=p_i \) and \(r=1 \) by Lemma 2.4 (ii). Since \(|\beta^A|=p_i \), we have \(|\beta^{L \cap N^*}|=p_i \), so that \(L \cap N^*: L \cap N^*_\beta=p_i \). Thus (ii) holds in this case.

The case (c) does not occur, for otherwise, by the structure of \(PSL(3,p_i) \),
a Sylow p_1-subgroup of $(L_a)'$ is not cyclic, while $(L_a)' \leq L \cap N^\ast=D_{2^e}$, a contradiction.

3. **Case (I)**

In this section we assume that $N^\ast_\beta \leq D_{2^e}$, where $\beta \neq \alpha$, $q=p^e$.

(3.1) (i) If $N^\ast_\beta \neq Z_2 \times Z_2$, $N_\beta N^\ast_\beta=N^\ast_\beta$ and $|F(N^\ast_\beta)|=r+1$.
(ii) If $N^\ast_\beta = Z_2 \times Z_2$, $N_\beta N^\ast_\beta = A_4$ and $|F(N^\ast_\beta)|=3r+1$.

Proof. Put $X=N_\beta N^\ast_\beta(N^\ast_\beta)$. Let S be a Sylow 2-subgroup of N^\ast_β and Y a cyclic subgroup of N^\ast_β of index 2.

If $N^\ast_\beta \neq Z_2 \times Z_2$, then $|Y|>2$ and so Y is characteristic in N^\ast_β. Hence $X \leq N_\beta N^\ast_\beta(Y) \cong D_{2^e}$. From this [$N_\beta(S)$, $S \cap Y$] $\leq S \cap Y$ and $0^2(N_\beta(S))$ stabilizes a normal series $S \geq S \cap Y \geq 1$, so that $0^2(N_\beta(S)) \leq C_{N^\ast_\beta}(S)$ by Theorem 5.3.2 of [2]. By Lemma 2.6(i), $C_{N^\ast_\beta}(S) \leq S$ and hence $N_\beta(S)=S$. On the other hand by a Frattini argument, $X=N_\beta(S)N^\ast_\beta$ and so $X=N^\ast_\beta$. By Lemma 2.6(i), $(N^\ast_\beta)^\ast=(N^\ast_\beta)^\ast$ and so by Lemmas 2.3 and 2.4(ii), $|F(N^\ast_\beta)|=1+|F(N^\ast_\beta) \cap \beta^\ast| \times r=1+|N^\ast_\beta|/|N^\ast_\beta|=r+1$. Thus (i) holds.

If $N^\ast_\beta = Z_2 \times Z_2$, $N_\beta N^\ast_\beta = A_4$ by Lemma 2.6(iv). Similarly as in the case $N^\ast_\beta \neq Z_2 \times Z_2$, we have $|F(N^\ast_\beta)|=3r+1$.

(3.2) $N^\ast_\beta N^\ast_\beta \cap N^\ast = Z_2 \times Z_2$.

Proof. By Lemma 2.2, it suffices to consider the case $C^\ast=1$. Suppose $C^\ast=1$. Then $N^\ast_\beta/N^\ast \cap N^\ast = N^\ast_\beta N^\ast/N^\ast \leq \text{Out}(N^\ast)=Z_2 \times Z_2$ by Lemma 2.6(vi) and hence $(N^\ast_\beta)^\ast \leq N^\ast \cap N^\ast$. Since N^\ast_β is dihedral, $N^\ast_\beta(N^\ast_\beta)^\ast = Z_2 \times Z_2$, so that $N^\ast_\beta/N^\ast \cap N^\ast \leq Z_2 \times Z_2$.

(3.3) Suppose $N^\ast_\beta = N_\beta \cap N^\ast$ and let U be a subgroup of N^\ast_β isomorphic to $Z_2 \times Z_2$. Then $|F(U)|=3r+1$ and $N_\gamma(U)^{F(U)}$ is doubly transitive.

Proof. Sex $X=N_\gamma(N^\ast_\beta)$, $\Delta=F(N^\ast_\beta)$ and let $\{\Delta_1, \Delta_2, \ldots, \Delta_r\}$ be the set of N^\ast-orbits on $\Omega-\{\alpha\}$. If $g^{-1}N^\ast_\beta g \leq G_\gamma$, then $g^{-1}N^\ast_\beta g \leq N_\delta \cap N^\ast_\beta = N_\gamma \cap N^\ast_\beta \leq N_\beta$, where $\gamma=\alpha^\ast$. By a Witt's theorem, X^\ast is doubly transitive.

If U is a Sylow 2-subgroup of N^\ast_β, by a Witt's theorem, $N_\gamma(U)^{F(U)}$ is doubly transitive. Moreover $N_\beta N^\ast_\beta(U)=A_4$ and so by Lemmas 2.3 and 2.4(ii), $|F(U)|=1+|A_4| \times |N^\ast_\beta: N_\gamma(U)| \times r/|N^\ast_\beta|=3r+1$.

If $|N^\ast_\beta|\geq 4$, by Lemma 2.6(iv) and(v), $N_\beta N^\ast_\beta(U)=S_4$ and N^\ast_β has two conjugate classes of four-groups, say $\pi=\{K_1, K_2\}$. Set $X^\ast=M$. Then $M \geq N^\ast_\beta$ and $X/M \leq Z_2$. Clearly $F(U) \cap \Delta_\gamma=\emptyset$ for each i and so $|F(U) \cap \Delta_\gamma|=3$ by Lemma 2.3. Hence $|F(U)|=3r+1$. Since $N_\beta N^\ast_\beta(U)=S_4$, we may assume $r>1$. Hence by (3.1) (i) $|\Delta|=r+1 \geq 4$, so that M^\ast is doubly transitive. Since $M=M^\ast N_\beta N^\ast_\beta(U)$, $N_\beta N^\ast_\beta(U)^{A_4}$ is also doubly transitive and so $N_\beta N^\ast_\beta(U)$ is transitive on Δ—
\{a\}. As \(|\Delta \cap \Delta_i|=1, \Delta \cap \Delta_i \subseteq F(U)\) and \(N_{,\beta}(U)\) is transitive on \(F(U) \cap \Delta_i\) for each \(i\), \(N_G(U)^{F(U)}\) is doubly transitive.

(3.4) (i) \(C^\circ=1\).

(ii) Let \(U\) be a subgroup of \(N_{\alpha}\) isomorphic to \(Z_2 \times Z_2\). If \(N_{\alpha}^\circ=N^\circ \cap N_{\beta}\), then \(N_G(U)^{F(U)}\) has a regular normal 2-subgroup. In particular \(|F(U)|=3r+1=2^b\) for positive integer \(b\).

Proof. Since \(N_G(U)^{F(U)}\) is doubly transitive, by (3.3) and Theorem 3 of [1], \(N_G(U)^{F(U)}\) has a regular normal subgroup, \(N_G(U)^{F(U)} \supseteq \text{PSU}(3,3)\) or \(N_G(U)^{F(U)}=R(3)\).

Suppose \(C^\circ \neq 1\). Let \(D\) be a minimal characteristic subgroup of \(C^\circ\). Clearly \(G_{,\alpha}D\). If \(N_G(U)^{F(U)} \supseteq R(3)\), \(D\) is cyclic. By Theorem 3 of [1], \(C^\circ\) has a regular normal subgroup, contrary to the hypothesis. Hence \(N_G(U)^{F(U)} \supseteq \text{PSU}(3,3)\) or \(N_G(U)^{F(U)}=R(3)\). Thus (3.4) holds.

(3.5) (i) If \(|Y| \geq 3\), \(N_G(Y)^{F(Y)}\) is doubly transitive.

(ii) If \(|Y| < 3\), \(N_{\beta}^\circ=Z_2 \times Z_2\) or \(N_{\beta}^\circ=Z_2\) and \(N^\circ \cap N_{\beta}^\circ \leq Z_2 \times Z_2\).

Proof. Suppose \(|Y| \geq 3\). If \(Y^\varepsilon \leq G_{,\alpha}\), \(Y^\varepsilon \leq N^\circ \cap G_{,\alpha}\leq N_{\beta}^\circ\), where \(\gamma=\alpha^\varepsilon\). If \(\gamma=\alpha\), obviously \(Y^\varepsilon \leq N^\circ\). If \(\gamma \neq \alpha\), \(N_{\beta}^\circ=N^\circ\). Therefore, as \(|Y| \geq 3\), \(N_{\beta}^\circ\) has a unique cyclic subgroup of order \(|Y|\). Hence \(Y^\varepsilon \leq N^\circ \cap N_{\beta}^\circ \leq N^\circ\), so that \(Y^\varepsilon \leq N^\circ\). Similarly \(Y^\varepsilon \leq N_{\beta}^\circ\). Thus \(Y^\varepsilon \leq N^\circ \cap N_{\beta}^\circ\) and so \(Y^\varepsilon = Y\). By a Witt's theorem, \(N_G(Y)^{F(Y)}\) is doubly transitive on \(F(Y)\).

Suppose \(|Y| < 3\). Since \(|N^\circ \cap N_{\beta}^\circ; Y| \leq 2\), we have \(N^\circ \cap N_{\beta}^\circ \leq Z_2 \times Z_2\). On the other hand, as \(N_{\beta}^\circ\) is dihedral, \((N_{\beta}^\circ)'\) is cyclic. Hence (ii) follows immediately from (3.2).

(3.6) Set \(\Delta=F(N_{\beta}^\circ), L=G(\Delta), K=G_{,\Delta}\) and suppose \(N_{\beta}^\circ \neq Z_2 \times Z_2\). Then \(L_G \supseteq N_{\beta}^\circ\), \((L_{,\alpha})' \leq N_{\beta}^\circ, K' \leq N^\circ \cap N_{\beta}^\circ\) and \((L_{,\alpha})'=Z_{,r}\). If \(r \neq 1\), \(L_{,\alpha}\) is a doubly transitive Frobenius group of degree \(r+1\).

Proof. By Corollary B1 of [7] and (i) of (3.1), \(L_{,\alpha}\) is doubly transitive and
\(|\Delta| = r + 1\). Since \(N^a \cap L \geq N^a \cap K = N^a_s\), by (i) of (3.1), we have \(N^a \cap L = N^a_s\). Hence \(L_a \geq N^a_s\). By (i) of (3.4), \(L_a/N^a_s = L_a/N^a_s \cap \text{Out}(N^a) = Z_2 \times Z_2\) and so \((L_a)^2 \leq N^a_s\) and \((L_a)^2 = Z_2\). If \(r \neq 1\), then \((L_a)^2 = 1\). On the other hand \((L_a)^2 = 1\) as \((L_a)^2\) is abelian. Hence \(L^a\) is a Frobenius group.

(3.7) Suppose \(|Y| \geq 3\). Then there exists an involution \(z\) in \(N^a_{\beta} \cap Y\) such that \(Z(N^a_\beta) = \langle z \rangle\).

Proof. Suppose \(N^a_{\beta} \neq Z_2 \times Z_2, |N^a_{\beta}|_2 \geq 2\) and \(N^a_{\beta}\) is dihedral, we have \(\langle I(W) \rangle = Z(N^a_{\beta}) = Z_2\) and \(N^a_{\beta}/N^a_{\beta}' = Z_2 \times Z_2\). Let \(Z(N^a_{\beta}) = \langle z \rangle\) and suppose that \(z\) is not contained in \(Y\). By (3.2), \((N^a_{\beta})' \leq N^a \cap N^a \cap W = Y\) and so \(|N^a_{\beta}'|\) is odd. Hence \(|N^a_{\beta}|_2 = 4\) and \(q \equiv \beta^2 = 3\) or 5 (mod 8), so that \(n\) is odd. By (3.2) and (i) of (3.4), \(N^a_{\beta}/N^a \cap N^a = N^a_{\beta}/N^a_{\beta}', N^a = 1\). If \(N^a_{\beta} = N^a \cap N^a\), then \(W = Y\) and so \(z \in Y\), contrary to the assumption. Therefore we have \(N^a_{\beta} \cap N^a = Z_2\) and \(N^a_{\beta} = \langle z \rangle \times (N^a \cap N^a)\). Since \(n\) is odd and \(z \in N^a_{\beta} \cap N^a\), by Lemma 2.6 (vi), (vii) and (ix), \(N^a_{\beta} \cap N^a = N^a_{\beta} \cap N^a\), and \(C_N(z) = D_{q+4}\). But \(N^a \cap N^a \subseteq C_N(z)\) and besides it is isomorphic to a subgroup of \(D_{q+4}\). Hence \(N^a \cap N^a = Z_2\) and \(N^a_{\beta} = Z_2 \times Z_2\), a contradiction.

(3.8) Suppose \(|Y| \geq 3\). Then \(N^a_{\beta} = N^a \cap N^a\).

Proof. Suppose \(N^a_{\beta} \neq N^a \cap N^a\) and let \(\Delta, L, K\) be as defined in (3.6) and \(x \in L_a\) such that its order is odd and \(\langle x \rangle\) is transitive on \(\Delta - \{\alpha\}\). As \(|Y| \geq 3\), \(W\) is characteristic in \(N^a_{\beta}\) and hence by (3.6), \(x\) stabilizes a normal series \(L_a \supseteq N^a_{\beta} \supseteq W \supseteq (N^a_{\beta}')\). By Theorem 5.3.2 of [2], \([x, 0_L(L_a/(N^a_{\beta}'))] = 1\). Since \(L_a/(N^a_{\beta}')\) has a normal Sylow 2-subgroup and \((N^a_{\beta}') \leq K'\), we have \([x, 0_L(L_a/K')] = 1\). So \([x, N^a_{\beta}] = K \leq N^a \cap N^a\) by (3.6). If \(r \neq 1\), then \(\beta^2 = \beta\) and \(\beta^2 \in \Delta\), hence \(N^a_{\beta} = x^{-1}N^a_\beta x = N^a_\beta\), where \(\gamma = \beta^2\). Since \(\gamma \in \Delta\) and \(\Delta = F(N^a_{\beta}), N^a_{\beta} \leq N^a \cap N^a \subseteq G = N^a_{\beta}\). Similarly \(N^a_{\beta} = N^a_{\beta}\). Hence \(N^a_{\beta} = N^a_{\beta}\), which implies \(N^a_{\beta} = N^a \cap N^a\). By the doubly transitivity of \(G\), we have \(N^a_{\beta} = N^a \cap N^a\), contrary to the assumption. Therefore we obtain \(r = 1\).

Let \(z\) be as defined in (3.7) and put \(k = (q - \varepsilon)/|N^a_{\beta}|\). By Lemma 2.8(i) we have \(|F(z)| = 1 + (q - \varepsilon)(|N^a_{\beta}|/2 + 1)/|N^a_{\beta}| = (q - \varepsilon)/2 + k + 1\). Similarly \(|F(Y)| = k + 1\). As \(N^a_{\beta} \neq N^a \cap N^a\), there is an involution \(t\) in \(N^a_{\beta}\) which is not contained in \(N^a\). By Lemma 2.6 (i), \(t^z = z\) for some \(y \in N^a_{\beta}\). Set \(\gamma = \beta^2\). Then \(\gamma \in F(z)\) and \(z \in N^a_{\beta}\). By Lemma 2.6 (vii), (viii) and (ix), \(C_{N^a}(z) = D_{q+4}\) or \(PGL(2, \sqrt{q})\). Assume \(C_{N^a}(z) = D_{q+4}\) and let \(R\) be a cyclic subgroup of \(C_{N^a}(z)\) of index 2. We note that \(R\) is semi-regular on \(\Omega - \{\alpha\}\). Set \(X = C_{N^a}(z)\). Since \(2 \leq k + 1 \leq (q - \varepsilon)/|q - \varepsilon| + 1\), we have \((q + \varepsilon)/2 \geq k + 1\) and so \(|\alpha^z| > k + 1\). By (i) of (3.5) and (3.7), \(N_{\gamma}(Y) \subseteq C_{N^a}(X) = X\) and \(\alpha^X \subseteq F(Y)\). It follows from Lemma 2.1 that \(\alpha^z = \{x \in N^a_{\beta} \mid x \in N^a_{\beta}\} \neq \gamma\). Hence \(|F(z)| > |\alpha^x| > |F(Y)| + (q + \varepsilon)2 = k + 1 + (q - \varepsilon)2 + \varepsilon = |F(z)| + \varepsilon\). Therefore \(\varepsilon = 1\) and \(\gamma^x = \{\gamma\}\), so that \(\gamma \in F(Y)\), a contradiction. Thus \(C_{N^a}(z) \subseteq PGL(2, \sqrt{q}), \varepsilon = 1, N^a_{\beta}/N^a \cap N^a = Z_2\) and \(|\langle \alpha^x \cap G_{\tilde{\alpha}} \rangle| = N^a_{\beta}| = 2\).
Set $\Delta_1=\alpha^x$ and $\Delta_2=F(z)-\Delta_1$. Let $\delta\in\Delta_2$ and g an element of G satisfying $\delta^g=\gamma$. Then $x\in N_5^\alpha N^3-N^4$ and so $x^g\in N_5^\alpha N^3-N^4$, where $v=\alpha^x$. Since $|\langle x^g \cap G_\gamma \rangle| = |N^3| = 2$ and $x\in G_\gamma-N^4$, it follows from Lemma 2.6 (ix) that $(x^g)^h=x$ for some $h\in G_\gamma$. Hence $gh\in X$ and $\delta^gh=\gamma$. Thus $\Delta_2=\gamma^x$. Let $\delta\in\Delta_2$. Then $z=\gamma^x$ and so $z\in N^4$ by (3.7) and so $X\cap N^4=Z_2\times Z_2$, which implies $|\delta^G(z)|=(q-1)/4$. Hence $(|\Delta_1|, |\Delta_2|)=((q-1)/4+k+1, (q-1)/4)$ or $(k+1, (q-1)/2)$. Let P be a subgroup of $C_N(z)$ of order \sqrt{q}. Then $F(P)=\{\gamma\}$ and P is semi-regular on $\Omega-M$. If $|\Delta_2|=(q-1)/4$, then $q/5=(q-1)/4=-(q-5)/4$ and $q/5=(q-1)/4+k+1$. From this, $q=5^4$, $k=3$, $|\Delta_1|=10$ and $|\Delta_2|=6$. Since $(C_N(z))^2=S_3$, $X^a=S_3$ and so $|X|\geq 3^2$. As X acts on Δ_1 and $|\Delta_1|=1\mod 3$, $|G_a|\geq |X_a|\geq 3^2$, contrary to $N^a=PSL(2,25)$. If $|\Delta_2|=(q-1)/2$, $q/5=(q-1)/2=-(q-3)/2$, so $q=3^2$, $k=1$, $N^a=D_3$ and $\Delta_1=\{\alpha, \beta\}$. Hence $C_N(z)$ fixes α and β, so that $PGL(2,3)=C_N(z)=\Omega-M$. If $|\Delta_2|=(q-1)/2$, then $q/5=\frac{q}{2}(q+2\epsilon-2k-2)$. Hence $(q-\epsilon+2k+2)(q+\epsilon+2k-2)(k+1-\epsilon)$.

Proof. Set $S=\{(\gamma, u)|\gamma\in F(u), u\in z\}$, where z is an involution in N^a. We now count the number of elements of S in two ways. Since $N^a=N^\alpha \cap N^h$, $F(z)=\{\gamma|z\in N^a\}$ and hence $C_G(z)$ is transitive on $F(z)$ by Lemma 2.1. Therefore $|S|=|\Omega||z^G|=|z^G||F(z)|$. Since $r=1$, $|\Omega|=1+|N^a|: N^a:=kq(q+\epsilon)/2+1$ and by Lemma 2.8 $|F(z)|=(q-\epsilon)/2+k+1$. Since $G_\alpha\supseteq N^a$, $z^G\alpha$ is contained in N^a and so $|G_\alpha|: C_{G_\alpha}(z)=|N^a|: C_{N^\alpha}(z)=q(q+\epsilon)/2$. Hence $(q-\epsilon)/2+k+1|(kq(q+\epsilon)+2(q+\epsilon))$. On the other hand, $|F(z)|=|C_G(z)|_2|C_{G_\alpha}(z)|_2\leq |G_\alpha|_2$ and $|G_\alpha|_2=|G_\alpha|_2=|\Omega|_2$ because $|G_\alpha|: C_{G_\alpha}(z)=q(q+\epsilon)/2=1\mod 2$. Hence $|q-\epsilon+2k+2|\leq |kq(q+\epsilon)+2|$. Since $kq(q+\epsilon)+2=(kq+2k(q-1))\leq q(q-2k+2)+2((k+2k-\epsilon)(k-1)+k+1)$ and $q(q+\epsilon)+2(2k-2)(q-\epsilon+2k+2)+2(k+2-\epsilon)(k+1-\epsilon)$, we have (3.10).

(3.11) Suppose $|Y|\geq 3$. Then one of the following holds.
(i) $N^a=N^\alpha \cap N^h=D_4$.
(ii) $N^a=N^\alpha \cap N^h=D_4$. and $N_G(Y)^{F(\gamma)}$ has a regular normal subgroup.

Proof. Suppose false. Then, by (3.5), (3.8) and Lemma 2.9, $N_G(Y)^{F(\gamma)}=R(3)$ or there exists a prime $p_1\geq 5$ such that $N_G(Y)^{F(\gamma)}\geq PSL(2,p_1)$ and $V/Y\cong Z_{p_1}$. By (i) of (3.1) and (3.9), $F(N^a_0)=\{\alpha, \beta\}$. On the other hand, $(N^a_0)^{F(\gamma)}=N^a_0/Y\cong Z_2$. Hence $N_G(Y)^{F(\gamma)}\neq R(3)$ and $C_G(Y)^{F(\gamma)}\neq R(3)$.

By (i) of (3.4) and Lemma 2.7, we have \(C_{G_{a}}(Y) = V \langle f_i \rangle \), where \(f_i \) is a field automorphism of \(N^* \). Let \(t \) be the order of \(f_i \), \(n = tm \) and let \(p^m \equiv \varepsilon_i \equiv 1 \mod 4 \). Clearly \(C_{G_{a}}(Y)^{F(Y)} \supseteq V^{F(Y)} \simeq \mathbb{Z}_{n_1} \) and \(|C_{G_{a}}(Y)^{F(Y)}| \mid t \), so that \((p_i - 1)/2 \mid t \).

First we assume that \(t \) is even and set \(t = 2t_i \). Then \(Y \leq C_{N^*}(f_i) = PGL(2, p^m) \) by Lemma 2.6 (viii). As \(|V/Y| = p_1 \) and \(p_1 \) is a prime, \(Y \) is a cyclic subgroup of \(C_{N^*}(f_i) \) of order \(p^m - \varepsilon_1 \) and \((p^m - 1)/2(p^m - \varepsilon_1) = p_1 \). Put \(s = \sum_{i=1}^{t_i} (p^m)^i \). Then \((p^m + \varepsilon_1)s/2 = p_1 \), so that we have either (i) \(t_i - 1 = 1 \) and \(p_1 = (p^m + \varepsilon_1)/2 \) or (ii) \(t_i \geq 2 \), \(p^m = 3 \) and \(p_1 = s \). In the case (i), \(2 \leq (p_i - 1)/2 = (p^m + \varepsilon_1 - 2)/4 \mid 2t_i = 2 \). Hence \((p_1, q) = (5, 3^4) \) or \((4, 11^3)\). Let \(z \) be as in (3.7). As mentioned in the proof of (3.10), \(|F(z)| = (q - 1)/2 + k + 1 \), \(|\Omega| = k(q + 1)/2 + 1 \) and \(C_G(z) \) is transitive on \(F(z) \). If \(q = 3^4 \), then \(|F(z)| = 46 \) and \(|\Omega| = 2 \cdot 19 \cdot 23 \). Hence \(|C_G(z)| = |F(z)| |C_G(z)N^*/N^*| = 46 \cdot 2^t \cdot 80 = 2^{t+1} \cdot 5 \cdot 23 \) with \(0 \leq i \leq 3 \). Let \(P \) be a Sylow 23-subgroup of \(C_G(z) \) and \(Q \) a Sylow 5-subgroup of \(C_G(z) \). Since \(11 \not| \Omega \), \(P \) is a subgroup of \(N_r \) for some \(r \in \Omega \) and \(F(P) = \{ y \} \). Hence \(ye \Lambda/7 \), contrary to \(C_{N^*}(z) = D_{150} \). In the case (ii), we have \((p_i - 1)/2 = \sum_{i=1}^{t_i - 1} 9^i/2 \mid t = 2t_i \). From this, \(9^{t_i - 1} \leq 4t_i \), hence \(t_i = 1 \), a contradiction.

Assume \(t \) is odd. Then \(Y \leq C_{N^*}(f_i) = PGL(2, p^m) \) by Lemma 2.6 (viii). As \(|V/Y| = p_1 \) and \(p_1 \) is a prime, \(Y \simeq Z_{(p^m - t_i)}(q - \varepsilon)/(p^m - \varepsilon_1) = p_1 \). Hence \(\sum_{i=1}^{t_i - 1} (p^m)^i (\varepsilon_i)^{t_i - 1} = p_1 \) and \((p_i - 1)/2 = \sum_{i=1}^{t_i - 1} (p^m)^i (\varepsilon_i)^{t_i - 1} - 1)/2 \mid t \). In particular \(2t \geq (p^m)^{t_i - 1} - (p^m)^{t_i - 2} = (p^m)^{t_i - 2} \geq 2(p^m)^{t - 2} \). From this \(t = 3 \), \(m = 1 \), \(p_1 = 7 \) and \(q = 3^4 \), so that \(N_r^* \simeq Z_2 \times Z_2 \), a contradiction.

(3.12) (i) of (3.11) does not occur.

Proof. Let \(G^a \) be a minimal counterexample to (3.12) and \(M \) a minimal normal subgroup of \(G \). By the hypothesis, \(G \) has no regular normal subgroup and hence \(M_{\pm 1} \). As \(M_{\pm 1} \) is a normal subgroup of \(G_{a} \), by (i) of (3.4), \(M_{a} \) contains \(N^* \). By (3.9), \(r = 1 \), hence \(M \) is doubly transitive on \(\Omega \). Therefore \(G = M \) and \(G \) is a nonabelian simple group.

Since \(N_r^* = D_4 \cdot k = 1 \) and \(q - \varepsilon + 4 \mid (4 - \varepsilon)(2 - \varepsilon) + 1 \mid (4 - \varepsilon)(2 - \varepsilon) \) by (3.10). Hence we have \(q = 7, 9, 11, 19, 27 \) or 43.

Let \(x \) be an element of \(N_r^* \). If \(|x| > 2 \), by Lemma 2.8, \(|F(x)| = 1 + |N_r^*| \times 1/|N_r^*| = 2 \) and if \(|x| = 2 \), similarly we have \(|F(x)| = (q - \varepsilon)/2 + 2 \). Assume \(q = 9 \) and let \(d \) be an involution in \(G_{a} - N^* \) such that \(\langle d \rangle N^* \) is isomorphic to \(PGL(2, p^m) \).
We may assume \(d \in G_{ab} \). Since \(\langle d \rangle N^a \) is transitive on \(\Omega - \{ \alpha \} \), by Lemmas 2.3 and 2.6 (vii), (ix), \(|F(d)| = 2(q-1)(q+1)/2(q+1)+1 = (q+1)/2\), while \(|F(x)| = (q+1)/2 + 2\) for \(x \in I(N^a) \). Hence \(d \) is an odd permutation, contrary to the simplicity of \(G \). Thus \(G_a = N^a \) if \(q \neq 9, 27 \) and \(|G_a/N^a| = 1, 3\) if \(q = 27 \).

If \(q = 9 \), \(|\Omega| = 1 + 9 \cdot 10/2 = 2 \cdot 3 \cdot 5 \) with \(0 \leq i \leq 2 \). Let \(P \) be a Sylow 23-subgroup of \(G \). Since \(\text{Aut}(Z_{23}) = 3 \cdot |N_c(P)| = 2 \cdot |PSL(2, 9)| = 2 \cdot 3^3 \cdot 5 \) with \(0 < \alpha < 2 \), let \(\gamma \) be a Sylow 7-subgroup of \(G \). Since \(\gamma \) is a 7-subgroup of \(G \), \(|\gamma| = 2^8 \cdot 3^2 \cdot 5 \) for some \(a \) with \(0 < a < 6 \). By a Sylow's theorem, \(2^8 \cdot 3^2 \cdot 5 = 2^6 \cdot 3^2 \cdot 5 = 1 \pmod{23} \), a contradiction.

If \(q = 27, |\Omega| = 1 + 27 \cdot 26/2 = 2 \cdot 5 \cdot 11 \) and \(|G_a| = 2^2 \cdot 3^4 \cdot 7 \cdot 13 \) with \(0 < a < 1 \). Let \(P \) be a Sylow 11-subgroup of \(G \). Since \(\text{Aut}(Z_{23}) = 3 \cdot |N_c(P)| = 2 \cdot |PSL(2, 9)| = 2 \cdot 3^3 \cdot 5 \cdot 13 \) with \(0 < a < 11 \), and \(|G| = 2^5 \cdot 3^5 \cdot 7 \cdot 11 \).

We now argue that \(\langle \gamma \rangle N^a \sim D_{24} \). Let \(R \) be the Sylow 3-subgroup of \(N^a_R \). If \(t \) centralizes \(R \), \(R \) acts on \(F(t) \) and so \(F(R) \subseteq F(t) \) as \(|F(t)| = 8 \) and \(|F(R)| = 2 \). Hence \(\alpha \sim \alpha \), contrary to the choice of \(t \). Therefore \(t \) inverts \(R \) and \(\langle t \rangle N^a \) is isomorphic to \(Z_2 \times D_{12} \) or \(D_{24} \). Suppose \(\langle t \rangle N^a \sim Z_2 \times D_{12} \). Then \(\langle t \rangle N^a \) contains fifteen involutions and so we can take \(u \in I(\langle t \rangle N^a) \) satisfying \(|F(u)| = 0 \) and \(\langle t \rangle N^a \sim \langle u \rangle \times N^a \). As \(|F(u)| = 0 \), \(|F(u')| = |\Omega|/2 = 28 \). By Lemma 2.3, 28 = \(|C_u(u)| \times |\langle u \rangle N^a \cap u^c|/24 \) and hence \(|C_u(u)| = 2^3 \cdot 7 \) or \(2^5 \cdot 3 \cdot 7 \). Since \(\langle u \rangle N^a = N_c(R) \), we have \(|C_u(u) : C_u(u) \cap N_c(R)| = 2 \cdot 7 \) or \(2^2 \cdot 7 \). By a Sylow's theorem, \(|C_u(u) : C_u(u) \cap N_c(R)| = 2^2 \cdot 7 \), so that \(|C_u(u)| = 2^5 \cdot 3 \cdot 7 \). Let \(Q \) be a Sylow 7-subgroup of \(C_u(u) \). Then \(|C_u(u) \cap N_c(Q)| = 2^5 \cdot 3 \cdot 7 \) or \(2^2 \cdot 7 \) by a Sylow's theorem. Hence \(2^2 \cdot 7 \mid |N_c(Q)| \). Since \(\text{Aut}(Z_7) = Z_2 \times Z_3 \),
SOME DOUBLY TRANSITIVE PERMUTATION GROUPS

Let \(U \) be a Sylow 2-subgroup of \(N_\alpha \) and set \(L = N_G(U) \). It follows from (3.3) and Lemma 2.6 (iv) that \(L \cap N^* = A_4 \), \(L^{(U)} = A_4 \) and \(|L| = 2^3 \cdot 3 \). Let \(T, \langle \rho \rangle \) be Sylow 2- and 3-subgroup of \(L \), respectively. Obviously \(L \supset \Gamma \) and \(C_{\langle \rho \rangle}(x) = 1 \).

On the other hand \(T > \Gamma \) and \(\langle \rho \rangle \supset N^* = D_{24} \) and so \(T = Z_2 \times Z_2 \) because \(C_{\langle \rho \rangle}(x) = 1 \).

By Theorem 5.4.5 of [2], \(T \) is dihedral or semi-dihedral. Hence \(N_G(T)/C_{\langle \rho \rangle}(T) \) is (Aut\(T \)) is a 2-group, so that \(C_{\langle \rho \rangle}(x) = 1 \), a contradiction.

Let \(p_1 \) be an odd prime such that \(p_1 \mid |\Omega| \) and \(p_1 \), \(|G_a| \) and let \(P \) be a Sylow \(p_1 \)-subgroup of \(G \). Clearly \(P \) is semi-regular on \(\Omega \) and so any element in \(C_G(P) \) has at least \(p_1 \) fixed points. If \(x \) is an element of \(N_\alpha \) and its order is at least three, then \(F(x) = |F(Y)| = 4 \) by Lemma 2.8. Since \(|N_\alpha| = (q - \varepsilon)/3 \), we have \(|\Omega| = 1 + 3(q + \varepsilon)/2 \).

If \(q = 5^2 \), then \(|\Omega| = 2^4 \cdot 61 \) and \(|G_a| = 2^{4+i} \cdot 3 \cdot 5^2 \cdot 13 \) (\(0 \leq i \leq 2 \)). Let \(P \) be a Sylow 61-subgroup of \(G \). Then \(P \cong Z_{61} \). As mentioned above, \(5, 13 \) and \(|C_G(P)| \) and so \(5^2, 13 \) and \(|N_G(P)| \). Hence \(|G| = N_G(P) = 2^a \cdot 3^{i+1} \cdot 13 \), where \(0 \leq a \leq 10 \) and \(0 \leq b, c \leq 1 \). But we can easily verify \(|G| : N_G(P) \mid 1 \equiv 1 \) (mod 61), contrary to a Sylow's theorem.

If \(q = 7^2 \), then \(|\Omega| = 2^4 \cdot 919 \) and \(|G_a| = 2^{7+i} \cdot 3 \cdot 5^2 \cdot 7^2 \) (\(0 \leq i \leq 2 \)). Let \(P \) be a Sylow 919-subgroup of \(G \). By the similar argument as above, we obtain \(5, 7 \) and \(|N_G(P)| \). Hence \(|G : N_G(P)| \equiv 1 \) (mod 61), a contradiction.

If \(q = 11^2 \), then \(|\Omega| = 2^4 \cdot 173 \) and \(|G_a| = 2^{7+i} \cdot 3 \cdot 5 \cdot 11^2 \cdot 61 \) (\(0 \leq i \leq 2 \)). Let \(P \) be a Sylow 173-subgroup of \(G \). Similarly we have \(3, 5, 11, 61 \) and \(|N_G(P)| \) and so \(|G : N_G(P)| = 2^4 \cdot 3 \cdot 5 \cdot 11^2 \cdot 61 \equiv -5 \cdot 2^2 \) (mod 173), where \(0 \leq a \leq 12 \). Hence \(|G : N_G(P)| \equiv 1 \) (mod 61), a contradiction.

If \(q = 59 \), then \(|\Omega| = 2^4 \cdot 17 \cdot 151 \) and \(|G_a| = 2^{7+i} \cdot 3 \cdot 5 \cdot 29 \cdot 59 \) (\(0 \leq i \leq 1 \)). Let \(P \) be a Sylow 17-subgroup of \(G \). Similarly we have \(3, 5, 29, 59 \) and \(|N_G(P)| \) and so \(|G : N_G(P)| = 2^4 \cdot 3 \cdot 5 \cdot 29 \cdot 59 \cdot 151^4 \equiv 10 \cdot 2^2 \) or \(12 \cdot 2^2 \) (mod 17), where \(0 \leq a \leq 4 \) and \(0 \leq b \leq 1 \). From this, we have a contradiction.

If \(q = 71 \), then \(|\Omega| = 2^5 \cdot 233 \) and \(|G_a| = 2^{7+i} \cdot 3 \cdot 5 \cdot 7 \cdot 71 \) (\(0 \leq i \leq 1 \)). Let \(P \) be
a Sylow 233-subgroup of G. Since $3,5,7,71 | N_{G}(P)$, $|G|: N_{G}(P)| = 2^{a} \cdot 3^{b} \cdot 5^{c} \cdot 7^{d} \cdot 71^{e}$ (mod 233), where $0 \leq a, b, c, d, e \leq 9$. Similarly we get a contradiction.

We now consider the case $|Y| < 3$. By (ii) of (3.5), $N_{\beta}^{a} = Z_{2} \times Z_{2}$ or $N_{\beta}^{a} = D_{8}$ and $N_{\beta}^{a} \cap N_{\beta} = 0 \leq Z_{2} \times Z_{2}$.

(3.14) The case that $N_{\beta}^{a} = Z_{2} \times Z_{2}$ does not occur.

Proof. Set $\Delta = F(N_{\beta}^{a})$. Then $|\Delta| = 3r+1$ and $\Delta = F(N_{\beta}^{a}N_{\beta}^{a})$ by (ii) of (3.1) and Corollary B1 of [7]. Since $|N_{\beta}^{a}| = 4$, we have $q = p^a = 3,(mod 8)$ and so n is odd. Hence $|G_{a}/N_{\beta}^{a}| = 2$ and $N_{\beta}^{a} \cap N_{\beta}^{a} = N_{\beta}^{a}N_{\beta}^{a}N_{\beta}^{a}N_{\beta}^{a} = 1$ or Z_{2} by (3.2). Suppose $N_{\beta}^{a}N_{\beta}^{a}$ is a Sylow 2-subgroup of G_{a}, hence $G_{a}(N_{\beta}^{a}N_{\beta}^{a})$ is doubly transitive by a Witt's theorem. Since $N_{\beta}^{a}N_{\beta}^{a} = D_{8}$ and $|\Delta|$ is even, $G_{a}(N_{\beta}^{a}N_{\beta}^{a})$ is also doubly transitive. Let g be an element of $G_{a}(N_{\beta}^{a}N_{\beta}^{a})$ such that $\alpha' = \beta$ and $\beta' = \alpha$. Then $N_{\beta}^{a} = g^{-1}N_{\beta}^{a}g = N_{\beta}^{a}$ and hence $N_{\beta}^{a} = N_{\beta}^{a} \cap N_{\beta}$, a contradiction. Thus $N_{\beta}^{a} = N_{\beta}^{a} \cap N_{\beta} = Z_{2} \times Z_{2}$.

Let z be an involution in N_{β}^{a} and $t \in zG$ an involution such that $\alpha' = \beta$. Set $\Gamma = \{\gamma, \delta \mid \gamma, \delta \in \Omega, \gamma \neq \delta\}$. We consider the action of the element z on Γ.

By the similar argument as in the proof of (3.12), $|F(z)| = |F(z)| - 1)/2 + (|\Omega| - |F(z)|)/2 = |C_{\Omega}(z)| = |C_{\Omega}(z)| \cdot \langle z \rangle \cdot |C_{\Omega}(z)| \cdot |C_{\Omega}(z)| \cdot |C_{\Omega}(z)|$. Since $N_{\beta}^{a} = N_{\beta}^{a} \cap N_{\beta}^{a}$ by Lemma 2.6 (ii), $z_{G} \cap N_{\beta} = z_{G}^{a}$ and so $|C_{\Omega}(z)| = |F(z)| \cdot |C_{\Omega}(z)| \cdot |C_{\Omega}(z)| \cdot |C_{\Omega}(z)|$, so that $|G_{a}| = |\Omega| = 1 (mod |F(z)|)$. Since $|G_{a}|/N_{\beta}^{a} = |G_{a}/N_{\beta}^{a} \cap N_{\beta}^{a}| = 2$, we have $|G_{a}| |8n$. Clearly $|\Omega| = 1 + g(q - \epsilon) (q + \epsilon) r/8$ and by Lemma 2.8 (i), $|F(z)| = 1 + 3 (q - \epsilon) r/4$. Hence $1 + 3(q - \epsilon) r/4 < 8n(1 + g(q - \epsilon) (q + \epsilon) r/8)$. Put $n = rs$. Then $3r - 3er + 4 (4s + g(q - \epsilon) (q + \epsilon) r) 3r = 864 r^{2} + 4s (3pq) (3pq - 3er) (3er + 3er)$. Hence $3r - 3er + 4 | 864 r^{2} + 4s (3pq - 3er) (3er + 3er)$. Since $3q - 3er < 864 r^{2}$, $n = 1$ or $(n, p) = (3, 5, 3, -1)$, while none of these satisfy (3.14). Therefore $m = (2q^{2} + (2q + 9)q - 9r)/(3q - 3q + 4)$. It follows that $(q, m) = (19, 27/2), (37, 28), (83, 449/8)$ or $(149, 411/4)$. Since m is an integer, we have $(q, m) = (37, 28)$. But $m \leq |\langle t \rangle| G_{a} | \leq 16$, a contradiction. Thus (3.14)
holds.

(3.15) The case that \(N_\alpha^* = D_6 \) and \(N_\alpha^* \cap N_\beta = Z_2 \times Z_2 \) does not occur.

Proof. Let \(\Delta, L \) and \(K \) be as defined in (3.6). By (3.6), there exists an element \(x \) in \(L_\alpha \) such that its order is odd and \(\langle x^\alpha \rangle \) is regular on \(\Delta - \{ \alpha \} \).

Since \((L_\alpha)' \leq N_\alpha^* \) by (3.6) and \(N_\alpha^* = D_6 \), \(x \) stabilizes a normal series \(N_\alpha^* \unlhd N_\alpha^* \unlhd N_\alpha^* \). Hence \(x \) centralizes \(N_\alpha^* \) by Theorem 5.3.2 of [2] and so \(x^{-1}N_\alpha^* = N_\alpha^* \). Put \(\gamma = \beta^2 \).

If \(r = 1 \), then \(\beta = \gamma \), so that \(N_\alpha^* = N_\alpha^* \). From this, \(N_\alpha^* = N_\alpha^* \).

By the doubly transitivity of \(G \), \(N_\alpha^* = N_\alpha^* \), hence \(N_\alpha^* = N_\alpha^* \cap N_\beta \), a contradiction. Therefore \(r = 1 \) and \(\Delta = \{ \alpha, \beta \} \).

Set \(\langle \delta \rangle = Z(N_\alpha^*) \), \(\Delta_1 = \alpha^{C_\alpha(\delta)} \) and let \(\{ \Delta_1, \Delta_2, \ldots, \Delta_j \} \) be the set of \(C_\alpha(\delta) \)-orbits on \(F(\delta) \).

Since \(L \unlhd N_\alpha^* \cap N_\beta \) and by (3.2), \(N_\alpha^* \cap N_\beta < 1 \), \(z \) is contained in \(N_\alpha^* \cap N_\beta \). Hence, by Lemma 2.1, \(\beta \in \Delta_1 \) and \(k \) is at least two. By Lemma 2.8, \(|F(\delta)| = 1 + (q - \varepsilon)|N_\alpha^*| = 1 + 5(q - \varepsilon)/8 \).

Clearly \(|C_\alpha(\delta)| = (q - \varepsilon)/8 \) and so \(|\Delta_1| \geq 1 + (q - \varepsilon)/8 \). If \(\gamma \in F(\delta) - \Delta_1 \), then \(C_\alpha(\delta) \unlhd Z_2 \times Z_2 \), for otherwise \(\langle \delta \rangle = Z(N_\alpha^*) \nleq N_\alpha^* \cap N_\beta \) and by Lemma 2.1 \(\gamma \in \Delta_1 \), a contradiction. Hence one of the following holds.

(i) \(k = 3 \) and \(|\Delta_1| = 1 + (q - \varepsilon)/8 \), \(|\Delta_2| = 1 + (q - \delta)/4 \).

(ii) \(k = 2 \) and \(|\Delta_1| = 1 + (q - \varepsilon)/8 \), \(|\Delta_2| = (q - \varepsilon)/2 \).

(iii) \(k = 2 \) and \(|\Delta_1| = 1 + 3(q - \varepsilon)/8 \), \(|\Delta_2| = (q - \varepsilon)/4 \).

Let \(\gamma \in F(\delta) - \Delta_1 \). Then, \(z \in G_\gamma \cap N_\gamma \) and so \(C_\alpha(\gamma) \cong D_{q+,r} \) or \(PGL(2, \sqrt{q}) \) by Lemma 2.6 (vii), (viii), (ix).

If \(C_\alpha(\gamma) \cong D_{q+,r} \), then \((q + \varepsilon)/2 \mid |\Delta_1| \) and so \(q = 7 \) and (ii) occurs. But \((q + \varepsilon)/2 = 3 \mid |\Delta_2| - 1 - 1 = 1 \), a contradiction. If \(C_\alpha(\gamma) \cong PGL(2, \sqrt{q}) \), then (i) does not occur because \(\sqrt{q} \not\mid q - \varepsilon \). Hence \(\sqrt{q} \mid |\Delta_1| \) and \(\sqrt{q} \mid |\Delta_2| - 1 \). From this, \(q = 25 \) and (iii) occurs. In this case, we have \(|\Delta_1| = 10 \), so that an element of \(C_\alpha(\delta) \) of order 3 is contained in \(N_\delta^* \) for some \(\delta \in \Delta_1 \), contrary to \(N_\delta^* = N_\beta^* = D_6 \).

4. Case (II)

In this section we assume that \(N_\alpha^* \cong PGL(2, p^m) \), where \(n = 2mk \) and \(k \) is odd. Since \(n \) is even, \(q = p^m \equiv 1 \pmod{4} \). We set \(p^m \equiv \varepsilon \equiv \{ \pm 1 \} \pmod{4} \). In section 7 we shall consider the case that \(N_{\alpha}^* = C_4 \). Therefore we assume \((p, m) = (3, 1) \) in this section.

(4.1) The following hold.

(i) \(N_\beta^*/N_\alpha^* \cap N_\beta^* = 1 \) or \(Z_2 \) and \(N_\alpha^* \cap N_\beta^* \cong (N_\alpha^*)' \cong PSL(2, p^m) \).

(ii) If \((p, m) = (5, 1) \), there exists a cyclic subgroup \(Y \) of \((N_\alpha^*)' \) such that \(N_{\alpha}^*(Y) = D_{q+,r} \) and \(N_0(Y) = D_{q+,r} \) is doubly transitive.

Proof. As \(N_\alpha^* \cong N_\alpha^* \cap N_\beta^* \), either \(N_\beta^*/N_\alpha^* \cap N_\beta^* \leq Z_2 \) or \(N_\alpha^* \cap N_\beta^* = 1 \). If \(N_\alpha^* \cap N_\beta^* = 1 \), by Lemma 2.2 and 2.6 (vi), \(N_\beta^* = N_\alpha^* \cap N_\beta^* \cong N_\beta^* N_\beta^*/N_\beta^* = Z_2 \times Z_2 \), a
Contradiction. Therefore \(N^\alpha/\alpha \cap N^\beta = 1 \) or \(N^\alpha \cap N^\beta \geq (N^\alpha)^{\alpha'} = PSL(2, p^m) \).

Now we assume that \((p, m) \neq (3,1), (5,1)\) and let \(z \) be an involution in \((N^\beta)^{\alpha'}\). Then \(C_{N^\beta}(z) \cong D_{2(p^m - 1)} \) by Lemma 2.6 (vii). Suppose \(C_{N^\beta}(z) \) is not a 2-subgroup and put \(Y = 0(C_{N^\beta}(z)) \). Then, if \(Y^z \leq G_{ab} \) for some \(g \in G \), we have \(Y^z \leq N^\alpha \) and \(Y^z \leq N^\beta \), where \(\gamma = \alpha^z \) and \(\delta = \beta^z \). By (i) \(Y^z \leq N^\alpha \cap N^\beta \) and so \(Y^z = Y^\alpha \) for some \(h \in N^\alpha \cap N^\beta \). Thus \(N_G(Y)^{\alpha'} \) is doubly transitive. Assume that \(C_{N^\beta}(z) \) is a 2-subgroup and set \(C_{N^\beta}(z) = \langle u, v \mid u^2 = v^{-1}, v^2 = 1 \rangle \). We may assume that \(v \in (N^\beta)^{\alpha'} \) and \(\langle u, v \rangle \) is a Sylow 2-subgroup of \((N^\beta)^{\alpha'}\). Since \(p^m \neq 3,5 \), the order of \(u^2 \) is at least four. On the other hand there is no element of order \(|u^2| \) in \(\langle u, v \rangle \). Hence any element of order \(|u^2| \) which is contained in \(N^\beta \) is necessarily an element of \(N^\alpha \). By the similar argument as above, \(N_G(Y)^{\alpha'} \) is doubly transitive.

(4.2) Let notations be as in (4.1). Suppose \((p, m) \neq (3,1), (5,1)\) and set \(\Delta = F(Y) \) and \(X = N_G(Y) \). Then \(|\Delta| = rs(p^m + \varepsilon)/2 + 1 \), where \(s = \sum_{i=0}^{k-1} p^{2mi} \), \(C_G(N^\alpha) = 1 \) and one of the following holds.

\begin{enumerate}
 \item \(X^\alpha \leq AGL(1, 2^c) \) for some integer \(c \).
 \item \(X^\alpha = PSL(2, p_1) \) or \(PGL(2, p_1) \), \(r = 1 \) and \(2p_1 = p^m + \varepsilon \).
\end{enumerate}

Proof. By Lemma 2.8 (ii), \(|\Delta| = 1 + |N^\alpha \cap X|/r |N^\alpha \cap X| = 1 + (p^{2m} - 1)/r(2p^m - \varepsilon) = (p^m + \varepsilon)/2 + 1 \). By (4.1) and Lemma 2.9, we have (i), (ii) or \(X^\alpha = R(3) \).

Assume that \(X^\alpha = R(3) \). Then \(rs(p^m + \varepsilon)/2 + 1 = 28 \), hence \(k = 1 \) and \(r(p^m + \varepsilon)/2 = 27 \). Since \(r \) is odd and \(r \) is odd, we have \(r = m = 1 \) and \(q = 3^2 \). But a Sylow 3-subgroup of \(X^\alpha \) is cyclic because \(N^\alpha \cap X \cong D_{p+2} \), and \(X^\alpha/X \cap N^\alpha = X^\alpha N^\alpha/N^\alpha \leq Z_2 \times Z_2 \), a contradiction. Thus (i) or (ii) holds.

(4.3) (i) of (4.2) does not occur.

Proof. Let notations be as in (4.2). Suppose \(X^\alpha \leq AGL(1, 2^c) \) and put \(W = C_{N^\beta}(Y) \). Then \(Y \leq W \cong Z_{p^m - 1} \). Since \(C_{N^\alpha}(Y) \) is cyclic, \(W \) is a characteristic subgroup of \(C_{N^\alpha}(Y) \) and \(W \) is a normal subgroup of \(X^\alpha \). Hence \(\leq X^\alpha \) and \(X \cap N^\beta = 1 \) or \(Z_2 \). By Lemmas 2.4 and 2.6, \(F(X \cap N^\beta) = 1 + |X \cap N^\beta| |N^\beta| : X \cap N^\beta | \times r |N^\beta| = l + r \). Since \(1 + r < |\Delta| \), \((X \cap N^\beta)^{\alpha'} = Z_2 \) and hence \((1 + r)^{2} = rs(p^m + \varepsilon)/2 + 1 \) by Lemma 2.5. From this, \(r = s(p^m + \varepsilon)/2 - 2mk \) and so \(p^{2m}(k - 1) + mk \leq 2 \). Hence \(m = k = r = 1 \) and \(q = 7^2 \).

Let \(R \) be a Sylow 3-subgroup of \(N^\beta \). Since \(N^\beta \cong PGL(2, 7) \), we have \(R \cong Z_3 \). By Lemmas 2.4 and 2.6, \(|F(R)| = 1 + (7^2 - 1) |N^\beta| : N^\beta \cap N^\beta / |N^\beta| = 4 \). Hence \(N_G(R)^{F(R)} = \Delta_4 \) or \(S_4 \). But is a Sylow 3-subgroup of \(N_G(R)^{F(R)} \) because \(N^\alpha = PSL(2, 7^2) \), contrary to \(N_G(R)^{F(R)} = \Delta_4 \) or \(S_4 \).

(4.4) (ii) of (4.2) does not occur.
Proof. Let notations be as in (4.2). Suppose $X^\Delta \trianglelefteq PSL(2,p_1)$. By the similar argument as in (4.3), $C_{N_\beta}(Y) \subseteq X_\Delta$ and so $C_{N_\alpha}(Y) = Z_{p_1}$, and $N_{N_\alpha}(Y)^{\Delta} = D_{2p_1}$. Hence $|X^\Delta| = |(p_1 - 1)/2|$. Since $X^\Delta \trianglelefteq PSL(2,p_1)$, $p_1(p_1 - 1)/2 | |(X^\Delta)|$, hence $p_1 - 1 | 8n$. As $k = 1$ and $2p_1 = p^\alpha + \epsilon$, we have $p^\alpha + \epsilon - 2 | 32m$. From this, $(p,m,p_1) = (11,1,5), (3,2,5)$ or $(3,3,13)$.

Let R be a cyclic subgroup of N_α^β such that $R = Z((p^\alpha + \epsilon)/2)$. By Lemma 2.6, $N_\alpha(R)^{F(R)}$ is doubly transitive and by Lemma 2.8 (ii), $|F(R)| = 1 + |N_\alpha(R)| - |N_{N_\alpha}(R)^{(R)}| = 42$ and $N_\alpha(R)^{F(R)} = Z_6$. Since $|N_{N_\alpha}(R): N_{N_\alpha}^\beta(R)| = 6, N_{N_\alpha}(R)^{F(R)} = N_{\alpha}(R)^{F(R)}$. Hence $N_{N_\alpha}(R)/K = Z_6$, where $K = (N_{N_\alpha}(R))^{F(R)}$. But $N_{N_\alpha}(R)/(N_{N_\alpha}(R))^* = Z_2 \times Z_2$, a contradiction.

If $(p,m,p_1) = (3,2,5)$, $|N_\alpha(R)| = 5$ and so by [9], $|F(R)| = 15$. Since $|N_{N_\alpha}(R): N_{N_\alpha}^\beta(R)| = 4, N_{N_\alpha}(R)^{\alpha} = Z_4$, contrary to $N_{N_\alpha}(R)/(N_{N_\alpha}(R))^* = Z_2 \times Z_2$.

If $(p,m,p_1) = (3,3,13)$, $|F(R)| = 15$. By [9], $N_{\alpha}(R)^{F(R)}$ is not solvable, a contradiction.

(4.5) $p^\alpha = 5.$

Proof. Assume that $p^\alpha = 5$. Then $n = 2k$ with k odd and $N_\alpha^\beta = PGL(2,5)$ $\cong S_5$. First we argue that $N_\alpha^\beta = N_\alpha \cap N_\beta$. Suppose false. Then $C_\alpha(N_\beta^\alpha) = 1$ by Lemma 2.2, and $N_\alpha^\beta/N_\alpha \cap N_\beta = Z_2$ by (4.1). Since $N_\alpha^\beta \cap N_\beta = N_\alpha^\beta/N_\alpha \cap N_\beta = Z_2$ and the outer automorphism group of S_5 is trivial, we have $Z(N_\alpha^\beta N_\beta^\alpha) = Z_2$.

Let ω be the involution of $Z(N_\alpha^\beta N_\beta^\alpha)$ and let $\omega \in I(N_\alpha^\beta) - I(N_\alpha)$. Since $C_{N_\alpha}(\omega)$ is doubly transitive of order 2 and $C_{N_\alpha}(\omega) \cong PGL(2,5)$, ω acts on N_α^β as a field automorphism of order 2 and $C_{N_\alpha}(\omega) = Z_2$. By Lemma 2.8 $|F(\omega)| = 1 + r(5^2 - 1)/24$. Let P be a Sylow 5-subgroup of $C_{N_\alpha}(\omega)$. Then $|P| = 5^s$ and $|\gamma| = 5^k - 1$ for each $\gamma \in N_\alpha^\beta$. Since P acts on $F(\omega) - \{\alpha\}$, we have $5^{s-1}r(5^k - 1)/24$, so that $k = 1$ and $|F(\omega)| = 6 = r/k$. Hence $C_{N_\alpha}(\omega)^{F(\omega)} = Z_2$, so $C_{N_\alpha}(\omega)^{F(\omega)} = Z_2$. But clearly $\omega \in N_\alpha^\beta \cap N_\beta$ by Lemma 2.1, a contradiction. Therefore (a) holds.

By Lemma 2.5, $(r + 1)^2 = 3rs + 1$ and so $r = 3s - 2/k$. Hence $k = r = 1$ and $G_\alpha/N_\alpha^\beta \leq Z_2 \times Z_2$. Let z be an involution in N_β. Then $|F(z)| = 1 + 24 \cdot 25/120 = 6$. Some Doubly Transitive Permutation Groups
by Lemma 2.8 and $|\Omega| = 1 + |N^a| = 66$ as $r = 1$. By the similar argument as in the proof of (3.12), $|F(z)||F(z)|-1)/2 + (|\Omega| - |F(z)|)/2 = |C_G(z)||z^G \cap \langle t \rangle G_{ab}|/|\langle t \rangle G_{ab}|$, where t is an involution such that $\alpha^t = \beta$. Hence $|z^G \cap \langle t \rangle G_{ab}| = 15|G_{ab}|/|C_G(z)|$. Set $H = \langle t \rangle G_{ab}$ and let R be a Sylow 3-subgroup of N^a_{ab}. By Lemma 2.8, $|F(R)| = 1 + 24 \cdot 10/120 = 3$. Set $F(R) = \{\alpha, \beta, \gamma\}$. On the other hand, as $N^a_{ab} = S_5$ and Out$(S_5) = 1$, we have $H = Z(H) \times N^a_{ab}$ and $|Z(H)| = 2, 4$ or $H = C_H(N^a_{ab}) \times N^a_{ab}$ and $Z(G_{ab}) = Z_2 \times Z_2$, contrary to Lemma 2.6 (ix). In the former case, we have $|Z(H)| = 2$. For otherwise $Z(H) < G$ and $Z(H) \cap G = 1$, so letting $u \in Z(H) \cap Z^G$, we have $|R| = 3 |F(u)| = 1 = 5$, a contradiction. Therefore $Z(H) = Z_2$ and so $|z^G \cap H| = 25 + 25 = 50$, while $|z^G \cap H| = 15|G_{ab}|/|C_G(z)| = 15 \cdot 120/24 = 75$, a contradiction.

5. Case (III)

In this section we assume that $N^a_{ab} = PSL(2, p^m)$, where $n = mk$ and k is odd. Set $p^m \equiv \varepsilon \equiv \{\pm 1\}$ (mod 4). Then $q \equiv \varepsilon$ (mod 4) as k is odd. In section 6 we shall consider the case that $N^a_{ab} = A_4$, so we assume $(p, m) \neq (3, 1)$ in this section. From this N^a_{ab} is a nonabelian simple group and so $N^a_{ab} = N^a_{ab} \cap N^a_{ab}$ or $N^a_{ab} \cap N^a_{ab} = 1$. If $N^a_{ab} \cap N^a_{ab} = 1$, then $C_G(N^a_{ab}) = 1$ by Lemma 2.2 and $N^a_{ab} = N^a_{ab} \cap N^a_{ab} \cap N^a_{ab} = N^a_{ab} \cap N^a_{ab} = 1$. Set Y be a cyclic subgroup of $C_N^a(z) = D_{p^m}$ of index 2. Since $C_G(a)(z)$ is doubly transitive, we have $F(Y) = F(z)$. By Lemma 2.9, $C_G(z)^F(z) = 1$ and one of the following holds.

(a) $C_G(z)^F(z) = ATL(1, 2^r)$.
(b) $C_G(z)^F(z) \geq PSL(2, p_1)^{p_1 \geq 5}$, $r = 1$ and $|N^a_{ab}(z)| = p_1$.
(c) $C_G(z)^F(z) = R(3)$.

Let Y be a cyclic subgroup of $C_N^a(z) = D_{p^m}$ of index 2. Since $C_G(a)(z)$ is doubly transitive, we have $F(Y) = F(z)$. By the similar argument as in (3.1), $N^a_{ab} \cap N(C_N^a(z)) = C_N^a(z)$ or $N^a_{ab} \cap N(C_N^a(z)) = A_4$. Hence by Lemmas 2.3 and 2.4, $|F(C_N^a(z))| = 1 + |C_N^a(z)| |N^a_{ab}(z)| |N^a_{ab}(z)| |N^a_{ab}(z)| |N^a_{ab}(z)| = 1 + |A_4| |N^a_{ab}(z)| |r| |N^a_{ab}(z)| |r| |N^a_{ab}(z)| |r| |N^a_{ab}(z)|$. Therefore $F(C_N^a(z)) = r + 1$ or $3r + 1$. From this $C_N^a(z)^F(z) \geq Z_2$. In the case (a), $(r + 1)^2 = 1 + (p^m - \varepsilon)r/(p^m - \varepsilon)$ by Lemma 2.5 and hence $r = (p^m - \varepsilon)/(p^m - \varepsilon) - 2/|mk|$. Since $(p^m - \varepsilon)/(p^m - \varepsilon) \geq ((p^m)^k + 1)/(p^m + 1) = \sum_{i=0}^{k} (-1)^i/m(i(p^m - p^m + 1)) < k$, we have $p^m(k - 1)/(p^m - p^m + 1) \leq mk$, hence $((p^m)^k - 1)/k(m(p^m - p^m + 1)) < 1$. Thus $k = 3$, $m = 1$ and $p = 3$, contrary to $(p, m) = (3, 1)$.

In the case (b), $r = 1$, $p_1 = (p^m - \varepsilon)/(p^m - \varepsilon)$, $p_1(p_1 - 1)/2$ and $s \mid 4mkp_1$, where s is the order of $C_G(a)(z)^F(z)$. Hence $p_1 - 1/s$ is.

\[\geq \left(\frac{p^n+1}{p^n-1} \right) - 1 = \sum_{k=0}^{\infty} \left(-\frac{p^n}{p^n-1} \right)^k \geq \frac{p^{m(k-2)}(p^n-1)}{2k \leq 4m(p^n-1)} \leq 1 \text{ because } p^n \neq 3. \] Hence \(k = 3 \) and \(p^n = 5 \), so that \(p^m = 30 \). If \(m = 3 \), we have a contradiction.

In the case (c), \(r+l=4 \) and \(1+(p^n-\varepsilon)(p^n-\varepsilon)=28 \) and so \(r=3 \) and \((p^n-\varepsilon)(p^n-\varepsilon)=9 \). Hence \(9 \geq \frac{p^{m+1}+p^{m}}{2} \geq p^m-1 \geq 1 \) because \(p^n \neq 3 \).

6. Case (IV)

In this section we assume that \(N^a = A_4 \) and \(q = 3, 5 \text{ (mod 8)} \). If \(N^a \cap N^b = 1 \), by Lemma 2.2, \(C_G(N^a) = 1 \) and so \(N^a / N^b \cong N^a / N^b \cap N^b \leq Z_2 \times Z_2 \). Hence \(N^a / N^b \cap N^b = 1 \text{ or } Z_2 \), so that \(z^G \cap G_{ab} = z^G \cap N^a = z^G \) for an involution \(z \in N^a \).

Therefore \(C_G(z)^{F(z)} \) is doubly transitive. By Lemma 2.9, \(C_G(N^a) = 1 \) and one of the following holds.

- (a) \(C_G(z)^{F(z)} \cong A_4 \) for some integer \(c \geq 1 \).
- (b) \(C_G(z)^{F(z)} \cong PSL(2, p) \) \((p \geq 5) \), \(r = 1 \) and \(|C_{N^a}(z) : C_{N^a}(z)| = p^m \).
- (c) \(C_G(z)^{F(z)} \cong R(3) \).

Let \(T \) be a Sylow 2-subgroup of \(N^a \). Then \(z \in T \) and by Lemmas 2.3 and 2.4, \(|F(T)| = 1+|N_{N^a}(T)| |r| |N^a| = r+1 \). By Lemma 2.8 (i), \(|F(z)| = (q-\varepsilon)r/4+1 \).

Hence \(F(z)^{F(z)} \cong Z_2 \) if \(q = 5 \). If \(q = 5 \), as \(PSL(2,5) \cong PSL(2,4) \), from Lemma 2.5, we have \(r = 3 \text{ or } 5 \).

In the case (a), \(r+l=4 \text{ and } 1+(p^n-\varepsilon)(p^n-\varepsilon)=28 \text{ and so } r=3 \text{ and } (p^n-\varepsilon)(p^n-\varepsilon)=9.

Hence \(9 \geq \frac{p^{m+1}+p^{m}}{2} \geq p^m-1 \) so that \(p^n = 3 \), a contradiction.

In the case (b), \(p_1(p_1-1)/2 \text{ and } s^2 \geq 8n(q-\varepsilon) \geq 4n^2 \).

where \(s \) is the order of \(C_{G_a}(z)^{F(z)} \). Hence \(p_1 \geq 8n \). Since \(p_1 = (q-\varepsilon)/4 \), \(p^n \geq 4^3 \geq 32n \) and so we have \(q = 11, 13, 19, 27 \) or 37. If \(q = 27 \), by Lemma 2.6, \(C_{G_a}(z) = D_{2q-4} \) or \(D_{2(q-4)} \) and so \(C_{G_{ab}}(z)^{F(z)} \cong Z_2 \). Hence \((p_1-1)/2 = 2 \). From this \(q = 19 \). Let \(R \) be a Sylow 3-subgroup of \(G_{ab} \). By the similar argument as in the case (a), \(N_G(R)^{F(R)} \) is doubly transitive and \(|F(R)| = 1+18 \frac{3}{2} = 7 \). Hence \(|G| = 7 \). On the other hand \(|G| = 7 \), \(C_{G_a}(z) = (1+|N^a : N^b|)|G_a| = (1+18 \cdot 19 \cdot 20/2 \cdot 12) \cdot 2^4 \cdot 18 \cdot 19 \cdot 20/2 = 2^3 \cdot 3^2 \cdot 5^2 \cdot 11 \cdot 13 \cdot 19 \) with \(0 \leq i \leq 1 \), a contradiction. If \(q = 27 \), then \(|C_G(z)| = |F(z)| \times |C_{G_a}(z)| = 8 \times |G_a| \) while \(|\Omega| = 1+|N^a : N^b| = 1+26 \cdot 27 \cdot 28/2 \cdot 12 = 820 = 2^3 \cdot 5 \cdot 41 \) and so \(|G| = 4 |G_a| \). Therefore \(|C_G(z)| = |G_a| \), a contradiction.

In the case (c), \(r+l=4 \text{ and } 1+(q-\varepsilon)r/4=28.

Hence \(r = 3 \) and \(q = 37, \)
contrary to \(r | n \).

7. Case (V)

In this section we assume that \(N^*_a = S_4 \) and \(q = 7,9 \pmod{16} \). We note that \(4 \nmid n \).

First we argue that \(N^*_a = N^* \cap N^b \). Suppose \(N^*_a \cap N^b \). Then \(C_o(N^a) = 1 \) by Lemma 2.2. Since \(N^*_a / N^a \cap N^b \Rightarrow N^*_a / N^b \approx Z_2 \times Z_2 \), we have \(N^* \cap N^b \approx A_4 \) and \(N^*_b / N^a \cap N^b \approx Z_2 \). So \(N^*_a / N^b \approx N^*_b / N^b \cap N^b \approx Z_2 \). Hence as \(\text{Out}(S_4) = 1 \), \(Z(N^*_a / N^b) \approx Z_2 \). Set \(\langle t \rangle = Z(N^*_b / N^b) \) and let \(t \in I(N^*_b) - I(N^a) \). Since \(C_N(t) \supseteq N^*_b = S_4 \) and \(\langle t \rangle N^a = N^*_b \), by Lemma 2.6, we have \(C_{N^a}(t) = PGL(2, \sqrt{q}) \) and \(|F(t)| = 1 + 3(q - \varepsilon) r / 8 \) by Lemma 2.8.

Let \(P \) be a Sylow \(p \)-subgroup of \(C_{N^a}(t) \). Then \(|P| = \sqrt{q} \). If \(p = 3 \), \(P \) acts semi-regularly on \(F(t) - \{ \alpha \} \) and so \(\sqrt{q} | 3(q - \varepsilon) r / 8 \). Therefore \(\sqrt{q} | r \) and so \(5^e > n^2 \) for any positive integer \(n \). This is a contradiction. If \(p = 3 \), \(P : \sqrt{q} = \sqrt{3(q - \varepsilon) r / 8} \). Hence \(\sqrt{q} | 3(q - \varepsilon) r / 8 \) and so \(q | 81 r^2 \). In particular, \(3^e = q | 81 n^2 \). From this, \(n \leq 7 \). Since \(q = 3^e \equiv 7 \) or \(9 \pmod{16} \), we have \(q = 3^2 \) or \(3^6 \). If \(q = 3^6 \), \(|\Omega| = 1 + |N^a : N^*_a| = 1 + 8 \cdot 9 \cdot 10 / 2 \cdot 24 = 16 \), a contradiction by [9] if \(q = 3^6 \), \(|F(t)| = 1 + 273r \) and \(|F(t) - \{ \alpha \}| \geq |C_{N^a}(t)| \geq |PGL(2, 3^3)| / 8 = 2457 \) contrary to \(r | 3 \). Thus \(N^*_a = N^* \cap N^b \).

Let \(V \) be a cyclic subgroup of \(N^*_a \) of order 4 and let \(U \) be a Sylow 2-subgroup of \(N^*_a \) containing \(V \). Then \(U = N_{G_a}(V) \), \(|F(V)| = 1 + (q - \varepsilon) r / 8 \) by Lemma 2.8 and \(|F(U)| = 1 + 8 \cdot 3r / 24 = r + 1 \) by Lemmas 2.3 and 2.4. If \(q = 7,9 \), then \(|F(U)| < |F(V)| \) and hence \(U^{F(V)} \approx Z_2 \). Suppose \(q = 7 \) or \(9 \). Then \(r = 1 \) as \(r | n \). Hence \(|\Omega| = 1 + |N^a : N^*_a| = 8 \) or 16. By [10], we have a contradiction. Therefore \(U^{F(V)} \approx Z_2 \).

Suppose \(V^e \leq G_{a^b} \) for some \(g \in G \) and set \(\gamma = \alpha^g \). Then \(V^e \leq g^{-1} N^a g \cap G_{a^b} \leq N^a \cap G_{a^b} \leq N^a \cap N^b = N^a \). Since \(N^*_a = S_4 \), \(V^e = V^h \) for some \(h \in N^*_a \). Hence \(C_o(V^{F(V)}) \) is doubly transitive. By Lemma 2.9, \(C_o(N^a) = 1 \) and one of the following holds.

(a) \(N_c(V^{F(V)}) \leq AGL(1, 2^7) \).
(b) \(N_c(V^{F(V)}) \geq PSL(2, p_1) \), \(p_1 = (q - \varepsilon) / 8 \geq 5 \).
(c) \(N_c(V^{F(V)}) = R(3) \).

In the case (a), \(r + 1 = 1 + (q - \varepsilon) r / 8 \) by Lemma 2.5 and so \(r = (q - \varepsilon - 16) / 8 \) and \(r | n \). From this \(q = 23 \) or 25 and \(r = 1 \). Since \(|\Omega| = 1 + |N^a : N^*_a| = 2 \cdot 127 \) or \(2 \cdot 163 \), we have \(|G/2| = 2 |G_a/2| \) while \(|N_c(V)||2| = |F(V)||2| |G_a(V)||2| = 4 |G_a/2| \), contrary to \(|C_o(V)||2| = |G| \).

In the case (b), \(p_1 (p_1 - 1) / 2 \) and \(s \mid 2n(q - \varepsilon) / 4 = 4np_1 \), where \(s \) is the order of \(N_{G_a}(V^{F(V)}) \). Hence \(p_1 | 8n \). From this, \(p^e - \varepsilon - 8 \mid 64n \) and so \(q = 23, \, 41, \, 71 \) or 73. Since \(p_1 \) is a prime and \(p_1 = (q - \varepsilon) / 8 \geq 5 \), \(q = 23, \, 71, \) or 73. Therefore \(q = 41 \) and \(|\Omega| = 1 + |N^a : N^*_a| = 1 + 40 \cdot 41 \cdot 42 / 2 \cdot 24 = 2^2 \cdot 359 \), so that \(|G/2| = 4 |G_a/2| \).
Since $N_\beta^*=N^* \cap N^\beta$, $C_c(z)^{F(z)}$ is transitive by Lemma 2.1. On the other hand $|F(z)|=1+40 \cdot 9/24=16$ by Lemma 2.8 (i) and so $|C_c(z)|=16|C_{G_\alpha}(z)|=16|G_\alpha|$, contrary to $|C_c(z)|||G|$.

In the case (c), $r+1=4$ and $1+(q-\varepsilon)r/8=28$. Hence $r=3$ and $q=71$ or 73, contrary to $r \mid n$.

8. Case (VI)

In this section we assume that $N_\beta^*=A_5$ and $q \equiv 3, 5 \pmod{8}$. In particular, n is odd. If $N_\beta^*=N^* \cap N^\beta$, then $N^* \cap N^\beta=1$, $C_c(N^*)=1$ and so $N_\beta^*=N_\beta^*/N^\beta/N^\beta \leq \text{Out}(N^\beta)=Z \times Z$, a contradiction. Hence $N_\beta^*=N^* \cap N^\beta$. Let z be an involution in N_β^* and T a Sylow 2-subgroup of N_β^* containing z. Then, by Lemma 2.8 $|F(z)|=1+(q-\varepsilon)15r/60=1+(q-\varepsilon)r/4$ and by Lemmas 2.3 and 2.4 $|F(T)|=1+12 \cdot 5r/60=1+r$. Since $N_\beta^*=N^* \cap N^\beta$, $z^G \cap G_\alpha^*=z^G \cap N_\beta^*=z^N_\beta$ and so $C_c(z)^{F(z)}$ is doubly transitive. By Lemma 2.9, $C_c(N^*)=1$ and one of the following holds.

(a) $C_c(z)^{F(z)}=\text{Alt}(1,2)$.

(b) $C_c(z)^{F(z)}=\text{PSL}(2, p_1)$, $p_1=(q-\varepsilon)/4 \geq 5$.

(c) $C_c(z)^{F(z)}=R(3)$.

In the case (a), by Lemma 2.5, $(q-\varepsilon)/4=1$ or $(r+1)/2=1+(q-\varepsilon)r/4$. Hence $q=5$ or $r=(q-\varepsilon-8)/4 \mid n$. If $q=5$, then $N_\beta^*=N^*$, a contradiction. Therefore $p^*-\varepsilon-8 \mid 4n$ and so $n=1$ and $q=11$ or 13. If $q=13$, we have $5 \not\mid |G_\alpha|$, a contradiction. Hence $q=11$ and $|\Omega|=1+|N^*: N_\beta^*=1+10 \cdot 11 \cdot 12/2 \cdot 60=12$. By [9], $C_\alpha \simeq M_{11}$, $|\Omega|=12$ and so (iii) of our theorem holds.

In the case (b), we have $p_1(p_1-1)/2 \mid s$ and $s \mid 2n(q-\varepsilon)/2=4np_1$, where s is the order of $C_c_{G_\alpha}(z)^{F(z)}$. Hence $p_1=18n$ and so $p^*-\varepsilon=4 \mid 32n$. From this $q=19, 27$ or 37. Since $5 \not\mid |G_\alpha|$, $q=27, 37$. Hence $q=19$ and $|\Omega|=1+|N^*: N_\beta^*=1+18 \cdot 19 \cdot 20/2 \cdot 60=2 \cdot 29$. Since $G_\alpha=PGL(2, 19)$ or $PGL(2, 19)$, $|G|=|\Omega||G_\alpha|=2 \cdot 29 \cdot 2 \cdot 18 \cdot 19 \cdot 20/2=2^{3+i} \cdot 3^3 \cdot 5 \cdot 19 \cdot 29$ with $0 \leq i \leq 1$. Let P be a Sylow 29-subgroup of G. Then P is semi-regular on Ω and 3, 5, 19 $\not\mid |N_c(P)|$ because $N_c(P)/C_c(P) \leq Z_4 \times Z_7$. Hence $|G: N_c(P)|=2^i \cdot 3^3 \cdot 5 \cdot 19$ with $0 \leq j \leq 4$, while $2^i \cdot 3^3 \cdot 5 \cdot 19 \equiv 1 \pmod{29}$ for any j with $0 \leq j \leq 4$, contrary to a Sylow's theorem.

If $C_c(z)^{F(z)}=R(3), r+1=4$ and $1+(q-\varepsilon)r/4=28$ and hence $r=3, q=37$, contrary to $r \mid n$.

Osaka Kyoiku University

References

[3] C. Hering: Transitive linear groups and linear groups which contain irreducible

