<table>
<thead>
<tr>
<th>Title</th>
<th>On some doubly transitive permutation groups in which socle(Gα) is nonsolvable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hiramine, Yutaka</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 1979, 16(3), p. 797-816</td>
</tr>
<tr>
<td>Version Type</td>
<td>VoR</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/8021</td>
</tr>
<tr>
<td>Note</td>
<td>Osaka University Knowledge Archive : OUKA</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University
ON SOME DOUBLY TRANSITIVE PERMUTATION GROUPS IN WHICH SOCLE(G_α) IS NONSOLVABLE

YUTAKA HIRAMINE

(Received July 3, 1978)

1. Introduction

Let G be a doubly transitive permutation group on a finite set Ω and $\alpha \in \Omega$. In [8], O'Nan has proved that $\text{socle}(G_\alpha) = A \times N$, where A is an abelian group and N is 1 or a nonabelian simple group. Here $\text{socle}(G_\alpha)$ is the product of all minimal normal subgroups of G_α.

In the previous paper [4], we have studied doubly transitive permutation groups in which N is isomorphic to $\text{PSL}(2,q)$, $\text{Sz}(q)$ or $\text{PSU}(3,q)$ with q even. In this paper we shall prove the following:

Theorem. Let G be a doubly transitive permutation group on a finite set Ω with $|\Omega|$ even and let $\alpha \in \Omega$. If G_α has a normal simple subgroup N^* isomorphic to $\text{PSL}(2,q)$, where q is odd, then one of the following holds.

(i) G_Ω has a regular normal subgroup.
(ii) $G_\Omega \cong A_6$ or S_6, $N^* \cong \text{PSL}(2,5)$ and $|\Omega| = 6$.
(iii) $G_\Omega \cong M_{11}$, $N^* \cong \text{PSL}(2,11)$ and $|\Omega| = 12$.

In the case that G_α has a regular normal subgroup, by a result of Hering [3] we have $(|\Omega|, q) = (16, 9), (16, 5)$ or $(8, 7)$.

We introduce some notations:

$F(X)$: the set of fixed points of a nonempty subset X of G
$X(\Delta)$: the global stabilizer of a subset $\Delta(\subseteq \Omega)$ in X
X_Δ: the pointwise stabilizer of Δ in X
X^Δ: the restriction of X on Δ
$m|n$: an integer m divides an integer n
X^H: the set of H-conjugates of X
$|X|_p$: maximal power of p dividing the order of X
$I(X)$: the set of involutions in X
D_m: dihedral group of order m

In this paper all sets and groups are finite.
2. Preliminaries

Lemma 2.1. Let \(G \) be a transitive permutation group on \(\Omega \), \(\alpha \in \Omega \) and \(N^\ast \) a normal subgroup of \(G_\alpha \) such that \(F(N^\ast) = \{ \alpha \} \). Let the subgroup \(X \leq N^\ast \) be conjugate in \(G_\alpha \) to every group \(Y \) which lies in \(N^\ast \) and which is conjugate to \(X \) in \(G \). Then \(N_\alpha(X) \) is transitive on \(\Delta = \{ \gamma \in \Omega \mid X \leq N^\ast \} \).

Proof. Let \(\beta \in \Delta \) and let \(g \in G \) such that \(\beta^g = \alpha \). Then, as \(X \leq N^\ast \), \(X^g \leq N^\ast \). By assumption, \((X^g)^h = X \) for some \(h \in G_\alpha \). Hence \(gh \in N_\alpha(X) \) and \(\alpha^{(gh)^{-1}} = \alpha^{g^{-1}} = \beta \). Obviously \(N_\alpha(X) \) stabilizes \(\Delta \). Thus Lemma 2.1 holds.

Lemma 2.2. Let \(G \) be a doubly transitive permutation group on \(\Omega \) of even degree and \(N^\ast \) a nonabelian simple normal subgroup of \(G_\alpha \). If \(C_G(N^\ast) \neq 1 \), then \(N^\ast = N^\ast \cap N^\ast \) for \(\alpha \neq \beta \in \Omega \) and \(C_G(N^\ast) \) is semiregular on \(\Omega \).

Proof. See Lemma 2.1 of [4].

Lemma 2.3. Let \(G \) be a transitive permutation group on \(\Omega \), \(H \) a stabilizer of a point of \(\Omega \) and \(M \) a nonempty subset of \(G \). Then

\[
|F(M)| = |N_\alpha(M)| \times |M^G \cap H| / |H| .
\]

Here \(M^G \cap H = \{ g^{-1}Mg \mid g^{-1}Mg^H, g \in G \} \).

Proof. See Lemma 2.2 of [4].

Lemma 2.4. Let \(G \) be a doubly transitive permutation group on \(\Omega \) and \(N^\ast \) a normal subgroup of \(G_\alpha \) with \(\alpha \in \Omega \). Assume that a subgroup \(X \) of \(N^\ast \) satisfies \(X^G = X^N^\ast \). Then the following hold.

(i) \(|F(X) \cap N^\ast| = |F(X) \cap N^\ast| \) for \(\beta, \gamma \in \Omega - \{ \alpha \} \).

(ii) \(|F(X)| = 1 + |F(X) \cap N^\ast| \times r \), where \(r \) is the number of \(N^\ast \)-orbits on \(\Omega - \{ \alpha \} \).

Proof. Let \(\Gamma = \{ \Delta_1, \Delta_2, \ldots, \Delta_r \} \) be the set of \(N^\ast \)-orbits on \(\Omega - \{ \alpha \} \). Since \(G_\alpha \) is transitive on \(\Omega - \{ \alpha \} \) and \(G_\alpha \) is solvable, we have \(|\Delta_i| = |\Delta_j| \) for \(1 \leq i, j \leq r \). By assumption, \(G_\alpha = N_\alpha(X)N^\ast \) and so \(N_\alpha(X) \) is transitive on \(\Gamma \). Hence for each \(i \) with \(1 \leq i \leq r \) there exists \(g \in N_\alpha(X) \) such that \((\Delta_i)^g = \Delta_i \). Therefore \(|F(X) \cap \Delta_i| = |F(X^g) \cap (\Delta_i)^g| = |F(X) \cap \Delta_i| \). Thus (i) holds and (ii) follows immediately from (i).

Lemma 2.5 (Huppert [5]). Let \(G \) be a doubly transitive permutation group on \(\Omega \). Suppose that \(\vartheta_2(G) \neq 1 \) and \(G_\alpha \) is solvable. Then for any involution \(z \) in \(G_\alpha \), \(|F(z)|^2 = |\Omega| \).

We list now some properties of \(PSL(2,q) \) with \(q \) odd which will be required
in the proof of our theorem.

Lemma 2.6 ([2], [6], [10]). Set \(N = PSL(2, q) \) and \(G = Aut(N) \), where \(q = p^r \) and \(p \) is an odd prime. Let \(z \) be an involution in \(N \). Then the following hold.

(i) \(|N| = (q-1)q(q+1)/2 \), \(I(N) = z^N \) and \(C_N(z) = D_{q-2} \), where \(q \equiv 0 \pmod{4} \).

(ii) If \(q \neq 3 \), \(N \) is a nonabelian simple group and a Sylow \(r \)-subgroup of \(N \) is cyclic when \(r \neq 2, \ p \).

(iii) If \(X \) and \(Y \) are cyclic groups of \(N \) and \(|X| = |Y| \neq 2, \ p \), then \(X \) is conjugate to \(Y \) in \(\langle X, Y \rangle \) and \(N_\langle X \rangle = D_{q-2} \).

(iv) If \(X \leq N \) and \(X = Z_2 \times Z_2 \), \(N_\langle X \rangle \) is isomorphic to \(A_4 \) or \(S_4 \).

(v) If \(|N| \geq 8 \), \(N \) has two conjugate classes of four-groups in \(N \).

(vi) There exist a field automorphism \(f \) of \(N \) of order \(n \) and a diagonal automorphism \(d \) of \(N \) of order \(2 \) and if we identify \(N \) with its inner automorphism group, \(\langle f, d \rangle N = PGL(2, q) \), \(\langle f \rangle \langle d \rangle N = G \) and \(G[N] = Z_2 \times Z_n \).

(vii) \(C_N(d) = D_{q-2} \) and \(C_\langle d \rangle N(z) = D_{q-2} \).

(viii) Suppose \(n = mk \) for positive integers \(m, k \). Then \(C_N(f^m) = PGL(2, p^m) \) if \(k \) is odd and \(C_N(f^m) = PGL(2, p^n) \) if \(k \) is even.

(ix) Assume \(n \) is even and let \(u \) be a field automorphism of order \(2 \). Then \(I(G) = I(N) \cup d^N \cup u^\langle d \rangle N \). If \(n \) is odd, \(I(G) = I(N) \cup d^N \).

Lemma 2.7. Let \(G, N, d \) and \(f \) be as defined in Lemma 2.6 and \(H \) an \(\langle f, d \rangle \)-invariant subgroup of \(N \) isomorphic to \(D_{q-2} \). Let \(W \) be a cyclic subgroup of \(\langle d \rangle N = PGL(2, q) \) and set \(Y = \langle d \rangle H \) of index \(2 \) (cf. (vii) of Lemma 2.6). Then \(C_\langle d \rangle (Y) = W \cdot C_{\langle d \rangle}^\langle f \rangle (Y) \).

Proof. By (viii) of Lemma 2.6, we can take an involution \(t \) satisfying \(\langle d \rangle H = \langle f \rangle W \) and \([f, t] = 1\). Since \(N_\langle d \rangle Y = \langle f, d \rangle N_\langle Y \rangle = \langle f, d \rangle H \), \(C_\langle d \rangle Y = C_{\langle d \rangle}^\langle f \rangle \langle f \rangle \langle f \rangle^{-1} \).

Suppose \(\langle d \rangle H = \langle f \rangle W \) for some \(h \in \langle f \rangle \). Since \(t \) inverts \(Y \), \(h \) also inverts \(Y \) and so \(h^2 \) centralizes \(Y \). Hence some nontrivial 2-element \(g \in \langle h \rangle \) inverts \(Y \), so that \(C_\langle x \rangle (g) \) contains no element of order 4, contrary to (viii) of Lemma 2.6.

Throughout the rest of the paper, \(G \Omega \) will always denote a doubly transitive permutation group satisfying the hypothesis of our theorem and we assume \(G \Omega \) has no regular normal subgroup.
Notation. \(C^*=C_G(N^*) \), which is semi-regular on \(\Omega-\{\alpha\} \) by Lemma 2.2. Let \(r \) be the number of \(N^*\)-orbits on \(\Omega-\{\alpha\} \).

Since \(G_\beta \trianglerighteq N^* \), \(|\beta N^*| = |\beta N^*| \) for \(\beta, \gamma \in \Omega-\{\alpha\} \) and so \(|\Omega| = 1+r \times |\beta N^*| \).

Hence \(r \) is odd and \(N^*_\beta \) is a subgroup of \(N^* \) of odd index. Therefore \(N^*_\beta \) is isomorphic to one of the groups listed in (x) of Lemma 2.6. Accordingly the proof of our theorem will be divided in six cases.

Lemma 2.8. Let \(Z \) be a cyclic subgroup of \(N^*_\beta \) with \(|Z| = 1, p \). Then

(i) \(|Z|=2, \ |F(Z)|=1+(q-\epsilon)\left|I(N^*_\beta)\right|r/|N^*_\beta| \).

(ii) \(|Z|=2, \ |F(Z)|=1+|N^*_\beta(Z)|r/|N^*_\beta(Z)| \).

Proof. It follows from Lemma 2.3, 2.4 and 2.6 (i), (iii).

Lemma 2.9. Let \(N^*_\beta \triangleleft D_{q^s} \), and \(Z \) is a cyclic subgroup of \(N^*_\beta \) with \(|Z| = 1, p \) and \(N^*_G(Z)^{(Z)} \) is doubly transitive. Then \(C^*=1 \) and one of the following holds.

(i) \(N^*_G(Z)^{(Z)} \leq \text{AGL}(1, q^s) \) for some \(q^s \).

(ii) \(N^*_G(Z)^{(Z)} \leq \text{PSL}(2, p^1), r=1 \) and \(|F(Z)| = 1 = |N^*_\beta(Z): N^*_G(Z)| = p^1 \), where \(p^1 \) is a prime.

(iii) \(N^*_G(Z)^{(Z)} = R(3), \) the smallest Ree group, \(|F(Z)| = 28 \).

Proof. Set \(N^*_G(Z)=L \) and \(F(Z)=\Delta \). By Lemma 2.6(iii), \(L \cap N^*=D_{q^s} \) and \(L \cap N^* = \langle t \rangle Y \geq Y \geq Z \), where \(0(t)=2, Y \simeq Z(q^{s+2})/2 \).

If \(L \cap N^*=1 \), then \(L \cap N^*=N^*_\beta \) because \(L \cap N^* \) is a maximal subgroup of \(N^* \). Since \(|L^*: N^*_\beta| \) is odd, \(L \cap N^*=N^*_\beta=D_{q^s} \), contrary to the assumption. Hence \(L \cap N^*=1 \) and as \(L_{a}$ G$L_{a} \cap N^* \) and \(L_{a} \geq Y, (L_{a})^* \) has a nontrivial cyclic normal subgroup. By Theorem 3 of [1], one of the following occurs:

(a) \(L^* \) has a regular normal subgroup

(b) \(L^* \geq \text{PSL}(2, p_1), |L^*|=p_1+1 \), where \(p_1 \) is a prime

(c) \(L^* \geq \text{PSL}(3, p_1), p_1 \geq 3, |L^*|=(p_1)^3+1 \)

(d) \(L^* \geq R(3), |L^*|=28 \).

Suppose \(C^*=1 \). Then there exists a subgroup \(D \) of \(C^* \) of prime order such that \((L_{a})^* \leq D \). Since \([L_{a}, D] \leq D \cdot L_{a} \cap C^* = D(L_{a} \cap C^*) = D, D \) is a normal subgroup of \(L_{a} \). By (i) and (iii) of Lemma 2.6, \(G_{a}=L_{a} \cap N^* \) and so \(D \) is a normal subgroup of \(G_{a} \). By Theorem 3 of [1], \(G^a \) has a regular normal subgroup, contrary to the hypothesis. Thus \(C^*=1 \).

If (a) occurs, \(L^* \) is solvable because \(L_{a}/L \cap N^*=L_{a}N^*/N^* \leq \text{Out}(N^*) \) and \(L \cap N^*=D_{q^s} \). Hence by [5], (i) holds in this case.

If (b) occurs, we have \(Y^* \leq L_{a} \cap N^* \leq D_{q^s} \) and \(N^*=D_{q^s}, \) a contradiction. Hence \(1=C_G(Z)^* \leq L^* \) and so \(C_G(Z)^* \geq \text{PSL}(2, p_1) \) and \(Y^* \leq Z_{p_1} \). Therefore \(|\Delta \cap \beta N^*| = p_1 \) and \(r=1 \) by Lemma 2.4 (ii). Since \(|\beta^*|=p_1 \), we have \(|\beta^{L_{a}} N^*|=p_1 \), so that \(L \cap N^*: L \cap N^*_\beta = p_1 \). Thus (ii) holds in this case.

The case (c) does not occur, for otherwise, by the structure of \(\text{PSL}(3, p_1) \),
a Sylow p_1-subgroup of (L_0') is not cyclic, while $(L_0') \leq L \cap N^g = D_{q^2}$, a contradiction.

3. Case (I)

In this section we assume that $N_\beta^a \leq D_{q-r}$, where $\beta = \alpha, q = p^a$.

(3.1) (i) If $N_\beta^a = Z_2 \times Z_2$, $N_\alpha^a(N_\beta^a) = N_\beta^a$ and $|F(N_\beta^a)| = r + 1$.

(ii) If $N_\beta^a = Z_2 \times Z_2$, $N_\alpha^a(N_\beta^a) = A_4$ and $|F(N_\beta^a)| = 3r + 1$.

Proof. Put $X = N_\alpha^a(N_\beta^a)$. Let S be a Sylow 2-subgroup of N_β^a and Y a cyclic subgroup of N_β^a of index 2.

If $N_\beta^a = Z_2 \times Z_2$, then $|Y| > 2$ and so Y is characteristic in N_β^a. Hence $X \leq N_\alpha^a(Y) = D_{q-r}$. From this $[N_\beta(X), S \cap Y] \leq S \cap Y$ and $0^2(N_\beta(S))$ stabilizes a normal series $S \geq S \cap Y \geq 1$, so that $0^2(N_\beta(S)) \leq C_\infty(S)$ by Theorem 5.3.2 of [2]. By Lemma 2.6(i), $C_{\infty}(S) \leq S$ and hence $N_\beta(S) = S$. On the other hand by a Frattini argument, $X = N_\beta(S)N_\beta^a$ and so $X = N_\beta^a$.

By Lemma 2.6(ii), $(N_\beta^a)^{g^a} = (N_\beta^a)^{N_\beta^a}$ and so by Lemmas 2.3 and 2.4(ii), $|F(N_\beta^a)| = 1 + |F(N_\beta^a) \cap \beta^{N_\beta^a} \times r| = 1 + |N_\beta^a| \times r = r + 1$. Thus (i) holds.

If $N_\beta^a = Z_2 \times Z_2$, $N_\alpha^a(N_\beta^a) = A_4$ by Lemma 2.6(iv). Similarly as in the case $N_\beta^a = Z_2 \times Z_2$, we have $|F(N_\beta^a)| = 3r + 1$.

(3.2) $N_\beta^a/N_\alpha^a \cap N^g \leq Z_2 \times Z_2$.

Proof. By Lemma 2.2, it suffices to consider the case $C^a = 1$. Suppose $C^a = 1$. Then $N_\beta^a/N_\alpha^a \cap N^g = N_\beta^a/N_\beta^a \leq \text{Out}(N^g) = Z_2 \times Z_2$ by Lemma 2.6(vii) and hence $(N_\beta^a)^{N^g} \leq N_\alpha^a \cap N^g$. Since N_β^a is dihedral, $N_\beta^a(N_\beta^a)^{N^g} = Z_2 \times Z_2$, so that $N_\beta^a/N_\alpha^a \cap N^g \leq Z_2 \times Z_2$.

(3.3) Suppose $N_\beta^a = N_\alpha^a \cap N^g$ and let U be a subgroup of N_α^a isomorphic to $Z_2 \times Z_2$. Then $|F(U)| = 3r + 1$ and $N_\alpha(U)^{F(U)}$ is doubly transitive.

Proof. Sex $X = N_\alpha(U), \Delta = F(N_\alpha^a)$ and let $\{\Delta_1, \Delta_2, \ldots, \Delta_r\}$ be the set of N^g-orbits on $\Omega - \{\alpha\}$. If $g^2N_\beta^a \leq G_{\alpha^a}$, then $g^{-1}N_\beta^a \leq N_\beta^a \cap N^g = N_\beta^a \cap N^g \leq N_\beta^a$, where $\gamma = \alpha^g$. By a Witt's theorem, X^g is doubly transitive.

If U is a Sylow 2-subgroup of N_α^a, by a Witt's theorem, $N_\alpha(U)^{F(U)}$ is doubly transitive. Moreover $N_\alpha(U) = A_4$ and so by Lemmas 2.3 and 2.4(ii), $|F(U)| = 1 + |A_4| \times |N_\beta^a| \times r/|N^g| = 3r + 1$.

If $|N_\beta^a| > 4$, by Lemma 2.6(iv) and (v), $N_\alpha(U) = S_4$ and N_α^a has two conjugate classes of four-groups, say $\pi = \{K_1, K_2\}$. Set $X_{\pi} = M$. Then $M \geq N_\alpha^a$ and $X/M \leq Z_2$. Clearly $F(U) \cap \Delta_i = \phi$ for each i and so $|F(U) \cap \Delta_i| = 3$ by Lemma 2.3. Hence $|F(U)| = 3r + 1$. Since $N_\alpha(U) = S_4$, we may assume $r > 1$. Hence by (3.1)(i) $|\Delta| = r + 1 \geq 4$, so that M^a is doubly transitive. Since $M = N_\beta^a N_\alpha(U), M_\alpha^a(U)$ is also doubly transitive and so $N_\alpha(U)$ is transitive on Δ—
\{a\}. As $|\Delta \cap \Delta_i|=1$, $\Delta \cap \Delta_i \subseteq F(U)$ and $N_{\Delta}(U)$ is transitive on $F(U) \cap \Delta_i$ for each i, $N_{\Delta}(U)^{F(U)}$ is doubly transitive.

(3.4) (i) $C^a=1$.

(ii) Let U be a subgroup of N^a isomorphic to $Z_2 \times Z_2$. If $N^a=N^a \cap N^b$, then $N_{\Delta}(U)^{F(U)}$ has a regular normal 2-subgroup. In particular $|F(U)|=3r+1=2^b$ for positive integer b.

Proof. Since $N_{\Delta}(U)^{F(U)} \supseteq N^a(U)^{F(U)}=S_3$ or Z_3, by (3.3) and Theorem 3 of [1], $N_{\Delta}(U)^{F(U)}$ has a regular normal subgroup, $N_{\Delta}(U)^{F(U)}\supseteq PSU(3,3)$ or $N_{\Delta}(U)^{F(U)}=R(3)$.

Suppose $C^a \neq 1$. Let D be a minimal characteristic subgroup of C^a. Clearly $G_{\Delta} \supseteq D$. If $N_{\Delta}(U)^{F(U)}=R(3)$, D is cyclic. By Theorem 3 of [1], C^a has a regular normal subgroup, contrary to the hypothesis. Hence $N_{\Delta}(U)^{F(U)}=R(3)$. Therefore $(N_{\Delta}(U)^{F(U)})'$ contains an element of order 9. Since $N_{\Delta}(U)/C^aN_{\Delta}(U)\cong N_{\Delta}(U)/C^aN_{\Delta}(U)$, by (vi) of Lemma 2.6 we have $(N_{\Delta}(U)^{F(U)})'=C^a \times N_{\Delta}(U)$. From this, C^a contains an element of order 9 and so $C^a=Z_9$ or $M_3(3)$. In both cases, C^a contains a characteristic subgroup of order 3. Since $G_{\Delta} \supseteq D$, by Theorem 3 of [1] G^a has a regular normal subgroup, a contradiction. Thus $C^a=1$.

Let R be a Sylow 3-subgroup of $N_{\Delta}(U)$. Since $N_{\Delta}(U)/N^a(U)=N_{\Delta}(U)/N^a(U)\leq \Out(N^a)=Z_2 \times Z_3$, $R/R \cong N^a(U)$ is cyclic. Clearly $R \cap N^a(U)\cong Z_3$. Therefore $N_{\Delta}(U)^{F(U)}\supseteq PSU(3,3)$, (3.4) holds.

Since N^a_{Δ} is dihedral, we set $N^a_{\Delta}=\langle \alpha \rangle W$ and $Y=W \cap N^a \cap N^b$, where W is a cyclic subgroup of N^a_{Δ} of index 2 and t is an involution in N^a_{Δ} which inverts W.

(3.5) (i) If $|Y| \geq 3$, $N_{\Delta}(Y)^{F(Y)}$ is doubly transitive.

(ii) If $|Y|<3$, $N^a_{\Delta}=Z_2 \times Z_2$ or $N^a_{\Delta}=D_6$ and $N^a \cap N^b \leq Z_2 \times Z_2$.

Proof. Suppose $|Y| \geq 3$. If $Y^g \leq G_{\Delta}$, $Y^g \leq N^a \cap G_{\Delta} \leq N^a$, where $\gamma=\alpha^g$. If $\gamma=\alpha$, obviously $Y^g \leq N^a$. If $\gamma \neq \alpha$, $N^a=\gamma$. Therefore, as $|Y| \geq 3$, N^a has a unique cyclic subgroup of order $|Y|$. Hence $Y^g \leq N^a \cap N^a \leq N^a$, so that $Y^g \leq N^a$. Similarly $Y^g \leq N^b$. Thus $Y^g \leq N^a \cap N^b$ and so $Y^g=Y$. By a Witt’s theorem, $N_{\Delta}(Y)$ is doubly transitive on $F(Y)$.

Suppose $|Y|<3$. Since $|N^a \cap N^b|=2$, we have $N^a \cap N^b \leq Z_2 \times Z_2$. On the other hand, as N^a is dihedral, $(N^a_{\Delta})'$ is cyclic. Hence (ii) follows immediately from (3.2).

(3.6) Set $\Delta=F(N^a_{\Delta})$, $L=G(\Delta)$, $K=G_{\Delta}$ and suppose $N^a_{\Delta} \neq Z_2 \times Z_2$. Then $L^a \supseteq N^a_{\Delta}$, $(L_a')\leq N^a_{\Delta}$, $K'\leq N^a \cap N^b$ and $(L_a')'=Z_r$. If $r \neq 1$, L^a is a doubly transitive Frobenius group of degree $r+1$.

Proof. By Corollary B1 of [7] and (i) of (3.1), L^a is doubly transitive and
SOME DOUBLY TRANSITIVE PERMUTATION GROUPS

Since \(N^* \cap L \geq N^* \cap K = N^*_b \), by (i) of (3.1), we have \(N^* \cap L = N^*_b \). Hence \(L_a \supseteq N^*_b \). By (i) of (3.4), \(L_a/N^*_b = L_a/N^* \leq \text{Out}(N^*) = Z \times Z \), and so \((L_a)^a \supseteq Z \). If \(r \neq 1 \), then \((L_a)^a \neq 1 \). On the other hand \((L_a)^a = 1 \) as \((L_a)^a \) is abelian. Hence \(L^a \) is a Frobenius group.

(3.7) Suppose \(|Y| \geq 3 \). Then there exists an involution \(z \) in \(N^*_b \cap Y \) such that \(Z(N^*_b) = \langle z \rangle \).

Proof. Suppose \(N^*_b \neq Z \). Since \(N^*_b \) is dihedral, we have \(\langle J(W) \rangle = Z(N^*_b) = Z_2 \) and \(N^*_b/N^* \gamma = Z_2 \). Let \(Z(N^*_b) = \langle z \rangle \) and suppose that \(z \) is not contained in \(Y \). By (3.2), \((N^*_b)^\gamma \leq N^* \cap N^* = W = Y \) and so \(|(N^*_b)^\gamma| \) is odd. Hence \(|N^*_b| = 4 \) and \(q \equiv 3 \) or 5 (mod 8), so that \(n \) is odd. By (3.2) and (i) of (3.4), \(N^*_b/N^* \gamma \cap N^* = N^*_b/N^* \gamma = 1 \) or \(Z_2 \). If \(N^*_b = N^* \cap N^* \), then \(W = Y \) and so \(z \in Y \), contrary to the assumption. Therefore we have \(N^*_b \cap N^* = Z_2 \) and \(N^*_b = \langle z \rangle \times (N^* \cap N^*). \) Since \(n \) is odd and \(z \in N^*_b \cap N^*, \) by Lemma 2.6 (vi), (vii) and (ix), \(N^*_b \cap N^* = Z \). Hence \(N^* \cap N^* \neq Z_2 \), a contradiction.

(3.8) Suppose \(|Y| \geq 3 \). Then \(N^*_b = N^* \cap N^* \).

Proof. Suppose \(N^*_b \neq N^* \cap N^* \) and let \(\Delta, L, K \) be as defined in (3.6) and \(x \in L_a \) such that its order is odd and \(\langle x \rangle \) is transitive on \(\Delta - \{a\} \). As \(|Y| \geq 3 \), \(W \) is characteristic in \(N^* \) and hence by (3.6), \(x \) stabilizes a normal series \(L_a \supseteq N^*_b \supseteq W \supseteq (N^*_b)^\gamma \). By Theorem 5.3.2 of [2], \([x, 0,(L_a/(N^*_b)^\gamma)] = 1 \). Since \(L_a/(N^*_b)^\gamma \) has a normal Sylow 2-subgroup and \((N^*_b)^\gamma \leq K, \) we have \([x, 0,(L_a/K)] = 1 \), so that \(x, N^*_b \leq K \leq N^* \cap N^* \) by (3.6). If \(r \neq 1 \), then \(\beta^r \neq \beta \) and \(\beta^r \in \Delta \), hence \(N^*_b = x^{-1}N^*_b = N^*_b \), where \(\gamma = \beta^r \). Since \(\gamma \in \Delta \) and \(\Delta = F(N_2), N^*_b \leq N^* \cap G \gamma = N^*_b \) and so \(N^*_b = N^* \). Similarly \(N^*_b = N^*_b \). Hence \(N^*_b = N^*_b \), which implies \(N^*_b \cap N^* \). By the doubly transitivity of \(G \), we have \(N^*_b = N^* \cap N^* \), contrary to the assumption. Therefore we obtain \(r = 1 \).

Let \(z \) be as defined in (3.7) and put \(k = (q-\varepsilon)/|N^*_b| \). By Lemma 2.8(i) we have \(|F(z)| = 1 + (q-\varepsilon)/|N^*_b| = (q-\varepsilon)/2 + k + 1 \). Similarly \(|F(Y)| = k + 1 \). As \(N^*_b \neq N^* \cap N^* \), there is an involution \(t \) in \(N^* \) which is not contained in \(N^* \). By Lemma 2.6 (i), \(t = z \gamma \) for some \(\gamma \in N^* \). Set \(\gamma = \beta^r \). Then \(\gamma \in F(z) \) and \(z \in N^* \). By Lemma 2.6 (vii), (viii) and (ix), \(C_{N^*}(z) = D_{q+1}, \) or \(PGL(2, \sqrt{q}) \). Assume \(C_{N^*}(z) = D_{q+1} \) and let \(R \) be a cyclic subgroup of \(C_{N^*}(z) \) of index 2. We note that \(R \) is semi-regular on \(\Omega - \{\alpha\} \). Set \(X = C_R(z) \). Since \(2 \leq k + 1 \leq (q-\varepsilon)/2 \), we have \((q-\varepsilon)/2 \leq k + 1 \) and so \(|\alpha^x| > k + 1 \). By (i) of (3.5) and (3.7), \(N^*_C(Y) = C_{N^*}(z) = X \) and \(\alpha^x \supseteq F(Y) \). It follows from Lemma 2.1 that \(\alpha^x = \{z \in N^* \} \gg \gamma \). Hence \(|F(z)| > |\alpha^x| > |F(Y)| + (q-\varepsilon)/2 = k + 1 + (q-\varepsilon)/2 + \varepsilon = |F(z)| + \varepsilon \). Therefore \(\varepsilon = 1 \) and \(\gamma^x = \{\gamma\} \), so that \(\gamma \in F(Y) \), a contradiction. Thus \(C_{N^*}(z) = PGL(2, \sqrt{q}), \) \(\varepsilon = 1, \) \(N^*_b \cap N^* = Z_2 \) and \(|\langle \alpha^x \cap G_a \rangle| = 2 \).
Set $\Delta_1 = \alpha^x$ and $\Delta_2 = F(z) - \Delta_1$. Let $\delta \in \Delta_2$ and g an element of G satisfying $\delta^g = z$. Then $x \in N_s^gN^N - N^N$ and so $x^\prime \in N_s^gN^N - N^N$, where $v = \alpha^x$. Since $\langle \delta^g \cap G \rangle : N^N = 2$ and $x \in G_\gamma - N^N$, it follows from Lemma 2.6 (ix) that $(\alpha^x)^h = z$ for some $h \in G_\gamma$. Hence $g \in X$ and $\delta^g = z$. Thus $\Delta_2 = \gamma^x$. Let $\delta \in \Delta_2$. Then $\delta \in \Delta_s$ and $\gamma \in G_s$ satisfying $\delta^g = \gamma^x$. Then $z \in N_s^g$ and $\gamma \in Z(N_s^g)$ by (3.7) and so $X \cap N_s^g = Z_3 \times Z_2$, which implies $|\delta^{c(x)}| = (q - 1)/4$. Hence $|(\Delta_1|, |\Delta_2)| = ((q - 1)/4 + k - 1)/2$. Let P be a subgroup of $C_{N_s}(z)$ of order \sqrt{q}. Then $F(P) = \{z\}$ and P is semi-regular on $\Omega - \{\gamma\}$. If $|\Delta_1| = (q - 1)/4$, then $\sqrt{q} | (q - 1)/4 - 1 = (q - 5)/4$ and $\sqrt{q} | (q - 1)/4 + k - 1$. From this, $q = 5^e, k = 3$, $|\Delta_1| = 10$ and $|\Delta_2| = 6$. Since $(C_\gamma(x))^g = (S_3, X^x \cong S_3) \times X$ and so $|X| \geq 3^k$. As X acts on Δ_1 and $|\Delta_1| \equiv 1 \mod{3}$, $|G_s| \geq |X| \geq 3^k$ and $\Delta_1 = \{x, \beta\}$. Hence $C_{N_s}(z)$ fixes x and β, so that $PGL(2, 3) = C_{N_s}(\gamma) \leq N_s^\ast \cong D_9$, a contradiction.

(3.9) Suppose $|Y| \geq 3$. Then $r = 1$.

Proof. By (3.6), $r + 1 = 2^c$ for some integer $c \geq 0$. On the other hand $3r + 1 = 2^c$ by (3.8) and (ii) of (3.4). Hence $2r = 2(2^c - c) - 1$ and so $c = 1$ as r is odd. Thus $r = 1$.

(3.10) Put $k = (q - \varepsilon)/|N_s^\ast|$. If $N_s^\ast = N^s \cap N^b$ and $r = 1$, then

$$q - \varepsilon + 2k + 2 | 2(2 + \varepsilon)(k + 1 - \varepsilon)(k + 1 - \varepsilon).$$

Proof. Set $S = \{[x, u] | x \in F(u), u \in z^g\}$, where x is an involution in N_s^g. We now count the number of elements of S in two ways. Since $N_s^\ast = N^s \cap N^b$, $F(z) = \{z \in \Omega | z \in N^N\}$ and hence $C_G(z)$ is transitive on $F(z)$ by Lemma 2.1. Therefore $|S| = |\Omega| |z^g| = |z^g| |F(z)|$. Since $r = 1$, $|\Omega| = 1 + |N^s|: N_s^\ast = kg(q + \varepsilon) - 1/2 + 1$ and by Lemma 2.8 $|F(z)| = (q - \varepsilon)/2 + k + 1$. Since $G_s \geq |N^s|, z^g$ is contained in N^s and so $|G_s|: C_G(z) = |N^s|: C_{N^s}(z) = q(q + \varepsilon)/2$. Hence $(q - \varepsilon)/2 + k + 1 | (kg(q + \varepsilon + 2)/2(q + \varepsilon)/2).$ On the other hand $|F(z)| = |C_G(z)|/2 | C_{G_s}(z)| \leq |G_s|/2 | C_{G_s}(z)| = |G_s|/2 | G_s| = |\Omega|/2$ because $|G_s|: C_{G_s}(z) = q(q + \varepsilon)/2 + 1 \mod{2}$. Hence $|q - \varepsilon + 2k + 2/2 | kq(q + \varepsilon + 2)/2$. Since $kq(q + \varepsilon + 2) = kg(k + 2)(\varepsilon - k - 2)$ $q - \varepsilon + 2k + 2 + 2((2 + \varepsilon)(k + 1 - \varepsilon)(k + 1 - \varepsilon)$ and $q + \varepsilon = (q + 2\varepsilon - 2k - 2)(q - \varepsilon + 2k + 2 + 2(2k + 2 - \varepsilon)(k + 1 - \varepsilon)$, we have (3.10).

(3.11) Suppose $|Y| \geq 3$. Then one of the following holds.

(i) $N_s^\ast = N^s \cap N^b \neq D_{q-\varepsilon}$.

(ii) $N_s^\ast = N_s^b \cap N^b \neq D_{q-\varepsilon}$ and $N_G(Y)^{F(Y)}$ has a regular normal subgroup.

Proof. Suppose false. Then, by (3.5), (3.8) and Lemma 2.9, $N_G(Y)^{F(Y)} = R(3)$ or there exists a prime $p_1 \geq 5$ such that $C_G(Y)^{F(Y)} \geq PSL(2, p_1)$ and $V/Y \cong Z_{p_1}$, where $V = C_{N^s}(Y)$. By (i) of (3.1) and (3.9), $F(N_s^\ast) = \{x, \beta\}$. On the other hand, $(N_s^\ast)^{F(Y)} \cong N_s^\ast | Y \cong Z_2$. Hence $N_G(Y)^{F(Y)} \neq R(3)$ and $C_G(Y)^{F(Y)} \geq$
By (i) of (3.4) and Lemma 2.7, we have \(C_{G_a}(Y) = V \langle f_i \rangle \), where \(f_i \) is a field automorphism of \(N^a \). Let \(t \) be the order of \(f_i \), \(n = tm \) and let \(p^m \equiv \varepsilon_i \equiv \pm 1 \pmod{4} \). Clearly \(C_{G_a}(Y)^{\langle f_i \rangle} \geq V^{\langle f_i \rangle} \cong \mathbb{Z}_{n} \) and \(|C_{G_a}(Y)^{\langle f_i \rangle}| / t \), so that \((p^m - 1)/2 | t \).

First we assume that \(t \) is even and set \(t = 2t_1 \). Then \(Y \leq C_{N^a}(f_i) = PGL(2, p^m) \) by Lemma 2.6 (viii). As \(|V/Y| = p_1 \) and \(p_1 \) is a prime, \(Y \) is a cyclic subgroup of \(C_{N^a}(f_i) \) of order \(p^m - \varepsilon_1 \) and \((p^m - 1)/2(p^m - \varepsilon_1) = p_1 \). Put \(s = \sum_{i=1}^{t_1} (p^m)^i \). Then \((p^m + \varepsilon_1)s/2 = p_1 \), so that we have either (i) \(t_1 = 1 \) and \(p_1 = (p^m + \varepsilon_1)/2 \) or (ii) \(t_1 \geq 2 \), \(p^m = 3 \) and \(p_1 = s \). In the case (i), \(2 \leq (p^m - 1)/2 = (p^m + \varepsilon_1 - 2)/4 \) if \(t_1 = 2 \). Hence \((p_1, q) = (5, 3^3) \) or \((4, 11^2)\). Let \(z \) be as in (3.7). As mentioned in the proof of (3.10), \(|F(z)| = (q-1)/2 + k + 1 \), \(|\Omega| = kq(q+1)/2 + 1 \) and \(C_{G_a}(z) \) is transitive on \(F(z) \). If \(q = 3^3 \), then \(|F(z)| = 46 \) and \(|\Omega| = 2 \cdot 19 \cdot 23 \). Hence \(|C_{G_a}(z)| = |F(z)| / (C_{G_a}(z)N^a/N^a|N^a| = 46 \cdot 2^2 \cdot 80 = 5 \cdot 23 \) with \(0 \leq i \leq 3 \).

Let \(P \) be a Sylow 23-subgroup of \(C_{G_a}(z) \) and \(Q \) a Sylow 5-subgroup of \(C_{G_a}(z) \). It follows from a Sylow's theorem that \(P \) is a normal subgroup of \(C_{G_a}(z) \) and so \([P, Q] = 1 \). Therefore \(|F(Q)| \geq 23 \), contrary to \(5 \nmid |N^a| \). If \(q = 11^2 \), then \(|F(z)| = 66 \) and \(|\Omega| = 2 \cdot 3 \cdot 6151 \). Let \(P \) be a Sylow 11-subgroup of \(C_{G_a}(z) \). Since \(11 \nmid |\Omega| \), \(P \) is a subgroup of \(N^y \) for some \(y \in \Omega \) and \(F(P) = \{ y \} \). Hence \(y \in N^\varepsilon \), contrary to \(C_{N^a}(z) = D_{150} \). If \(t = 1 \), \(p_1 = 7 \) and \(q = 3^3 \), so that \(N^a = \mathbb{Z}_2 \times \mathbb{Z}_2 \), a contradiction.

Assume \(t \) is odd. Then \(Y \leq C_{N^a}(f_i) = PGL(2, p^m) \) by Lemma 2.6 (viii). As \(|V/Y| = p_1 \) and \(p_1 \) is a prime, \(Y \cong \mathbb{Z}_{p^m - t_1} \) and \((q-\varepsilon)/(p^m - \varepsilon_1) = p_1 \). Hence \(\sum_{i=1}^{t_1} (p^m)^i(\varepsilon_i)^{-1-i} = p_1 \) and \((p^m - 1)/2 = (\sum_{i=1}^{t_1} (p^m)^i(\varepsilon_i)^{-1-i}) - 1)/2 \). In particular, \(2t \geq (p^m)^{t-1} - (p^m)^{t-2} \geq 2(p^m)^{t-2} \geq 2(p^m)^{t-2} \). From this \(t = 3, m = 1, p_1 = 7 \) and \(q = 3^3 \), so that \(N^a = \mathbb{Z}_2 \times \mathbb{Z}_2 \), a contradiction.

(3.12) (i) of (3.11) does not occur.

Proof. Let \(G^a \) be a minimal counterexample to (3.12) and \(M \) a minimal normal subgroup of \(G \). By the hypothesis, \(G \) has no regular normal subgroup and hence \(M^a \neq 1 \). As \(M^a \) is a normal subgroup of \(G^a \), by (i) of (3.4), \(M^a \) contains \(N^a \). By (3.9), \(r = 1 \), hence \(M \) is doubly transitive on \(\Omega \). Therefore \(G = M \) and \(G \) is a nonabelian simple group.

Since \(N^a \cong D_{4-t}, k = 1 \) and so \(q - \varepsilon + 4 | 2((4 - \varepsilon)(2 - \varepsilon) + 1)(4 - \varepsilon)(2 - \varepsilon) \) by (3.10). Hence we have \(q = 7, 9, 11, 19, 27 \) or 43.

Let \(x \) be an element of \(N^a \). If \(|x| > 2 \), by Lemma 2.8, \(|F(x)| = 1 + |N^a| \times 1/|N^a| = 2 \) and if \(|x| = 2 \), similarly we have \(|F(x)| = (q - \varepsilon)/2 + 2 \). Assume \(q = 9 \) and let \(d \) be an involution in \(G^a - N^a \) such that \(\langle d \rangle N^a \) is isomorphic to \(PGL \).
(2, q). We may assume \(d \in G_{\alpha \beta} \). Since \(\langle d \rangle N^* \) is transitive on \(\Omega = \{ \alpha \} \), by Lemma 2.3 and 2.6 (vii), (ix), \(|F(d)| = 2(q-1)(q+1/2)/(q+1)+1=(q+1)/2 \), while \(|F(x)|=(q+1)/2+2 \) for \(x \in I(N^*) \). Hence \(d \) is an odd permutation, contrary to the simplicity of \(G \). Thus \(G_{\alpha \beta} = N^* \) if \(q \neq 9, 27 \) and \(|G_{\alpha \beta}/N^*| = 1, 3 \) if \(q = 27 \).

If \(g = 9 \), \(|\Omega| = 1 + 9 \cdot 10/2 = 27 \) and \(|G_{\alpha \beta}| = 2^7 |PSL(2, 9)| = 2^{2 + 3 + 5}.5 \) with \(0 \leq a \leq 3 \). Let \(P \) be a Sylow 23-subgroup of \(G \). Since \(Aut(Z_{23}) \cong Z_2 \times Z_{11} \), \(\forall \alpha \in |N_{G}(P)| \), for otherwise \(P \) centralizes a nontrivial 3-element \(x \) and so \(P \cong F(x) \) because \(|F(x)| = 1 \), contrary to \(|F(P)| = 0 \). Similarly \(5 \not\mid |N_{G}(P)| \).

Hence \(|P(z)| = 2^a \cdot 3^b \cdot 5 \) for some \(a \) with \(0 \leq a \leq 6 \). By a Sylow’s theorem, \(2^a \cdot 3^b \cdot 5 \equiv 1 \pmod{23} \), a contradiction.

If \(g = 27 \), \(|\Omega| = 1 + 27 \cdot 26/2 = 2^{11} \) and \(|G_{\alpha \beta}| = 2^5 |PSL(2, 27)| = 2^2 3^2 5^2 \) with \(0 \leq a < 1 \). Let \(P \) be a Sylow 11-subgroup of \(G \). Since \(P \cong Z_{23} \) and \(Aut(Z_{23}) \cong Z_2 \times Z_{11} \), \(\forall \alpha \in N_{G}(P) \) by the similar argument as above. Hence \(|G : N_{G}(P)| = 2^a \cdot 3^b \cdot 7 \cdot 13 \) with \(0 \leq a \leq 7 \) and \(3 \leq b \leq 3 + i \). By a Sylow’s theorem, \(2^2 \cdot 3^3 \cdot 7 \cdot 13 \equiv 2^a \cdot 3^b \cdot 5 \cdot 1 \equiv 1 \pmod{11} \). Hence \(a = 0, b = 4 \). Therefore \(N_{G}(P) \) contains a Sylow 2-subgroup \(S \) of \(G \). Let \(T \) be a Sylow 2-subgroup of \(N_{G}(P) \). Then \(T < S \). Then \(T \cong Z_{23} \) and \(|T| = 2^a \cdot 3^b \cdot 5 \) with \(0 \leq a \leq 6 \). By a Sylow’s theorem, \(2^a \cdot 3^b \cdot 5 \equiv 1 \pmod{23} \), a contradiction.

If \(g = 7, 11, 19 \) or \(43 \), then \(G_{\alpha \beta} = N^* \) and \(q - 1 \). Set \(\Gamma = \{ (y, z) \mid y, z \in \Omega, y \neq z \} \). We consider the action of \(G \) on \(\Gamma \). Since \(G \) is doubly transitive, \(G \) is transitive and \(G : \Gamma = 1 \). Let \(2 \) be an involution of \(Z(N^*) \). There exists an involution \(\tau \) such that \(\tau \cong \tau \). Since \(G_{\alpha \beta} = N^* \) and \(F(N^*) = \{ \alpha, \beta \} \), we have \(G_{\alpha \beta} = \langle \tau \rangle \cong \tau \). By Lemma 2.3, \(|\langle \tau \rangle N^* | = |C_G(\tau) \times | \langle \tau \rangle N^* \cap \alpha^c \cap |N^* | = |F(\tau) \times | \langle \tau \rangle N^* \cap \alpha^c \cap |N^* | = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 1 \pmod{11} \). Hence \(a = 0, b = 4 \). Therefore \(N_{G}(P) \) contains a Sylow 2-subgroup \(S \) of \(G \). Let \(T \) be a Sylow 2-subgroup of \(N_{G}(P) \). Then \(T \cong Z_{23} \) and \(|T| = 2^a \cdot 3^b \cdot 5 \) with \(0 \leq a \leq 6 \). By a Sylow’s theorem, \(2^a \cdot 3^b \cdot 5 \equiv 1 \pmod{23} \), a contradiction.
5 \not| |N_c(Q)| and 11 \not| |N_c(Q)| by the similar argument as in the case \(q=9 \). Therefore \(|G: N_c(Q)| = 2^a \cdot 5 \cdot 11 \) for some \(a \) with \(0 \leq a \leq 3 \). Hence \(|G: N_c(Q)| \equiv 1 \pmod{7}\), a contradiction. Thus \(\langle \rho \rangle \cong D_8 \).

Let \(U \) be a Sylow 2-subgroup of \(N^*_a \) and set \(L = N^*_a(U) \). It follows from (3.3) and Lemma 2.6 (iv) that \(L \cap N^*_a = A_4 \), \(L^F(U) = A_4 \) and \(|L|=2^3 \cdot 3\). Let \(T, \langle \sigma \rangle \) be Sylow 2- and 3-subgroup of \(L \), respectively. Obviously \(L \supset T \) and \(\langle \sigma \rangle \n cong A_4 \) and \(|L \cap \langle \sigma \rangle| = 2^4 \cdot 3 \).

Let \(\tau \) be a Sylow 3-subgroup of \(L \). Since \(\langle \tau \rangle \n cong A_4 \) and \(|L \cap \langle \tau \rangle| = 2^2 \cdot 3 \), \(\langle \sigma \rangle \cap \langle \tau \rangle \n cong A_4 \) and \(|L \cap \langle \sigma \rangle \langle \tau \rangle| = 2^3 \cdot 3 \).

Let \(P \) be a Sylow 61-subgroup of \(G \). Then \(P \cong Z_{61} \). As mentioned above, \(5, 13 \n| C\langle P \rangle \) and so \(|G:C\langle P \rangle| = 2^a \cdot 3 \cdot 5 \cdot 11^2 \cdot 61 \equiv 0 \pmod{173} \), where \(0 \leq a \leq 12 \). Hence \(|G:C\langle P \rangle| \equiv 1 \pmod{173} \), a contradiction.

If \(q=7^2 \), then \(|\Omega| = 2^4 \cdot 61 \) and \(|G_a| = 2^{4+i} \cdot 3 \cdot 5^2 \cdot 13 \) \((0 \leq i \leq 2)\). Let \(P \) be a Sylow 61-subgroup of \(G \). Then \(P \cong Z_{61} \). As mentioned above, \(5, 13 \n| C\langle P \rangle \) and so \(|G:C\langle P \rangle| = 2^a \cdot 3 \cdot 5 \cdot 11^2 \cdot 61 \equiv 0 \pmod{173} \), where \(0 \leq a \leq 10 \) and \(0 \leq b, c \leq 1 \). But we can easily verify \(|G:C\langle P \rangle| \equiv 1 \pmod{61} \), contrary to a Sylow's theorem.

If \(q=7^2 \), then \(|\Omega| = 2^4 \cdot 919 \) and \(|G_a| = 2^{4+i} \cdot 3 \cdot 5^2 \cdot 7^2 \) \((0 \leq i \leq 2)\). Let \(P \) be a Sylow 919-subgroup of \(G \). By the similar argument as above, we obtain \(5, 7 \n| N_c(P) \) and so \(|G:N_c(P)| = 2^a \cdot 3 \cdot 5 \cdot 7^2 \equiv 0 \pmod{919} \), where \(0 \leq a \leq 8 \) and \(0 \leq b \leq 1 \). Hence \(|G:N_c(P)| \equiv 1 \), a contradiction.

If \(q=7^2 \), then \(|\Omega| = 2^7 \cdot 173 \) and \(|G_a| = 2^{7+i} \cdot 3 \cdot 5 \cdot 11^2 \cdot 61 \) \((0 \leq i \leq 2)\). Let \(P \) be a Sylow 173-subgroup of \(G \). Similarly we have \(3, 5, 11, 61 \n| N_c(P) \) and so \(|G:N_c(P)| = 2^a \cdot 3 \cdot 5 \cdot 11^2 \cdot 61 \equiv 0 \pmod{173} \), where \(0 \leq a \leq 12 \). Hence \(|G:N_c(P)| \equiv 1 \), a contradiction.

If \(q=59 \), then \(|\Omega| = 2^6 \cdot 17 \cdot 151 \) and \(|G_a| = 2^{6+i} \cdot 3 \cdot 5 \cdot 29 \cdot 59 \) \((0 \leq i \leq 1)\). Let \(P \) be a Sylow 17-subgroup of \(G \). By the similar argument as above, we obtain \(3, 5, 29, 59 \n| N_c(P) \) and so \(|G:N_c(P)| = 2^a \cdot 3 \cdot 5 \cdot 29 \cdot 59 \cdot 151^2 \equiv 0 \pmod{17} \), where \(0 \leq a \leq 4 \) and \(0 \leq b \leq 1 \). From this, we have a contradiction.

If \(q=71 \), then \(|\Omega| = 2^5 \cdot 233 \) and \(|G_a| = 2^{5+i} \cdot 3 \cdot 5 \cdot 7 \cdot 71 \) \((0 \leq i \leq 1)\). Let \(P \) be
a Sylow 233-subgroup of G. Since $3, 5, 7, 71 \equiv -3 \cdot 2^a \pmod{233}$, where $0 \leq a \leq 9$. Similarly we get a contradiction.

We now consider the case $|Y| < 3$. By (ii) of (3.5), $N^*_p \cong Z_2 \times Z_2$ or $N^*_p \cong D_8$ and $N^* \cap N^p \cong Z_2 \times Z_2$.

(3.14) The case that $N^*_p \cong Z_2 \times Z_2$ does not occur.

Proof. Set $\Delta = F(N^*_p)$. Then $|\Delta| = 3r + 1$ and $\Delta = F(N^*_p N^p)$ by (ii) of (3.1) and Corollary B1 of [7]. Since $|N^*|_2 = 4$, we have $q = p^s \equiv 3, 5, 7 \pmod{8}$ and so n is odd. Hence $|G_{ab}|/|N^a|_2 \leq 2$ and $N^*_p / N^a \cap N^p \cong N^*_p N^p / N^p = 1$ or Z_2 by (3.2).

Suppose $N^*_p / N^a \cap N^p \cong Z_2$. Then $N^* G(N^*_p N^p)$ is a Sylow 2-subgroup of G_{ab}, hence $G_{ab}(N^*_p N^p)$ is doubly transitive by a Witt’s theorem. Since $N^*_p N^p \cong D_8$ and $|\Delta| = 2^a \times 3^b \times 5^c \times 7$, where $0 < a < 9$. Similarly we get a contradiction.

We now consider the case $|Y| < 3$. By (ii) of (3.5), $N^*_p \cong Z_2 \times Z_2$ or $N^*_p \cong D_8$ and $N^* \cap N^p \cong Z_2 \times Z_2$.

Proof. Set $\Delta = F(N^*_p)$. Then $|\Delta| = 3r + 1$ and $\Delta = F(N^*_p N^p)$ by (ii) of (3.1) and Corollary B1 of [7]. Since $|N^*|_2 = 4$, we have $q = p^s \equiv 3, 5, 7 \pmod{8}$ and so n is odd. Hence $|G_{ab}|/|N^a|_2 \leq 2$ and $N^*_p / N^a \cap N^p \cong N^*_p N^p / N^p = 1$ or Z_2 by (3.2).

Suppose $N^*_p / N^a \cap N^p \cong Z_2$. Then $N^* G(N^*_p N^p)$ is a Sylow 2-subgroup of G_{ab}, hence $G_{ab}(N^*_p N^p)$ is doubly transitive by a Witt’s theorem. Since $N^*_p N^p \cong D_8$ and $|\Delta| = 2^a \times 3^b \times 5^c \times 7$, where $0 < a < 9$. Similarly we get a contradiction.

We now consider the case $|Y| < 3$. By (ii) of (3.5), $N^*_p \cong Z_2 \times Z_2$ or $N^*_p \cong D_8$ and $N^* \cap N^p \cong Z_2 \times Z_2$.

(3.14) The case that $N^*_p \cong Z_2 \times Z_2$ does not occur.

Proof. Set $\Delta = F(N^*_p)$. Then $|\Delta| = 3r + 1$ and $\Delta = F(N^*_p N^p)$ by (ii) of (3.1) and Corollary B1 of [7]. Since $|N^*|_2 = 4$, we have $q = p^s \equiv 3, 5, 7 \pmod{8}$ and so n is odd. Hence $|G_{ab}|/|N^a|_2 \leq 2$ and $N^*_p / N^a \cap N^p \cong N^*_p N^p / N^p = 1$ or Z_2 by (3.2).

Suppose $N^*_p / N^a \cap N^p \cong Z_2$. Then $N^* G(N^*_p N^p)$ is a Sylow 2-subgroup of G_{ab}, hence $G_{ab}(N^*_p N^p)$ is doubly transitive by a Witt’s theorem. Since $N^*_p N^p \cong D_8$ and $|\Delta| = 2^a \times 3^b \times 5^c \times 7$, where $0 < a < 9$. Similarly we get a contradiction.

Let z be an involution in N^*_p and $t \in \mathbb{Z}^p$ an involution such that $\alpha t = \beta$. Set $\Gamma = \{t \cdot \sigma \mid \sigma \in \Omega, \gamma \neq \delta\}$. We consider the action of the element z on Γ. By the similar argument as in the proof of (3.12), $|F(z)|/|F(z)| = |C_{G_{ab}}|/|C_{G_{ab}}| \times |C_{G_{ab}}|$.

Hence $|G_{ab}|/|N^a|_2 \leq 2$ and $N^*_p / N^a \cap N^p \cong N^*_p N^p / N^p = 1$ or Z_2 by (3.2).

Suppose $N^*_p / N^a \cap N^p \cong Z_2$. Then $N^* G(N^*_p N^p)$ is a Sylow 2-subgroup of G_{ab}, hence $G_{ab}(N^*_p N^p)$ is doubly transitive by a Witt’s theorem. Since $N^*_p N^p \cong D_8$ and $|\Delta| = 2^a \times 3^b \times 5^c \times 7$, where $0 < a < 9$. Similarly we get a contradiction.

We argue that $r = 1$. Suppose false. Then $32s(3r - 4)(3r - 2) > 0$ and so $3r(q - \varepsilon) < 864r^2$. Therefore $288n + \varepsilon > q = p^s \geq 3^s$ and so $288n > 3^s$. Hence $(n, r, p) = (5, 3, 3, -1)$, $(3, 3, 3, -1)$ or $(3, 3, 5, 1)$, while none of these satisfy (3.14). Thus $r = 1$.
The case that $N^a_b\cong D_6$ and $N^a \cap N^β \leq Z_2 \times Z_2$ does not occur.

Proof. Let $Δ, L$ and K be as defined in (3.6). By (3.6), there exists an element x in $L_α$ such that its order is odd and $\langle x^α \rangle$ is regular on $Δ—\{a\}$. Since $(L_α)' \leq N^a_β$ by (3.6) and $N^a_β \cong D_6$, x stabilizes a normal series $N^a_β \leq N^a_β$. Hence x centralizes $N^a_βN^a_β$ by Theorem 5.3.2 of [2] and so $x^{-1}N^a_βx = N^a_β$. Put $γ = β^2$. If $r = 1$, then $β = γ$, so that $N^a_γ = N^a_β$. From this, $N^a_β = N^a_γ$. By the doubly transitivity of G, $N^a_β = N^a_γ$, hence $N^a_β = N^a_γ$, a contradiction. Therefore $r = 1$ and $Δ = \{α, β\}$.

Set $\langle x \rangle = Z(ΛΓZ)$, $Δ = α^{C_G(α)}$ and let $\{Δ_1, Δ_2, \ldots Δ_4\}$ be the set of $C_G(α)$-orbits on $F(z)$. Since $L \geq N^a \cap N^β$ and by (3.2), $N^a \cap N^β = 1$, z is contained in $N^a \cap N^β$. Hence, by Lemma 2.1, $β \in Δ_1$ and k is at least two. By Lemma 2.8, $|F(z)| = 1+(q-ε)/5|N^a_β| = 1+5(q-ε)/8$. Clearly $|C_{N^a_β}(z)|: N^a_β| = (q-ε)/8$ and so $|Δ_1| \geq 1+(q-ε)/8$. If $γ \in F(z) - Δ_1$, then $C_{N^a_β}(z) = Z_2 \times Z_2$, for otherwise $\langle x \rangle = Z(N^a_β) \subseteq N^a \cap N^γ$ and by Lemma 2.1 $γ \in Δ_1$, a contradiction. Hence one of the following holds.

(i) $k = 3$ and $|Δ_1| = 1+(q-ε)/8$, $|Δ_2| = |Δ_3| = (q-ε)/4$.
(ii) $k = 2$ and $|Δ_1| = 1+(q-ε)/8$, $|Δ_2| = (q-ε)/2$.
(iii) $k = 2$ and $|Δ_1| = 1+3(q-ε)/8$, $|Δ_2| = (q-ε)/4$.

Let $γ \in F(z) - Δ_1$. Then, $z \in G_γ - N^γ$ and so $C_{N^a_γ}(z) = D_q + r$ or $PGL(2, \sqrt{q})$ by Lemma 2.5 (vii), (viii), (ix). If $C_{N^a_γ}(z) = D_q + r$, then $(q+ε)/2 | |Δ_1|$ and so $q = 7$ and (ii) occurs. But $(q+ε)/2 = 3 | |Δ_2| - 1 - 1 = 1$, a contradiction. If $C_{N^a_γ}(z) = PGL(2, \sqrt{q})$, then (i) does not occur because $\sqrt{q} \not\equiv q - ε$. Hence $\sqrt{q} | |Δ_1|$ and $\sqrt{q} | |Δ_2| - 1$. From this, $q = 25$ and (iii) occurs. In this case, we have $|Δ_1| = 10$, so that an element of $C_{N^a_γ}(z)$ of order 3 is contained in $N^γ_δ$ for some $δ \in Δ_1$, contrary to $N^a_δ \leq N^a_β = D_6$.

4. Case (II)

In this section we assume that $N^a_β = PGL(2, p^m)$, where $n = 2mk$ and k is odd. Since n is even, $q = p^m \equiv 1 \mod 4$. We set $p^m \equiv ε \equiv \{±1\} \mod 4$. In section 7 we shall consider the case that $N^a_β = S_4$. Therefore we assume $(p, m) \neq (3, 1)$ in this section.

(4.1) The following hold.

(i) $N^a_β/N^a \cap N^β = \{1\} or Z_2$ and $N^a \cap N^β \geq (N^a_β)' \cong PSL(2, p^m)$.
(ii) If $(p, m) \neq (5, 1)$, there exists a cyclic subgroup $Y \leq (N^a_β)'$ such that $N_{N^a_β}(Y) = D_q - r$ and $N_{C_G(α)}(Y)^{F(γ)}$ is doubly transitive.

Proof. As $N^a_β \geq N^a \cap N^β$, either $N^a_β/N^a \cap N^β \leq Z_2$ or $N^a \cap N^β = 1$. If $N^a \cap N^β = 1$, by Lemma 2.2 and 2.6 (vi), $N^a_β = N^a_β/N^a \cap N^β = N^a_β/N^β = Z_2 \times Z_2$, a
Now we assume that \((p, m) \neq (3,1), (5,1)\) and let \(z\) be an involution in \((N^\alpha)^*\). Then \(C_{N^\alpha}(z) = D_{2(p^m-1)}\) by Lemma 2.6 (vii). Suppose \(C_{N^\alpha}(z)\) is not a 2-subgroup and put \(Y = 0(C_{N^\alpha}(z))\). Then, if \(C_{N^\alpha}(z)\) is not a 2-subgroup, we have \(Y^\gamma \leq N^\alpha \) and \(Y^\delta \leq N^\beta\), where \(\gamma = \alpha^\epsilon\) and \(\delta = \beta^\epsilon\). By Lemma 2.5, we have \(Y = Y^\alpha\) for some \(h \in N^\alpha \cap N^\beta\). Thus \(N_G(Y)^{F(Y)}\) is doubly transitive. Assume that \(C_{N^\alpha}(z)\) is a 2-subgroup and set \(X = C_{N^\alpha}^1(Y)\). We may assume that \(v \in (N^\alpha)^*\) and \(<u, v>\) is a Sylow 2-subgroup of \((N^\alpha)^*\). Since \(p^m \neq 3,5\), the order of \(v^2\) is at least four. On the other hand there is no element of order \(|u^2|\) in \(<u, v> = <u^2, v>\). Hence any element of order \(|u^2|\) which is contained in \(N^\alpha\) is necessarily an element of \(N^\alpha \cap N^\beta\). By the similar argument as above, \(N_G(Y)^{F(Y)}\) is doubly transitive.

\[\text{(4.2)}\] Let notations be as in (4.1). Suppose \((p, m) \neq (3,1), (5,1)\) and set \(\Delta = F(Y)\) and \(X = N_G(Y)\). Then \(|\Delta| = rs(p^m+\epsilon)/2 + 1\), where \(s = \sum_{i=0}^{k-1} p^{2mi}\), \(C_G(N^\alpha) = 1\) and one of the following holds.

(i) \(X^\Delta \leq \text{ATL}(1,2^c)\) for some integer \(c\).

(ii) \(X^\Delta \simeq \text{PSL}(2,p_1)\) or \(\text{PGL}(2,p_1)\), \(r = 1, k = 1\) and \(2p_1 = p^m + \epsilon\).

Proof. By Lemma 2.8 (ii), \(|\Delta| = 1 + |N^\alpha \cap X|/r|N^\alpha| < |N^\alpha|/r = 1 + (p^{2mk} - 1)/2(p^m - \epsilon) = rs(p^m + \epsilon)/2 + 1\). By (4.1) and Lemma 2.9, we have (i), (ii) or \(X^\Delta = R(3)\).

Assume that \(X^\Delta = R(3)\). Then \(rs(p^m + \epsilon)/2 + 1 = 28\), hence \(k = 1\) and \(r(p^m + \epsilon)/2 = 27\). Since \(r\) is odd and \(r|2m = n\), we have \(r = m = 1\) and \(q = 53\).

But a Sylow 3-subgroup of \(X_{a,\alpha}\) is cyclic because \(N^\alpha \cap X = D_{q^2}\) and \(X_{a,\alpha}/X \cap N^\alpha = X_{a,\alpha}N^\alpha/N^\alpha \leq Z_2 \times Z_2\), a contradiction. Thus (i) or (ii) holds.

\[\text{(4.3)}\] (i) of (4.2) does not occur.

Proof. Let notations be as in (4.2). Suppose \(X^\Delta \leq \text{ATL}(1,2^2)\) and put \(W = C_{N^\alpha}(Y)\). Then \(Y \leq W = Z_{p^m-2}\). Since \(C_{N^\alpha}(Y)\) is cyclic, \(W\) is a characteristic subgroup of \(C_{N^\alpha}(Y)\) and so \(W\) is a normal subgroup of \(X_{a,\alpha}\). Hence \(W \leq X^\Delta\) and \((X \cap N^\alpha)^{\alpha} = 1\) or \(Z_2\). By Lemmas 2.4 and 2.6, \(F(X \cap N^\alpha) = 1 + |X \cap N^\alpha|/|N^\alpha| = X \cap N^\alpha \times r|N^\alpha| = 1 + r\). Since \(1 + r < |\Delta|\), \((X \cap N^\alpha)^{\alpha} = Z_2\) and hence \((1 + r)^2 = rs(p^m + \epsilon)/2 + 1\) by Lemma 2.5. From this, \(r = s(p^m + \epsilon)/2 - 2|mk|\) and so \(p^m(k-1) + mk \leq 2\). Hence \(m = k = r = 1\) and \(q = 7^2\).

Let \(R\) be a Sylow 3-subgroup of \(N^\alpha\). Since \(N^\beta \simeq \text{PGL}(2,7)\), we have \(R = Z_3\). By Lemmas 2.4 and 2.6, \(|F(R)| = 1 + (7^2 - 1)|N^\alpha|/|N^\alpha| = 4\). Hence \(N_G(R)^{F(R)} = A_4\) or \(S_4\). But is a Sylow 3-subgroup of \(N_{Ga}(R)\) because \(N^\alpha = PSL(2,7)\), contrary to \(N_G(R)^{F(R)} = A_4\) or \(S_4\).

\[\text{(4.4)}\] (ii) of (4.2) does not occur.
Proof. Let notations be as in (4.2). Suppose $X^\alpha \geq PSL(2, p_1)$. By the similar argument as in (4.3), $C_{N^\beta}(Y) \leq X_\Delta$ and so $C_{N^\alpha}(Y) \geq Z_{p^1}$, and $N_{N^\alpha}(Y)^\beta = D_{2p^1}$. Hence $|X^\alpha| \geq \langle p_1 \rangle$. Since $X^\alpha \geq PSL(2, p_1)$, $p_1(p_1 - 1)/2 \mid |X^\alpha|$, hence $p_1 - 1 \parallel 8n$. As $k=1$ and $2p_1 = p^m + \epsilon$, we have $p^m + \epsilon - 2 = 32m$. From this, $(p, m, p_1) = (11, 1, 5)$, $(3, 2, 5)$ or $(3, 3, 13)$.

Let R be a cyclic subgroup of N^α such that $R = \mathbb{Z}(p^m + \epsilon)/2$. By Lemma 2.6, $N_\alpha(R)^{F(R)}$ is doubly transitive and by Lemma 2.8 (ii), $|F(R)| = 1 + |N_\alpha(R)| = |N_{N^\beta}(R)| = 1 + (p^m - 1)/2(p^m + \epsilon) = (p^m - \epsilon)/2 + 1$.

If $(p, m, p_1) = (11, 1, 5)$, $|F(R)| = 7$ and so by [9], $|N_\alpha(R)^{F(R)}| = 42$ and $N_\alpha(R)^{F(R)} = Z_6$. Since $|N_\alpha(R) : N_{N^\beta}(R)| = 6$, $N_\alpha(R)^{F(R)} = N_\alpha(R)^{F(R)}$. Hence $N_{N^\alpha}(R)/(N_{N^\alpha}(R)) = Z_2 \times Z_2$, a contradiction.

If $(p, m, p_1) = (3, 2, 5)$, $|F(R)| = 5$ and so by [9], $|N_\alpha(R)^{F(R)}| = 20$ and $N_\alpha(R)^{F(R)} = Z_4$. Since $|N_{N^\alpha}(R) : N_{N^\beta}(R)| = 4$, $N_{N^\alpha}(R)^{F(R)} = Z_4$, contrary to $N_{N^\alpha}(R)^{F(R)} = Z_2 \times Z_2$. Hence $N_{N^\alpha}(R)/(N_{N^\alpha}(R)) = Z_2 \times Z_2$.

If $(p, m, p_1) = (3, 3, 13)$, $|F(R)| = 15$. By [9], $N_{N^\alpha}(R)^{F(R)}$ is not solvable, a contradiction.

(4.5) $p^m = 5$.

Proof. Assume that $p^m = 5$. Then $n = 2k$ with k odd and $N^\alpha = PGL(2, 5) \simeq S_5$. First we argue that $N^\beta = N^\alpha \cap N^\beta$. Suppose false. Then $C_\alpha(N^\beta) = 1$ by Lemma 2.2, and $N^\alpha | N^\alpha \cap N^\beta = Z_2$ by (4.1). Since $N^\beta N^\beta | N^\beta \cap N^\beta = Z_2$ and the outer automorphism group of S_5 is trivial, we have $Z(N^\beta N^\beta) = Z_2$.

Let w be the involution of $Z(N^\beta N^\beta)$ and let $w \in N^\beta - N^\alpha$. Since $C_\alpha(w) \geq N^\beta$, by Lemma 2.6 (viii) and (ix), w acts on N^β as a field automorphism of order 2 and $C_\alpha(w) \simeq PGL(2, 5^k)$. By Lemma 2.8 $|F(w)| = 1 + r(g - \epsilon) |I(N^\alpha)| = 1 + |N^\beta| = 1 + 5r(5^{2k} - 1)/24$. Let P be a Sylow 5-subgroup of $C_\alpha(w)$. Then $|P| = 5^k$ and $|\gamma | = 5^{k-1}$ or 5^k for each $\gamma \in \Omega - \{\alpha\}$. Since P acts on $F(w) - \{\alpha\}$, we have $5^{k-1} | 5r(5^{2k} - 1)/24$, so that $k = 1$ and $|F(w)| = 6 = r/k$. Hence $C_\alpha(w)^{F(w)} = S_5$ and so $C_\alpha(w)^{F(w)} = S_5$. But clearly $w \in N^\alpha \cap N^\beta$ by Lemma 2.1, a contradiction. Thus $N^\beta = N^\alpha \cap N^\beta$.

Let V be a cyclic subgroup of N^β of order 4. Since $N^\beta = N^\alpha \cap N^\beta = S_5$, $N_\alpha(V)^{F(V)}$ is doubly transitive and by Lemma 2.8, $|F(V)| = 1 + |N_{N^\alpha}(V)|/r|N_{N^\beta}(V)| = 1 + (5^{2k} - 1)r/8 = 3rs + 1$, where $s = \sum_{i=0}^{k-1} 25^i$. By Lemma 2.9, $C_\alpha(N^\alpha) = 1$ and (a) $N_\alpha(V)^{F(V)} = \Gamma L(1, 2^c)$ or (b) $N_\alpha(V)^{F(V)} = R(3)$.

Put $P = N_\alpha(V)$. Then $P = D_5$, $|F(P)| = 1 + |N_{N^\alpha}(P)| = |N^\alpha : N_{N^\beta}(P)| = r/|N^\beta| = r + 1$ and $P^F \simeq Z_2$. If (b) occurs, $k = 1$ and $r = 9$, hence $|F(P)| = 10$, a contradiction. Therefore (a) holds.

By Lemma 2.5, $(r+1)^2 = 3rs + 1$ and so $r = 3s - 2/k$. Hence $k = r = 1$ and $G_{\alpha}/N^\alpha \leq Z_2 \times Z_2$. Let z be an involution in N^β. Then $|F(z)| = 1 + 24 \cdot 25/120 = 6$.
by Lemma 2.8 and \(|\Omega|=1+|N^a|\) as \(r=1\). By the similar argument as in the proof of (3.12), \(|F(z)|(\Omega|-1)/2+\Omega=|C_0(z)|\) and \(\langle t\rangle G_{ab}/\langle t\rangle G_{ab}\), where \(t\) is an involution such that \(\alpha^t=\beta\). Hence \(|z^\alpha\cap\langle t\rangle G_{ab}|=15|G_{ab}|/|C_0(z)|\). Set \(H=\langle t\rangle G_{ab}\) and let \(R\) be a Sylow 3-subgroup of \(N^a_\beta\).

By Lemma 2.8, \(|F(R)|=1+24\cdot120=3\). Set \(F(R)=\{\alpha, \beta, \gamma\}\). On the other hand, as \(N^a_\beta=S_5\) and \(\text{Out}(S_5)=1\), we have \(H=Z(H)\times N^a_\beta\) and \(|Z(H)|=2\), 4 or \(H=C_H(N^a_\beta)\times N^a_\beta\) and \(C_H(N^a_\beta)\sim D_6\). In the latter case \(G_{ab}=Z(G_{ab})\times N^a_\beta\) and \(Z(G_{ab})=Z_2\times Z_2\), contrary to Lemma 2.6 (ix). In the former case, we have \(|Z(H)|=2\).

For otherwise \(Z(H)<G\) and \(Z(H)\) is an involution such that \(a=\beta\). Hence \(|Z(G_{ab})|=15|G_{ab}|/|C_G(z)|=15\cdot120/24=75\), a contradiction.

5. Case (III)

In this section we assume that \(N^a_\beta=PSL(2,p^m)\), where \(n=mk\) and \(k\) is odd. Set \(p^m\equiv\varepsilon\pmod{4}\). Then \(q\equiv\varepsilon\pmod{4}\) as \(k\) is odd. In section 6 we shall consider the case that \(N^a_\beta=A_4\), so we assume \((p,m),(3,1)\) in this section.

From this \(N^a_\beta\) is a nonabelian simple group and so \(N^a_\beta=N^a\cap N^b\) or \(N^a\cap N^b=1\). If \(N^a\cap N^b=1\), then \(C_0(N^a)=1\) by Lemma 2.2 and \(N^a_\beta=N^a\cap N^b\). Hence \(|Z(H)|=2\).

Let \(z\) be an involution of \(N^a_\beta\). Suppose \(z^\varepsilon\in G_{ab}\) for some \(g\in G\) and set \(\gamma=\alpha^\varepsilon\). Then \(z^\varepsilon\in N^a_\beta\cap G_{ab}\leq N^a_\beta \cap N^b\leq N^a\cap N^b\) and so \(z^\varepsilon\in N^a_\beta\). Hence \(C_0(z)^{F(\varepsilon)}\) is doubly transitive and by Lemma 2.8 (i), \(|F(z)|=2\cdot|C_{N^b}(z)|=3\cdot1\) as \(p^m-\varepsilon\geq p^{2m}+1\).

In particular \(|F(z)|=3r+1\) as \((p^m-\varepsilon)/(p^m-\varepsilon)\geq p^{2m+1}+p^{m+1}+1>3\).

By Lemma 2.9, \(C_0(N^a)=1\) and one of the following holds.

(a) \(C_0(z)^{F(\varepsilon)}\leq\text{ATL}(1,2^r)\).

(b) \(C_0(z)^{F(\varepsilon)}\leq\text{PSL}(2,p^r)\) \((p^r\geq5)\), \(r=1\) and \(|N_{N^a}^a(z): C_0^a(z)|=p^l\).

(c) \(C_0(z)^{F(\varepsilon)}=R(3)\).

Let \(Y\) be a cyclic subgroup of \(C_{N^a_\beta}(z)\) of index 2. Since \(C_{G_{ab}}(z)\geq Y\), \(z\in Y\) and \(C_0(z)^{F(\varepsilon)}\) is doubly transitive, we have \(F(Y)=F(z)\). By the similar argument as in (3.1), \(N^a\cap N(C_{N^a_\beta}(z))=C_{N^a_\beta}(z)\) or \(N^a\cap N(C_{N^a_\beta}(z))=A_4\). Hence by Lemmas 2.3 and 2.4 \(|F(C_{N^a_\beta}(z))|=1+|C_{N^a_\beta}(z)|+|N^a_\beta|\) \(|C_{N^a_\beta}(z)|/|N^a_\beta|\) or \(1+\langle A_4\rangle\langle N^a_\beta\rangle\). Therefore \(|F(C_{N^a_\beta}(z))|=r+1\) or \(3r+1\). From this \(C_{N^a_\beta}(z)^{F(\varepsilon)}\geq Z_2\).

In the case (a), \((r+1)^2=1+(p^m-\varepsilon)r/(p^m-\varepsilon)\) by Lemma 2.5 and hence \(r=(p^m-\varepsilon)/(p^m-\varepsilon)-2\cdot mk\). Since \((p^m-\varepsilon)/(p^m-\varepsilon)\geq((p^m)^k+1)/(p^m+1)=\sum_{i=0}^{k-1}(-p^m)^i\) and \(k\geq3\), we have \(p^{m(k-1)}(p^{2m}+p^m+1)\leq mk\), hence \((p^m)^{k-3}/k(m/(p^{2m}+p^m+1))<1\).

Thus \(k=3\), \(m=1\) and \(p=3\), contrary to \(\varepsilon>3\).

In the case (b), \(r=1\), \(p_1=(p^m-\varepsilon)/(p^m-\varepsilon), p_1(p_1-1)/2\) and \(s=4mkp_1\), where \(s\) is the order of \(C_{G_{ab}}(z)^{F(\varepsilon)}\). Hence \(p_1-1=3\) or \(8mk\).

Since \(p_1-1=(p^m-\varepsilon)/(p^m-\varepsilon)-1\)
\((p^n+1)/(p^n+1)-1 = \sum_{k=0}^{\infty} (-p^m)^k \geq p^{m(k-2)}(p^m-1) \), we have \(p^{m(k-2)}/2k \leq 4m|(p^n-1) \leq 1 \) because \(p^n \neq 3 \). Hence \(k=3 \) and \(p^n=5 \), so that \(p_1=1=30 \times 8mk=24 \), a contradiction.

In the case (c), \(r+1=4 \) and \(1+(p^n-\varepsilon)r/(p^n-\varepsilon)=28 \) and so \(r=3 \) and \((p^n-\varepsilon)/(p^n-\varepsilon)=9 \). Hence \(9 \geq (p^m+1)/(p^m+1) \geq p^m-p^m+1 \), so that \(p^m=3 \), a contradiction.

6. Case (IV)

In this section we assume that \(N^*=A_4 \) and \(q=3,5 \) (mod 8). If \(N^* \cap N^{\beta}=1 \), by Lemma 2.2, \(C_G(N^*)=1 \) and so \(N^* \cap N^{\beta}=N^{\beta}N^*|N^*=Z_2 \times Z_2 \). Hence \(N^* \cap N^{\beta}=1 \) or \(Z_3 \), so that \(z^G \cap G_{ab}=z^{G} \cap N^{\beta}=zN^{\beta} \) for an involution \(z \in N^* \). Therefore \(C_G(z)^F(z) \) is doubly transitive. By Lemma 2.9, \(C_G(N^*)=1 \) and one of the following holds.

(a) \(C_G(z)^F(z) \leq A_7(1,2) \) for some integer \(c \geq 1 \).
(b) \(C_G(z)^F(z) \geq PSL(2, p_1) \left(p_1 \geq 5 \right) \), \(r=1 \) and \(|C_N(z) : C_{N^*}(z)| = p_1 \).
(c) \(C_G(z)^F(z) = R(3) \).

Let \(T \) be a Sylow 2-subgroup of \(N^* \). Then \(z \in T \) and by Lemmas 2.3 and 2.4, \(|F(T)| = 1+|N_{N^*}(T)|r/|N^*_b|=r+1 \). By Lemma 2.8 (i), \(|F(z)|=(q-\varepsilon)r/4+1 \). Hence \(T^F(z)=Z_2 \) if \(q=5 \). If \(q=5 \), as \(PSL(2,5) \neq PSL(2,4) \), (ii) of our theorem holds by [4]. Therefore we may assume \(q=5 \).

In the case (a), \((r+1)^2=1+(q-\varepsilon)r/4 \) by Lemma 2.5. Hence \(r=(q-\varepsilon-8)/4 \) and \(r|n \), so that \(q=11 \) or 13 and \(r=1 \). Let \(R \) be a Sylow 3-subgroup of \(G_{ab} \). Then \(R=Z_3 \) and \(R \leq N_{ab}^* \) because \(G_{ab}/N_{ab}^*=G_{ab}/N^* \cap N^{\beta}=1 \) or \(Z_2 \) and \(N_{ab}^*=A_4 \). By Lemma 2.8 (ii), \(|F(R)|=1+12/3=5 \) and \(N_G(R)^F(R) \) is doubly transitive. Since \(N_{G_{ab}}=D_{12} \) or \(D_{24} \) and \(|F(R)|=5 \), we have \(|N_G(R)|=5 \). Let \(S \) be a Sylow 3-subgroup of \(N_G(R) \). Then \([S, R]=1 \) as \(N_G(R)/C_G(R) \leq Z_5 \). Since \(5 \times |G_{ab}| \), \(|F(S)|=0 \) or 1. If \(|F(S)|=1, F(S) \leq F(R) \) and so \(5 \times |F(R)|=1-4 \), a contradiction. Therefore \(S \) is semi-regular on \(\Omega \). But \(|\Omega|=1+|N^* : N^*_b|=56 \) or 92. This is a contradiction.

In the case (b), \(p_1(p_1-1)/2 \) or \(|2n(q-\varepsilon)/2|=4np_1 \), where \(s \) is the order of \(C_{G_{ab}}(z)^F(z) \). Hence \(p_1=18n \). Since \(p_1=(q-\varepsilon)/4 \), \(p^n-\varepsilon-4 \times 32n \) and so we have \(q=11, 13, 19, 27 \) or 37. If \(q=27 \), by Lemma 2.6, \(C_{G_{ab}}(z)=D_{12} \) or \(D_{24} \) and so \(C_{G_{ab}}(z)^F(z)=Z_2 \). Hence \((p_1-1)/2=2 \). From this \(q=19 \). Let \(R \) be a Sylow 3-subgroup of \(G_{ab} \). By the similar argument as in the case (a), \(N_G(R)^F(R) \) is doubly transitive and \(|F(R)|=1+18/3=7 \). Hence \(7 \times |G| \). On the other hand \(|G|=|\Omega| \times |G_{ab}|=(1+|N^*: N^*_b|)|G_{ab}|=(1+18\times 19\times 20/2\times 12)\times 18\times 19 \times 20/2=24^2 \times 3^5 \times 5 \times 11 \times 13 \times 19 \) with \(0 \leq t \leq 1 \), a contradiction. If \(q=27 \), then \(|C_G(z)|=|F(z)|_{2} \times |C_{G_{ab}}(z)|_{2}=8 \times |G_{ab}|_{2} \), while \(|\Omega|=1+|N^*: N^*_b|=1+26 \times 27 \times 28/2 \times 12=820=2^2 \times 5 \times 41 \) and so \(|G|_{2}=4|F(G)|_{2} \). Therefore \(|C_G(z)| \times |G| \), a contradiction.

In the case (c), \(r+1=4 \) and \(1+(q-\varepsilon)r/4=28 \). Hence \(r=3 \) and \(q=37 \).
7. Case (V)

In this section we assume that \(N^*_\beta = S_4 \) and \(q \equiv 7, 9 \pmod{16} \). We note that \(4 \nmid n \).

First we argue that \(N^*_\beta = N^* \cap N^\beta \). Suppose \(N^*_\beta \neq N^* \cap N^\beta \). Then \(C_\circ(N^*) = 1 \) by Lemma 2.2. Since \(N^*_\beta \cap N^\beta = N^*_\beta N^\beta / N^\beta \leq Z_2 \times Z_n \), we have \(N^* \cap N^\beta = A_4 \) and \(N^*_\beta \cap N^\beta = Z_2 \). Hence as \(\text{Out}(S_4) = 1 \), \(Z(N^*_\beta N^\beta) = Z_2 \). Set \(\langle t \rangle = Z(N^*_\beta N^\beta) \) and \(t \in I(N^*_\beta) - I(N^*) \). Since \(C_{N^*(t)} \geq N^*_\beta = S_4 \) and \(\langle t \rangle N^* = N^*_\beta N^* \), by Lemma 2.6, we have \(C_{N^*(t)} = \text{PGL}(2, \sqrt{q}) \) and \(|F(t)| = 1 + (q - \varepsilon)r/8 \) by Lemma 2.8.

Let \(P \) be a Sylow \(p \)-subgroup of \(C_{N^*(t)} \). Then \(|P| = \sqrt{q} \). If \(p \neq 3 \), \(P \) acts semi-regularly on \(F(t) - \{ \alpha \} \) and \(\sqrt{q} |3(q - \varepsilon)r/8 \). Therefore \(\sqrt{q} | r \) and so \(5^s \leq n^2 \) as \(p \geq 5 \) and \(r \mid n \). But obviously \(5^s > n^2 \) for any positive integer \(n \). This is a contradiction. If \(p = 3 \), \(|P| = \sqrt{q} \leq 3 \) or \(3^s \). Hence \(\sqrt{q} /3 \leq 3(q - \varepsilon)r/8 \) and so \(q \mid 8r^2 \). In particular, \(3^s = q \mid 8n^2 \). From this, \(n \leq 7 \). Since \(q = 3 \equiv 7 \) or 9 (mod 16), we have \(q = 3^2 \) or \(3^s \). If \(q = 3^s \), \(|\Omega| = 1 + N^*: N^*_\beta | = 1 + 8 \cdot 9 \cdot 10/2 \cdot 24 = 16 \), a contradiction by [9]. If \(q = 3^s \), \(F(t) = 1 + 273r \) and \(|F(t) - \{ \alpha \} | \geq |C_{N^*(t)}| \geq |\text{PGL}(2, 3^s)|/8 = 2457 \) contrary to \(r \mid 3 \). Thus \(N^*_\beta = N^* \cap N^\beta \).

Let \(V \) be a cyclic subgroup of \(N^*_\beta \) of order 4 and let \(U \) be a Sylow 2-subgroup of \(N^*_\beta \) containing \(V \). Then \(U = N^*_\beta(V) \), \(|F(V)| = 1 + (q - \varepsilon)r/8 \) by Lemma 2.8 and \(|F(U)| = 1 + 8 \cdot 3r/24 = r + 1 \) by Lemmas 2.3 and 2.4. If \(q \neq 7, 9 \), then \(|F(U)| \leq |F(V)| \) and hence \(U(F(V)) \leq Z_2 \). Suppose \(q = 7 \) or 9. Then \(r = 1 \) as \(r \mid n \). Hence \(|\Omega| = 1 + |N^*; N^*_\beta| = 8 \) or 16. By [10], we have a contradiction. Therefore \(U(F(V)) \leq Z_2 \).

Suppose \(V^x \leq G_{ab} \) for some \(g \in G \) and set \(\gamma = \alpha^x \). Then \(V^x \leq g^{-1}N^a \cap G_{ab} \leq N^y \cap G_{ab} \leq N^* \cap N^\beta = N^*_\beta \). As \(N^*_\beta = S_4 \), \(V^x = V^h \) for some \(h \in N^*_\beta \). Hence \(C_\circ(V^x) \) is doubly transitive. By Lemma 2.9, \(C_\circ(N^*) = 1 \) and one of the following holds.

(a) \(N_\circ(V^x) \leq \text{AGL}(1, 2^7) \).

(b) \(N_\circ(V^x) \geq \text{PSL}(2, p_1), p_1 = (q - \varepsilon)/8 \geq 5 \).

(c) \(N_\circ(V^x) = R(3) \).

In the case (a), \((r + 1)| = 1 + (q - \varepsilon)r/8 \) by Lemma 2.5 and \(r = (q - \varepsilon - 16)/8 \) and \(r \mid n \). From this \(q = 23 \) or 25 and \(r = 1 \). Since \(|\Omega| = 1 + |N^*; N^*_\beta| = 2 \cdot 127 \) or \(2 \cdot 163 \), we have \(|G|_2 = 2 \cdot |G_{a1}| \) while \(|N_\circ(V)|_2 = |F(V)|_2 \cdot |G_{a1}(V)|_2 = 4 \cdot |G_{a1}|_2 \), contrary to \(|N_\circ(V)| \mid |G| \).

In the case (b), \(p_1(1 + 1)/2 \mid s \) and \(s |2n(q - \varepsilon)/4 = 4np_1 \), where \(s \) is the order of \(N_{G_{a1}}(V^x) \). Hence \(p_1 = 1/8n \). From this, \(p^s - \varepsilon - 8 \mid 64n \) and so \(q = 23, 41, 71 \) or 73. Since \(p_1 \) is a prime and \(p_1 = (q - \varepsilon)/8 \geq 5, q = 23, 71, 73 \). Therefore \(q = 41 \) and \(|\Omega| = 1 + |N^*; N^*_\beta| = 1 + 40 \cdot 41 \cdot 42 \cdot 2 \cdot 24 = 2^2 \cdot 359 \), so that \(|G|_2 = 4 \cdot |G_{a1}|_2 \).
Since $N^* = N^* \cap N^\beta$, $C_\alpha(z)^{F(z)}$ is transitive by Lemma 2.1. On the other hand $|F(z)| = 1 + 40 \cdot 9/24 = 16$ by Lemma 2.8 (i) and so $C_\alpha(z)|z = 16|C_\alpha(z)|z = 16|G_{\alpha}|$, contrary to $|C_\alpha(z)||G|$.

In the case (c), $r + 1 = 4$ and $1 + (q - \varepsilon)r/8 = 28$. Hence $r = 3$ and $q = 71$ or 73, contrary to $r | n$.

8. Case (VI)

In this section we assume that $N^* = A_5$ and $q \equiv 3, 5 \pmod{8}$. In particular, n is odd. If $N^* \neq N^* \cap N^\beta$, then $N^* \cap N^\beta = 1$, $C_\alpha(N^*) = 1$ and so $N^* = N^* N^\beta/N^\beta < \text{Out}(N^\beta) \cong Z_2 \times Z_8$, a contradiction. Hence $N^* = N^* \cap N^\beta$. Let z be an involution in N^* and T a Sylow 2-subgroup of N^* containing z. Then, by Lemma 2.6 $|F(z)| = 1 + (q - \varepsilon)15r/60 = 1 + (q - \varepsilon)r/4$ and by Lemmas 2.3 and 2.4 $|F(T)| = 1 + 12 \cdot 5r/60 = 1 + r$. Since $N^* = N^* \cap N^\beta$, $z^G \cap G_\alpha = z^G \cap N^* = z^N^*$ and so $C_\alpha(z)^{F(z)}$ is doubly transitive. By Lemma 2.9, $C_\alpha(N^*) = 1$ and one of the following holds.

(a) $C_\alpha(z)^{F(z)} \leq A\Gamma L(1, 2^3)$.

(b) $C_\alpha(z)^{F(z)} \cong \text{PSL}(2, p_1)$, $p_1 = (q - \varepsilon)/4 \geq 5$.

(c) $C_\alpha(z)^{F(z)} = R(3)$.

In the case (a), by Lemma 2.5, $(q - \varepsilon)/4 = 1$ or $(r + 1)^2 / 4 = 1 + (q - \varepsilon)r/4$. Hence $q = 5$ or $r = (q - \varepsilon - 8)/4 | n$. If $q = 5$, then $N^* = N^*$, a contradiction. Therefore $p^* = \varepsilon - 8 | 4n$ and so $n = 1$ and $q = 11$ or 13. If $q = 13$, we have $5 | |G^*, |$, a contradiction. Hence $q = 11$ and $|\Omega| = 1 + |N^*| N^* | = 1 + 10 \cdot 11 \cdot 12/2 \cdot 60 = 12$. By [9], $C^\Omega \cong M_{11}$, $|\Omega| = 12$ and so (iii) of our theorem holds.

In the case (b), we have $p_1 | (p_1 - 1)/2 | s$ and $s \geq 2n(q - \varepsilon)/2 = 4n p_1$, where s is the order of $C_\alpha(z)^{F(z)}$. Hence $p_1 = 18n$ and so $p^* = \varepsilon - 4 | 32n$. From this $q = 19, 27$ or 37. Since $5 | |G^*, | \neq 27, 37$. Hence $q = 19$ and $|\Omega| = 1 + |N^*: N^* | = 1 + 18 \cdot 19 \cdot 20/2 \cdot 60 = 29$. Since $G_\alpha = \text{PSL}(2, 19)$ or $\text{PGL}(2, 19)$, $|G| = |\Omega| |G^*| = 2 \cdot 29 \cdot 2 \cdot 19 \cdot 20/2 = 2^{i+1} \cdot 3^{i} \cdot 5 \cdot 19 \cdot 2^j$ with $0 \leq i \leq 1$. Let P be a Sylow 29-subgroup of G. Then P is semi-regular on Ω and $3, 5, 19 \not{|} |G^*|$ because $N_\alpha(P)/C_\alpha(P) \cong Z_4 \times Z_7$. Hence $|G: N_\alpha(P)| = 2^i \cdot 3^j \cdot 5 \cdot 19$ with $0 \leq j \leq 4$, while $2^i \cdot 3^j \cdot 5 \cdot 19 \equiv 1 \pmod{29}$ for any j with $0 \leq j \leq 4$, contrary to a Sylow's theorem.

If $C_\alpha(z)^{F(z)} = R(3)$, $r + 1 = 4$ and $1 + (q - \varepsilon)r/4 = 28$ and hence $r = 3$, $q = 37$, contrary to $r | n$.

OSAKA KYOIKU UNIVERSITY

References

[3] C. Hering: Transitive linear groups and linear groups which contain irreducible

