<table>
<thead>
<tr>
<th>Title</th>
<th>On some doubly transitive permutation groups in which socle(Gα) is nonsolvable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hiramine, Yutaka</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 1979, 16(3), p. 797-816</td>
</tr>
<tr>
<td>Version Type</td>
<td>VoR</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/8021</td>
</tr>
</tbody>
</table>
ON SOME DOUBLY TRANSITIVE PERMUTATION GROUPS IN WHICH \text{socle}(G_\alpha) IS NONSOLVABLE

YUTAKA HIRAMINE

(Received July 3, 1978)

1. Introduction

Let \(G \) be a doubly transitive permutation group on a finite set \(\Omega \) and \(\alpha \in \Omega \). In \cite{O'Nan}, O'Nan has proved that \(\text{socle}(G_\lambda) = A \times N \), where \(A \) is an abelian group and \(N \) is 1 or a nonabelian simple group. Here \(\text{socle}(G_\lambda) \) is the product of all minimal normal subgroups of \(G_\lambda \).

In the previous paper \cite{previous}, we have studied doubly transitive permutation groups in which \(N \) is isomorphic to \(\text{PSL}(2,q) \), \(\text{Sz}(q) \) or \(\text{PSU}(3,q) \) with \(q \) even.

In this paper we shall prove the following:

\textbf{Theorem.} Let \(G \) be a doubly transitive permutation group on a finite set \(\Omega \) with \(|\Omega| \) even and let \(\alpha \in \Omega \). If \(G_\alpha \) has a normal simple subgroup \(N^* \) isomorphic to \(\text{PSL}(2,q) \), where \(q \) is odd, then one of the following holds.

(i) \(G_\Omega \) has a regular normal subgroup.
(ii) \(G_\Omega \cong A_6 \) or \(S_6 \), \(N^* \cong \text{PSL}(2,5) \) and \(|\Omega| = 6 \).
(iii) \(G_\Omega \cong M_{11}, N^* \cong \text{PSL}(2,11) \) and \(|\Omega| = 12 \).

In the case that \(G_\alpha \) has a regular normal subgroup, by a result of Hering \cite{Hering} we have \(|\Omega|, q|=(16,9), (16,5) \) or \((8,7)\).

We introduce some notations:

- \(F(X) \): the set of fixed points of a nonempty subset \(X \) of \(G \)
- \(X(\Delta) \): the global stabilizer of a subset \(\Delta \subseteq \Omega \) in \(X \)
- \(X_\Delta \): the pointwise stabilizer of \(\Delta \) in \(X \)
- \(X^A \): the restriction of \(X \) on \(\Delta \)
- \(m|n \): an integer \(m \) divides an integer \(n \)
- \(X^H \): the set of \(H \)-conjugates of \(X \)
- \(|X|_p \): maximal power of \(p \) dividing the order of \(X \)
- \(I(X) \): the set of involutions in \(X \)
- \(D_m \): dihedral group of order \(m \)

In this paper all sets and groups are finite.
2. Preliminaries

Lemma 2.1. Let G be a transitive permutation group on Ω, $\alpha \in \Omega$ and N^α a normal subgroup of G_α such that $F(N^\alpha) = \{\alpha\}$. Let the subgroup $X \leq N^\alpha$ be conjugate in G_α to every group Y which lies in N^α and which is conjugate to X in G. Then $N_G(X)$ is transitive on $\Delta = \{\gamma \in \Omega \mid X \leq N^\gamma\}$.

Proof. Let $\beta \in \Delta$ and let $g \in G$ such that $\beta^g = \alpha$. Then, as $X \leq N^\beta$, $X^g \leq N^\beta = N^\alpha$. By assumption, $(X^g)^h = X$ for some $h \in G_\alpha$. Hence $gh \in N_G(X)$ and $\alpha^{(gh)^{-1}} = \alpha^g = \beta$. Obviously $N_G(X)$ stabilizes Δ. Thus Lemma 2.1 holds.

Lemma 2.2. Let G be a doubly transitive permutation group on Ω of even degree and N^α a nonabelian simple normal subgroup of G_α with $\alpha \in \Omega$. If $C_G(N^\alpha) = 1$, then $N^\alpha = N^\alpha \cap N^\gamma$ for $\alpha \neq \beta \in \Omega$ and $C_G(N^\alpha)$ is semiregular on $\Omega - \{\alpha\}$.

Proof. See Lemma 2.1 of [4].

Lemma 2.3. Let G be a transitive permutation group on Ω, H a stabilizer of a point of Ω and M a nonempty subset of G. Then

$$|F(M)| = |N_G(M)| \times |M^G \cap H|/|H| .$$

Here $M^G \cap H = \{g^{-1}Mg \mid g \in G\}$.

Proof. See Lemma 2.2 of [4].

Lemma 2.4. Let G be a doubly transitive permutation group on Ω and N^α a normal subgroup of G_α with $\alpha \in \Omega$. Assume that a subgroup X of N^α satisfies $X^G = X^N$. Then the following hold.

(i) $|F(X) \cap N^\beta| = |F(X) \cap \gamma N^\beta|$ for $\beta, \gamma \in \Omega - \{\alpha\}$.

(ii) $|F(X)| = 1 + |F(X) \cap N^\beta| \times r$, where r is the number of N^α-orbits on $\Omega - \{\alpha\}$.

Proof. Let $\Gamma = \{\Delta_1, \Delta_2, \ldots, \Delta_r\}$ be the set of N^α-orbits on $\Omega - \{\alpha\}$. Since G_α is transitive on $\Omega - \{\alpha\}$ and $G_\alpha \geq N^\alpha$, we have $|\Delta_i| = |\Delta_j|$ for $1 \leq i, j \leq r$. By assumption, $G_\alpha = N_G(X)N^\alpha$ and so $N_G(X)$ is transitive on Γ. Hence for each i with $1 \leq i \leq r$ there exists $g \in N_G(X)$ such that $(\Delta_i)^g = \Delta_i$. Therefore $|F(X) \cap \Delta_i| = |F(X^g) \cap (\Delta_i)^g| = |F(X) \cap \Delta_i|$. Thus (i) holds and (ii) follows immediately from (i).

Lemma 2.5 (Huppert [5]). Let G be a doubly transitive permutation group on Ω. Suppose that $\vartheta(G) = 1$ and G_α is solvable. Then for any involution z in G_α, $|F(z)|^2 = |\Omega|$.

We list now some properties of $PSL(2, q)$ with q odd which will be required
in the proof of our theorem.

Lemma 2.6 ([2], [6], [10]). Set \(N = PSL(2, q) \) and \(G = Aut(N) \), where \(q = p^n \) and \(p \) is an odd prime. Let \(z \) be an involution in \(N \). Then the following hold.

(i) \(|N| = (q-1)q(q+1)/2\), \(I(N) = \langle z^N \rangle \) and \(C_N(z) = D_{q-1} \), where \(q \equiv \varepsilon \in \{ \pm 1 \} \) \((\text{mod} \ 4)\).

(ii) If \(q \equiv 3 \), \(N \) is a nonabelian simple group and a Sylow \(r \)-subgroup of \(N \) is cyclic when \(r \equiv \pm 2, p \).

(iii) If \(X \) and \(Y \) are cyclic groups of \(N \) and \(|X| = |Y| \equiv 2, p \), then \(X \) is conjugate to \(Y \) in \(\langle X, Y \rangle \) and \(N_g(X) = D_{q-1} \).

(iv) If \(X \leq N \) and \(X = Z_2 \times Z_2 \), \(N_N(X) \) is isomorphic to \(A_4 \) or \(S_4 \).

(v) If \(|N| \geq 8 \), \(N \) has two conjugate classes of four-groups in \(N \).

(vi) There exist a field automorphism \(f \) of \(N \) of order \(n \) and a diagonal automorphism \(d \) of \(N \) of order 2 and if we identify \(N \) with its inner automorphism group, \(\langle d, N = PGL(2, q) \rangle, \langle f, d \rangle N = G \) and \(G|N = Z_2 \times Z_n \).

(vii) \(C_N(d) = D_{q+1} \) and \(C_N(d)(z) = D_{q+1} \).

(viii) Suppose \(n = mk \) for positive integers \(m, k \). Then \(C_N(f^m) = PSL(2, p^m) \) if \(k \) is odd and \(C_N(f^m) = PGL(2, p^m) \) if \(k \) is even.

(ix) Assume \(n \) is even and let \(u \) be a field automorphism of order 2. Then \(I(G) = I(N) \cup d^N \cup u(d)^N \). If \(n \) is odd, \(I(G) = I(N) \cup d^N \).

(x) If \(H \) is a subgroup of \(N \) of odd index, then one of the following holds:

1. \(H \) is a subgroup of \(C_N(z) \) of odd index for some involution \(z \in N \).
2. \(H = PGL(2, p^m) \), where \(n = 2mk \) and \(k \) is odd.
3. \(H = PSL(2, p^m) \), where \(n = mk \) and \(k \) is odd.
4. \(H = A_4 \) and \(q \equiv 3, 5 \mod 8 \).
5. \(H = S_4 \) and \(q \equiv 7, 9 \mod 16 \).
6. \(H = A_5 \), \(q \equiv 3, 5 \mod 8 \) and \(5 | (q-1)q(q+1) \).

Lemma 2.7. Let \(G, N, d, f \) be as defined in Lemma 2.6 and \(H \) an \(\langle d, N \rangle \)-invariant subgroup of \(N \) isomorphic to \(D_{q-1} \). Let \(W \) be a cyclic subgroup of \(\langle d \rangle \) of index 2 \((\text{cf. (vii) of Lemma 2.6}) \) and set \(Y = \langle 0_d(W \cap H) \rangle \). Then \(C_H(Y) = W \cdot C_N(Y) \).

Proof. By (viii) of Lemma 2.6, we can take an involution \(t \) satisfying \(\langle d \rangle H = \langle t \rangle W \) and \([f, t] = 1\). Since \(N_N(Y) = \langle f, d \rangle N_N(Y) = \langle f, d \rangle H, C_N(Y) = C_{\langle f, d \rangle H}(Y) = W \cdot C_N(Y) \). Suppose \(ht \in C(Y) \) for some \(h \in \langle f \rangle \). Since \(t \) inverts \(Y, h \) also inverts \(Y \) and so \(h^2 \) centralizes \(Y \). Hence some nontrivial 2-element \(g \in \langle h \rangle \) inverts \(Y \), so that \(C_H(g) \) contains no element of order 4, contrary to (viii) of Lemma 2.6.

Throughout the rest of the paper, \(G^2 \) will always denote a doubly transitive permutation group satisfying the hypothesis of our theorem and we assume \(G^2 \) has no regular normal subgroup.
Notation. \(C^* = C_G(N^*) \), which is semi-regular on \(\Omega - \{ \alpha \} \) by Lemma 2.2. Let \(r \) be the number of \(N^* \)-orbits on \(\Omega - \{ \alpha \} \).

Since \(G_\beta \supseteq N^* \), \(|\beta^N| = |\gamma^N| \) for \(\beta, \gamma \in \Omega - \{ \alpha \} \) and so \(|\Omega| = 1 + r \times |\beta^N| \).

Hence \(r \) is odd and \(N^*_\beta \) is a subgroup of \(N^* \) of odd index. Therefore \(N^*_\beta \) is isomorphic to one of the groups listed in (x) of Lemma 2.6. Accordingly the proof of our theorem will be divided in six cases.

Lemma 2.8. Let \(Z \) be a cyclic subgroup of \(N^*_\beta \) with \(|Z| \neq 1, p \). Then

(i) \(|Z| = 2, |F(Z)| = 1 + (q - \varepsilon) |I(N^*_\beta)| / |N^*_\beta| \).

(ii) \(|Z| = 2, |F(Z)| = 1 + |N^*_\beta(Z)| / |N^*_\beta(Z)| \).

Proof. It follows from Lemma 2.3, 2.4 and 2.6 (i), (iii).

Lemma 2.9. If \(N^*_\beta \neq D_{q-1} \), and \(Z \) is a cyclic subgroup of \(N^*_\beta \) with \(|Z| \neq 1, p \) and \(N_G(Z) \) is doubly transitive. Then \(C^* = 1 \) and one of the following holds.

(i) \(N_G(Z) \leq AGL(1, q) \) for some \(q \).

(ii) \(C_G(Z) \supseteq PSL(2, p_1), r = 1 \) and \(|F(Z)| = 1 + |N^*_\beta(Z)| / |N^*_\beta(Z)| \).

(iii) \(|N_G(Z)| = 28 \).

Proof. Set \(N_G(Z) = L \) and \(F(Z) = \Delta \). By Lemma 2.6(iii), \(L \cap N^* = D_{q-1} \) and \(L \cap N^* = \langle t \rangle \subseteq \Delta \geq Y \geq \Omega \), where \(0(t) = 2, Y \subseteq Z(q^2 + 1) \).

If \((L \cap N^*)^a = 1, \) then \(L \cap N^* = \Delta \) because \(L \cap N^* \) is a maximal subgroup of \(N^* \). Since \(|N^*| : \Delta | \) is odd, \(L \cap N^* = N^*_\beta = D_{q-1} \), contrary to the assumption. Hence \((L \cap N^*)^a \neq 1 \) and as \(L_a \supseteq L_a \cap N^* \) and \(L_a \supseteq Y \), \((L_a)^a \) has a nontrivial cyclic normal subgroup. By Theorem 3 of [1], one of the following occurs:

(a) \(L^a \) has a regular normal subgroup
(b) \(L^a \supseteq PSL(2, p_1), |\Delta| = p_1 + 1 \), where \(p_1 \geq 5 \) is a prime
(c) \(L^a \supseteq PSL(3, p_1), p_1 \geq 3, |\Delta| = (p_1)^2 + 1 \)
(d) \(L^a = R(3), |\Delta| = 28 \).

Suppose \(C^* = 1. \) Then there exists a subgroup \(D \) of \(C^* \) of prime order such that \((L_a)^D = D^a \). Since \([L_a, D] \leq D \cdot L_a \cap C^* = D(L_a \cap C^*) = D \), \(D \) is a normal subgroup of \(L_a \). By (i) and (iii) of Lemma 2.6, \(G_a = L_a \cdot N^* \) and so \(D \) is a normal subgroup of \(G_a \). By Theorem 3 of [1], \(G^a \) has a regular normal subgroup, contrary to the hypothesis. Thus \(C^* = 1 \).

If (a) occurs, \(L^a \) is solvable because \(L_a / L \cap N^* \simeq L_a N^*/N^* \leq \text{Out}(N^*) \) and \(L \cap N^* = D_{q-1} \). Hence by [5], (i) holds in this case.

If (b) occurs, we have \(Y^a = 1 \), for otherwise \((L \cap N^*)^a = 1 \) and so \(N^*_\beta = L \cap N^* = D_{q-1} \), a contradiction. Hence \(1 \neq C_G(Z)^a \leq L^a \) and so \(C_G(Z)^a \supseteq PSL(2, p_1) \) and \(Y^a \simeq Z_{p_1} \). Therefore \(|\Delta \cap \beta^N| = p_1 \) and \(r = 1 \) by Lemma 2.4 (ii). Since \(|\beta^N| = p_1 \), we have \(|\beta^L \cap N^*| = p_1 \), so that \(L \cap N^*: L \cap N^* = p_1 \). Thus (ii) holds in this case.

The case (c) does not occur, for otherwise, by the structure of \(PSU(3, p_1) \),
a Sylow p_1-subgroup of $(L_\alpha)^\prime$ is not cyclic, while $(L_\alpha)^\prime \leq L \cap N^\sigma=D_{q_{zz}}$, a contradiction.

3. Case (I)

In this section we assume that $N^\sigma_\beta \leq D_{q-1}$, where $\beta \neq \alpha$, $q=p^\sigma$.

(3.1) (i) If $N^\sigma_\beta \neq Z_2 \times Z_2$, $N^\sigma_\beta(N^\sigma_\beta)=N^\sigma_\beta$ and $|F(N^\sigma_\beta)|=r+1$.

(ii) If $N^\sigma_\beta=Z_2 \times Z_2$, $N^\sigma_\beta(N^\sigma_\beta)=A_4$ and $|F(N^\sigma_\beta)|=3r+1$.

Proof. Put $X=N^\sigma_\beta(N^\sigma_\beta)$. Let S be a Sylow 2-subgroup of N^σ_β and Y a cyclic subgroup of N^σ_β of index 2.

If $N^\sigma_\beta \neq Z_2 \times Z_2$, then $|Y|>2$ and so Y is characteristic in N^σ_β. Hence $X \leq N^\sigma_\beta(Y)=D_{q-1}$. From this $[N^\sigma_\beta(S), S \cap Y] \leq S \cap Y$ and $\theta(N^\sigma_\beta(S))$ stabilizes a normal series $S \supset S \cap Y \supset 1$, so that $\theta(N^\sigma_\beta(S)) \leq C_{N^\sigma_\beta}(S)$ by Theorem 5.3.2 of [2]. By Lemma 2.6(i), $C_{N^\sigma_\beta}(S) \leq S$ and hence $N^\sigma_\beta(S)=S$. On the other hand by a Frattini argument, $X=N^\sigma_\beta(S)N^\sigma_\beta$ and so $X=N^\sigma_\beta$. By Lemma 2.6(i), $(N^\sigma_\beta)^{G^\sigma}=(N^\sigma_\beta)^{N^\sigma_\beta}$ and so by Lemmas 2.3 and 2.4 (ii), $|F(N^\sigma_\beta)|=1+|F(N^\sigma_\beta) \cap \beta^\sigma|^r=1+|N^\sigma_\beta||r|\ |N^\sigma_\beta|=r+1$. Thus (i) holds.

If $N^\sigma_\beta=Z_2 \times Z_2$, $N^\sigma_\beta(N^\sigma_\beta)=A_4$ by Lemma 2.6 (iv). Similarly as in the case $N^\sigma_\beta \neq Z_2 \times Z_2$, we have $|F(N^\sigma_\beta)|=3r+1$.

(3.2) $N^\sigma_\beta/N^\sigma_\beta \cap N^\sigma \leq Z_2 \times Z_2$.

Proof. By Lemma 2.2, it suffices to consider the case $C^\sigma=1$. Suppose $C^\sigma=1$. Then $N^\sigma_\beta/N^\sigma \cap N^\sigma \leq N^\sigma_\beta/N^\sigma \cap N^\sigma \leq \text{Out}(N^\sigma)=Z_2 \times Z_2$ by Lemma 2.6 (vi) and hence $(N^\sigma_\beta)^{G^\sigma} \leq N^\sigma_\beta \cap N^\sigma$. Since N^σ_β is dihedral, $N^\sigma_\beta/(N^\sigma_\beta)^{G^\sigma} \cong Z_2 \times Z_2$, so that $N^\sigma_\beta/N^\sigma \cap N^\sigma \leq Z_2 \times Z_2$.

(3.3) Suppose $N^\sigma_\beta=N^\sigma \cap N^\sigma$ and let U be a subgroup of N^σ_β isomorphic to $Z_2 \times Z_2$. Then $|F(U)|=3r+1$ and $N^\sigma_\beta(U)^{F(U)}$ is doubly transitive.

Proof. Sex $X=N^\sigma_\beta(N^\sigma_\beta)$, $\Delta=F(N^\sigma_\beta)$ and let $\{\Delta_1, \Delta_2, \ldots, \Delta_r\}$ be the set of N^σ-orbits on $\Omega-\{\alpha\}$. If $g^{-1}N^\sigma_\beta g \leq G_{\alpha\beta}$, then $g^{-1}N^\sigma_\beta g \leq N^\sigma_\gamma \cap N^\sigma_\delta=N^\sigma_\gamma \cap N^\sigma_\delta \leq N^\sigma_\beta$, where $\gamma=\alpha^\sigma$. By a Witt’s theorem, X^σ is doubly transitive.

If U is a Sylow 2-subgroup of N^σ_β, by a Witt’s theorem, $N^\sigma_\beta(U)^{F(U)}$ is doubly transitive. Moreover $N^\sigma_\beta(U)=N^\sigma_\beta$ and so by Lemmas 2.3 and 2.4 (ii), $|F(U)|=1+|A_4| \times |N^\sigma_\beta| \times r/|N^\sigma_\beta|=3r+1$.

If $|N^\sigma_\beta|>4$, by Lemma 2.6 (iv) and (v), $N^\sigma_\beta(U)=S_4$ and N^σ_β has two conjugate classes of four-groups, say $\pi=\{K_1, K_2\}$. Set $X_\pi=M$. Then $M \geq N^\sigma_\beta$ and $X/M \leq Z_2$. Clearly $F(U) \cap \Delta_i \neq \phi$ for each i and so $|F(U) \cap \Delta_i|=3$ by Lemma 2.3. Hence $|F(U)|=3r+1$. Since $N^\sigma_\beta(U)=S_4$, we may assume $r>1$. Hence by (3.1) (i), $|\Delta|=r+1 \geq 4$, so that M^σ is doubly transitive. Since $M=N^\sigma_\beta N^\sigma_\beta(U)$, $M^\sigma(U)^{F(U)}$ is also doubly transitive and so $N^\sigma_\beta(U)$ is transitive on Δ—
\{α\}. As \(|Δ \cap Δ_i| = 1\), \(Δ \cap Δ_i \subseteq F(U)\) and \(N_\ast(U)\) is transitive on \(F(U) \cap Δ_i\) for each \(i\), \(N_\ast(U)^{F(U)}\) is doubly transitive.

\[(3.4)\] (i) \(C^\ast = 1\).
(ii) Let \(U\) be a subgroup of \(N^\ast_\beta\) isomorphic to \(Z_2 \times Z_2\). If \(N^\ast_\beta = N^\ast \cap N^\beta\), then \(N_\ast(U)^{F(U)}\) has a regular normal 2-subgroup. In particular \(|F(U)| = 3r + 1 = 2^b\) for positive integer \(b\).

Proof. Since \(N_\ast(U)^{F(U)} \supseteq N^\ast_\beta(U)^{F(U)} \supseteq S_3\) or \(Z_3\), by (3.3) and Theorem 3 of [1], \(N_\ast(U)^{F(U)}\) has a regular normal subgroup, \(N_\ast(U)^{F(U)} \supseteq \text{PSU}(3,3)\) or \(N_\ast(U)^{F(U)} = R(3)\).

Suppose \(C^\ast = 1\). Let \(D\) be a minimal characteristic subgroup of \(C^\ast\). Clearly \(G_\ast D\). If \(N_\ast(U)^{F(U)} \supseteq R(3)\), \(D\) is cyclic. By Theorem 3 of [1], \(G^\ast\) has a regular normal subgroup, contrary to the hypothesis. Hence \(N_\ast(U)^{F(U)} = R(3)\).

Thus (3.4) holds.

(3.5) (i) If \(|Y| \geq 3\), \(N_\ast(Y)^{F(Y)}\) is doubly transitive.
(ii) If \(|Y| < 3\), \(N^\ast_\beta = Z_2 \times Z_2\) or \(N^\ast_\beta = D_4\) and \(N^\ast \cap N^\beta \leq Z_2 \times Z_2\).

Proof. Suppose \(|Y| \geq 3\). If \(Y^g \leq G_\ast\beta\), \(Y^g \leq N^\ast \cap G_\ast\beta \leq N^\ast_\beta\), where \(γ = α^g\).
If \(γ = α\), obviously \(Y^g \leq N^\ast\). If \(γ \neq α\), \(N^\ast_\alpha = N^\ast_\beta\). Therefore, as \(|Y| \geq 3\), \(N^\ast_\alpha\) has a unique cyclic subgroup of order \(|Y|\). Hence \(Y^g \leq N^\ast \cap N^\beta \leq N^\ast\), so that \(Y^g \leq N^\ast\). Similarly \(Y^g \leq N^\beta\). Thus \(Y^g \leq N^\ast \cap N^\beta\) and so \(Y^g = Y\). By a Witt’s theorem, \(N_\ast(Y)\) is doubly transitive on \(F(Y)\).

Suppose \(|Y| < 3\). Since \(|N^\ast \cap N^\beta| \leq 2\), we have \(N^\ast \cap N^\beta \leq Z_2 \times Z_2\).
On the other hand, as \(N^\ast_\beta\) is dihedral, \((N^\ast_\beta)^\prime\) is cyclic. Hence (ii) follows immediately from (3.2).

(3.6) Set \(Δ = F(N^\ast_\beta)\), \(L = G(Δ)\), \(K = G_Δ\) and suppose \(N^\ast_\beta \neq Z_2 \times Z_2\). Then \(L_\ast \supseteq N^\ast_\beta, (L_\ast)^\prime \leq N^\ast_\beta, K^\prime \leq N^\ast \cap N^\beta\) and \((L_\ast)^\prime = Z_r\). If \(r \neq 1\), \(L^\ast\) is a doubly transitive Frobenius group of degree \(r + 1\).

Proof. By Corollary B1 of [7] and (i) of (3.1), \(L^\ast\) is doubly transitive and
$|\Delta|=r+1$. Since $N^* \cap L \geq N^* \cap K = N^*_a$, by (i) of (3.1), we have $N^* \cap L = N^*_a$. Hence $L_a \geq N^*_a$. By (i) of (3.4), $L_a/N^*_a = L_a/N^* \leq \text{Out}(N^*) = Z_2 \times Z_4$ and so $(L_a)_{\Delta} = Z_r$. If $r \neq 1$, then $(L_a)_{\Delta} = 1$. On the other hand $(L_a)^3 = 1$. As L_a is abelian. Hence L_a is a Frobenius group.

(3.7) Suppose $|Y| \geq 3$. Then there exists an involution y in $N^*_a \cap Y$ such that $Z(N^*_a) = \langle y \rangle$.

Proof. Suppose $N^*_a \neq Z_2 \times Z_2$, $|N^*_a| \geq 2^2$ and N^*_a is dihedral, we have $\langle I(W) \rangle = Z(N^*_a) = Z_2$ and $N^*_a/(N^*_a)^\gamma = Z_2 \times Z_2$. Let $Z(N^*_a) = \langle y \rangle$ and suppose that z is not contained in Y. By (3.2), $(N^*_a)^\gamma \leq N^* \cap N^\beta \leq W = Y$ and so $(N^*_a)^\gamma$ is odd. Hence $|N^*_a|^2 = 4$ and $q \equiv \beta^2 \equiv 3 \text{ or } 5 \pmod 8$, so that n is odd. By (3.2) and (i) of (3.4), $N^*_a/N^* \cap N^\beta = N^*_a/N^\beta = 1$ or Z_2. If $N^*_a = N^* \cap N^\beta$, then $W = Y$ and so $z \in Y$, contrary to the assumption. Therefore we have $N^*_a \cap N^\beta = Z_2$ and $N^*_a = \langle z \rangle \times (N^* \cap N^\beta)$. Since n is odd and $z \in N^* \cap N^\beta = N^\beta$, by Lemma 2.6 (vi), (vii) and (ix), $N^*_a/N^\beta = \text{PGL}(2, q)$ and $C_{N^a}(z) = D_{q+1}$. But $N^* \cap N^\beta \leq C_{N^a}(z)$ and besides it is isomorphic to a subgroup of D_{q-v}. Hence $N^* \cap N^\beta = Z_2$ and $N^*_a = Z_2 \times Z_2$, a contradiction.

(3.8) Suppose $|Y| \geq 3$. Then $N^*_a = N^* \cap N^\beta$.

Proof. Suppose $N^*_a \neq N^* \cap N^\beta$ and let Δ, L, K be as defined in (3.6) and $x \in L_a$ such that its order is odd and $\langle x \rangle$ is transitive on $\Delta - \{\alpha\}$. As $|Y| \geq 3$, W is characteristic in N^*_a and hence by (3.6), x stabilizes a normal series $L_a \geq N^*_a \geq W \geq (N^*_a)^\gamma$. By Theorem 5.3.2 of [2], $[x, 0, (L_a/(N^*_a)^\gamma)] = 1$. Since $L_a/(N^*_a)^\gamma$ has a normal Sylow 2-subgroup and $(N^*_a)^\gamma \leq K'$, we have $[x, 0, (L_a/K')] = 1$, so that $[x, N^*_a] \leq K \leq N^* \cap N^\beta$ by (3.6). If $r \neq 1$, then $\beta^2 = \beta$ and $\beta^2 \in \Delta$, hence $N^*_a = x^{-1}N^*_a x = N^*_a$, where $\gamma = \beta^2$. Since $\gamma \in \Delta$ and $\Delta = F(N^*_a)$, $N^*_a \leq N^\beta \cap G_\gamma = N^\gamma$ and so $N^*_a = N^\gamma$. Similarly $N^\gamma = N^*_a$. Hence $N^*_a = N^\gamma$, which implies $N^*_a = N^* \cap N^\beta$. By the doubly transitivity of G, we have $N^*_a = N^* \cap N^\beta$, contrary to the assumption. Therefore we obtain $r = 1$.

Let z be as defined in (3.7) and put $k = (q - \xi)/|N^*_a|$. By Lemma 2.8(i) we have $|F(z)| = 1 + (q - \xi)(|N^*_a|/2 + 1)/|N^*_a| = (q - \xi)/2 + k + 1$. Similarly $|F(Y)| = k + 1$. As $N^*_a \neq N^* \cap N^\beta$, there is an involution t in N^*_a which is not contained in N^β. By Lemma 2.6 (i), $t^z = z$ for some $z \in N^*$. Set $\gamma = \beta^2$. Then $\gamma \in F(z)$ and $z \in N^\gamma$. By Lemma 2.6 (vii), (viii) and (ix), $C_{N^a}(z) = D_{q+1}$ or $\text{PGL}(2, \sqrt{q})$. Assume $C_{N^a}(z) = D_{q+1}$ and let R be a cyclic subgroup of $C_{N^a}(z)$ of index 2. We note that R is semi-regular on $\Omega - \{\alpha\}$. Set $X = C_0(z)$. Since $2 \leq k + 1 \leq (q - \xi)/|q - \xi| + 1$, we have $(q - \xi)/2 + k + 1 = (q - \xi)/2 + k + 1$. By (i) of (3.5) and (3.7), $N_0(Y) \leq C_0(z) = X$ and $\alpha^X \in F(Y)$. It follows from Lemma 2.1 that $\alpha^X = \{z \in N^* \cup \gamma \neq \gamma \}$. Hence $|F(z)| = |\alpha^X| \geq |F(Y)| + (q + \xi)/2 = k + 1 + (q - \xi)/2 + \xi = |F(z)| + \xi$. Therefore $\xi = -1$ and $\gamma^X = \{\gamma \}$, so that $\gamma \in F(Y)$, a contradiction. Thus $C_{N^a}(z) = \text{PGL}(2, \sqrt{q})$, $\xi = 1$, $N^*_a/N^* \cap N^\beta = Z_2$ and $|\langle z^\rho \cap G_a \rangle| = N^* = 2$.

803
Set $\Delta_1 = \alpha^x$ and $\Delta_2 = F(z) - \Delta_1$. Let $\delta \in \Delta_2$ and g an element of G satisfying $\delta^g = \gamma$. Then $z \in N_\gamma N^g - N^\gamma$ and so $z^2 \in N_\gamma N^g - N^\gamma$, where $v = \alpha^x$. Since $\langle \delta^g \cap G_\gamma \rangle = N^g| = 2$ and $x \in G_\gamma - N^\gamma$, it follows from Lemma 2.6 (ix) that $(x)^g = x$ for some $h \in G_\gamma$. Hence $gh \in X$ and $\delta^h = \gamma$. Thus $\Delta_2 = \gamma^x$. Let $\delta \in \Delta_2$. Then $\delta \in N^z$ and so $z \in N^\gamma \cap \Delta_2 = \{\alpha, \beta\}$. Hence $C_{N^\gamma}(z)$ fixes α and β, so that $PGL(2,3) = \langle C_{N^\gamma}(z) \rangle \leq N_{\gamma}^\gamma = N^\gamma / \Delta_2$, a contradiction.

(3.9) **Suppose** $|Y| \geq 3$. Then $r = 1$.

Proof. By (3.6), $r + 1 = 2^c$ for some integer $c \geq 0$. On the other hand $3r + 1 = 2^k$ by (3.8) and (ii) of (3.4). Hence $2r = 2^c(2^k - c - 1)$ and so $c = 1$ as r is odd. Thus $r = 1$.

(3.10) **Put** $k = (q - \varepsilon)/|N^\gamma|$. If $N^\gamma_\beta = N^\gamma \cap N^\beta$ and $r = 1$, then

$$q - \varepsilon + 2k + 2|2((2k + 2 - \varepsilon)(2k + 2 - \varepsilon)(k + 1 - \varepsilon)(2k + 2 - \varepsilon)(k + 1 - \varepsilon)).$$

Proof. Set $S = \{(z, u) | z \in F(u), u \in z^g\}$, where z is an involution in N^g. We now count the number of elements of S in two ways. Since $N^\gamma_\beta = N^\gamma \cap N^\beta$, $F(z) = \{\gamma \in F(u), u \in z^g\}$ and hence $C_G(z)$ is transitive on $F(z)$ by Lemma 2.1. Therefore $|S| = |\Omega| |z^g| = |z^g| |F(z)|$. Since $r = 1$, $|\Omega| = 1 + |N^\gamma_\beta| = kq(q + \varepsilon)2 + 1$ and by Lemma 2.8 $|F(z)| = (q - \varepsilon)/2 + k + 1$. Since $G_\gamma \geq N^\gamma$, z^g is contained in N^γ and so $|G_\alpha| = |C_G(z)| = q(q + \varepsilon)/2$. Hence $|G_\alpha| = (q - \varepsilon)/2 + k + 1$. On the other hand $|F(z)| = |C_G(z)| |G_\alpha(z)| = (q - \varepsilon)/2 + k + 1$. Because $|G_\alpha(z)| = q(q + \varepsilon)/2 \geq 1$ (mod 2). Hence $q - \varepsilon + 2k + 2|2(k + 2 - \varepsilon)(k + 1 - \varepsilon)(2k + 2 - \varepsilon)(k + 1 - \varepsilon)$, we have (3.10).

(3.11) **Suppose** $|Y| \geq 3$. Then one of the following holds.

(i) $N^\gamma_\beta = N^\gamma \cap N^\beta = D_{q - r}$.

(ii) $N^\gamma_\beta = N^\gamma \cap N^\beta \neq D_{q - r}$ and $N_G(Y)^{F(Y)}$ has a regular normal subgroup.

Proof. Suppose false. Then, by (3.5), (3.8) and Lemma 2.9, $N_G(Y)^{F(Y)} = R(3)$ or there exists a prime $p_1 \geq 5$ such that $C_G(Y)^{F(Y)} \geq PSL(2, p_1)$ and $V/Y = Z_{p_2}$ where $V = C_N(Y)$. By (i) of (3.1) and (3.9), $F(N^\gamma_\beta) = \{\alpha, \beta\}$. On the other hand, $(N^\gamma_\beta)^{F(Y)} \geq N^\gamma_\beta / Y = Z_2$. Hence $N_G(Y)^{F(Y)} \geq R(3)$ and $C_G(Y)^{F(Y)} \geq$
By (i) of (3.4) and Lemma 2.7, we have \(C_{G_a}(Y) = V \langle f_1 \rangle \), where \(f_1 \) is a field automorphism of \(N^* \). Let \(t \) be the order of \(f_1 \), \(n = tm \) and let \(p^m \equiv \varepsilon_1 \equiv \{ \pm 1 \} \) (mod 4). Clearly \(C_{G_a}(Y)^{F(Y)} \geq V \langle f_1 \rangle = Z_2 \) and \(|C_{G_a}(Y)^{F(Y)}| \mid |t| \), so that \((p_1-1)/2 \mid |t| \).

First we assume that \(t \) is even and set \(t = 2t_1 \). Then \(Y \leq C_{N^*}(f_1) = PGL(2, p^m) \) by Lemma 2.6 (viii). As \(|V/Y| = p_1 \) and \(p_1 \) is a prime, \(Y \) is a cyclic subgroup of \(C_{N^*}(f_1) \) of order \(p^m-\varepsilon_1 \) and \((p^m-1)/2(p^m-\varepsilon_1) = p_1 \). Put \(s = \sum_{i=1}^{t_1} (p^m)^i \). Then \((p^m+\varepsilon_1)s/2 = p_1 \), so that we have either (i) \(t_1 = 1 \) and \(p_1 = (p^m+\varepsilon_1)/2 \) or (ii) \(t_1 \geq 2 \), \(p^m = 3 \) and \(p_1 = s \). In the case (i), \(2 \leq (p_1-1)/2 = (p^m+\varepsilon_1-2)/4 \mid 2t_1 = 2 \). Hence \((p_1, q) = (5, 3^4) \) or \((4, 11^2) \). Let \(z \) be as in (3.7). As mentioned in the proof of (3.10), \(|F(z)| = (q-1)/2+k+1 \), \(|\Omega| = kq(q+1)/2+1 \) and \(C_\Omega(z) \) is transitive on \(F(z) \). If \(q = 3^4 \), then \(|F(z)| = 46 \) and \(|\Omega| = 2 \cdot 19 \cdot 23 \). Hence \(|C_\Omega(z)| = |F(z)| \mid C_{G_a}(z) = |F(z)| \mid C_{G_a}(z) = 46 \cdot 2^t \cdot 31 = 2^{11} \cdot 5 \cdot 23 \) with \(0 \leq i \leq 3 \). Let \(P \) be a Sylow 23-subgroup of \(C_\Omega(z) \) and \(Q \) a Sylow 5-subgroup of \(C_\Omega(z) \). Since \(11 \mid |\Omega| \), \(P \) is a subgroup of \(N_\Omega \) for some \(\gamma \in \Omega \) and \(F(P) = \{ \gamma \} \). Hence \(\gamma \in F(z) \), so that \(z \in N_\Omega \), contrariwise to \(C_{N^*}(z) = D_{160} \). In the case (ii), we have \((p_1-1)/2 = (\sum_{i=1}^{t_1-1} 9^i)/2 = 2t_1 \). From this, \(9^{t_1-1} \leq 4t_1 \), hence \(t_1 = 1 \), a contradiction.

Assume \(t \) is odd. Then \(Y \leq C_{N^*}(f_1) = PSL(2, p^m) \) by Lemma 2.6 (viii). As \(|V/Y| = p_1 \) and \(p_1 \) is a prime, \(Y \) is a cyclic subgroup of \(C_{N^*}(f_1) \) of order \(p^m-\varepsilon_1 \) and \((p^m-1)/2(p^m-\varepsilon_1) = p_1 \). Hence \(\sum_{i=0}^{t_1} (p^m)^i (\varepsilon_i)^{t_1-i} = p_1 \) and \((p_1-1)/2 = (\sum_{i=1}^{t_1} (p^m)^i (\varepsilon_i)^{t_1-i})/2 \mid t_1 \). In particular \(2t \geq (p^m)^{t_1-1}-(p^m)^{t_2} = (p^m)^{t_1-2} \geq 2(p^m)^{t_1-2} \). From this \(t = 3 \), \(m = 1 \), \(p_1 = 7 \) and \(q = 3^3 \), so that \(N_\Omega = D_{160} \times D_{160} \), a contradiction.

(3.12) (i) of (3.11) does not occur.

Proof. Let \(G^a \) be a minimal counterexample to (3.12) and \(M \) a minimal normal subgroup of \(G \). By the hypothesis, \(G \) has no regular normal subgroup and hence \(M \neq \pm 1 \). As \(M_a \) is a normal subgroup of \(G_a \), by (i) of (3.4), \(M_a \) contains \(N^* \). By (3.9), \(r = 1 \), hence \(M \) is doubly transitive on \(\Omega \). Therefore \(G = M \) and \(G \) is a nonabelian simple group.

Since \(N_\Omega = D_{160} \), \(k = 1 \) and so \(q-\varepsilon+4 \mid 2((4-\varepsilon)(2-\varepsilon)+1)(4-\varepsilon)(2-\varepsilon) \) by (3.10). Hence we have \(q = 7, 9, 11, 19, 27 \) or 43.

Let \(x \) be an element of \(N_\Omega \). If \(|x| > 2 \), by Lemma 2.8, \(|F(x)| = 1+|N_\Omega| \times 1/|N^*_\Omega| = 2 \) and if \(|x| = 2 \), similarly we have \(|F(x)| = (q-\varepsilon)/2+2 \). Assume \(q = 9 \) and let \(d \) be an involution in \(G_a - N^* \) such that \(\langle d \rangle N^* \) is isomorphic to \(PGL(2, p^m) \).
We may assume \(d \in G_{ab}\). Since \(\langle d \rangle N^{a}\) is transitive on \(\Omega - \{\alpha\}\), by Lemmas 2.3 and 2.6 (vii), (ix), \(|F(d)| = 2(q-1)(q+1)2/(q+1) + 1 = (q+1)/2\), while \(|F(x)| = (q+1)/2 + 2\) for \(x \in I(N^{a})\). Hence \(d\) is an odd permutation, contrary to the simplicity of \(G\). Thus \(G_{a} = N^{a}\) if \(q \neq 9, 27\) and \(|G_{a}/N^{a}| = 1, 3\) if \(q = 27\).

If \(q = 9\), \(|\Omega| = 1 + |N^{a}|: N_{a}^{a}| = 1 + 9 - 10/2 = 2.3.2\) and \(|G_{a}| = 2^{4} |PSL(2,9)| = 2^{3} \cdot 3 \cdot 5\) with \(0 \leq i \leq 2\). Let \(P\) be a Sylow 23-subgroup of \(G\). Since \(\text{Aut}(Z_{23}) \cong Z_{2} \times Z_{11}, 3 \cdot X |N_{G}(P)|, \) for otherwise \(P\) centralizes a nontrivial 3-element \(x\) and so \(F(P) \supseteq F(x)\) because \(|F(x)| = 1\), contrary to \(|F(P)| = 0\). Similarly \(5 \cdot X |N_{G}(P)|\). Hence \(|G: N_{G}(P)| = 2 \cdot 3 \cdot 5\) for some \(a\) with \(0 \leq a \leq 6\). By a Sylow’s theorem, \(2 \cdot 3 \cdot 5 \equiv -2^{2} \equiv 1 \) (mod 23), a contradiction.

If \(q = 27\), \(|\Omega| = 1 + 27 \cdot 2.6/2 = 25 \cdot 11\) and \(|G_{a}| = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 13\) with \(0 \leq i \leq 1\). Let \(P\) be a Sylow 11-subgroup of \(G\). Since \(P \cong Z_{11}\) and \(\text{Aut}(Z_{11}) \cong Z_{2} \times Z_{5}, 3 \cdot 7 \cdot 13\), \(13 \cdot X |N_{G}(P)|\) by the similar argument as above. Hence \(|G: N_{G}(P)| = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13\) with \(0 \leq a \leq 7\) and \(3 \leq b \leq 3 + i\). By a Sylow’s theorem, \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13\). \(7 \cdot 13 \equiv 2 \cdot 3 \cdot 5 \cdot 4 \equiv 1 \) (mod 11). Hence \(a = 0, b = 4\). Therefore \(N_{G}(P)\) contains a Sylow 2-subgroup \(S\) of \(G\). Let \(T\) be a Sylow 2-subgroup of \(N_{a}\) and \(g\) an element such that \(T^{g} \subseteq S\). Then \(T^{g} \cap C_{G}(P) \neq 1\) as \(N_{G}(P)/C_{S}(P) \subseteq Z_{2}\). Let \(u\) be an involution in \(T^{g} \cap C_{G}(P)\). Then \(|F(u)| = (27 + 1)/2 = 13\), while \(11 \mid |F(u)|\) because \([P, u] = 1\) and \(|F(P)| = 0\), a contradiction.

If \(q = 7, 11, 19\) or 43, then \(G_{a} = N^{a}\) and \(e = -1\). Let \(\Gamma = \{\gamma, \delta \mid |\gamma, \delta \in \Omega, \gamma \neq \delta|\) be the action of \(G\) on \(\Gamma\). Since \(G_{a}\) is doubly transitive, \(G_{a}\) is transitive and \(G_{a} = 1\). Let \(z\) be an involution of \(Z(N_{a})\). There exists an involution \(t\) such that \(t \in \pi^{a}\) and \(\alpha = \beta\). Since \(G_{ab} = N_{a}^{a}\) and \(F(N_{a})^{a} = \{\alpha, \beta\}\) we have \(G_{(a,b)} = \langle \alpha \rangle N_{a}^{a}\). By Lemma 2.3, \(|F(z)| = |C_{G}(z)\times |(t)\cdot N_{a}^{a}| = |F(z)| \times |C_{G}(z)| \times |(t)\cdot N_{a}^{a}| = |F(z)| \times |(t)\cdot N_{a}^{a}| /|Z_{2}| = |F(z)| \times |(t)\cdot N_{a}^{a}| /|Z_{2}|. As \(|F(x')| = |F(z)| \times |F(z)| - 1)/2 + (|\Omega| - |F(z)|) /|\Omega| + |\Omega| /|F(z)| - 2. In particular \(|F(z)| \subseteq |\Omega|\). Since \(|F(z)| = (q + 1)/2 = 2(q + 5)/2 + |\Omega| = 1 + q(q - 1)/2 = (q^{2} - q + 2)/2\), we have \(q = 11\) and \(|t)\cdot N_{a}^{a}| \subseteq |\Omega| = 13\). Moreover \(|\Omega| = 56, |G_{a}| = |PSL(2,11)| = 2 \cdot 3 \cdot 5 \cdot 11\) and \(|G_{a}| = 2 \cdot 3 \cdot 5 \cdot 7\).

We now argue that \(\langle t \rangle N_{a}^{a} \cong D_{24}\). Let \(R\) be the Sylow 3-subgroup of \(N_{a}^{a}\). If \(t\) centralizes \(R, R\) acts on \(F(t)\) and so \(F(R) \subseteq F(t)\) as \(|F(t)| = 8\) and \(|F(R)| = 2\). Hence \(\alpha = \gamma, \delta\), contrary to the choice of \(t\). Therefore \(t\) inverts \(R\) and \(\langle t \rangle N_{a}^{a}\) is isomorphic to \(Z_{2} \times D_{12}\) or \(D_{24}\). Suppose \(\langle t \rangle N_{a}^{a} \cong Z_{2} \times D_{12}\). Then \(\langle t \rangle N_{a}^{a}\) contains fifteen involutions and so we can take \(u \in I(\langle t \rangle N_{a}^{a})\) satisfying \(|F(u)| = 1\) and \(\langle t \rangle N_{a}^{a} = \langle u \rangle \times N_{a}^{a}\). As \(|F(u)| = 0, |F(u')| = |\Omega| /|\Omega| = 28\). By Lemma 2.3, \(28 = |C_{G}(u)| \times |\langle u \rangle \times N_{a}^{a}| /|\Omega| /|\Omega| = 28\). Hence \(|C_{G}(u)| = 2 \cdot 3 \cdot 7\) or \(2 \cdot 3 \cdot 7\). Since \(\langle u \rangle \cdot N_{a}^{a} = C_{G}(R)\), we have \(|C_{G}(u)| = C_{G}(u) \cdot N_{G}(R)| = 2 \cdot 7\) or \(2 \cdot 7\). By a Sylow’s theorem, \(|C_{G}(u)| = C_{G}(u) \cdot N_{G}(R)| = 2 \cdot 7\), so that \(|C_{G}(u)| = 2 \cdot 3 \cdot 7\). Let \(Q\) be a Sylow 7-subgroup of \(C_{G}(u)\). Then \(|C_{G}(u) \times N_{G}(Q)| = 2 \cdot 3 \cdot 7\) or \(2 \cdot 3 \cdot 7\) by a Sylow’s theorem. Hence \(2 \cdot 3 \cdot 7 \mid |N_{G}(Q)|\). Since \(\text{Aut}(Z_{2}) \cong Z_{2} \times Z_{3},\)
by the similar argument as in the case \(q=9 \). Therefore \(|G: N_c(Q)| = 2^a \cdot 5 \cdot 11 \) for some \(a \) with \(0 \leq a \leq 3 \). Hence \(|G: N_c(Q)| \equiv 1 \pmod{7} \), a contradiction. Thus \(\langle \iota \rangle N_c^{*} \cong D_{24} \).

Let \(U \) be a Sylow 2-subgroup of \(N_c^{*} \) and set \(L = N_c(U) \). It follows from (3.3) and Lemma 2.6 (iv) that \(L \cap N_c^{*} = A_4 \), \(L^{\iota} = A_4 \) and \(|L| = 2^a \cdot 3 \). Let \(T, \langle \iota \rangle \) be Sylow 2- and 3-subgroup of \(L \), respectively. Obviously \(L \supseteq \Gamma \) and \(C_T(x) = 1 \).

On the other hand \(T, \langle \iota \rangle \), \(T \) is dihedral or semi-dihedral. Hence \(N_c(T)/C_T(T) \) is a 2-group, so that \(C_T(x) = \iota \), a contradiction.

(3.13) (ii) of (3.11) does not occur.

Proof. Let \(G_c^{*} \) be a doubly transitive permutation group satisfying (ii) of (3.11). Let \(x \) be an involution in \(N_c^{*} \) with \(x \in \Gamma \). Then \(F(x^F) = F(x) = \iota \) by (i) of (3.1) and (3.9). Since \(|F(Y)| = 1 + (q-\epsilon)/3 \), \(|N_c^{*}| = 1 + k \cdot 4, x^F \) is an involution. By Lemma 2.5, \(1 + k = 2^a \) and so \(k = 3 \). By (3.11), \(q-\epsilon = 2((8-\epsilon)(4-\epsilon)+3) \). Hence \(q+7 \leq 2^a \cdot 3 \cdot 7 \) if \(\epsilon = 1 \) and \(q+9 \leq 2^a \cdot 3 \cdot 5 \cdot 17 \) if \(\epsilon = -1 \). From this \(q+7 \leq 2^a \cdot 7 \) if \(\epsilon = 1 \) and \(q+9 \leq 2^a \cdot 5 \cdot 17 \) if \(\epsilon = -1 \). Therefore \(q = 5^2, 7^2, 11^2, 59 \) or 71.

Let \(p_1 \) be an odd prime such that \(p_1 \mid |\Omega| \) and \(p_1 \mid |G_a| \) and let \(P \) be a Sylow \(p_1 \)-subgroup of \(G \). Clearly \(P \) is semi-regular on \(\Omega \) and so any element in \(C_G(P) \) has at least \(p_1 \) fixed points. If \(x \) is an element of \(N_c^{*} \) and its order is at least three, \(|p(x)| = 4 \) by Lemma 2.8. Since \(|\Omega| = 1 + 3(q+1)/2 \), we have \(|\Omega| = 1 + 3q(q+1)/2 \).

If \(q = 5^2 \), then \(|\Omega| = 2^a \cdot 61 \) and \(|G_a| = 2^{a+1} \cdot 3 \cdot 5 \cdot 13 \) (0 \(\leq a \leq 2 \)). Let \(P \) be a Sylow 61-subgroup of \(G \). Then \(P \supseteq Z_{61} \). As mentioned above, \(5, 13 \not\mid |C_G(P)| \) and so \(5^2, 13 \not\mid |G_a| \). Hence \(|G: N_c(P)| = 2^{a+1} \cdot 5 \cdot 13 \), where \(0 \leq a \leq 10 \) and \(0 \leq b, c \leq 1 \). But we can easily verify \(|G: N_c(P)| \equiv 1 \pmod{61} \), contrary to a Sylow's theorem.

If \(q = 7^2 \), then \(|\Omega| = 2^a \cdot 919 \) and \(|G_a| = 2^{a+1} \cdot 3 \cdot 5 \cdot 7 \cdot 27 \) (0 \(\leq a \leq 2 \)). Let \(P \) be a Sylow 919-subgroup of \(G \). By the similar argument as above, we obtain 5, \(7 \not\mid |N_c(P)| \) and so \(|G: N_c(P)| = 2^{a+1} \cdot 3 \cdot 5 \cdot 7 \cdot 27 \equiv 2^{a+1} \cdot 7 \cdot 3 \cdot 5 \cdot 27 \equiv 2^{a+1} \cdot 3 \cdot 5 \) if \(2^{a+1} \cdot 3 \cdot 5 \) or \(-2^{a} \pmod{919} \), where \(0 \leq a \leq 8 \) and \(0 \leq b, c \leq 1 \). Hence \(|G: N_c(P)| \equiv 1 \pmod{919} \), a contradiction.

If \(q = 11^2 \), then \(|\Omega| = 2^a \cdot 17 \cdot 13 \) and \(|G_a| = 2^{a+1} \cdot 3 \cdot 5 \cdot 13 \cdot 11^2 \cdot 61 \) (0 \(\leq a \leq 2 \)). Let \(P \) be a Sylow 173-subgroup of \(G \). Similarly we have 3, 5, 11, 61 \(\not\mid |N_c(P)| \) and so \(|G: N_c(P)| = 2^{a+1} \cdot 3 \cdot 5 \cdot 11^2 \cdot 61 \equiv -2^{a} \pmod{173} \), where \(0 \leq a \leq 12 \). Hence \(|G: N_c(P)| \equiv 1 \pmod{173} \), a contradiction.

If \(q = 59 \), then \(|\Omega| = 2^a \cdot 17 \cdot 151 \) and \(|G_a| = 2^{a+1} \cdot 3 \cdot 5 \cdot 29 \cdot 59 \) (0 \(\leq a \leq 1 \)). Let \(P \) be a Sylow 17-subgroup of \(G \). Similarly we have 3, 5, 29, 59 \(\not\mid |N_c(P)| \) and so \(|G: N_c(P)| = 2^{a+1} \cdot 3 \cdot 5 \cdot 29 \cdot 59 \cdot 151^2 \equiv 10 \cdot 2^a \) or \(12 \cdot 2^a \pmod{17} \), where \(0 \leq a \leq 4 \) and \(0 \leq b, c \leq 1 \). From this, we have a contradiction.

If \(q = 71 \), then \(|\Omega| = 2^{a+1} \cdot 3 \cdot 7 \cdot 233 \) and \(|G_a| = 2^{a+1} \cdot 3 \cdot 5 \cdot 7 \cdot 233 \) (0 \(\leq a \leq 1 \)). Let \(P \) be
a Sylow 233-subgroup of G. Since $3, 5, 7, 71 | N(G)$, $|G: N(G)| = 2^a \cdot 3^b \cdot 5^c \cdot 7^d \cdot 71^e$ (mod 233), where $0 \leq a, b, c, d, e \leq 9$. Similarly we get a contradiction.

We now consider the case $|Y| < 3$. By (ii) of (3.5), $N^{a} \approx Z \times Z$ or $N^{a} \approx D_8$ and $N^{a} \cap N^{b} \leq Z \times Z$.

(3.14) The case that $N^{a} \approx Z \times Z$ does not occur.

Proof. Set $\Delta = F(N^{b})$. Then $|\Delta| = 3r + 1$ and $\Delta = F(N^{a}N^{b})$ by (ii) of (3.1) and Corollary B1 of [7]. Since $|N^{a}| \geq n$, we have $q = p^{n} \equiv 3, 5 \pmod{8}$ and so n is odd. Hence $|G_{a}N^{b}| \leq 2$ and $N^{a} \approx N^{b}$ or $N^{a} \approx N^{b}$. Then $N^{a}N^{b}$ is a Sylow 2-subgroup of G_{a}, hence $N_{c}(N^{a}N^{b})$ is doubly transitive by a Witt's theorem. Since $N_{c}(N^{a}N^{b}) = D_8$ and $|\Delta|$ is even, $C_{G}(N^{a}N^{b})$ is also doubly transitive. Let g be an element of $C_{G}(N^{a}N^{b})$ such that $c' = b$ and $b' = a$. Then $N^{a} = g^{-1}N^{b}g = N^{a}$ and hence $N^{a} = N^{b}$, a contradiction. Thus $N^{a} = N^{b} \cap N^{b} = Z \times Z$.

Let z be an involution in N^{a} and $t \in z^{a}$ an involution such that $\alpha = b$. Set $\Gamma = \{\gamma, \delta \} | \gamma, \delta \in \Omega, \gamma \neq \delta\}$. We consider the action of the element z on Γ. By the similar argument as in the proof of (3.12), $|F(z)| = (|F(z)| - 1)/2 + (|\Omega| - |F(z)|)/2 = |G(z)| = |G_{a}(z)| = z^{a} \times \langle t \rangle |G_{a}| = |\langle t \rangle |G_{a}|$. Since $N^{a} = N^{b} \cap N^{b}$, by Lemma 2.6 (i), $z^{a} \in G_{a} = z^{a}$ and so $|C_{G}(z)| = |F(z)| \times |C_{G}(z)|$. Hence $|G_{a}| = (|F(z)| - 1)/|\Omega| - |F(z)| = |F(z)| = |C_{G}(z)| = z^{a} \times \langle t \rangle |G_{a}|$, so that $|G_{a}| = |\Omega| \equiv 0 \pmod{|F(z)|}$. Since $G_{a}/N^{b} = G_{a}/N^{b}$, we have $|G_{a}| = 8n$. Clearly $|\Omega| = 1 + q(q - e) + (q + e)r/8$ and by Lemma 2.8 (i), $|F(z)| = 1 + 3(q - e)r/4$. Hence $1 + 3(q - e)r/4 | 8n(1 + q(q - e) + (q + e)r)/8$. Let $n = rs$. Then $3qr - 3er + 4 | (4rs + q(q - e) + (q + e)r)3^{r} = 864r^{3} + 4s(3pq) + 3(q - e)r(3(r - 3er) + 364r^{3} + 4s(3er - 3e + 3er) + 364r^{3} - 32s(3er - 3e - 3er - 2)$. (*) We argue that $r = 1$. Suppose false. Then $32s(3r - 4) + 3s(r - 4) > 0$ and so $3(q - e) < 864r^{3}$. Therefore $288m + e > q = p^{n} > 3^{n}$ and so $288n > 3^{n}$. Hence $(n, r, p, e) = (5, 5, 3, -1), (3, 3, -1)$, while none of these satisfy the inequality. Thus $r = 1$.

Hence $3q - 3e + 4 | (64 + 96)e - n$ and $|F(z)| = 1 + 3(q - e)r/4, |\Omega| = 1 + q(q - e) + (q + e)r/8$. If $s = -1$, then $3q - 3e < 3q + 7/256n$. Hence $s = 1$ or $(n, p) = (5, 3), (3, 3)$. Since $3 + 3^{3} + 7/256 - 3 + 3^{3} + 7/256 - 3, n = 1$ and $3q + 7/256$. From this, $q = 19$ or 83. If $s = 1$, then $3 + 3^{3} + 3q + 1/896n$ and so $n = 1$ or $(n, p) = (5, 3).$ Since $3 + 3^{3} + 1/896 - 3, n = 1$ and $3q + 1/896$. From this, $q = 19, 37, 149$. As $PSL(2, 5) = PSL(2, 4), q = 5$ by [4]. Thus $q = 19, 37, 83$ or 149.

Set $m = |z^{a} \cap \langle t \rangle |G_{a}|$. As we mentioned above, $|G_{a}| = (|G(z)| = |F(z)|)/4, |\Omega| = 1 + q(q - e) + (q + e)r/8$. Therefore $m = (2q^{2} + (2e + 9)q - 9e)/(3q - 3e + 4)$. It follows that $(q, m) = (19, 27, 2), (37, 28), (83, 449/8)$ or $(149, 411/4)$. Since m is an integer, we have $(q, m) = (37, 28)$. But $m \leq |\langle t \rangle |G_{a}| = 1, 16$, a contradiction. Thus (3.14)
(3.15) The case that $N_n^g = D_6$ and $N^g \cap N^g \leq Z_3 \times Z_2$ does not occur.

Proof. Let Δ, L and K be as defined in (3.6). By (3.6), there exists an element x in L such that its order is odd and $\langle x \rangle^L$ is regular on Δ. Since $(L \Delta)^L \leq N_n^g$ by (3.6) and $N_n^g = D_6$, x stabilizes a normal series $N_n^g N^g \geq N_n^g \geq 1$. Hence x centralizes $N_n^g N^g$ by Theorem 5.3.2 of [2] and so $x^{-1}N_n^g x = N_n^g$. Put $\gamma = \beta$. If $r = 1$, then $\beta = \gamma$, so that $N_n^g = N_n^g$. From this, $N_n^g = N_n^g$. By the doubly transitivity of G, $N_n^g = N_n^g$, hence $N_n^g = N_n^g \cap N^g$, a contradiction. Therefore $r = 1$ and $\Delta = \{\alpha, \beta\}$.

Set $\langle x \rangle = Z(N_n^g)$, $\Delta_1 = \alpha^{g(t)}$ and let $\{\Delta_1, \Delta_2, \ldots, \Delta_3\}$ be the set of $C_G(x)$-orbits on $F(z)$. Since $L \geq N_n^g \cap N^g$ and by (3.2), $N_n^g \cap N^g \neq 1$, z is contained in $N_n^g \cap N^g$. Hence, by Lemma 2.1, $\beta \in \Delta_1$ and k is at least two. By Lemma 2.8, $|F(z)| = 1 + (q - \varepsilon)5/|N_n^g| = 1 + (q - \varepsilon)/8$. Clearly $|C_{N_n^g}(z)| N_n^g = (q - \varepsilon)/8$ and so $|\Delta_1| \geq 1 + (q - \varepsilon)/8$. If $\gamma \in F(z) - \Delta_1$, then $C_N(z) = Z(z) \times Z_2$, for otherwise $\langle x \rangle = Z(N_n^g) \leq N_n^g \cap N^g$ and by Lemma 2.1 $\gamma \in \Delta_1$, a contradiction. Hence one of the following holds.

(i) $k = 3$ and $|\Delta_1| = 1 + (q - \varepsilon)/8$, Δ_2 and $|\Delta_3| = (q - \varepsilon)/4$.
(ii) $k = 2$ and $|\Delta_1| = 1 + (q - \varepsilon)/8$, Δ_2 and $|\Delta_3| = (q - \varepsilon)/2$.
(iii) $k = 2$ and $|\Delta_1| = 1 + 3(q - \varepsilon)/8$, Δ_2 and $|\Delta_3| = (q - \varepsilon)/4$.

Let $\gamma \in F(z) - \Delta_1$. Then, $z \in G_{\gamma} - N^g$ and so $C_N(z) = D_{n+\varepsilon}$ or $PGL(2, \sqrt{q})$ by Lemma 2.6 (vii), (viii), (ix). If $C_N(z) = D_{n+\varepsilon}$, then $(q + \varepsilon)/2 | | \Delta_1 |$ and so $q = 7$ and (ii) occurs. But $(q + \varepsilon)/2 = 3 | | \Delta_2 | - 1 - 1 = 1$, a contradiction. If $C_N(z) = PGL(2, \sqrt{q})$, then (i) does not occur because $\sqrt{q} \wedge q - \varepsilon$. Hence $\sqrt{q} | | \Delta_1 |$ and $\sqrt{q} | | \Delta_2 | - 1$. From this, $q = 25$ and (iii) occurs. In this case, we have $|\Delta_1| = 10$, so that an element of $C_N(z)$ of order 3 is contained in N_n^g for some $\delta \in \Delta_1$, contrary to $N_n^g = N_n^g = D_6$.

4. Case (II)

In this section we assume that $N_n^g = PGL(2, p^m)$, where $n = 2mk$ and k is odd. Since n is even, $q = p^m \equiv 1 \pmod{4}$. We set $p^m \equiv \varepsilon \equiv \{ \pm 1 \} \pmod{4}$. In section 7 we shall consider the case that $N_n^g = S_6$. Therefore we assume $(p, m) = (3, 1)$ in this section.

(4.1) The following hold.

(i) $N_n^g \cap N^g \leq Z_2$ and $N_n^g \cap N^g \geq (N_n^g)' = PSL(2, p^m)$.
(ii) If $(p, m) = (5, 1)$, there exists a cyclic subgroup Y of $(N_n^g)'$ such that $N_{N^g}(Y) = D_{n+\varepsilon}$ and $N_G(Y)^{F(\gamma)}$ is doubly transitive.

Proof. As $N_n^g \geq N_n^g \cap N^g$, either $N_n^g \cap N^g \leq Z_2$ or $N_n^g \cap N^g = 1$. If $N_n^g \cap N^g = 1$, by Lemma 2.2 and 2.6 (vi), $N_n^g = N_n^g \cap N^g = (N_n^g)^g = Z_2 \times Z_2$, a
contradiction. Therefore $N_a^*/N^a \cap N^a \simeq 1$ or Z_2 and $N^a \cap N^b \simeq (N_b^*)' \simeq PSL(2, p^m)$.

Now we assume that $(p, m) \neq (3,1), (5,1)$ and let z be an involution in $(N_b^*)'$. Then $C_{N_b^*}(z) = D_{2(p^m-1)}$ by Lemma 2.6 (vii). Suppose $C_{N^a}(z)$ is not a 2-subgroup and put $Z = 0(C_{N^a}(z))$. Then, if $Z \leq N^a \cap N^b$, where $\gamma = \alpha^x$ and $\delta = \beta^y$. By (i) $Y^x \leq N^a \cap N^b$ and so $Y^x = Y^a$ for some $h \in N^a \cap N^b$. Thus $N_\alpha(Y)^{F(Y)}$ is doubly transitive. Assume that $C_{N^a}(z)$ is a 2-subgroup and set $C_{N^a}(z) = \langle u, v \mid u^2 = u^{-1}, v^2 = 1 \rangle$. We may assume that $v \in (N_a^*)'$ and $\langle u, v \rangle$ is a Sylow 2-subgroup of $(N_b^*)'$. Since $p^m \neq 3, 5$, the order of u^2 is at least four. On the other hand, there is no element of order $|u^2|$ in $\langle u, v \rangle - \langle u^2, v \rangle$. Hence any element of order $|u^2|$ which is contained in $N^a \cap N^b$ is necessarily an element of $N^a \cap N^b$. By the similar argument as above, $N_\alpha(Y)^{F(Y)}$ is doubly transitive.

(4.2) Let notations be as in (4.1). Suppose $(p, m) \neq (3,1), (5,1)$ and set

\[\Delta = F(Y) \text{ and } X = N_\alpha(Y). \]

Then $|\Delta| = rs(p^m + \varepsilon)/2 + 1$, where $s = \sum_{i=0}^{k-1} 2p^{2mi}$, $C_\alpha(N^a) = 1$ and one of the following holds.

(i) $X^\Delta \leq \text{ATL}(1, 2^c)$ for some integer c.

(ii) $X^\Delta = \text{PSL}(2, p_1)$ or $\text{PGL}(2, p_1)$, $r = 1, k = 1$ and $2p_1 = p^m + \varepsilon$.

Proof. By Lemma 2.8 (ii), $|\Delta| = 1 + |N^a \cap X| |r| |N_b^* \cap X| = 1 + (p^{2mk} - 1)/r(2p^m - \varepsilon) = rs(p^m + \varepsilon)/2 + 1$. By (4.1) and Lemma 2.9, we have (i), (ii) or $X^\Delta = R(3)$.

Assume that $X^\Delta = R(3)$. Then $rs(p^m + \varepsilon)/2 + 1 = 28$, hence $k = 1$ and $r(2p^m - \varepsilon)/2 = 27$. Since r is odd and $r | 2m = n$, we have $r = m = 1$ and $q = 3^2$. But a Sylow 3-subgroup of X_a^a is cyclic because $N^a \cap X \simeq D_{27}$, and $X_a^a / X \cap N^a = X_a^a N^a / N^a \leq Z_2 \times Z_2$, a contradiction. Thus (i) or (ii) holds.

(4.3) (i) of (4.2) does not occur.

Proof. Let notations be as in (4.2). Suppose $X^\Delta \leq \text{ATL}(1, 2^c)$ and put $W = C_{N_b^*}(Y)$. Then $Y \leq W \simeq Z_{p^m-1}$. Since $C_{N^a}(Y)$ is cyclic, W is a characteristic subgroup of $C_{N^a}(Y)$ and so W is a normal subgroup of X_a. Hence $W \leq X_\Delta$ and $(X \cap N_b^*) = 1$ or Z_2. By Lemmas 2.4 and 2.6, $F(X \cap N_b^*) = 1 + |X \cap N_b^*| |N_b^*: X \cap N_b^*| \times r |N_b^*| = 1 + r$. Since $1 + r < |\Delta|$, $(X \cap N_b^*) = Z_2$ and hence $(1 + r)^2 = rs(p^m + \varepsilon)/2 + 1$ by Lemma 2.5. From this, $r = s(p^m + \varepsilon)/2 - 2 |mk$ and so $p^{2m}(k-1) + mk \leq 2$. Hence $m = k = r = 1$ and $q = 7^2$.

Let R be a Sylow 3-subgroup of N_b^*. Since $N_b^* = \text{PGL}(2, 7)$, we have $R = Z_3$. By Lemmas 2.4 and 2.6, $|F(R)| = 1 + (7^2 - 1) |N_b^*| / |N_b^*| = 4$. Hence $N_\alpha(R)^{F(R)} = A_4$ or S_4. But is a Sylow 3-subgroup of $N_{Ga}(R)$ because $N^a = \text{PSL}(2, 7)$, contrary to $N_{Ga}(R)^{F(R)} = A_4$ or S_4.

(4.4) (ii) of (4.2) does not occur.
Proof. Let notations be as in (4.2). Suppose \(X^\Delta \supseteq PSL(2, p_1) \). By the similar argument as in (4.3), \(C_{N_0}(Y) \leq X_\Delta \) and so \(C_{N_0}(Y)_\beta = D_{2p_1} \). Hence \(|(X)_\Delta| = |2p_1 - 2n| \). Since \(X^\Delta \supseteq PSL(2, p_1) \), \(p_1(p_1 - 1)|2|(X}_\Delta| \), hence \(p_1 = 1 | 8n \). As \(k = 1 \) and \(2p_1 = p^m + \varepsilon \), we have \(p^m + \varepsilon - 2 | 32m \). From this, \((p, m, p_1) = (11, 1, 5), (3, 2, 5) \) or \((3, 3, 13) \).

Let \(R \) be a cyclic subgroup of \(N_0^* \) such that \(R = Z(p^m + \varepsilon) \). By Lemma 2.6, \(N_0(R) F(R) \) is doubly transitive and by Lemma 2.8 (ii), \(|F(R)| = 1 + |N_0(R)| \)

\[|N_0(R)| = 1 + (p^m - 1)/(p^m + \varepsilon) = (p^m - \varepsilon)/2 + 1. \]

If \((p, m, p_1) = (11, 1, 5), |F(R)| = 7 \) and so by [9], \(|N_0(R)| = 42 \) and \(N_0(R) F(R) = Z_6 \). Since \(|N_0(R)| = 6 \), \(N_0(R) F(R) = N_0(R) F(R) \). Hence \(N_0(R) / K = Z_6 \), where \(K = (N_0(R)) \). But \(N_0(R) / (N_0(R)) = Z_2 \times Z_2 \), a contradiction.

If \((p, m, p_1) = (3, 2, 5), |F(R)| = 5 \) and so by [9], \(|N_0(R)| = 20 \) and \(N_0(R) F(R) = Z_4 \). Since \(|N_0(R)| = 4 \), \(N_0(R) = Z_4 \), contrary to \(N_0(R) \).

If \((p, m, p_1) = (3, 3, 13), |F(R)| = 15 \). By [9], \(N_0(R) \) is not solvable, a contradiction.

\((4.5) \ p^m = 5. \)

Proof. Assume that \(p^m = 5 \). Then \(n = 2k \) with \(k \) odd and \(N_0^* = PGL(2, 5) \). First we argue that \(N_0^* = N^\alpha \cap N^\beta \). Suppose false. Then \(C_0(N^\alpha) = 1 \) by Lemma 2.2, and \(N^\alpha / N_0 \cap N_0 \) by (4.1). Since \(N_0^* N_0 \) is an outer automorphism group of \(S_5 \), \(N_0^* / N_0 \) is trivial, we have \(Z(N_0^* N_0^*) = Z_2 \).

Let \(w \) be the involution of \(Z(N_0^* N_0^*) \) and let \(w \in I(N_0^* - I(N^\alpha) \). Since \(C_0(N^\alpha) \geq N_0^*, \) by Lemma 2.6 (viii) and (ix), \(w \) acts on \(N^\alpha \) as a field automorphism of order 2 and \(C_0(w) = PGL(2, 5) \). By Lemma 2.8 \(|F(w)| = 1 + r(q - \varepsilon) / I(N^\alpha)| / |N_0^*| = 1 + 5r(5^2 - 1)/24. \) Let \(P \) be a Sylow 5-subgroup of \(C_0(w) \). Then \(|P| = 5^k \) and \(|\gamma| = 5^{k - 1} \) for each \(\gamma \in \Omega - \{w\} \). Since \(P \) acts on \(F(w) \), we have \(5^{k - 1} |(5^2 - 1)/24 \), so that \(k = 1 \) and \(|F(w)| = 6 = r / k \). Hence \(C_0(w) F(w) = Z_6 \) and so \(C_0(w) F(w) = Z_6 \). But clearly \(w \in N_0^* \cap N_0^* \) by Lemma 2.1, a contradiction. Thus \(N_0^* = N^\alpha \cap N^\beta \).

Let \(V \) be a cyclic subgroup of \(N_0^* \) of order 4. Since \(N_0^* = N^\alpha \cap N_0 \), \(N_0(V) \) is doubly transitive and by Lemma 2.8, \(|F(V)| = 1 + |N_0(V)| / |N_0(V)| = 1 + (5^2 - 1)r/8 = 3rs + 1, \) where \(s = \sum_{i=0}^{k-1} 25^i \). By Lemma 2.9, \(C_0(N^\alpha) = 1 \) and (a) \(N_0(V) F(V) \leq ATL(1, 2) \) or (b) \(N_0(V) F(V) = R(3) \).

Put \(P = N_0(V) \). Then \(P = D_5, |F(P)| = 1 + |N_0(P)| / |N_0^*(P)| = r + 1 \) and \(P F(V) = Z_2 \). If (b) occurs, \(k = 1 \) and \(r = 9 \), hence \(|F(P)| = 10 \), a contradiction. Therefore (a) holds.

By Lemma 2.5, \((r+1)^2 = 3rs + 1 \) and so \(r = 3s - 2 / k \). Hence \(k = r = 1 \) and \(G_0 N_0 \leq Z_2 \times Z_2 \). Let \(z \) be an involution in \(N_0^* \). Then \(|F(z)| = 1 + 24 \cdot 25/120 = 6 \)
by Lemma 2.8 and $|\Omega|=1+|N^*: N^*| = 66$ as $r=1$. By the similar argument as in the proof of (3.12), \[
|F(z)|/(|F(z)| - 1)/2 + (|\Omega| - |F(z)|)/2 = |C_G(z)| = |z^\alpha \cap \langle t \rangle G_{ab^\alpha} | / |\langle t \rangle G_{ab^\alpha} |
\]
where t is an involution such that $\alpha = \beta$. Hence $|z^\alpha \cap \langle t \rangle G_{ab^\alpha} | = 15 |G_{ab^\alpha} | / |C_G(z)|$. Set $H = \langle t \rangle G_{ab^\alpha}$ and let R be a Sylow 3-subgroup of N^*_{ab}. By Lemma 2.8, $|F(R)| = 1 + 24 \cdot 120 = 3$. Set $F(R) = \{\alpha, \beta, \gamma\}$. On the other hand, as $N^*_{ab} = S_5$ and $\text{Out}(S_5) = 1$, we have $H = Z(H) \times N^*_{ab}$ and $|Z(H)| = 2, 4$ or $H = C_{H}(N^*_{ab}) \times N^*_{ab}$ and $Z(G_{ab^\alpha}) = Z_3 \times Z_2$, contrary to Lemma 2.6 (ix). In the former case, we have $|Z(H)| = 2$. For otherwise $Z(H) \leq G_2$ and $Z(H) \cap z^\alpha = \phi$ and so letting $u \in Z(H) \cap z^\alpha$, we have $|R| = 3 \cdot |F(u)| - 1 = 5$, a contradiction. Therefore $Z(H) = Z_2$ and so $|z^\alpha \cap H| = 25 + 25 = 50$, while $|z^\alpha \cap H| = 15 |G_{ab^\alpha} | / |C_G(z)| = 15 \cdot 120/24 = 75$, a contradiction.

5. Case (III)

In this section we assume that $N^*_{ab} = PSL(2, p^n)$, where $n = mk$ and k is odd. Set $p = \{+1\} \pmod{4}$. Then $q = \{+1\} \pmod{4}$ as k is odd. In section 6 we shall consider the case that $N^*_{ab} = A_4$, so we assume $(p, q) = (3, 1)$ in this section.

From this N^*_{ab} is a nonabelian simple group and so $N^*_{ab} = N^* \cap N^*$ or $N^* \cap N^* = 1$. If $N^* \cap N^* = 1$, then $C_G(N^*) = 1$ by Lemma 2.2 and $N^* = N^* \cap N^* \cap N^* = N^* \cap N^* / N^* \cap N^* \cap N^*$ is the order of G_{ab^α}. Hence $N^*_{ab} = N^* \cap N^*$.

Let x be an involution of N^*_{ab}. Suppose $z^\alpha \in G_{ab^\alpha}$ for some $g \in G$ and set $\gamma = \alpha^x$, $\delta = \beta^x$. Then $z^\alpha \in N^* \cap G_{ab^\alpha} \leq N^* \cap N^* \leq N^* \cap N^*$ and so $z^\alpha \in z^N_{ab^\alpha}$. Hence $C_G(z)^{F(x)}$ is doubly transitive and by Lemma 2.8 (i), $|F(z)| = (q-\delta)/(|p^n - \delta|) + 1$.

In particular $|F(z)| > 3 + 1$ as $(p^n - \delta)/(|p^n - \delta|) > p^{2m} + \delta p^{m+1} + 1 > 3$.

By Lemma 2.9, $C_G(N^*) = 1$ and one of the following holds.

(a) $C_G(z)^{F(x)} = \text{ATL}(1, 2^2)$.
(b) $C_G(z)^{F(x)} \geq PSL(2, p_1)$ ($p_1 \geq 5$), $r = 1$ and $|C_{N^*}(z) : C_{N^*}(z)| = p_1$.
(c) $C_G(z)^{F(x)} = R(3)$.

Let Y be a cyclic subgroup of $C_{N^*_{ab}}(z) = D_{p^m-2}$ of index 2. Since $C_{G_{ab}^\alpha}(z) \geq Y$, $z \in Y$ and $C_G(z)^{F(x)}$ is doubly transitive, we have $F(Y) = F(z)$. By the similar argument as in (3.1), $N^* \cap N(C_{N^*_{ab}}(z)) = N_{ab^\alpha}^* (z)$ or $N^* \cap N(C_{N^*_{ab}}(z)) = A_4$. Hence by Lemmas 2.3 and 2.4 $|F(C_{N^*_{ab}}(z))| = 1 + |C_{N^*_{ab}}(z)| / |N^*_{ab}| : |C_{N^*_{ab}}(z)| / |N^*_{ab}|$ or $1 + |A_4| / |N^*_{ab}| : C_{N^*_{ab}}(z) / |N^*_{ab}|$ or $1 + |A_4| / |N^*_{ab}| : C_{N^*_{ab}}(z) / |N^*_{ab}|$. Therefore $|F(C_{N^*_{ab}}(z))| = r + 1$ or $3r + 1$. From this $C_{N^*_{ab}}(z)^{F(x)} \geq Z_2$.

In the case (a), $(r + 1)^2 = 1 + (p^n - \delta)/(|p^n - \delta|) - 2$ by Lemma 2.5 and hence $r = (p^n - \delta)/(|p^n - \delta|) - 2$ if m. Since $(p^n - \delta)/(|p^n - \delta|) \geq ((p^n)^{k-1} + 1)/(|p^n| + 1) = \lambda_{p-1}^{k-1}$ if $k \geq 3$, we have $p^{m(k-1)} - p^{m+1} \leq m$, hence $(p^{m(k-3)} / k)(m/(p^{m+1} + 1)) < 1$. Thus $k = 3$, $m = 1$ and $p = 3$, contrary to $(p, m) \neq (3, 1)$.

In the case (b), $r = 1$, $p_1 = (p^n - \delta)/(|p^n - \delta|)$, $p(p_{1} - 1)/s$ and $s | 4mpk_1$, where s is the order of $C_{G_{ab}^\alpha}(z)^{F(x)}$. Hence $p_{1} - 1 = (p^n - \delta)/(|p^n - \delta|) - 1$
\[
\geq \frac{(p^n+1)/(p^n+1) - 1}{\sum_{i=0}^{k} (-1)^i} \geq p^{m(k-2)}(p^m - 1), \text{ we have } p^{m(k-2)}/2k \leq 4m/(p^m - 1) \leq 1 \text{ because } p^m \neq 3. \text{ Hence } k = 3 \text{ and } p^m = 5, \text{ so that } p_1 - 1 = 30 \sqrt[8]{8mk} = 24, \text{ a contradiction.}
\]

In the case (c), \(r + 1 = 4 \) and \(1 + (p^m - \varepsilon)r/(p^m - \varepsilon) = 28 \) and so \(r = 3 \) and \((p^m - \varepsilon)/(p^m - \varepsilon) = 9 \). Hence \(9 \geq (p^m + 1)/(p^m + 1) \geq p^m - p^m + 1, \text{ so that } p^m = 3, \text{ a contradiction.}

6. Case (IV)

In this section we assume that \(N_\alpha = A_4 \) and \(q = 3, 5 \) (mod 8). If \(N_\alpha \cap N_\beta = 1, \) by Lemma 2.2, \(C_\alpha(N_\alpha) = 1 \) and so \(N_\alpha/N_\alpha \cap N_\beta = N_\beta/N_\beta \leq Z_2 \times Z_2. \) Hence \(N_\alpha/N_\alpha \cap N_\beta = 1 \) or \(Z_3, \) so that \(z^6 \cap G_{ab} = z^6 \cap N_\alpha = z^6 \) for an involution \(z \in N_\alpha. \) Therefore \(C_\alpha(z)^{F(z)} \) is doubly transitive. By Lemma 2.9, \(C_\alpha(N_\alpha) = 1 \) and one of the following holds.

(a) \(C_\alpha(z)^{F(z)} \leq A_4(1,3') \) for some integer \(c \geq 1. \)

(b) \(C_\alpha(z)^{F(z)} \geq PSL(2, p_1) (p_1 \geq 5), r = 1 \) and \(|C_\alpha(z)|: C_\alpha(z)| = p_1. \)

(c) \(C_\alpha(z)^{F(z)} = R(3). \)

Let \(T = \text{a Sylow 2-subgroup of } N_\alpha. \) Then \(z \in T \) and by Lemmas 2.3 and 2.4, \(|F(T)| = 1 + |N_\alpha(T)| \cdot r = 1 + |N_\alpha(z)| \cdot r = 1 + 1. \) By Lemma 2.8 (i), \(|F(z)| = (q - \varepsilon)r/4 + 1. \) Hence \(T^{F(z)} = Z_2 \) if \(q = 5. \) If \(q = 5, \) as \(PSL(2, 5) = PSL(2, 4), \) (ii) of our theorem holds by [4]. Therefore we may assume \(q = 5. \)

In the case (a), \((r + 1)^2 = 1 + (q - \varepsilon)r/4 \) by Lemma 2.5. Hence \(r = (q - \varepsilon - 8)/4 \) and \(r = 1. \) Let \(R = \text{a Sylow 3-subgroup of } G_{ab}. \) Then \(R \leq N_\alpha \) because \(G_{ab}/N_\alpha \cong G_{ab}/N_\alpha = 1 \) or \(Z_2 \) and \(N_\alpha = A_4. \) By Lemma 2.8 (ii), \(|F(R)| = 1 + 12/3 = 5 \) and \(N_\alpha(R)^{F(R)} \) is doubly transitive. Since \(N_\alpha(R) = D_{12} \) or \(D_{24} \) and \(|F(R)| = 5, \) we have \(|N_\alpha(R)| = 5. \) Let \(S = \text{a Sylow 5-subgroup of } N_\alpha(R). \) Then \([S, R] = 1 \) as \(N_\alpha(R)/C_\alpha(R) \leq Z_2. \) Since \(5 \nmid |G_{ab}|, \) \(|F(S)| = 0 \) or 1. If \(|F(S)| = 1, \) \(F(S) \subseteq F(R) \) and so \(5 \mid |F(R)| - 1 = 4, \) a contradiction. Therefore \(S \) is semi-regular on \(\Omega. \) But \(|\Omega| = 1 + |N_\alpha: N_\alpha| = 56 \) or 92. This is a contradiction.

In the case (b), \(p_1(p_1 - 1)/2 \) is \(s \) and \(s|2n(q - \varepsilon)/2 = 4np_1, \) where \(s \) is the order of \(C_{ga}(z)^{F(z)}. \) Hence \(p_1 = 1, 8n. \) Since \(p_1 = (q - \varepsilon)/4, p^s - \varepsilon - 4 \mid 32 \text{ and so we have } q = 11, 13, 19, 27 \) or 37. If \(q = 27, \) by Lemma 2.6, \(C_{ga}(z) = D_{24} \) or \(D_{24} = z \) and so \(C_{ga}(z)^{F(z)} = Z_2. \) Hence \((p_1 - 1)/2 = 2. \) From this \(q = 19. \) Let \(R = \text{a Sylow 3-subgroup of } G_{ab}. \) By the similar argument as in the case (a), \(N_\alpha(R)^{F(R)} \) is doubly transitive and \(|F(R)| = 1 + 18/3 = 7. \) Hence \(|G| \mid |\Omega| \mid G_{\alpha} = (1 + |N_\alpha: N_\alpha|) \mid G_{\alpha} = (1 + 18 \cdot 19/2 \cdot 12) \cdot 2^4 \cdot 18 \cdot 19 \cdot 20/2 = 3^3 \cdot 5^3 \cdot 11 \cdot 13 \cdot 19 \text{ with } 0 \leq i \leq 1, \) a contradiction. If \(q = 27, \) then \(C_{ga}(z) = |F(z)| \cdot |G_{ga}(z)| = 8 \cdot |G_{ga}(z)|, \) while \(|\Omega| = 1 + |N_\alpha: N_\alpha| = 1 + 26 \cdot 27 \cdot 28/2 \cdot 12 = 820 = 2^3 \cdot 5 \cdot 41 \) and so \(|G| = 4 |G_{ga}(z)|. \) Therefore \(C_{ga}(z) \mid |G|, \) a contradiction.

In the case (c), \(r + 1 = 4 \) and \(1 + (q - \varepsilon)r/4 = 28. \) Hence \(r = 3 \) and \(q = 37, \)
contrary to \(r \mid n \).

7. Case (V)

In this section we assume that \(N^*_\beta=S_4 \) and \(q \equiv 7,9 \pmod{16} \). We note that \(4 \not\mid n \).

First we argue that \(N^*_\beta=N^* \cap N^\beta \). Suppose \(N^*_\beta \neq N^* \cap N^\beta \). Then \(C_G(N^*)=1 \) by Lemma 2.2. Since \(N^*_\beta/N^* \cap N^\beta \cong N^*_\beta/N^\beta \leq Z_2 \times Z_2 \), we have \(N^* \cap N^\beta = A_4 \) and \(N^*_\beta/N^* \cap N^\beta = Z_2 \), so that \(N^*_\beta/N^*_\beta \cong N^*_\beta/N^* \cap N^\beta \cong Z_2 \). Hence as \(\text{Out}(S_4)=1 \), \(Z(N^*_\beta N^*_\beta) \cong Z_2 \). Set \(\langle t_i \rangle = Z(N^*_\beta N^*_\beta) \) and let \(t_i \in I(N^*_\beta) - I(N^*) \). Since \(C_{N^*(t)} \cong N^*_\beta \) and \(t \in I(N^*_\beta) - I(N^*) \), by Lemma 2.6, we have \(C_{N^*(t)}=PGL(2, \sqrt{q}) \)

and \(|F(t)| = 1+3(q-6) \dfrac{r}{8} \) by Lemma 2.8.

Let \(P \) be a Sylow \(p \)-subgroup of \(C_{N^*(t)} \). Then \(|P| = \sqrt{q} \) and so \(\sqrt{q} \mid r \) and so \(5^a \leq n^2 \) as \(p \geq 5 \) and \(r \mid n \). But obviously \(5^a > n^2 \) for any positive integer \(n \). This is a contradiction. If \(p = 3 \), \(|P: P_t| = \sqrt{q}/3 \) or \(\sqrt{q}/3 \) for each \(\gamma \in \Omega - \{ \alpha \} \). Hence \(\sqrt{q}/3 = 3(q-6) \dfrac{r}{8} \) and so \(q \mid 81r^2 \). In particular, \(3^a = q \mid 81n^2 \). From this, \(n \leq 7 \). Since \(q = 3^a \equiv 7 \) or \(9 \pmod{16} \), we have \(q = 3^a \) or \(3^b \) or \(3^c \) or \(3^d \). If \(q = 3^a \), \(|\Omega| = 1+|N^*: N^*_\beta|=1+8\cdot 9\cdot 10/2 \cdot 24 = 16 \), a contradiction by [9]. If \(q = 3^b \), \(|F(t)| = 1+273r \) and \(|F(t) - \{ \alpha \}| \geq |C_{N^*(t)}| \cong |PGL(2, 3^c)|/8 = 2457 \) contrary to \(r \mid 3 \). Thus \(N^*_\beta = N^* \cap N^\beta \).

Let \(V \) be a cyclic subgroup of \(N^*_\beta \) of order 4 and let \(U \) be a Sylow 2-subgroup of \(N^*_\beta \) containing \(V \). Then \(U = N_{G_{ab}}(V) \), \(|F(V)| = 1+(q-6) \dfrac{r}{8} \) by Lemma 2.8 and \(|F(U)| = 1+8 \cdot 3r/24 = r+1 \) by Lemmas 2.3 and 2.4. If \(q \equiv 7,9 \pmod{16} \), then \(|F(U)| < |F(V)| \) and hence \(U \not\leq Z_2 \). Suppose \(q = 7 \) or \(9 \). Then \(r = 1 \) as \(r \mid n \). Hence \(|\Omega| = 1+|N^*: N^*_\beta| = 8 \) or \(16 \). By [10], we have a contradiction. Therefore \(U \not\leq Z_2 \).

Suppose \(V^g \leq G_{ab} \) for some \(g \in G \) and set \(\gamma = \gamma^g \). Then \(V^g \leq G_{v^g} \). Since \(G_{v^g} \leq N^* \cap G_{ab} \leq N^* \cap N^\beta \leq N^* \cap N^\beta = N^*_\beta \). As \(N^*_\beta = S_4 \), \(V^g = V^h \) for some \(h \in N^*_\beta \). Hence \(C_G(V^g) \) is doubly transitive. By Lemma 2.9, \(C_G(N^*) = 1 \) and one of the following holds.

(a) \(N_G(V^g) \leq AGL(1, 2) \).

(b) \(N_G(V^g) \simeq PSL(2, p) \), \(p_1=(q-6)/8 \geq 5 \).

(c) \(N_G(V^g) = R(3) \).

In the case (a), \((r+1) = 1+(q-6) \dfrac{r}{8} \) by Lemma 2.5 and so \(r = (q-6-16)/8 \) and \(r \mid n \). From this \(q = 23 \) or \(25 \) and \(r = 1 \). Since \(|\Omega| = 1+|N^*: N^*_\beta| = 1+2 \cdot 127 = 2 \cdot 163 \), we have \(|G| = 2 \cdot |G_{a_2}| = 1 \cdot |N_G(V)| = |F(V)| = 1 \cdot |C_{G_{a_2}}(V)| = 3 \cdot |G_{a_2}| = 4 \cdot |G_{a_2}| \), contrary to \(|C_G(V)| = 1 \).

In the case (b), \(p_1 = 1/8n \). From this, \(p_1 = 1/8 \cdot 64 \cdot 4 \cdot 4 = 4n p_1 \), where \(s \) is the order of \(N_{G_{a_2}}(V)^g \). Hence \(p_1 = 1/8n \). From this, \(r = (q-6)/8 \) or \(q = 23, 41, 71, 73 \) or \(83 \). Since \(p_1 \) is a prime and \(p_1 = (q-6)/8 \), \(q = 23, 41, 71, 73 \). Therefore \(q = 41 \) and \(r = 60 \cdot 41 \cdot 42/24 = 2^2 \cdot 359 \), so that \(|G| = 4 \cdot |G_{a_2}| \).
Since $N^*_a = N^a \cap N^b$, $C_G(z)^F(z)$ is transitive by Lemma 2.1. On the other hand $|F(z)| = 1 + 40 - 9/24 = 16$ by Lemma 2.8 (i) and so $|C_G(z)| = 16|C_G(z)|_2$ is transitive by Lemma 2.9, contrary to $|C_G(z)|_2 = |G|$. In the case (c), $r + 1 = 4$ and $1 + (q - \epsilon)r/8 = 28$. Hence $r = 3$ and $q = 71$ or 73, contrary to $r | n$.

8. Case (VI)

In this section we assume that $N^*_b = A_5$ and $q \equiv 3, 5 \pmod{8}$. In particular, n is odd. If $N^*_a \neq N^a \cap N^b$, then $N^a \cap N^b = 1$, $C_G(N^a) = 1$ and so $N^*_b = N^a N^b / N^b \leq \text{Out}(N^b) \cong Z_2 \times Z_n$, a contradiction. Hence $N^*_b = N^a \cap N^b$. Let z be an involution in N^*_b and T a Sylow 2-subgroup of N^*_b containing z. Then, by Lemma 2.8, $|F(z)| = 1 + (q - \epsilon)15 = 1 + (q - \epsilon)r/4$ and by Lemmas 2.3 and 2.4 $|F(T)| = 1 + 12r/60 = 1 + r$. Since $N^*_a = N^a \cap N^b$, $z^G \cap G_{ab} = z^G \cap N^b = z^N$ and so $C_G(z)^F(z)$ is doubly transitive. By Lemma 2.9, $C_G(N^a) = 1$ and one of the following holds.

(a) $C_G(z)^F(z) = \text{Alt}(1, 2^a)$.
(b) $C_G(z)^F(z) \supseteq \text{PSL}(2, p_1)$, $p_1 = (q - \epsilon)/4 \geq 5$.
(c) $C_G(z)^F(z) = R(3)$.

In the case (a), by Lemma 2.5, $(q - \epsilon)/4 = 1$ or $(r + 1)/2 = 1 + (q - \epsilon)r/4$. Hence $q = 5$ or $r = (q - \epsilon - 8)/4 | n$. If $q = 5$, then $N^*_a = N^a$, a contradiction. Therefore $p^a - \epsilon - 8 \not| 4n$ and so $n = 1$ and $q = 11$ or 13. If $q = 13$, we have $5 < |G_a|$, a contradiction. Hence $q = 11$ and $|\Omega| = 1 + |N^a| = 1 + 10 \cdot 11 \cdot 12 / 2 \cdot 60 = 12$. By [9], $G^a = N_{11}$, $|\Omega| = 12$ and so (iii) of our theorem holds.

In the case (b), we have $p_1(p_1 - 1)/2 \leq s$ and $2n(q - \epsilon)/2 = 4mp_1$, where s is the order of $C_G(z)^F(z)$. Hence $p_1 - 1 | 8n$ and so $p^a = q - 4 + 32n$. From this $q = 19, 27$ or 37. Since $5 | |G_a|$, $q = 27, 37$. Hence $q = 19$ and $|\Omega| = 1 + |N^a| = 1 + 18 \cdot 19 \cdot 20 / 2 \cdot 60 = 2.29$. Since $G_a \cong \text{PSL}(2, 19)$ or $\text{PGL}(2, 19)$, $|G_a| = |\Omega| = |G_a| = 2 \cdot 2^1 \cdot 18 \cdot 19 \cdot 20 / 2 = 2^{i+1} \cdot 3.5.19.29$ with $0 \leq i \leq 1$. Let P be a Sylow 29-subgroup of G. Then P is semi-regular on Ω and 3, 5, 19 $\not| \langle N_G(P) \rangle$ because $N_G(P) / C_G(P) \leq Z_s \times Z_t$. Hence $|G : N_G(P)| = 2^i \cdot 3.5.19$ with $0 \leq j \leq 4$, while $2^i \cdot 3^2 . 5 . 19 \not| 29$ (mod 29) for any j with $0 \leq j \leq 4$, contrary to a Sylow’s theorem.

If $C_G(z)^F(z) = R(3)$, $r + 1 = 4$ and $1 + (q - \epsilon)r/4 = 28$ and hence $r = 3$, $q = 37$, contrary to $r | n$.

Osaka Kyoiku University

References

[3] C. Hering: *Transitive linear groups and linear groups which contain irreducible

