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Introduction

Let G be a finite group and p a prime number. Let (K , R, k) be a p-modular sys-
tem. We assume that K contains a primitive |G|-th root of unity and that k is alge-
braically closed. Let v be the valuation of K normalized so that v(p) = 1. Let N
be a normal subgroup of G and let V' be an indecomposable oG-module such that
Vi is indecomposable, where 0 = R or k. As in [14], we say that a block B of
G V-dominates a block B of G/N if there is an o[G/N]-module X in B such that
V ® InfX belongs to B, where InfX denotes the inflation of X to G. In [14] we
have shown that there is a natural relation between B and B, if B V- dominates B.
In particular, if D is a defect group of B, then B has a defect group of the form
QN/N with DN N < @ < D. Then, we shall show in Section 2 that Q) chosen in
this way is of a rather restricted nature. In fact, we see that O,(Ng(Q)) = @ and that
Q is a Sylow intersection in G (Theorem 2.1). When, for example, Vi is irreducible,
there exists a B-Brauer pair (@, bg) (Theorem 2.8). As a consequence, we see there
exist defect groups D and D respectively of B and B such that Z(D)N/N < D <
DN/N. Further, @ is then a “defect intersection”. When V is the trivial module “V-
domination” is nothing but the usual “domination”, in which case we shall show even
the existence of a weight (Q,S) belonging to B (in the sense of Alperin [2]) (Propo-
sition 2.6).

In Section 1 we give an alternative proof of a result of Harris-Knorr [8].

In Section 3 we give an extendibility theorem for an irreducible character of a
normal subgroup, the proof of which depends upon a result of Brauer on major sub-
sections [4, (4C)] and a result of Knorr [11, Corollary 3.7 (i)].

As an application we study in Section 4 the following conjecture (*) given by
Robinson [17]. In [17] (*) is proved under a conjecture related to Alperin’s weight
conjecture, cf. Theorem 5.1 in [17].

(¥) Let B be a block of a group G with defect group D. Then, for every irreducible
character x in B, htx < v|D : Z(D)| and the equality holds only when D is
abelian.

The conjecture (*) is of course an extension of half of Brauer’s height O conjec-
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ture and it is known to be true for p-blocks of p-solvable groups by the results of
Fong [7] and Watanabe [18]. Indeed, Fong [7, (3C)] proves the inequality and Watan-
abe [18, Proposition] proves that the inequality is strict unless D is abelian.
Actually, we consider a “relative version” of (x) as follows:
(#) Let N be a normal subgroup of G. For every irreducible character x in a block
of G with defect group D and every irreducible constituent £ of xn, we have

hty — hté <v|DN : Z(D)N|

and the equality holds if and only if y is afforded by a Z(D)N-projective RG-
module.

If N =1, (f) boils down to (). (In fact, by Knérr’s theorem [11], an irreducible
character of G in a block with defect group D is afforded by a Z(D)-projective RG-
module if and only if D is abelian, cf. Lemma 4.5 below.) Conversely, we show (f)
is true if (%) is true for blocks of certain groups related with the factor group G/N
(Theorem 4.3). Thus the assertions (x) and (}) turn out to be equivalent. Furthermore,
based on Theorem 4.3, we give a reduction of (x) to the case of quasi-simple group-
s (Theorem 4.6). As a special case we obtain that () is true if G/N is p-solvable
(Corollary 4.7), which extends the results of P. Fong and A. Watanabe mentioned
above.

In this paper all oG-modules are assumed to be o-free of finite rank. For a block
B of G, d(B) is the defect of B. For an oG-module X in B, we define htX, the
height of X, by htX = v(rank,X) —v|G|+d(B). For an indecomposable module X,
vx(X) denotes a vertex of X. For a group H, Z(H) denotes the center of H.

Throughout this paper Knorr’s papers [10, 11, 12] are of fundamental importance.

1. A result of Harris-Knorr

Let G be a group and let V be a normal subgroup of G. Let b be a block of N
with defect group 6. Let b; be the Brauer correspondent of b in Ny (§). Then Harris
and Knorr [8] have proved

Theorem 1.1 (Harris-Knorr [8, Theorem]). Block induction gives a defect-preser-
ving bijection between the set of blocks of Ng(8) covering by and the set of blocks of
G covering b.

A module-theoretical proof of the above theorem is found in Alperin [1]. Here we
give still another (module-theoretical) proof (under our assumption on the fields K and
k).

Lemma 1.2. Let L be a subgroup of G such that Ny(6) < L. Then, for a block
B of L such that 3C is defined, the following are equivalent:
(i) B covers some Ng(6)-conjugate of b;.
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(i) BC covers b.

Proof. Put M = Ny(d). Let U be an indecomposable RG-module of height 0 in
BC. Then there is an indecomposable RL-module V' of height O in 3 such that V|U,
by [13, Corollary 1.7 (i)]. Let b;' be a block of M covered by 3. Then there is an
indecomposable RM-module W of height 0 in b;' such that W|V,, by [13, Theorem
4.1] (see also [20, Proposition 2]). So there is an indecomposable RN-module X such
that X|Uy and that W|X . Let &' be the block of N containing X. Since htW = 0,
vx(W) is a defect group of b;’. Further we get

6)) davx(W) <wvx(X) <¢,

where vx(X) is a vertex of X and ¢’ is a defect group of b'.

(i) = (ii): In the above we may choose b;' so that by’ = b;* for some z €
Ng (). So vx(W) = 6. Hence X belongs to (b;°)N = (b,)* = b® by the Nagao-
Green theorem [14, Theorem 3.12]. Thus 8¢ covers b.

(ii) = (i): We have b’ = b for some z € G. So §' = §*" for some n € N.
Thus equality holds throughout in (1) and vx(W) = § = 6*". Hence X belongs to
(b,")N by the Nagao-Green theorem. So (b;')" = b®. Put y = (zn)~! € Ng(6). Then
(YN = ((5,")N)Y = b™ = b, since zy € N. On the other hand, since b;' has
defect group 6, (by')¥ has defect group 6¥ = 6. Thus (b;')¥ = b; by the First Main
Theorem. Hence 3 covers b’ = bly_l. This completes the proof. O

Proof of Theorem 1.1. Applying the First Main Theorem and Lemma 1.2 with
L = Ng(8), we get the result (cf. the proof of [8, Theorem]). Od

2. Blocks of factor groups

Throughout this section we use the following notation:

Let N be a normal subgroup of a group G and let V be an indecomposable oG-
module such that Vjy is indecomposable, where o = R or k. Let b be the block of N
to which V belongs. (So b is G-invariant.) Let B be a block of G covering b. Let D
be a defect group of B.

If B is a block of G/N which is V-dominated by B, then a defect group of B
is contained in DN/N ([14, Theorem 1.4 (i)]). Since DN/N = D/D N N, we may
choose a p-subgroup @ so that QN/N is a defect group of B and that DNN < Q <
D. (We note that D N N is a defect group of b by [10, Proposition 4.2].)

For a p-subgroup @ such that DN N < @ < D, we denote by b(Q) a unique
block of QN covering b. Since b is G-invariant, @) is a defect group of b(Q) ([13,
Lemma 4.13]). Further, Since b(Q) is Ng(QN)-invariant, we see, by the Frattini ar-
gument, that Ng(QN) = Ng(Q)N. Let b'(Q) be the Brauer correspondent of b(Q)

in Non(Q) = QNN (Q).
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Theorem 2.1. Let QN/N, DN N < Q < D, be a defect group of a block of
G/N which is V-dominated by B. Then:
(@) OP(NG(Q)) =Q.

(ii) Q@ is a Sylow intersection in G.

Proof. (i) By the First Main Theorem, Ng,n(QN/N) has a block with defect
group QN/N. In view of the natural isomorphism

Ng/n(QN/N) = Ne(Q)N/N = Ne(Q)/Nn(Q),

it follows that Ng(Q)/Nn(Q) has a block with defect group QNN (Q)/Nn(Q). So
Ne(Q)/QNnN(Q) has a block of defect 0 and hence O,(Ng(Q)/QNn(Q)) = 1.
Thus Q@ < O0,(Ng(Q)) < Op(QNnN(Q)). On the other hand, since the block b'(Q)
has defect group @, we get O,(QNn(Q)) < Q. Hence O,(Ng(Q)) = Q.

(ii) As in the proof of (i), Ng(Q)/Nn(Q) has a block with defect group
QNN (Q)/NN(Q). So No(Q)/Ny(Q) has p-Sylow subgroups Li/Nx(Q), i = 1, 2,
such that L1 N Ly = QNN(Q). Since QNN = Q N Ny(Q) is a defect group of a
block of Ny (Q) covered by b'(Q), we can choose p-Sylow subgroups T;, i = 1, 2,
of Ny (Q) such that T; N Ty = @ N N. Choose p-Sylow subgroups S;, 1 =1, 2, of L;
such that T; < S;. Then

Q < S NS, (since @) is a normal p-subgroup of L;, i =1, 2)
=51 NS NQNN(Q) (since S; NSy < Ly N Ly = QNn(Q))
= Q(S1NS2 N Nn(Q)) (since Q < 51N Ss)
= Q(ThNT,) (since S;NNN(Q)=T;,1=1, 2)
=Q@NN)=@Q.

Thus S; NSy = Q. Choose p-Sylow subgroups P;, i = 1, 2, of G such that S; < P;.
Then P, NP, N Ng(Q) =81 NS2 =Q, since S;, i =1, 2, are p-Sylow subgroups of
Ng(Q). Thus we get PN P, = Q. O

The following lemma is useful.

Lemma 2.2. Let H be a subgroup of G with H > N. Let U be an oH-module
such that Uy is indecomposable. Let () be a p-subgroup with QN < H. Let W be
a projective indecomposable o[H[QN]-module. Then, U ® InfW is indecomposable,
and for a p-subgroup S of H, S is a vertex of Ugn if and only if S is a vertex of
U ® InfW. Further, SN = QN for such S.

Proof. If o = R, let 7R be the maximal ideal of R. If o = k, let 7 = 0. As
is well-known, W/7W is indecomposable, so U ® InfW is indecomposable by [14,
Lemma 1.1 (i)]. Clearly InfW is Q) N-projective, so we have
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(1) U ®InfW is QN-projective.

Also we have

2) (U®Ian)QN =] (rankOW)UQN.

If S is a vertex of Ugn, then (1) and (2) imply that S is a vertex of U ® InfW.
Further, Ugy = (Usn)@N by Green’s indecomposability theorem. So SN = QN.
Conversely, let S be a vertex of U®InfW. Then, since QN1 H, (1) implies S < QN.
Then (2) implies S is a vertex of Ugy. This completes the proof. O

For a p-subgroup @ such that DN N < @ < D, let b(Q) and b'(Q) be as be-
fore. We denote by BL(Ng(Q)N|b(Q)) and BL(Ng(Q)|b'(Q)) the set of blocks of
Ng(Q)N covering b(Q) and the set of blocks of Ng(Q) covering b'(Q), respectively.
For a subgroup H of G, let

BL(H,B) = {8 | B is a block of H such that 3¢ = B}.

Lemma 2.3. Block induction gives a defect-preserving bijection between
BL(Ng(Q), B) and BL(NG(Q)N, B).

Proof. Let 3 € BL(Ng(Q)N,B). Then, since B = [% covers b, we
see, by [14, Lemma 1.3], 8 covers b and hence b(Q). So BL(Ng(Q)N,B) C
BL(Ng(Q)N | b(Q)). Let B/ € BL(Ng(Q),B). Then, since (g/N¢(@NG = B,
B'Ne@N covers b(Q) by the same reason, so 3’ covers b'(Q) by Lemma 1.2. Thus
BL(Ng(Q),B) € BL(Ng(Q)|t'(Q)). Hence the result follows from Theorem 1.1
(with (Ng(Q)N,QN,b(Q)) in place of (G, N,b)) and the transitivity of block induc-
tion. O

Remark. For any block 3 of Ng(Q)N covering b, 3¢ is defined. In fact, since
B covers b(Q), B has a defect group P with P > Q. Since Cg(P) < Cg(Q) <
Ng(Q)N, B9 is defined.

Proposition 2.4. Let Q be a p-subgroup of G such that DNN < Q < D. Let 8
be a block of Ng/n(QN/N) = Ng(Q)N/N. Then the following are equivalent:
@) 'ﬂ_G/N is V-dominated by B.
() Bis VNe(Q)N-dominated by some 3 € BL(Ng(Q)N, B).
(i) B is Vg (g)n-dominated by B'N¢(@N for some B' € BL(Ng(Q), B).

Proof. (i) & (ii): Put H = Ng(Q)N. We can choose a projective in-
decomposable o[H/QN]-module W which lies in B as an H/N-module. Then
W has vertex QN/N. Let U be the Green correspondent of W with respect to

(G/N,H/N,QN/N). So U lies in EG/ N by the Nagao-Green theorem [16, Theorem
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5.3.12]. Clearly Vg ® InfW|(V ® InfU)y. By Lemma 2.2 with Vg in place of U,
VyRInfW is indecomposable, so there is an indecomposable summand X of V®InfU
such that Vg @ InfW|Xpy. Let S be a vertex of Vg @ InfW. Then by Lemma 2.2, we
obtain SN = QN. So Cg(S) < Ng(S) < Ng(QN) = H. Thus, if 3 is the block
of H containing Vg ® InfW, then X lies in 8¢ by the Nagao-Green theorem. So
V @ InfU belongs to 3¢ by [14, Theorem 1.2]. Thus, (i) is equivalent to (ii) (by [14,
Theorem 1.2 (ii)]).

(ii) & (iii): This follows from Lemma 2.3. This completes the proof. O

Now we can refine [14, Theorem 1.4 (ii)].

Corollary 2.5. There exists a block of G/N with defect group DN/N which is
V-dominated by B. Furthermore, the number of blocks of G/N with defect group
DN/N which are V-dominated by B equals the number of blocks of Ng(D)N/N
with defect group DN/N which are Vi, (pyn-dominated by BN¢(DIN, where B is
the Brauer correspondent of B in Ng(D).

Proof. Put H = Ng(D)N. By the First Main Theorem, there is a bijection be-
tween the set of blocks of G/N with defect group DN/N and the set of blocks of
H/N with defect gronp DN/N. By Proposition 2.4, it suffices to show
(1) BL(Ng(D),B) ={B}.

(2) BH Vy-dominates a block 8 of H/N, and for any such G, 8 has defect group
DN/N.
(1) follows from the First Main Theorem. To prove (2), put 8 = BH . Then, since
B% = B covers b, 3 covers b by [14, Lemma 1.3]. So, by [14, Theorem 1.2 (i)], 3
Vir-dominates a block 8 of H/N. Let Q; be a defect group of 3. Since D is a defect
group of 3, we get Q; < y/NDN/N by [14, Theorem 1.4 (i)]. On the other hand,
Q1 > y/NDN/N, since DN/N is normal in H/N. So Q; = g/NDN/N. Thus (2)
is proved. . O

In the case of usual domination, we have the following:

Proposition 2.6. Let QN/N, DN N < @Q < D, be a defect group of a block of
G /N which is dominated by B. Then there is a weight (QQ,S) belonging to B.

Proof. Let B be a block of G/N with defect group QN/N which is dominated
by B. Let 3 be the Brauer correspondent of B in Ng(Q)N/N. Let 3 be a unique
block of Ng(Q)N dominating 3. We have 3¢ = B by Proposition 2.4. Let W be an
irreducible k[Ng(Q)N/N]-module in 8. Then W has vertex QN/N, so if InfW is
the inflation to Ng(Q)N of W, then InfW has vertex ) (note that @} is a p-Sylow
subgroup of @N). Put S = (InfW)n,,(q)- Then § is irreducible and has vertex (). Let
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(' be the block of Ng(Q) containing .S. Then, by using the Green correspondence and
the Nagao-Green theorem, we see that 3/V¢(@QN = 3 So 3’6 = B. Hence (Q, S) is
a weight belonging to B. This completes the proof. O

In the rest of this section we consider mainly the case when Vy is an irreducible
oN-module. In this case as well, defect groups of the blocks of G/N which are V-
dominated by B are rather restricted, though the condition we give below is not so
strong as Proposition 2.6. We prepare the following lemma, which complements 1.21
Remark in Knorr [12]. For the definition of virtually irreducible modules (lattices) and
basic properties of them, see Knorr [12].

Lemma 2.7. Let W be an irreducible o[G /N]-module.
(i) If o= R and Vy is virtually irreducible RN -module, then V QInfW is virtually
irreducible.
(i) If o=k and Endixn(VN) = k, then Endgg(V @ InfW) = k.

Proof. (i) Let ¢ € Endrg(V ® InfW). Let {w;} be an R-basis of W. We
may write

(vew)p=> v;; ®uw;, veV,
J

where ¢;; are uniquely determined elements of Endgn(Vy). Put E = Endgn (V)
and n = rankgW. Let ¢F € Mat,,(E) be the matrix whose (¢, j)-entry is ¢;;. Clearly
F is an R-algebra monomorphism from Endgg(V ® InfW) to Mat,(E). Put

w;g = Zaij(g)wj, ai;(g) € R, for every g € G.
J

Then we get
D aia(9)ds; = Y Bis’ali(9),
s s

where ¢;,? is defined by the rule: v¢;,? = vg ' ¢;9, v € V. Taking the traces of
both sides, we get ‘

D ais(9)tr(¢s;) = Y tr(Bis)as;(9)-
This shows that the R-endomorphism ® of W defined by

w;® = Z tr(dij)w;
J
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is an RG-endomorphism of W. So by assumption on W,
(1) tr(¢hi;) = tr(¢y1) for all 4, and tr(d;;) =0 if © # 3.
Thus

tr(g) = Ztr(qﬁii) = (rank g W )tr(¢11).

So
v(tr(¢)) = v(rankgW) + v(tr(¢11)) > v(rankg(V ® InfW)),

since V)y is virtually irreducible. It remains to show that if the equality holds here then
¢ is invertible. Assume the equality holds. Since Vjy is virtually irreducible, (1) yields
that ¢;; are invertible for all ¢ and that ¢;; € J(E) if ¢ # j, where J(E) is the radical
of E. Let

a : Matn(E) — Mat, (E)/J(Mat,(E)) (2 Mat.(E/J(E)))

be the natural map. Then, by the above, ¢Fa is invertible. So ¢F is invertible and
then ¢ is invertible. This completes the proof.
(ii) cf. the proof of 1.21 Remark in Knorr [12]. O

We say (Q,bg) is a B-Brauer pair if bg is a block of QCg(Q) with defect group
Q and (bg)® = B. We refer to Brauer [5] for the basic facts about Brauer pairs.

Theorem 2.8. Let QN/N, DN N < Q < D, be a defect group of a block B of
G /N which is V-dominated by B. Assume either of the following:
(@ o= R andV is an RG-module such that Vy is virtually irreducible.
(b) o=k and V is a kG-module such that Endyn(VN) = k.
Then
(i)  There is a B-Brauer pair (Q,bg).
(ii)  For some defect group D, of B, we have Z(D;)N/N < QN/N < D;N/N.
In particular if D is abelian, then every block of G/N V-dominated by B has DN/N
as a defect group.
(iii) There exist defect groups D1 and Dy of B such that Q = D; N Ds, that is, Q
is a “defect intersection”.

Proof. Put H = Ng(Q)N.

(i) Let B be the Brauer correspondent of B in H/N and let 3 be a unique block
of H which Vy-dominates 3.

Let W be an irreducible o[H/N]-module in 3 with KerW > QN/N. Let S be a
vertex of Vi ® InflW. By Lemma 2.2, SN = QN. We claim that in both cases there
exists a (3-Brauer pair (S, bs).
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Case (a). By Lemma 2.7, Vg ® InfW is a virtually irreducible RH-module in
B. So, by Knorr’s theorem [11, Corollary 3.7 (i)] (or [12, Corollary 4.11]), there is a
(3-Brauer pair (S,bs).

Case (b). By Lemma 2.7 (ii), Endggy(Vy ® InfW) = k. So, by Knorr [11, The-

orem 3.3], there is a (3-Brauer pair (S, bs).
Thus the claim is proved. Now there is a primitive §-Brauer pair (P,bp) such that
(S,bs) C (P,bp). Then, since S < PN SN < P, there is a 3-Brauer pair
(PN SN,bpnsn). On the other hand, since P is a defect group of 3 and 3 covers
b(Q), PN@N = PNSN is a defect group of b(Q). Thus PNSN is @ N-conjugate to
Q. Thus there is a S-Brauer pair (Q,bg). Then bg is a block of QCH(Q) = QCs(Q)
with defect group @ and (bg)® = ((bg)¥)¢ = 8% = B. Thus (i) is proved.

(i) This follows from (i) and the Brauer-Olsson theorem [5, (4K)].

(iii)) Let 3 be as in the proof of (i). From the proof of (i), we see there is a -
Brauer pair (Q, bg). Put (bg)N¢(?) = ’. From the proof of Theorem 2.1 (ii), we see
there are p-Sylow subgroups S;, i =1, 2, of Ng(Q) with S NS = Q. Let U;, i = 1,
2, be defect groups of ' such that S; > U;. Then Q = S; NS > U;NU; > Q, so
Ui N U, = Q. Now, as in the proof of (i), we have 3'¢ = B. Then we see that there
is a defect group D; of B such that U := Np, (Q) is a defect group of g', cf. [16,
Theorem 5.5.21]. Thus there are z, y € Ng(Q) such that U; = U® and U, = UV.
Then Ng(Q)ND1*NDY=U*NUY=U;NU; =Q, and so D;° N D;Y = Q. This
completes the proof. O

ReMARK. When V is the trivial module, “B V-dominates B” coincides with “B
dominates B” (or “B contains B”). In this case, the last assertion of Theorem 2.8 (ii)
is proved in Berger and Knorr [3, Step 2 of the proof of Theorem].

3. Extension of a character of a normal subgroup

Throughout this section, we use the following notation: Let N be a normal sub-
group of a group G. Let b be a block of N. Let B be a block of G covering b. Let
D be a defect group of the Fong-Reynolds correspondent of B in the inertial group of
bin G. Put § = DN N. So ¢ is a defect group of b.

If Y is a subgroup of a group X and (3 is a block of Y, then for a character x
of X, we denote by xs the S-component of xy and call it the S-component of x.

The following theorem plays an important role in Section 4.

Theorem 3.1. Let the notation be as above. For any D-invariant irreducible
character £ in b, there exists a D-invariant extension of &€ to Z(D)N.

For the proof we prepare a lemma, which extends [13, Proposition 4.15 (i) (in
case (1))].
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Lemma 3.2. Let A be an abelian subgroup of Cp(d). Then every irreducible
character in b extends to AN.

Proof. Put L = AN. Let £ be an irreducible character in b. Let ¢ be an irre-
ducible character of L lying over £. Since L/N is a p-group, there exist a subgroup
H and a character n of H with the following properties: N < H < L, ny = £ and

= (, cf. Isaacs [9, Theorem 6.22]. Let V be an RH-module affordmg n. If bis
a block of L to which ( belongs, then Ad is a defect group of b, cf. [13, Lemma
4.13]. Then, since VL affords ¢ and VL is H-projective, we get Z(Ad) < H by
[11, Corollary 3.7 (i)] (or [12, Corollary 4.11]). Clearly A < Z(Aé), so A <  H and
L = H. Thus ( is an extension of £ to L. O

Proof of Theorem 3.1. Put L = Z(D)N. Since L is a normal subgroup of DN,
the assertion makes sense. Applying Lemma 3.2 with A = Z(D), we see that there
exists an extension ¢ of ¢ to L. Fix any element z of D. Since &* = &, (® is also
an extension of £ to L. So there is a unique irreducible (linear) character A = A, of
L/N such that {* = (.

Let u be any element of Z(D). If B’ is a unique block of DN covering b, then
D is a defect group of B’, cf. [13, Lemma 4.13]. So there is a block b' of Cpn(u)
such that PN = B’ and that D is a defect group of b'. (In fact, it suffices to choose
the block of Cpy(u) induced by a root of B’ in DCpyn(D).) Now Cpr(u) < Cpn(u)
and Cppy(u) = DCL(u). So b’ covers a unique (D-invariant) block, say b, of Cr(u),
and b; has D N Cr(u) = Z(D)é as a defect group. Let B; be a unique block of
L covering b. Then clearly B; is D-invariant and, by [13, Lemma 4.13], Z(D)¢ is
a defect group of B;. Since ¥'PN = B’, and b, and B; are D-invariant, it readily
follows that b;” = B;.

Now we consider the b;-component of (* = (). Let e be the block idempotent of
RCp(u) corresponding to b;. Then for h € Cfr(u),

(€)by (h) = CZ(he) = (R €) = (Go,)* (B),

since e = e. So (¢*)s, = ((4,)%. On the other hand, put e = 3~ a,y, where a, € R
and y ranges over the p'-elements of C(u). Then for h € Cp(u),

(CA ), (h) = Zayc(hy = (G, N)(R).

Thus (¢A)s, = Cp, A and we have shown ((;,)* = (, A. Evaluating at u, we get
o, (u) = Gy (w)A(u). Since Z (D)4 is a common defect group of by and By, G, (u) #
0 by Brauer [4, (4C)]. Thus we get A(u) = 1. Since u is an arbitrary element of
Z(D), this shows that X is the trivial character. So ( is (z)-invariant and, since z € D
is arbitrary, we get that ¢ is D-invariant. This completes the proof. O
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Remark. For alternative proofs of Brauer [4, (4C)], see [6, Proposition 3.4.1],
[15, Corollary 1.10, Corollary 2.6], [19, Lemma].

4. Robinson’s conjecture

We recall from Introduction Robinson’s.conjecture:

(¥) Let B be a block of a group G with defect group D. Then, for every irreducible
character x in B, ht x < v|D : Z(D)| and the equality holds only when D is
abelian.

We shall give a “relative version” of the conjecture (%) and reduce () to the case
of quasi-simple groups. In this section we assume that the field K contains a primitive
|G|3-th root of unity.

In the following Lemmas 4.1 and 4.2, we use the following notation: N is a nor-
mal subgroup of a group G, B is a block of G, x is an irreducible character in B,
and ¢ is an irreducible constituent of yn. Let Tg(§) be the inertial group of £ in G.
Let Irr(Tg(£)|€) be the set of irreducible characters of T () lying over €.

Lemma 4.1. Let ¥ € Irr(Tg (€)|€) be such that XS = x. Let B be the block of
T (&) to which x belongs. Let b be the block of N to which & belongs and assume
that b is G-invariant. Let D be a defect group of B. Then for every defect group D
of B with D > D, we have Cp(D) < D. In particular, Z(D) < Z(D).

Proof. Put Sg(b) = NTg(n), where i ranges over the irreducible characters in
b. Since b is G-invariant, we see that Sg(b) <« G. Then, by Knorr [10], there is a
block B; of Sg(b) with defect group D N Sg(b) which is covered by B. Since B
also covers By, D N Sg(b) is G-conjugate to D N Sg(b). So, since D < D, we have
DN Sg(b) = DN Sg(b). On the other hand, DN N = DN N is a defect group of b.
Then, by [13, Lemma 4.14 (ii)], Cp(D) < Cp(DNN) = Cp(D N N) < Sg(b). So
Cp(D) < Sg(b)N D = Sg(b) N D < D. This completes the proof. O

Recently Watanabe [20] obtained simpler proofs of some results of [13] and [14].
Applying her method, we obtain the following.

Lemma 4.2. Let the notation be as above and let D be a defect group of B. If
X is afforded by a Z(D)N-projective RG-module, then

htx — ht¢ > v|DN : Z(D)N|.
Proof. Let U be a Z(D)N-projective RG-module affording x. Let @ be a ver-
tex of U with @ < D. Then

v(rankgU) > v|G : QN| + v(rankgV),
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where V' is some indecomposable summand of Uy, cf. the proof of Proposition 2 in
[20]. Then, since rankgV is a multiple of £(1), we get

htx — ht€ > v|DN : QN}|.

By Knorr [11], @ > ¢Z(D). So, since Q@ < gZ(D)N, we get QN = gZ(D)N. Thus
the result follows. O

The following is a “relative version” of Robinson’s conjecture.

Theorem 4.3. Let N be a normal subgroup of a group G with the following
property:
(%) is true for every block of every central extension of H/N for every subgroup
H with N < H<G.
Let B be a block of G with defect group D. Let x be an irreducible character in B
and let £ be an irreducible constituent of xn. Then

htx — ht§ < v|DN : Z(D)N|
and the equality holds if and only if x is afforded by a Z(D)N-projective RG-module.

Proof.  First we note that in the statement of Theorem 4.3 the choice of D is an
immaterial thing.

The proof is done by induction on |G/N|, the assertion being trivially true if G =
N. It suffices to prove the inequality and the “only if”” part. In fact, then the “if” part
follows from the inequality and Lemma 4.2.

Let b be the block of N to which ¢ belongs. By the Fong-Reynolds theorem and
the induction hypothesis, we may assume that b is G-invariant. We divide the proof
into several steps.

Ster 1. We may assume £ is G-invariant.

Proof. Let x € Irr(T(€)|€) be such that ¥¢ = x. Let B be the block of Tg(€)
to which x belongs. We have

(1.a) htx = htx + d(B) — d(B).

Let D be a defect group of B. Since B¢ = B, D < D¢ for some g € G. So we may
assume D < D without loss of generality. If T¢(£) < G, then, by induction,

(1.b) hty — ht¢é < v|DN : Z(D)N).
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Since b is G-invariant, we have Z(D) > Z(D) by Lemma 4.1. From (1.a) and (1.b)
we get

hty — ht¢ < d(B) —d(B) + v|DN : Z(D)N)|
= d(B) +v|N : DN N| - v|Z(D)N|
= d(B) +v|N : DN N| - v|Z(D)N|
(sice DNN = DNN)

< v|DN : Z(D)N| (since Z(D)N > Z(D)N).
Thus
(1.¢) htx — hté < v|DN : Z(D)N}|.

If the equality holds in (1.c), then the equality holds throughout. So Z(D)N =
Z(D)N. Also, since the equality holds in (1.b), we see by induction that y is af-
forded by a Z(D)N-projective RT¢(€)-module V. Then V€ is a Z(D)N-projective
RG-module affording x. Thus we may assume G = Tg(£).

The following step extends Step 5 of the proof of Theorem in [3] or (f) in the
proof of Theorem 6.1 in [13].

Step 2. There exists a central extension of G,

1-Z2-a05a51

with the following properties:

(2.a) f~1(N) = Z x N, for a normal subgroup N; of G.

(2.b) £ extends to G’.(Here we identify N with N; by (2.a).)

(2.c) Z is a finite cyclic group.

(2.d) There is a subgroup L of G such that f~}(Z(D)N) = Z x L and that L is
normal in f~!(DN).

(2.e) K is a splitting field for every subgroup of G.

Proof. By Theorem 3.1, there is a D-invariant extension { of £ to Z(D)N. Let
p:Z(D)N — GL(£(1), K) be a representation affording (. Let T be a transversal of
N in G with 1 € T. Since £ and { are G-invariant and D-invariant, respectively, we
can choose by standard arguments §(t) € GL(£(1), F) such that:

p(t)p(n)p(t)™ = p(tnt™'),n € N, for t € T — DN,
p)p(x)p(t)~! = p(txt™),z € Z(D)N, for t € TN (DN — Z(D)N),
detp(t) =1, fort € T — Z(D)N,
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where F is a suitable extension of K. For t € T N Z(D)N, put p(t) = p(t). For
g€ G, write g=1tn,t €T, n € N and put 5(g) = p(t)p(n). Then

2.9 p(9)p(n)p(g)~" = p(gng™"), g€ G,n € N,and
(2-g) p(z) = p(z), =z € Z(D)N.

Further,

(2.h) p(g)p(x)p(g) ™" = p(gzg™"), g€ DN,z € Z(D)N.

Let F* be the multiplicative group of F. By (2.f) and (2.g), there is a factor set o :
G x G — F* satisfying the following:

(2.1) p(9)p(h) = a(g,h)p(gh), g,h € G,and
(2J) a(z,y) =1, z,y€ Z(D)N.

Then, taking determinants in (2.i), we get a(g,h)” = 1, g, h € G, where r =
|Z(D)N|E(L).

Now let Z be the cyclic subgroup of order r of K*. (Since r divides |G|?> and K
contains a primitive |G|3-th root of unity, Z exists.) Let

15Z-Cha-1

be the central extension of G corresponding to the factor set a. So G=ZxGasa
set and the multiplication in it is defined by

(2,9)(w, h) = (2wal(g, h),gh), z,w € Z, g,h €G.

We show that this central extension is a required one. To prove (2.d), put L =
{(1,z)|z € Z(D)N}. By (2,), L is a subgroup of f~}(Z(D)N) and f~}(Z(D)N)
Z x L. To show that L is normal in f~!(DN), it suffices to prove (z,g)(1,z)
(1,997 ')(2,9), 2€ Z, g € DN, z € Z(D)N; namely a(g,z) = a(grg~',g). Now

]

I

a(gzg™t, 9)I = plgzg™")p(g9)p(gz) " (by (2.)
= p(g)p(x)p(9) "' h(g)p(gz)~" (by (2.g) and (2.h))
= p(g9)p(z)p(gz) ™
= a(g,z)I (by (2.g) and (2.i)),

where I is the identity matrix of degree £(1). Thus (2.d) follows. To show (2.a) and
(2.b), put N; = {(1,n)|[n € N}. Then we have f~}(N) = Z x N; by (2j). Sim-
ilar computation as in the above shows that N; is a normal subgroup of G. If we
let 5((z,9)) = 2p(g), z € Z, g € G, then j is a representation of G and, since
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p((1,n)) = p(n) for n € N, p affords an extension of £ to G. Since |G| = r|G]|
divides |G|® and K contains a primitive |G|3-th root of unity, (2.e) follows. This com-
pletes the proof. '

We fix a central extension G of G as above. Let x be the inflation of x to G. Let
B be the block of G to which x belongs and let D be a defect group of B. Since G
is a central extension of G, we may choose D so that f)Z/Z = D.

Step 3. We have:

3.a) DZ/Z = D. In particular, d(B) = d(B) + v|Z|.

(3.b) Z(D)Z/Z = Z(D). In particular, v|Z(D)| = v|Z(D)| + v|Z|.
(3.c) DNN=DnN.

(3.d) Z(D)NN = Z(D)NN.

Proof. (3.a) This is true by our choice of D.

(3.b) By (3.a), Z(D)Z/Z < Z(D). In the notation of Step 2, f~!(Z(D)N) =
ZxL.Let U= f~Y(Z(D))N D. Let Z, be a p-Sylow subgroup of Z. It is obvious
that Z, < U < Z, x L. So U = Z, x (UNL). Then, since D < f~1(DN) normalizes
L by (2d) and [U,D] < Z by (3.a), we get [U,D] = [UNL,D]<LNZ = 1. So
U < Z(D) and Z(D) < Z(D)Z/Z. Hence Z(D)Z/Z = Z(D).

(3.c) By our choice of D (and our convention that N; = N), DNN <DNN.
Since both DN'N and DN N are defect groups of b, we get DNN=DNN.

(3.d) By 3.a), [Z(D)NN,D] = 1. Thus Z(D)NN < Z(D)N N by (3.c). On
the other hand, [Z(D) N N, D] < Z by (3.a), so [Z(D)NN,D] < ZN N = 1. Thus
Z(D)NN < Z(D)N N by (3.c) and (3.d) follows.

There is an extension £ of & to G by (2.b). Then there is a unique irreducible
character 8 of G /N with x = £ ®6. Let B be the block of G /N to which @ belongs
and let D be a defect group of B.

StEP 4. We have:

(4.2) hty — hté = htf + d(B) — d(B) — d(b).
(4.b) htd < v|D : Z(D)|.

Further, we may choose D so that

(4.0) Z(D) > Z(D)N/N. In particular,
v|Z(D)| > v|Z(D)| - vZ(D) N N|.
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Proof. (4.a) follows from (3.a). Since G/N is a central extension of G/N, we
get (4.b) by our assumption on N. Let V' be an irreducible RG-module affording &.
Then B is V-dominated by B. So we get (4.c) by Theorem 2.8 (ii).

Step 5. Conclusion.
Proof. We have

htd + d(B) — d(B) — d(b) (by (4.2))

v|D : Z(D)| + d(B) — d(B) — d(b) (by (4.b))
—v|Z(D)| + d(B) — d(b)

—(v|Z(D)| - v|Z(D) N N|) + d(B) + v|Z| — d(b)
(by (4.c) and (3.3))

—(v|Z2(D)| + v|Z|) + v|Z(D) N\ N| + d(B) + v|Z| — d(b)
(by (3.b))

= d(B) — d(b) — v|Z(D)| + v|Z(D) N N| (by (3.d))
=v|D: DNN|-v|Z(D): Z(D) N N|

= v|DN/N| - v|Z(D)N/N|

= v|DN : Z(D)N|.

htx — ht¢

Il

IN

Thus we get
(5.a) htxy — hté <v|DN : Z(D)N|.

It remains to show that the equality holds in (5.a) only if x is afforded by a
Z (D) N-projective RG-module. Assume the equality holds in (5.a), then in the above
proof of (5.a) the equality holds throughout. Hence D is abelian by (4.b) and our as-
sumption on N, and Z(D) = Z(D)N/N by (4.c). Thus,

(5.b) D = Z(D)N/N.

Let W be an R[G/N)-module affording § and V an RG-module affording £. Then
VQW affords x. Since W is, as an R[G/N]-module, D-projective, VQW is Z(D)N-
projective by (5.b). So, V ® W is, as an RG-module, Z(D)N-projective by (3.b) and
affords . This completes the proof. OJ

Lemma 4.4. If () is true for every block of every quasi-simple group, then it
is true for every block of every finite group G such that G/C is simple for a central
subgroup C of G.
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Proof. If G/C is of prime order, then G is abelian and (%) is trivially true. As-
sume that G/C is non-abelian simple. Then, as is well-known, G = G'C, where G’
is the commutator subgroup of G (which is quasi-simple). Let C,, be a p-Sylow sub-
group of C' and D a defect group of B. Let B’ be the block of G' covered by B.
Then C, < D < CpG', so if we put Q = DNG’, then D = C,Q and Q is a defect
group of B'. Let x be an irreducible character in B. Clearly xg' is an irreducible
character in B'. By assumption, we get

) htxe <v|Q: Z(Q)|.

Since G = G'C and D > C,, |G/G'D] is prime to p. This shows htx = htxg. Also,
easy computation shows v|D : Z(D)| = v|Q : Z(Q)|. So we get

) htx < v|D : Z(D)|.

If the equality holds in (2), then the equality holds in (1). So @ is abelian by assump-
tion, and D is abelian. This completes the proof. O

Lemma 4.5. Let N be a normal subgroup of a group G. Let B be a block of G
with defect group D. Let x be an irreducible character in B. Then the following are
equivalent.

(1)  x is afforded by a Z(D)N -projective RG-module.

(ii) x is afforded by a Z(D)(D N N)-projective RG-module.
Further, the following are equivalent.

(iii) x is afforded by a Z(D)-projective RG-module.

(iv) D is abelian.

Proof. (i) = (ii): Let U be a Z(D)N-projective RG-module affording x. By
Knoérr [11], there is a vertex Q of U such that

1) D >Q 2Cp(Q) 2 Z(D).

We have Q < gZ(D)N. So, by (1), we get QN = Z(D)N and Q = Z(D)(QNN) <
Z(D)(D N N). Thus (ii) holds.

(ii)) = (i): This is trivial.

(iii) = (iv): Let U be a Z(D)-projective RG-module affording x. There is a
vertex Q of U such that (1) above holds. Then, since Q < gZ(D), we get, by (1),
Q =Z(D) =D. So D is abelian.

(iv) = (iii): This is trivial. O

Theorem 4.6. If (x) is true for every block of every quasi-simple group, then it
is true for every block of every finite group.
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Proof. Let B a block of G with a defect group D. The proof is done by in-
duction on |G/Z(G)|. If G = Z(G), then (%) is trivially true. Assume G > Z(QG)
and let N/Z(G) be a maximal normal subgroup of G/Z(G). We claim that N is a
normal subgroup of G satisfying the condition in Theorem 4.3. Let H be a subgroup
such that N < H < G and let L be a central extension of H/N. If H < G, then
|L/Z(L)| < |H/N| < |G/N| < |G/Z(G)|, so (x) is true for every block of L by
induction. On the other hand, if H = G, then (x) is true for every block of L by
Lemma 4.4 and assumption. So the claim is proved. Thus we may apply Theorem 4.3
to conclude that for every irreducible character x in B and an irreducible constituent
& of xn, we have

(1) hty — ht¢ < v|DN : Z(D)N].

Let b be the block of N to which ¢ belongs. Since |[N/Z(N)| < |G/Z(G)|, we get
by induction,

@ ht§ < v|6 : Z(6)],

where ¢ is a defect group of b. Replacing £ by a G-conjugate of it if necessary, we
may assume & = D N N by Knorr [10]. Thus, by (1) and (2),

3) hty < v|DN : Z(D)N|+v|é : Z(9)|

=v|D: Z(D)|+v|Z(D)NN|—v|Z(5)|
< v|D: Z(D)| (since Z(D)NN < Z(8)).

Hence
4 hty < v|D : Z(D)|.

If the equality holds in (4), then equality holds throughout. So, by (1) and Theorem
4.3, we see that x is afforded by a Z(D)N-projective RG-module. Further, we get
é < Z(D) by (2), (3) and induction. Now, Z(D)(D N N) = Z(D)é = Z(D). So, by
Lemma 4.5, we see that D is abelian. Thus the proof is complete. O

The following is a “relative version” of the results of Fong [7, (3C)] and Watan-
abe [18, Proposition].

Corollary 4.7. Let N be a normal subgroup of a group G such that G/N is
p-solvable. Let B be a p-block of G with defect group D. Let x be an irreducible
character in B and let £ be an irreducible constituent of xn. Then

hty ~ ht§ < v|DN : Z(D)N|
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and the equality holds if and only if x is afforded by a Z(D)N -projective RG-module.

Proof.  Since (*) is true for every block of a p-solvable quasi-simple group, be-
cause a p-solvable quasi-simple group is a p’-group, (*) is true for every block of a
p-solvable group, cf. the proof of Theorem 4.6. Then the assertion follows from Theo-
rem 4.3. 0

RemaArk. (1) If N = 1, the corollary above boils down to the results of Fong
[7] and Watanabe [18], cf. Lemma 4.5.
(2) The modular version of Corollary 4.7 is also true.
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