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New Finite Elements for Stress Analysis around Crack in Axi-symmetric

Structuret

Shuichi FUKUDA*, Hiroshi MIYAMOTO**, Koichi KASHIMA***,
Yasuhide SAKAGUCHI****, Takenori SHINDO***** and Yoshihisa KODAMA ***#*

Abstract

New finite elements, one 2 dimensional polar element and two 3 dimensional polar elements, are developed for the
purpose of stress analysis around the crack in an axi-symmetric structure.

It is shown that the conventional constant stress and strain element brings about the loss of accuracy when applied to
the crack in an axi-symmetric structure, because the nodal force vector deviates from the radial direction and that the ring
element cannot be applied either because it cannot accomodate the circumferential displacement introduced by the crack

owing to its original form of shape function.

Numerical examples of rotating bodies and of internally pressurized cylinders are analyzed and the high accuracy of
" these newly developed finite elements in evaluating stress intensity factors is confirmed.

1. Introduction

Many examples of axi-symmetric structures can be
found in various industrial fields, such as nuclear
pressure vessels, liquid storage tanks, and rotors.
Most of these axi-symmetric structures are not only
axi-symmetric in their geometries, but also axi-sym-
metric in their loading. Therefore, their displacements
and stress distributions are also axi-symmetric. Con-
siderable amount of research work have been con-
ducted to develop suitable finite elements for studying
such axi-symmetric deformations. For example, ‘axi-
symmetric element’ or ‘ring element’ was developed
for that purpose.

But once a crack is formed in part of an axi-sym-
metric structure, the circumferential (6 direction)
component of displacement is produced and the de-
formation is not axi-symmetric any more. Practical
problems of cracked axi-symmetric structures are,
for example, cracked coolant pipings of a nuclear
reactor due to stress corrosion cracking or cracked
nuclear pressure vessels due to clad welding,

It is quite important to evaluate the stress distribu-
tion around the crack tip and to evaluate stress in-
tensity factor of an axi-symmetric structure in order
to estimate the strength of structures in terms of
fracture mechanics. In fact, in nuclear field, ASME
Pressure Vessel and Boiler Code was updated in its

1972 summer addenda to incorporate fracture me-
chanics approach into its code and its latest Sec. XI
recommends strongly the use of appropriate numeri-
cal technique, such as finite element method, to
evaluate the values of stress intensity factor as ac-
curately as possible?.

Although the stress analysis of cracked axi-sym-
metric structures are thus important, not much work,
at least to the authors’ knowledge, have been carried
out in developing suitable finite elements for that
purpose. Therefore, most of the analyses of cracked
axi-symmetric structures have been made using
Cartesian-coordinate-constant-stress elements. But if
constant stress elements are used, the direction of
equivalent nodal force is affected by the manner of
mesh divisioning so that if non-uniform meshing is
adopted as in the case of meshing into finer elements
around the crack to accurately evaluate the value of
stress intensity factor, it brings about the loss of ac-
curacy.

Therefore, this paper presents new finite elements
which can deal with non-axi-symmetric deformation
in an axi-symmetric structure based on polar coordi-
nates or cylindrical coordinates. The cases of rotating
bodies and internally pressurized cylinders are analyzed
to confirm the validity of these newly developed finite
elements.
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2. Newly Developed Finite Elements

The following three types of finite elements are
newly developed.
(i) 2 dimensional 4 node element (Fig. 1)
(ii) 3 dimensional 8 node element (Fig. 2)
(iii) 3 dimensional 6 node element (Fig. 3)
Figure 1 shows the 2 dimensional 4 node element.

Y

Fig. 1 2 dimensional 4 node element

The displacements in an element are expressed as fol-

lows;
u=a,+asr+asf+a,ro )
v=as-+acsr+a.0-+asro

where u# and v denote the radial displacement and the

circumferential displacement respectively, and ai~as

are unknown constants.

Figure 2 shows the 3 dimensional 8 node element,
which is a mere extension of the above 2 dimensional
4 node element into 3 dimension. Its shape function
or displacement function is given by the following
form;

U=ay+ar+as0-+a.z-asr0 +asbz-+a.zr-+
asr 0z

vV=0a¢} 107 +a110+a12z -+ assr 0 a1.0z+
ay5zr+aiet 6z

W=7+ 18" + @100 -+ A20Z + U217 0+ Q2202+
Q23Zr —+asat 0z

)

where u, v and w denote the radial, circumferential
and axial displacement respectively and a;~a.s are
unknown constants.
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Fig. 2 3 dimensional 8 node element

Figure 3 shows the 3 dimensional 6 node element,
whose cross section is triangular. Its shape function is
written as,

N
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Fig. 3 3 dimensional 6 node element
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u=(a1+asr+asz)(a;+as6)

v:(as+a7r+a82)(ag+amb')

W:(au+a12"+a132)(6114+61150)
where a;~ai; are unknown constants. The 3 dimen-
sional 6 node element has the advantage over the 8
node element in that it is much easier to represent
arbitrary boundary shapes.

The reasons why these three types of newly developed
finite elements are more appropriate for the analysis
of cracked axi-symmetric structures than the conven-
tional constant stress elements are;

(i) The introduction of highei’ order terms into the
shape function brings about the improvement in
accuracy.

€)

(ii)) As these elements are primarily of circular or
cylindrical shape, there is no need to represent
circular boundary shape by linear approximation
and to divide into finer meshes in the circumfer-
ential direction to improve the accuracy of ap-
proximation as in the case of constant stress
elements.

If constant stress elements are used and mesh
divisioning is not uniform in the circumferential
direction, the equivalent nodal force in the cir-
cumferential direction becomes non-zero and it
decreases accuracy.

The point (iii) will be illustrated in the following by
the case of a rotating body as an example. In the case
of the 2 dimensional constant stress element, the
equivalent nodal force at the node j is given by the
following form;

F.j=Sro2x(x:+xm+2x,;)/12g
Fyj=Sro®x(yi+ym+2y,;)[12¢

where g, v, o, and S denote gravitation, weight of the
material per unit volume, rotational angular velocity
and area of the triangle respectively. When elements
are divided in such a manner as shown in Fig. 4-(1),
the equivalent nodal forces at the node j can be ex-
pressed by the following form, since the node j is
related to elements A and B.

Fy _ Sa0Aynt29) 4 Ss(ntyet 2y)) -,

ij SA(X;+Xm+2Xj)+Sg(xm+Xk+ZXj)
where S+ and S; denote the area of element A and B
respectively. The equivalent nodal force turns to the
radial direction only if S4=S5 holds, since the rela-
tion F,,/Fy;=tan 6, holds only when S.=Sj, i.e.,
0:=0, and the equivalent nodal force turns to the
radial direction only when this condition is satisfied
as can be seen from Fig. 4-(1). This implies that
elements must be divided uniformly in the circum-,
ferential direction in such a manner as shown in Fig.

(iii)

4
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Fig. 4 Change of equivalent nodal force by meshing

4-(2). And if nonuniform meshing is made as is often
the case at the crack tip, non-zero component of the
nodal force in the circumferential direction is produced
as can be seen in Fig. 4-(3). It is apparent on the
other hand that in the case of polar-coordinate ele-
ments or cylindrical-coordinate elements the direction
of the nodal force is not affected by the manner of
meshing in the circumferential direction as shown in
Fig. 4-(4).

A rotating disk is analyzed in the following as a
numerical illustration; i.e., a rotating disk of inner
radius R;=50 mm, outer radius R.=100 mm, rota-
tional frequency N=1000 rpm, Young’s modulus E=
21000 kg/mm?, Poisson’s ratio y=0.3 and weight per
unit volume 7y=7.86x10"% kg/mm?® was analyzed
using 3 dimensional composite elements composed of
constant stress hexahedron elements and 3 dimensional
8 node elements. In the case of constant stress com-
posite elements, four manners of meshing, three
uniform meshing and one non-uniform meshing, are
used in the calculation as in Fig. 5. Figure 6 shows the
comparison of the results obtained by these methods
and by the following analytical solution in terms of
the radial displacement u.

__rwir 2 2y (] —y2)p2
u=Tp {(3—\—»)(1—»)(R1 T RA—(1—s)r2t

Grr)(14v) RERE |

y2

(©)
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Fig. 5 Element subdivisions (constant stress element)
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Fig. 6 Comparison of the distribution of displacement
obtained by different methods

It can be observed from Fig. 6 that in the case of con-
stant stress elements, accuracy increases and the results
approach the result of the analytical solution as the
number of element subdivisions increases and that
accuracy decreases if meshing is not uniform. On the
other hand, the result obtained using 3 dimensional 8
node elements agrees fairly well with that of the ana-
lytical solution, which fact shows the validity of the
newly developed finite element.

3. Applications to Cracked Bodies
3.1 Application to Rotating Body

A hollow rotating body with two symmetric edge
cracks at the inner surfaces as shown in Fig. 7 is
analyzed, using 2 dimensional 4 node elements. From
symmetry, a quarter part is divided into 868 elements

Transactions of JWRI
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Fig. 7 Rotating Disk with two symmetric edge cracks

N

7

Fig. 8 Element subdivision (2 dimensional 4 node element)

and 495 nodes. The stress intensity factor K: was
calculated by three methods; (1) by averaging the K;
value obtained from the stress of the crack tip ele-
ment and the K: value obtained from crack opening
displacement, (2) by using strain energy release rate
G and (3) by Body Force Method®. The results are
shown in Table 1 for both plane stress and plane
strain conditions, where the result obtained by the
method (1) is shown under ‘direct method’, and the
result obtained by method (2) is shown under ‘energy
method’. The equations used in the calculations are
as follows;
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Table 1 Dimensionless stress intensity factors for a hollow rotating body with two symmetric edge cracks at the

inner surface

R:/Ri=10

a/R=05

Plane Stress Plane Strain
FEM Body FEM Body
Direct  |Energy Force |Direct [Energy Force
Method | Method| Method| Method | Method| Method
1.089 11n 1106 1.091 11m 1.106
fr=KijoNTa M
K1=O‘o\/§7? (8)
- 7(160—»2)\/ ; (plane strain) o
%2\/ —2%—, (plane stress)
o ﬁlG—Eu - (plane strain) (10)
VGE (plane stress)

where f; is the stress intensity factor in dimensionless
form and a, v, and r’ denote crack length, crack open-
ing displacement, and distance from the crack tip in
the radial direction respectively and ¢, means the
stress at the point corresponding to the crack tip in a
hollow rotating body without a crack.

3.2 Applications to Internally Pressurized Cylinders
3.2.1 2 Dimensional Analysis of Cylinder with Edge
Crack

A cylinder with an edge crack of length a at the
inner surface as shown in Fig. 9 is analyzed using 2
dimensional 4 node elements. Its inner radius R;=350
mm, outer radius R;=100 mm, a¢=15 mm, E=21000
kg/mm?, v=0.3, and internal pressure p=10 kg/mm?
and the cylinder is divided into 1488 elements and
1575 nodes. Three loading conditions are analyzed in
order to study the effect of internal pressure on the
crack surfaces:

(i) internal pressure is applied both on the inner
surface and on the crack surfaces
internal pressure is applied only on the inner
surface
internal pressure is applied only on the crack
surfaces

(i)
(iii)

59

Fig. 9 Internally pressurized cylinder with a crack

Fig. 10-(1) shows the distributions of ¢, and ¢, on
6=0° under the condition of (i) and Fig. 10-(2)
shows each ¢, distribution for conditions (i), (ii) and
(iii). The value of stress intensity factor is calculated
using ‘energy method’ and its f, value which is a

LE)

0 r (mm)

Fig. 10 Stress distributions
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dimensionless stress intensity factor defined by the
following equation is obtained as f,=2.725.

fr=Kip\ra 11)
Bowie and Freese¥ obtained the stress intensity
factor for an edge-cracked hollow cylinder with its
internal pressure working both on inner surface and
on crack surfaces, using collocation method. As their
J» value is 2.867, both results agree fairly well.

3.2.2 3 Dimensional Analysis of Cylinder with Semi-
elliptical Crack

A cylinder with a semi-elliptical crack as shown in
Fig. 11 is analyzed using 3 dimensional 6 node ele-
ments. Figure 12 shows finite element idealization and
the number of elements and nodes are 2421 and 1630
respectively. The same values as those of the preced-
ing 2 dimensional analysis were used for R,,R;,a,E
and v, and a/c is chosen as parameter where 2c¢ is
the crack length. The analysis was made under only
one loading condition that internal pressure is applied
both on inner surface and on crack surfaces. Figure
13 shows o, distribution with a/c as parameter.
Figure 14 shows the distribution of crack opening
displacement ». In these figures, the case that a/c=0
corresponds to the case of the edge crack where ¢— oo,
and the results of a/c=0 are obtained using the pre-

e—2t

Fig. 11 Internally pressurized cylinder with a semi-elliptical
crack
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Fig. 12 Element subdivisions (3 dimensional 6 node element)
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ceding 2:dimensional analyses.

Table 2 shows the stress intensity factors for the
internally pressurized cylinder obtained by various
methods. The dimensionless stress intensity factor f,
is obtained from the crack opening displacement and
the stress at the deepest crack point, using Eq. (8) and
Eq. (9) and by averaging these values under the as-
sumption of plane strain.

The dimensionless stress intensity factor f,’ is ob-
tained in the following manner, assuming the relation®

(KI,Se)c:(KI,Se)P (Kl,e)c/(KI,e)p (12)
where (Kr s.).=K: of an internally pressurized cylinder
with a semi-elliptical crack
(Kr1..). =K of an internally pressurized cylinder
with an edge crack
(K1,se)p=K: of a semi-infinite plate with a semi-
elliptical crack
(K1), =Kr of a semi-infinite plate with an edge
crack
Here, the following formulae® are used for (K: .),
(K1,5¢)p and (K1,e)p-

(Kr,.).=2.867 p\za (Bowie-Freese solution)
(K1 se)=M:Z e

(K1,.)p=1.12 o\ra
M1=1+0.12<1 —i>2
2¢

. 2 .
@:Jz 1/% cos20-+sin% do
[}

where M, is the correction factor for front surface?
and ¢ is the uniform tensile stress and @ is the
complete elliptical integral of the second kind.

Therefore, (Kr s.). can be obtained as follows;

M,

1.120

The dimensionless stress intensity factor f5' is

(K1.se)e=2.867 ra

a 2
14-0.12 (1 ——27>
1.12

The dimensionless stress intensity factor f,”’ is ob-
tained in the following manner. The stress intensity
factor for an edge crack in a semi-infinite plate which
is subjected to the stress and internal pressure p is
given by,

Ki=1.12¢\ra+1.12p\ra

where 0 is the circumferential stress at the point cor-
responding to ‘crack tip’ of an internally pressurized
cylinder without a crack. If we write W=R;/R,, 1=
a/R,, W=R.— Ry, 0, is given by

fo'=2.867

_ PR R?
61" R22__R12 {(R1+a)2 "I“l}
R 4 we
—””—1{u+uf%%
wej(1+1)2+1
therefore, K’=1-12P\/ﬁ{—%i—+ 1}

The above equation is extended to a semi-elliptical
crack by introducing the correction factor M, for front
surface, the correction factor M, for back surface®
and @.%

we/(1+2°+1
we—1

K =M1M2p\q/)ﬁ{ 4 1}

Table 2 Dimensionless stress intensity factors for an internally pressurized cylinder with a semi-elliptical crack

at the inner surface

R:/Ri=2

Q/Rn:0.3

a/c 0 0.2 06 08 1.0
F('ff")‘ 2725 | 2358 | 2055 | 1797 | 1578 | 1394
Bowie
-Freese 2867
£, 2867 | 2674 | 2396 | 2123 | 1.883 | 1679
£ 2472 | 2305 | 2065 | 1831 | 1623 | 1447
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2w tan a
na 2w

Therefore, the dimensionless stress intensity factor f,’’
is obtained as follows;

Moty (WY

where M.=

o @ Wwe—1

It is observed from Table 2 that f, can be approxi-
mated by f,"’ except when a/c is close to zero.

+1}

4, Summary

New finite elements which can analyze non-axi-sym-
metric deformation due to crack in an axi-symmetric
structure are developed. These newly developed polar-
coordinate or cylindrical-coordinate elements can pro-
vide more accurate solutions because these elements do
not produce the error of the equivalent nodal force in
the circumferential direction, even if meshing is non-
uniform in the circumferential direction.

These newly developed finite elements are, therefore,
believed to be quite useful for fracture mechanics
analysis.
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