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Introduction

The boundary behavior of analytic functions on the unit disc has been an
interesting material of the complex analysis. Among various investigations on
this problem some results such as the theorem of Fatou-Plessner and the theorem
of Riesz-Frostman-Nevanlinna were generalized in a far extensive context, that
is, for analytic mappings of Riemann surfaces and their relevant compactifica-
tions. These were found in the book of Constantinescu-Cornea [1],

Later [2], they considered harmonic morphisms between Brelot's harmonic
spaces under Wiener's compactification and revealed that above mentioned the-
orems are based essentially on the potential theoretic character. By using rela-
tions between the Wiener and the Martin compactifications of Brelot's harmonic
spaces with additional assumptions, the author obtained informations on the
boundary behavior of harmonic morphisms at the Martin boundary [5], [6].

Under the framework of Constantinescu-Cornea [3], K. Oja [10] genera-
lized theorems of Fatou-Plessner and of Riesz. Recently [7], in order to dis-
cuss the Nairn theory [9] in the context of harmonic spaces of Constantinescu-
Cornea the author defined the compactifications of Martin type. Here we give
a supplementary remark on mappings of type Bl and translate the informations
on the Wiener boundary into those on the Martin type compactification following
the spirit of [6]. It is still possible to discuss the problem without any compac-
tification as in [11], [12].

Acknowledgment. The author wishes his herty thanks to Prof. F-Y.
Maeda for the valuable comments.

1. Preliminaries.

Let J? be a ^-harmonic space in the sense of Constantinescu-Cornea [3],
We assume that X has a countable base and 1 is superharmonic on X. Further,
we assume that X has a compactification of Martin type X* [7], i.e., (1) X* is
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metrizable and resolutive, (2) there is a finite continuous function K(x, z) defined
on XxΔ(Δ=X*\X) such that kz\ x-+k(x, z) is non-negative and harmonic
on X for every #€ΞΔ, (3) there is a non-negative Borel measure μ on Δ and a set
Δ! corresponding to a certain class of minimal harmonic functions kz such that
μ(Δ\Δ1)=Q and μ(T)=Q if Γ is negligible, (4) for every u^HE(X) there is a

resolutive function/ such that u(x)= Hf(x)=\ k(x, z)f(z)dμ(z) for every x&X.

Then, X has the Wiener compactification Xw which is resolutive [4] and X* is a
quotient of Xw, i.e., there is a continuous surjection π: XW-*X* satisfying
π(x)=x for every x^X.

Let X' be a second harmonic space such that X' has a countable base and 1
is superharmonic on X'. We suppose further that X' is connected and elliptic
if JΪ"'$ίP, i.e., if JY"' is not ίP-harmonic. For a compactification J£'* of X' we
make the following assumption:

Case (i) X'*=X' if X' is compact,
Case (ii) X'* is an arbitrary metrizable compactification if X' is non-com-

pact and X'$&,
Case (iii) X'* is an arbitrary metrizable and resolutive compactification if

Remarks. (1) The case (iii) occurs since 1 is harmonizable [4], and X' is
non-compact if X'^S?.

(2) If X'&S*, then X7 is completely degenerated, i.e., 0 is the only one
potential on X' and all non-negative superharmonic functions are harmonic and
they are proportional ([3], Excercise 3.1.10).

(3) If F'C-X' is closed and non-polar then X'\F'^S ([3], Exicercise
6.2.5).

Proposition 1.

Let f'^C(X'*), Fr be a compact non-polar subset of X' with non-empty

interior and G'=X'\Ff. Then the restriction of f to G' is harmonizable on G'.

Proof. Case (i): G' is relatively compact and is resolutive since, in virtue

of the above Remark (3), G' is an open subset of a ^-harmonic space ([3], Th.

2.4.2). Hence by the same argument as in [8], 2.1.4, h//' G'=H//' *'. In the

following we refer to [8] without mentioning any possible modification.

Case (ii): We show first that hf' *'=0. This function hf' *' is associated

with 0 on 9G' ([8], 2.1.5). Let pi be an Evans function on G' of some po-

tential p'>0 on G'. Then, liminf [pί-hf' ^^O on 8G' ([8] 1.2.14). The

function

Hiof(ρί-h?''χt, 0) on G'

0 on F'
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is superharmonic on X'. Since, by Remark (2), the non-negative superharmonic
function l-{-vr on X' is harmonic and is proportional to 1, we have v'=0,

which implies hf''*'=0, sincep'0—hf' X'>Q. Considering//+ and/'" separately,

we obtain h$ *' = 0. Thus, ty' * = &$•*'+Hf'' *' = Hfί z' ([8], 2.1.4) and
h?X= -h£#= -H?:$=HΪ *'.

Case (Hi): Since/' is harmonizable on X' ([8], 3.2.9) it is harmonizable on
G' ([8], 2.2.3), q.e.d..

Let φ\ X-^X' be a harmonic morphism [10], i.e., φ: X-*X' is continuous

and for every open subset U' of X' with φ~~\U')φ0 and for every hyperhar-
monic function u' on [/', M'O£> is hyperharmonic on φ~\U'}.

φ is called locally polarly non-constant [10] if there is no open subset U of
J\Γ such that φ( U) is a singleton and polar.

φ is of type Bl at xr ̂ X' if there is an open neighborhood U' of xf such

that φ-\U')=φ or hf"1(IΓ/)fZ=0. A harmonic morphism which is of type J5/
at each point of X' is called of type BL

2. The boundary behavior of harmonic morphisms at Wiener
boundary

We consider the Wiener compactification Xw of X. For the definition and
properties of Xw, one may refer to [4]. The following results are obtained,
except for the theorem on mappings of type Bl, by K. Oja and we quote them
with brief proof.

Let φ\ X->X' be a harmonic morphism. We define, for
the cluster set

φ*(X) == n iφ(U*Π X)\ U* is a neighborhood of % in Xw}>

where the closure is taken in the compact space X'*.

Theorem of Fatou-Plessner.
φ*(%) is either X'* or a singleton, and only the latter case occurs if

For the case (i) and the case (ii), in view of Prop. 1, we may use a result of
K. Oja, [10], Lemma 3.1, and in the case (iiΐ) f'°φ is a Wiener function on X
for every Wiener function/' on X' ([10], Lemma 4.7), and every Wiener function

on X can be extended continuously to Xw .
Putting

F= {%<=ΔW', φ*(x) is a singleton}

we can rewrite above theorem as

Aw = pup and Δτr = f provided
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Further, we have Δ^XΓ^cF, where Tw is the harmonic boundary of Xw

([10], Cor. 6.14).
In the same way as [2], Th. 6.3, it is shown that P is an open and closed

subset of Γw.
We call a set A'dX'* is polar in X'* if A'ftX' is polar and if for any

open subset G'dX' with G'^3? and for every a^G' there is a non-negative
hyperharmonic function u' on G' such that w/(«o)< + oo and

limM'(α')= +°° fora11 x'^G'nA'ΓtΔ' .
a' +x'

β'eff'

Theorem of Riesz.
Let φ be locally polar ly non-constant, and A be a subset of Δw. Then, if

A'= \Jφ*(X) is polar in Xr* then ΐiw

12=0.
*e2

Proof. Let K{ and K2 be disjoint compact subsets of X' with non-empty
interiors and G/i = X'\Kf

i (i= 1, 2). Then, there is a non-negative hyper-
harmonic functions u( on Gί such that u'i is finite on a dense subset of G'i and
Umtt{(α')=+oo for every x'^GiftA' ([10], Lemma 6.9, Th. 6.11 and [3],

a ->*

Excercise 3.1.11). Putting ui=u/

ioφ9 Gi = φ-\Gΐ) and 4=
,- (#)==+ 00} we have Jt^U^j and HTz^O. The last assertion is

derived if we prove the following:

(1) &^Gί=u, where u=Ή.w

12.
and

(2) u <R^ί=gr and q is a potential on X, where/— IΔW\(ΛΛG, )

Let vl be a non-negative hyperharmonic function on X and v^ 1 on X\Gi.
The function

1 on

inf (1, v^βUi) on

satisfies v2>u for every £>0. In particular, ^1+ft/, >w on G, . Since P=
{Λ?eG, : w< (Λ?)=oo}=9?~

1({^/eGI : uί(x') = <*>}) is polar, ^>w on Gf. Hence
v^u, for ^>l>w on X\Gf. Now, let ^ be a non-negative hyperharmonic
function on JY" satisfying z;>w on X\Gif Then v^v—u is non-negative and
hyperhamonic on JY" and v^v—u>l on X\Giy which means vλ-{-v—w>Rfχc*
and therefore Rf\G< +Rf^-tt>Rf\G* . Thus we have Rf\^>w, which com-
pletes the proof of (1).

To prove (2), let 0 be a non-negative hyperharmonic function on X satisfying

Iim0>α>l at every point of Δw Π (X\Gf). Then, there exists an open subset

V* of Xw such that V* DΔwΓ}(X\Gi) and v>l on V=V*f}X. Letting
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, we have Rf +v>&?/G<>Rffi=q>h%>x, hence ftf +αHj>h* x,

where ^=1^^ .̂). Since j?f is compact and a (>1) is arbitrary, we have
hf'*<Hf, therefore hf'z<H^in(/^)=0, i.e., q is a potential.

The following results on mappings of type El are obtained quite in the
same way as in [2].

Proposition 2.

{<?*($); Zξ=Γw\P} ft X' = {x'ZΞX' φisnotoftypeBlat x'} .

Proof. Let %&CW\P and #'=9>*(£)eJ£'. For any open neighborhood
U' of x', since ί/=9>"1(Z7/)=l=0, we have to show that hf ^ΦO. Suppose for a
moment that fi? τ=0. If (£7\ί7)Γl^Φ0, 1=E? Z+H? * implies l = Hf'*=

on C7, and hence Rf\^ = l in X. Select a neighborhood F* of * such that

=0 This is possible since %&X\D. Then ^=inf {RΓn*,
is a potential ([8], 3.2.23) and 0=lim mf;p=limmfz RΓn*=l which is a
contradiction. If (t7\t/)Γl^=0, we have l=hι x and this contradicts our
assumption.

Next, we prove that φ is of type Bl at each point x' &<p*(Tw\P) ΓΊ X'. Since
φ*(Tw\P) Π -X"' is a closed subset of X'9 we can find an open neighborhood U'
of x' such that U'Γiφ*(Γw\P)= 0. We may suppose that U' is relatively com-

pact and U'*X'. Then we have ΓwcX\φ-\U') and hence
which shows as above that &T~ w') x= 0.

Theorem (Characterization of mappings of type Bl)
(1) 0%«f J?' φP, 99 £y of type Bl if and only if TW=P.
(2) When X'tΞP^φ is of type Bl if and only if φ*(Tw]

Proof. (1): If φ is of type 57, by Prop. 2, φ*(Tw\P)Γ}X'=U, which
implies Tw— P whenever X' is compact. When X1 is non-compact, we can
deduce that TW\P is of harmonic measure zero and hence TW\P= 0 since .Pis
open and clised in Tw. The converse is trivial.

(2): In this case, P= 0 and φ is extended continuously on Xw. Hence
the assertion is an immediate consequence of Prop. 2.

REMARK. If X'^9? and φ is of type Bl then we can show φ*(Γw)=Γ'
([2] Cor. 6.2, [8] 3.1.7).

3. The fine boundary behavior of harmonic morphisms

Let φ be a harmonic morphism between X and X' and X * be a compacti-
fication of Martin type. In [7], we have shown that each point seΔj has the
fine filter 3 = {E C X; R£*Φ kz} and the set

Δ2 = {seΔi*, Qz converges to %}
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contains μ-almost all boundary points, i.e., μ(Δ\Δ2)=0. For #eΔ2 we define

where the closure is taken in -X"'*. Let

P= {#eΔ2; Φ(z) is a singleton} .

Then as in [5], [6] we can prove the following key theorem which reveals the
relation between φ and φ* :

Key Theorem.
Let

and

N = (ΔW\Γ*) u [*-\Δ\P) n P]

where *\={£eF; τr(£)eΞΔ2, φ*(%)=Φ(π(X))} .
Then, μ(N)=G and N is of harmonic measure zero and

φ(z) = φ*(%) if z(=Δ\N and ot^(π~\z)

The above theorem makes it possible for us to translate informations about
9>* into those of φ.

Theorem of Fatou-Plessner.

φ(z) = X'* or a sinletonfor μ-almost all z .

This is immediate from the definition of Λf in the key thoerm.

Theorem of Riesz.
Suppose φ is locally polarly non-constant and let A be a μ-measurable subset

o/Δ2. // U Φ(z) is polar in X'*, then A is polar.
z^A

In fact, using notations in the key theorem and putting

we have

U ?>*(*) CU0(*),
ΓeΓ ZGA

which implies that A is of harmonic measure zero, i.e., fi^^O Since
π~\A) Π TwdA(Jπ-\N) U N, we have ̂ .̂̂ =0, and hence H^-H^-^-0.
Thus A is polar ([10], Cor. 6.6).
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Theorem on the boundary chracterization of mappings of type Bl.
(1) When X'&g, φ is of type Bl if and only if μ(P)=0.

(2) When X'SΞS, φ is of type Bl if and only if φ(z) Π X'=0 for μ-almost
allz.

Proof. (1): If φ is of type Bl, then P=ΓW so that μ(/ΉO, by the key
theorem. Conversely, if φ is not of type Bl, then Γ rΠ^Φ0. Since Tw [\F

is an open subset of Γw, it follows that it has a positive harmonic measure

at some point of X. Hence μ(π(Γw Π F)) > 0, which implies μ(F)>0 by the
key theorem.

(2): Since ^—0 in this case μ(Δ\π(Fl))=0 by the key theorem. Since

φ(z)Gφ*(Γw) for *eτr(ί\), it follows that φ*(Tw)r\X'=$ is equivalent to

Φ(z)Γ}X'=φ for μ-almost all z (cf. the proof of [6], Th. 5.3).

REMARK. It is readily seen that if X'^3? and if φ is of type Bl then

Γ'\ U Φ(z) is of harmonic measure zero.
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