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Introduction

The boundary behavior of analytic functions on the unit disc has been an
interesting material of the complex analysis. Among various investigations on
this problem some results such as the theorem of Fatou-Plessner and the theorem
of Riesz-Frostman-Nevanlinna were generalized in a far extensive context, that
is, for analytic mappings of Riemann surfaces and their relevant compactifica-
tions. These were found in the book of Constantinescu-Cornea [1].

Later [2], they considered harmonic morphisms between Brelot’s harmonic
spaces under Wiener’s compactification and revealed that above mentioned the-
orems are based essentially on the potential theoretic character. By using rela-
tions between the Wiener and the Martin compactifications of Brelot’s harmonic
spaces with additional assumptions, the author obtained informations on the
boundary behavior of harmonic morphisms at the Martin boundary [5], [6].

Under the framework of Constantinescu-Cornea [3], K. Oja [10] genera-
lized theorems of Fatou-Plessner and of Riesz. Recently [7], in order to dis-
cuss the Naim theory [9] in the context of harmonic spaces of Constantinescu-
Cornea the author defined the compactifications of Martin type. Here we give
a supplementary remark on mappings of type Bl and translate the informations
on the Wiener boundary into those on the Martin type compactification following
the spirit of [6]. It is still possible to discuss the problem without any compac-
tification as in [11], [12].

Acknowledgment. The author wishes his herty thanks to Prof. F-Y.
Maeda for the valuable comments.

1. Preliminaries.

Let X be a %P-harmonic space in the sense of Constantinescu-Cornea [3].
We assume that X has a counteble base and 1 is superharmonic on X. Further,
we assume that X has a compactification of Martin type X* [7], i.e., (1) X* is
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metrizable and resolutive, (2) there is a finite continuous function K(x, 2) defined
on XXA(A=X*\X) such that k,: x— k(x, 2) is non-negative and harmonic
on X for every 2 A, (3) there is a non-negative Borel measure p on A and a set
A, corresponding to a certain class of minimal harmonic functions &, such that

#(A\A))=0 and p(T)=0 if T is negligible, (4) for every ucHB(X) there is a
resolutive function f such that u(x)=H f(x):S k(x, 2)f(2)dp(2) for every xX.

Then, X has the Wiener compactification X" which is resolutive [4] and X *is a
quotient of X%, i.e., there is a continuous surjection z: X"—X* satisfying
n(x)=x for every xe X.

Let X' be a second harmonic space such that X’ has a countable base and 1
is superharmonic on X’. We suppose further that X’ is connected and elliptic
if X'&€P, ie., if X’ is not P-harmonic. For a compactification X'* of X’ we
make the following assumption:

Case (i) X'*=X'if X'is compact,

Case (ii) X'* is an arbitrary metrizable compactification if X’ is non-com-

pact and X' &P,
Case (iii) X'* is an arbitrary metrizable and resolutive compactification if
X'eP.

Remarks. (1) The case (iii) occurs since 1 is harmonizable [4], and X' is
non-compact if X' €.

(2) If X'&P, then X' is completely degenerated, i.e., O is the only one
potential on X’ and all non-negative superharmonic functions are harmonic and
they are proportional ([3], Excercise 3.1.10).

(3) If F'c X' is closed and non-polar then X'\F'e<% ([3], Exicercise
6.2.5).

Proposition 1.
Let f'eC(X'*), F' be a compact non-polar subset of X' with non-empty
interior and G'=X'\F'. Then the restriction of ' to G’ is harmonizable on G'.

Proof. Case (i): G’ is relatively compact and is resolutive since, in virtue
of the above Remark (3), G’ is an open subset of a P-harmonic space ([3], Th.
2.4.2). Hence by the same argument as in [8], 2.1.4, h§"*¢'=H% ¥, In the
following we refer to [8] without mentioning any possible modification.

Case (i5): We show first that h§»*'=0. This function h§"*’ is associated
with 0 on 0G’ ([8], 2.1.5). Let p; be an Evans function on G’ of some po-
tential >0 on G’. Then, liminf [pf—hf"*1>0 on 8G’ ([8] 1.2.14). The

function

, { inf (p§—h¢"*’, 0)  on G’
= 0 on F'
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is superharmonic on X’. Since, by Remark (2), the non-negative superharmonic
function 142" on X’ is harmonic and is proportional to 1, we have v'=0,
which implies hG' X'—(), since p—h¢*'>0. Considering f'* and f'~ separately,
we obtain h§*'=0. Thus, hG’ ¢ =h&*' L HE X' =HE* ([8], 2.14) and
i ¢ = —hg % =—HE K =H§

Case (ii1):  Since f’ is harmonizable on X’ ([8], 3.2.9) it is harmonizable on
G’ ([8], 2.2.3), q.e.d..

Let o: X—X' be a harmonic morphism [10], i.e., ¢: X— X’ is continuous
and for every open subset U’ of X’ with @~ (U’)=%=0@ and for every hyperhar-
monic function #’ on U’, u'og is hyperharmonic on o~ }(U’).

@ is called locally polarly non-constant [10] if there is no open subset U of
X such that @(U) is a singleton and polar.

@ is of type Bl at x' X’ if there is an open neighborhood U’ of x" such
that @ {(U")=@ or h¢™@»X—=0, A harmonic morphism which is of type BI
at each point of X' is called of zype Bl.

2. The boundary behavior of harmonic morphisms at Wiener
boundary

We consider the Wiener compactification X" of X. For the definition and
properties of X%, one may refer to [4]. The following results are obtained,
except for the theorem on mappings of type B, by K. Oja and we quote them
with brief proof.

Let @: X—X’ be a harmonic morphism. We define, for ZeA"=X"\X,
the cluster set

o*(&) = N{p(U*N X); U* is a neighborhood of % in X"},
where the closure is taken in the compact space X'*.

Theorem of Fatou-Plessner.
@*(X) is either X'* or a singleton, and only the latter case occurs if X'€P.

For the case (i) and the case (ii), in view of Prop. 1, we may use a result of
K. Oja, [10], Lemma 3.1, and in the case (iii) f'o is a Wiener function on X
for every Wiener function f’ on X’ ([10], Lemma 4.7), and every Wiener function
on X can be extended continuously to X¥.
Putting
— (FEA”; p¥(®) = X'¥},
F= {xeA"; @*(x) is a singleton}

we can rewrite above theorem as

¥ — PUF and A" = F provided X'€P.
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Further, we have A"\I'V CF, where I'" is the harmonic boundary of X"
([10], Cor. 6.14).

In the same way as [2], Th. 6.3, it is shown that P is an open and closed
subset of T™.

We call a set A’CX'* is polar in X'* if A’'NX’ is polar and if for any
open subset G'C X’ with G'€2 and for every a;G’ there is a non-negative
hyperharmonic function #” on G’ such that #’(a;)<<+co and

limu'(a’) = +oo forall »eG'NA'NA".
vew

Theorem of Riesz.

Let @ be locally polarly non-constant, and A be a subset of A¥. Then, if
A'=Up*(X) is polar in X'* then H;=0.

red

Proof. Let K{ and K} be disjoint compact subsets of X’ with non-empty
interiors and G{=X"\K! (f=1,2). Then, there is a non-negative hyper-
harmonic functions %/ on G/ such that u/ is finite on a dense subset of G/ and
l/i_)n} ui(a’)= +oo for every '€ GiNA’ ([10], Lemma 6.9, Th. 6.11 and [3],
ded
Excercise 3.1.11). Putting u;=ulop, G;=¢ (G!) and 4,={Z=A"\(X\G));
lim u;(a) = +-oo} we have Ac 4 U4, and H7;=0. The last assertion is

arx
acsG;

derived if we prove the following:
(1) RX\Ci=u, where u:H"{Z'_,
and
(2) uSRfI\},‘ff=q and q is a potential on X, where f=1,"\zvgy -

Let v, be a non-negative hyperharmonic function on X and 2,>1 on X\G;.
The function

{ 1 on X\G,
Vo =
z inf (1, v,+&u;) on G;

satisfies v,>u for every £>0. In particular, v,+&u;>u on G;. Since P=
{xE€G;: u(x)=o0} =@ Y({x'EG/: ul(x')=o0}) is polar, v;>u on G;. Hence
v, >u, for ,>1>u on X\G;. Now, let v be a non-negative hyperharmonic
function on X satisfying v># on X\G;. Then v,-+v—u is non-negative and
hyperhamonic on X and v,+v—u>1 on X\G;, which means v,+v—u>R{\%
and therefore R{f\¢:i-RX\¢—4>R¥\%., Thus we have RX\6:>u, which com-
pletes the proof of (1).

To prove (2), let © be a non-negative hyperharmonic function on X satisfying
lim 2>a>1 at every point of A¥ N(X\G;). Then, there exists an open subset
V* of X% such that V*DA"N(X\G;) and 2>1 on V=V*NX. Letting
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K=(X\G,)\V, we have R{‘+'D_>_R{‘/Gi2f{fl>,fi=q2 h¥%, hence R¥ - aHY >h¥-*,

where g=1,".x5). Since K is compact and a (>1) is arbitrary, we have
hy* <HY, therefore hi** <HJ, ;. »=0, i.e., ¢ is a potential.

The following results on mappings of type Bl are obtained quite in the
same way as in [2].

Proposition 2.
{p*(®); ZET"\P} N X' = {x'EX’'; @ is not of type Bl at x'}.

Proof. Let 2T"\P and x'=¢*(X)€X’. For any open neighborhood
U’ of «', since U= (U’)+=0, we have to show that h{**=0. Suppose for a
moment that hY*=0. If (U\U)NX =@, 1=h?"*+H!'* implies 1=HY"*=
R¥\W on U, and hence R¥\Y=1in X. Select a neighborhood V* of % such that
P*NX\U=@. This is possible since £&X\U. Then p=inf {R}*"¥ R¥\W}
is a potential ([8], 3.2.23) and O=lim inf; p=Ilim inf; RY*"*=1 which is a
contradiction. If (U\U)NX=@, we have 1=h{'* and this contradicts our
assumption.

Next, we prove that ¢ is of type Bl at each point &’ £@*(I"\P)N X’. Since
@*(T"\P)N X' is a closed subset of X’, we can find an open neighborhood U’
of #' such that U’ N @*(I'""\P)=@. We may suppose that U’ is relatively com-
pact and U’'#X’. Then we have T" CX\@ (U’) and hence RF\¥ '@)=1,
which shows as above that h¢™'@"X—(,

Theorem (Characterization of mappings of type BI)
(1) When X'&P, ¢ is of type Bl if and only if T% =P.
(2) When X'€P, @ is of type Bl if and only if p*(T'V) N X'=0.

Proof. (1): If @ is of type BI, by Prop. 2, o*(T'"\P)N X'=@, which
implies ' =P whenever X’ is compact. When X' is non-compact, we can
deduce that T\ P is of harmonic measure zero and hence T'"\P=¢ since P is
open and clised in I'. The converse is trivial.

(2): In this case, P=( and ¢ is extended continuously on X”. Hence
the assertion is an immediate consequence of Prop. 2.

Remark. If X'€P and @ is of type Bl then we can show @*(T'")=TI"
([2] Cor. 6.2, [8] 3.1.7).
3. The fine boundary behavior of harmonic morphisms

Let @ be a harmonic morphism between X and X’ and X* be a compacti-
fication of Martin type. In [7], we have shown that each point €A, has the
fine filter §,={E C X; R{\¥=k,} and the set

A, = {z€A,; G, converges to 2}
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contains g-almost all boundary points, i.e., u(A\A,)=0. For 2EA, we define
P(z) =N {p(E); E€G} ,

where the closure is taken in X'*. Let
P = {zeiy; p(x)=X",
F = {z€A,; $(z) is a singleton} .

Then as in [5], [6] we can prove the following key theorem which reveals the
relation between # and @*:

Key Theorem.
Let

N = (A\A,) U[AN(PU P)]
and

N = (A"\I") U [z~ A\P) N PIU(F\F),

where = {XS F; n(%)€A,, p*(X)=P(n(%))}.
Then, u(N)=0 and N is of harmonic measure zero and

P(z) = @p*(&) if z€A\N and Z=(@(R)NT\N.

The above theorem makes it possible for us to translate informations about
@* into those of .

Theorem of Fatou-Plessner.
P(2) = X'* or a sinleton for w-almost all z .
This is immediate from the definition of NN in the key thoerm.

Theorem of Riesz.
Suppose @ is locally polarly non-constant and let A be a p-measurable subset
of A, If U;ﬁ(z) is polar in X'*, then A is polar.
ZE.

In fact, using notations in the key theorem and putting

A = [z A\N)NT"\N
we have

U e ®c U,

xcd
which implies that 4 is of harmonic measure zero, i.e., H%;=0. Since
2 (A)NT"Cc AUz (N)UN, we have HY _, ,,=0, and hence H, ,=H"__, , =0.
Thus A is polar ([10], Cor. 6.6).

@b
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Theorem on the boundary chracterization of mappings of type BL.

(1) When X'&EP, @ is of type Bl if and only if u(F)=0.

(2) When X' P, @ is of type Bl if and only if H(2)NX'=@ for p-almost
all 2.

Proof. (1): If @ is of type Bl then P=T" so that u(E)=0, by the key
theorem. Conversely, if @ is not of type B, then T% NF=@. Since I'" N F
is an open subset of T'%, it follows that it has a positive harmonic measure
at some point of X. Hence u(z(I'"™ NF))>0, which implies x(#)>0 by the
key theorem.

(2): Since P=¢ in this case p(A\z(¥,))=0 by the key theorem. Since
P(2)E@*(IT¥) for zExn(F,), it follows that @*(I")NX'=@ is equivalent to
P(2) N X'=¢ for p-almost all 2 (cf. the proof of [6], Th. 5.3).

ReEMARK. It is readily seen that if X'e %P and if @ is of type Bl then

T\ U ¢(2) is of harmonic measure zero.
A
zeF
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