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Chapter 1

Introduction

After laser was invented in 1960, the wavelength becomes shorter, and engineering has
achieved the high efficiency and high power[1]. By the irradiation of high-intensity laser
light, we can easily make high energy-density plasmas. Usually, the plasmas emit high
intensity X-rays. Since the electron-collisional excitation rate is proportional to the
reciprocal of the transition energy and the radiative decay rate is proportional to the
square of the transition energy, bound electrons are collisionally excited and radiatively
decay in plasmas. Free electrons in a plasma, and large energy gap between excited states
and ground state enable the high efficiency of energy conversion from laser to X-ray.

There are a lot of free electrons in a high-Z plasma, so that almost all laser en-
ergy can be efficiently absorbed into the plasma by the classical absorption (inverse-
. bremsstrahlung). The electronic levels of the high-Z ions are so complicated and so
many that emitted X-ray from ions are not so much re-absorbed by the other ions in the
plasma. As a result, relatively high conversion rate will be achieved farther in high-Z
plasmas. When high-Z materials like gold is irradiated by the laser light of which in-
tensity is 10'3 ~ 10 W/cm? and wavelength 0.26 ~ 0.35 um, more than one half of
the absorbed energy is converted into soft X-ray as shown by experiments|2, 3, 4]. In
Fig. 1.1, the typical X-ray conversion rate as a function of the laser intensity is shown.
Gold is the converter material. Experimental results are marked with black, while the
corresponding simulation is marked with open ones.

There are many applications for the soft x-ray: for example, indirectly driven inertial
confinement fusion[5]. Many experiments have been carried out to study the X-ray
conversion rate, and spectrum, and sophisticated hydrodynamic codes have been used to
analyze the experimental results[3, 4]. By the simulations using the hydrodynamic codes,
the X-ray conversion rate, defined as total X-ray energy divided by absorbed laser energy
can well be reproduced. However, the X-ray spectra by the simulations do not coincide
with the corresponding experimental ones. For the practical application, not only the
amount of the X-ray emission but also the x-ray spectra from the plasma is sometimes
required. Since the electron energy level of high-Z ions like gold is so complex and so
many that appropriate atomic model, i.e., opacity and emissivity for hydrodynamic codes
are required to reproduce the detailed X-ray spectrum.

In Chap. 2, we show a new atomic model for calculating the spectral opacity and
emissivity of high-Z plasmas. Gold plasmas are mainly treated in this thesis; however,
the atomic model can be applied to the other elements. Simply gold is a typical high-Z
element, so that a lot of experimental results can be available for comparison study. The
spectral opacity and emissivity are essentially important in solving the radiative transfer

7
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Figure 1.1: X-ray conversion rate as a function of the laser intensity. Wavelength of the
laser is 0.35 pym. Gold is the converter material. Experimental results are marked with
black, while the corresponding simulation is marked with open ones.

in the hydrodynamic code. In usual hydrodynamic codes, the average ion model in which -
the principal quantum number 7 is only taken into account in the electron energy levels
has been widely used. In the new atomic model for high-Z plasmas, we take into account
not only the principal quantum number n, but also the azimuthal quantum number [ in
the electron energy levels. We also give a solution for the difficulty whenever we meet if
we use the average ion model, i.e., the line profile modeling for the average ion.

We treat the atomic model of highly ionized ions in Chap. 3. Main applications are line
spectra from highly ionized plasmas: for example, line spectra due to the impurity in laser
imploded plasmas, and X-ray spectrum from stellar plasmas. If number of bound electron
in the open-shell becomes larger than three, or smaller than (2n? —3), number of possible
terms of energy levels suddenly increase, so that main objectives are H-like, He-like, and
Li-like ions. In the inertial confinement fusion research, spectroscopic measurements
of X-ray from imploded plasmas more than solid density has have been carried out[7,
8]. Recently, new interest in opacity of stellar plasmas has arisen and precise opacity
experiments have been carried out[6]. In order to know density and/or temperature
of the plasma, spectroscopic measurements have been widely used in experiment. A
lot of detailed experimental results, for example, line profiles has been collected[9, 10].
Even commercial software for analyzing X-ray spectra from plasmas is also available[11].
Essentially important point in the analysis of X-ray spectra from these plasmas are that
precise theoretical modeling and numerical calculations are required for understanding
the experimental results. Practically, we need modeling of the plasma effect in atomic
processes, atomic data for the elementary processes, calculation of the line profile of each
line spectrum or modeling on the line profile for the atomic model, etc.

For energy level and oscillator strength, using a detailed atomic code like the GRASP[7],
we can obtain fairly accurate data of isolated ions. Numerical values of experimental data
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and results of atomic code are also available in literature, for example, Kelly’s table[8]
and the Opacity Project book by Seaton[9]. However, above-mentioned sets of data are
sometimes not enough for building up models of atomic process in the plasmas. From
the Grotrian diagram, only data for the dipole allowed transition are available, but the
line strength is sometimes strongly affected by the states which are not available.

There are still difficult points for some purposes in treating plasma effects. Among
them, we discuss a problem that we always meet when we want to build up a model
of atomic process, i.e. cutting off the highly excited states, is discussed and simple
estimation for that is shown.

Atomic Model

energy level [Ep]
statistical weight [g,]
rate coefficients [T, ]
cross sections [6(v)]

Emissivity & Opacity | 5 Rate Equation

emissivity [n(v)] - population [Py
opacity [x(v)] electron density [Ng]

Figure 1.2: Atomic physics treated in this thesis. The Darken areas are treated.

Finally using Fig. 1.2, we explain the atomic physics treated in this thesis. The Darken
areas are treated. In the simulation of X-ray generation in plasmas, hydrodynamics, pop-
ulation kinetics of ions, and radiative transfer in the plasma are solved numerically. If we
can assume that the plasma is in the LTE, the relation like the Saha-Boltzmann deter-
mines population. If not, rate equation should be solved. In most cases, we can assume
a certain quasi-steady state approximation even in the non-LTE case. In Chap. 2, we
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assume the collisional radiative equilibrium|[12] for the population. Although the average
ion model and the screened hydrogenic model have been used as the atomic modeling
for high-Z plasmas, we developed a new atomic model. In the model, we included the
azimuthal quantum number [ in the electron energy level within the framework of the
average ion model and the screened hydrogenic model, and gave a solution for the line
profile of the average ion.

In Chap. 3, we treated only the modeling of atomic processes jn highly ionized plas-
mas. One is how to select the reliable data of electron energy levels of many ions from
a lot of published ones. The other is the modeling of the plasma effect in view of the
statistical weight of highly excited states. Though there are a lot of work on such atomic
model relating to the spectroscopic measurement of the plasma, there are still a lot of
subjects we have to study.
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Chapter 2

X-ray spectra from high-Z plasmas

2.1 Introduction

When an intense laser light (~ 10 W/cm?) of short wavelength (0.26 ~ 0.35 pm)
irradiates on a high-Z material, more than 50 % of the absorbed energy is converted
into soft X-rays as observed in experiments[l]. There are many applications for the
soft X-ray: for example, indirectly driven inertial confinement fusion[2] and efficient
and convenient X-ray source. Many experiments have been carried out to study the
X-ray conversion rate, and spectrum, and sophisticated hydrodynamic codes have been
used to analyze the experimental results[3, 4]. The simulations using the hydrodynamic
codes can well be reproduce the X-ray conversion rate, defined as total X-ray energy
divided by absorbed laser energy. However, the X-ray spectra by the simulations do
not coincide with the corresponding experimental ones. In this chapter, we show a new
atomic model for calculating the spectral opacity and emissivity of high-Z plasmas. Gold
plasmas are mainly treated in this thesis; however, the atomic model can be applied to
the other elements. Simply gold is a typical high-Z element, so that a lot of experimental
results can be available for comparison study. The spectral opacity and emissivity are
essentially important in solving the radiative transfer in the hydrodynamic code. In usual
hydrodynamic codes, the average ion model in which the principal quantum number n
is only taken into account in the electron energy levels has been widely used. In the new
atomic model for high-Z plasmas, we take into account not only the principal quantum
number n, but also the azimuthal quantum number [ in the electron energy levels. We
also give a solution for the difficulty whenever we meet if we use the average ion model,
i.e., the line profile modeling for the average ion.

In Sec. 2.2, models which are usually used in laser plasma simulations are summarized.
We explain the average ion model, the screened hydrogenic model (SHM), detail of
the rate coefficients, models for the pressure ionization and the continuum lowering,
the collisional radiative equilibrium model (CRE), the local thermodynamic equilibrium
model (LTE), and detail of formulae for the emissivity and opacity calculations

In Sec. 2.3, we show the importance of the inclusion of the azimuthal quantum number
in the electron energy levels for partially ionized high-Z plasmas. A spectral emissivity
with the electron energy level in which the principal quantum number and the azimuthal
quantum number are taken into account is calculated and compared with that obtained
without the azimuthal quantum number.

The spectral opacity and emissivity calculated by the average ion model are relatively
simple, spend less computation time, so that application to hydrodynamic codes has

11
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been easily done. But there always exists a difficulty in solving radiation transport in
hydrodynamic codes because the spectral opacity and emissivity are calculated as those
of one fictitious ion of averaged charge. In Sec. 2.4, we show a line profile modeling of the
opacity and emissivity in the average ion model. In the modeling, the effective line width
is estimated by the distribution of the line group stems from the different charge-state.
The new spectral opacity and emissivity are calculated to install in a hydrodynamic code
ILESTA-1D and a numerical simulation for a gold plasma is carried out and compared
with its experimental result.

In Sec. 2.5, we show the accuracy and limitation of this opacity and emissivity model.
We compare the electron energy level and the oscillator strength used in the model to
those by the Hartree-Fock-Slater model. The ionic distribution of each charge state by
the statistical model with which the effective line width is estimated is compared with the
result by the detailed configuration accounting model for the aluminum plasma. Based on
the statistical model, detailed spectral opacities for the plasmas including low-Z elements
can be calculated and have been compared with the results by detailed opacity codes and
experimental results.

2.2 Models for opacity and emissivity calculations

In this section, models that have been widely used in laser plasma simulations are sum-
marized.

2.2.1 Average ion model

The population in a plasma will be determined if the rate equations for the ions of all
charge states and all excited states could be solved. The word population is used for the
number density of ions with different electronic configuration. For the high-Z plasmas,
however, it is practically impossible to solve all of the rate equations due to many charge
states and excited states, so that an appropriate simplification is required[5, 6]. For the
case of laser produced plasmas, the average ion model has been widely used. In Fig. 2.1,
the average ion model is shown schematically. In this model, rate equations are solved for
one fictitious hydrogenic ion including an averaged number of bound electrons for each
level, instead of solving the rate equations for all ions of different electronic configuration.
The models in which the principal quantum number is taken into account in the electron
energy level have been widely used for the rate equations of one fictitious ion. Hereafter,
a fractional number of electrons in the level k of the average ion model is called the
fractional population.

The rate equation for the fractional population Py in the level £ of the average ion
model can be written by

dP, .
= TuVi—TePi+ 3 (TosPoVi — T PiV)
k'>k
+ Y (T8PeVi — TPV (2.1)

K<k

where Vi, = 1 — Py/Djy is the vacancy of the level k. Dy is the statistical weight of the
level k. If k is the principal quantum number, D,, = 2n?. T, and T}, are the rate for
the recombination from the free state and the ionization from the level k, respectively.
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Figure 2.1: Schematic figure of the average ion model.

T and T}Y, are the rate of the deexcitation from the level k' to the level k and the
excitation from the level &' to the level k, respectively. In a plasma, due to such various
mechanisms as electron collisional and radiative processes, recombination, ionization,
deexcitation and excitation occur, i.e.

Tee = TP + T + TP,
Ty, = TSY +TRU 4+ TAY,
To = Top + Tk

TSP, TRDand TRP are the three body collisional recombination, the radiative recom-
bination, and the dielectronic recombination, respectively. TGV, T2V, and TAU are the
electron collisional ionization, the radiative ionization, and the autoionization, respec-
tively. TSY and THY are the electron collisional excitation and the radiative excitation,
respectively. T,GP and TP are the electron collisional deexcitation and the radiative
decay, respectively.

2.2.2 Screened hydrogenic model (SHM)

If the electronic configuration of an atom or ion is determined, the energy level (ionization
potential) of a bound electron can be calculated theoretically, using for example, Hartree-
Fock-Slater method[7]. In the simulation of the laser-produced plasma, however, the
average ion model with a fractional number of electrons in the levels is used for solving
the rate equations of one fictitious hydrogenic ion. For such situation, the screened
hydrogenic model (SHM) is the best fit.

Figure 2.2 is the schematic figure of the screened hydrogenic model (SHM). In the
SHM, using the screening constant that represents an extent to which an electron in the
lower level shields the nuclear charge, energy levels of non-hydrogenic ion can be expressed
by the hydrogenic energy level with the shielded nuclear charge. In this subsection, we
show the SHM by More[8]. If the fractional population P, for all levels are determined,
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Figure 2.2: Schematic figure of screened hydrogenic model (SHM).

the effective charge Z,, which is the effective charge the electron in the level n feels is

1
Zn=2- OpwPy— EannPn, (2.2)
n'<n
and the electron energy level E, is
7t Zn Zy
B =gz + gaombnt 2 Tgowal (Ry) (2.3)

where Z is the nuclear charge (atomic number), and o, is the screening constant. The
set of the screening constants calculated by More is widely used in the calculation of the
opacity and emissivity, and of the equation of state in hydrodynamic codes, since the
model fulfills the thermodynamic consistency when applied to plasmas. More’s set of the
screening constant is shown in Table 2.1

Table 2.1: More's set of the screening constants

1 2 3 4 5 6 7 8 9 10

0.3125 | 0.9380 | 0.9840 | 0.9954 | 0.9970 | 0.9970 | 0.9990 | 0.9990 | 0.9999 | 0.9999
0.2345 | 0.6038 | 0.9040 | 0.9722 | 0.9979 | 0.9880 | 0.9900 | 0.9990 | 0.9999 | 0.9999
0.1093 | 0.4018 | 0.6800 | 0.9155 | 0.9796 | 0.9820 | 0.9860 | 0.9900 | 0.9920 | 0.9999
0.0622 | 0.2430 | 0.5150 | 0.7100 | 0.9200 | 0.9600 | 0.9750 | 0.9830 | 0.9860 | 0.9900
0.0399 | 0.1597 | 0.3527 { 0.5888 | 0.7320 { 0.8300 | 0.9000 | 0.9500 | 0.9700 | 0.9800
0.0277 | 0.1098 | 0.2455 | 0.4267 | 0.5764 | 0.7248 | 0.8300 { 0.9000 | 0.9500 | 0.9700
0.0204 | 0.0808 | 0.1811 | 0.3184 | 0.4592 | 0.6098 | 0.7374 | 0.8300 | 0.9000 | 0.9500
0.0156 | 0.0624 | 0.1392 | 0.2457 | 0.3711 | 0.5062 | 0.6355 | 0.7441 | 0.8300 | 0.9000
0.0123 | 0.0493 | 0.1102 | 0.1948 | 0.2994 | 0.4222 | 0.5444 | 0.6558 | 0.7553 | 0.8300
0.0100 | 0.0400 | 0.0900 | 0.1584 | 0.2450 | 0.3492 | 0.4655 | 0.5760 | 0.6723 | 0.7612

S0 w-1o otk =S

2.2.3 Rate coefficients in the average ion model

The typical rate coefficients used in the simulation of laser produced plasmas are sum-
marized in Ref. [6, 9, 10, 11]. For the rate coefficient of the electron collisional ionization,
the Seaton’s formula[10],

T = 6.80 x 10717, =2 Nuy, =% exp(—uy) (sec™)
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is used where T, and N, are the electron temperature in unit of keV and the number
density of the plasma in unit of cm?, respectively. uy = |E|/T. where Ey}, is the ionization
potential of the electron in the level &.

For the rate coefficient of the electron collisional excitation, the Bethe approximation
using the Gaunt factor[6],

T,S::I = 5.00 x 10"10N8Te_3/2ukk: exp(——ukk:)Gkk:fkk: (sec_l),

is used where ugy = |Ey — Eyp/|/Te. If the k is the principal quantum number,

! _ 9
G = 0.19 [1 +0.9 {1 + n(nz—on) (1 - (1 - E) Unn’) } exp(Unn') B (Unm) |

where
o =Y
Ei(z) = / —dy.
z Y
Values of the hydrogenic oscillator strength could be found in Table 13 of Ref. [12]. An
approximate formula

exp(2) By (z) = In (“ 1) - 0.4

z 1+ 1)?

is used for the calculations. More detailed numerical formula can be found in Ref. [10].
The three-body collisional recombination rate TS and the collisional deexcitation

rate TY are derived with the principle of the detailed balance relation. In the local

thermodynamic equilibrium (LTE) limit, the collisional processes balance each other;

CDy/ 0 CU p 0
Tck Vio = ch Py
T@ PVi® = TG PV,

where the superscript 0 means the value in the LTE. The population in the LTE will be
shown in Sec. 2.2.5.

2.2.4 Pressure ionization and continuum lowering

In laser produced plasmas, high density and low temperature are sometimes realized. In
this case, the orbit radii of bound electrons become comparable to the ion sphere radius,
and as a result, the pressure ionization and the continuum lowering occur. The pressure
ionization is due to the disappearance of bound states. Even in low-density plasmas, the
electron energy levels are shifted to the red side (lower energy side). In dense plasmas,
due to the potential of the nearby ions, energy levels are strongly shifted to the red side;
the continuum level is lowered.

The model by Zimmerman and More[13] is usually used to describe the continuum
lowering and the pressure ionization.

The continuum lowering is expressed by the reduction of the ionization potential

9Z
AE = =22 AU
5 Ry (AU)
where Ry is the ion sphere radius in atomic unit. Ry is defined by
S4—7TR03M =1

3



16 CHAPTER 2. X-RAY SPECTRA FROM HIGH-Z PLASMAS

and Z, is the average ionization degree of the plasma and the definition in the average ion
model will be shown in Eq. (2.6). The pressure ionization is expressed by the decrease of
the statistical weight of the level. In the model, the statistical weight of the hydrogenic

ion is expressed by
0 ra’)’
D, =D, 1 —
/ " <a Ry )

where D,,° is the statistical weight of the isolated ion. In the case of the hydrogenic ion,
D,° = 2n?. r,0 is the orbital radius of the neutral atom expressed by

L
Tn = 7 (AU).

o and B are adjustable parameters to be selected for the ionization degrees in the low-
temperature and high-density limit to be those by the Thomas-Fermi model. In the
case of gold plasma, & = 2 and B8 = 4 are used[14]. In Ref. [13], they have used the
orbital radii of neutral atom instead of that of the ion in the plasma. Figure 2.3 shows
the difference between the two models where the electron temperature is 10 €V in both
cases. Figure 2.3 (a) shows the results by the original description by Zimmerman and
More, in which the orbital radii of the neutral atom are used. Figure 2.3 (b) shows in
contrast the results in which the orbital radii of the ion in the plasma are used instead.

10°
10°

10"

Degeneracy
30
Degeneracy
>
[=]

102

0.3 PYSCEEN BPTT | PP RTTY ] Akl iias P .3 PRRTSEE PTTT) SRR Sy FTTT aada P
10° 1072 10" 10° 10! 10° 102 10" 10° 10"
Density (g/cm®) Density (g/cm®)

Figure 2.3: Statistical weight of bound states of the hydrogenic model in dense plasma
where the temperature is 10eV in both cases. (a) Zimmerman and More’s original model.
The orbital radii of the neutral atom are used. (b) The orbital radius of the ion in the
plasma is used instead.

From Fig. 2.3 we observe that, as the density increases, the statistical weight de-
creases from the highly excited states. In the case where the orbital radii of the ion in
the plasma are used, the statistical weights do not monotonously decrease. When the
pressure ionization occurs, the effective nuclear charge Z,, increases and the orbital radius
decreases. As a result, the statistical weight increases. After that, the statistical weights
again decrease.

Figure 2.4 shows the temperature dependence of the statistical weight. When the
temperature increases, the plasma is highly ionized due to the electron collisional ion-
ization, and the orbital radii are so small that its effect on the pressure ionization is
reduced.
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Figure 2.4: Temperature dependence of the statistical weight. The model with the orbital
radius of the ion in the plasma are used instead of Zimmerman and More’s original model.
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Busquet[15] has used the coefficients & = 1 and § = 1. As a result, the statistical
weight becomes

Do _ (1,10 (14 ABNT AL
D,° Ry E.° E,%’

where E,° is the ionization potential of the isolated ion. The statistical weight disappears
if the reduction of the ionization potential AE, becomes equal to E,°. This behavior is
very reasonable for the average ion model. Busquet proposed to use AFE, of the neutral
atom.

We met a difficulty that the pressure ionization sometimes disappeared when we tried
to use AFE, in the plasma instead of that of the isolated ion like what we did in the case
of Zimmermann and More’s model. Since the equation of the Busquet’s model does
not include the density, i.e., the pressure ionization is included through the continuum
lowering, this strange phenomenon can be realized. As the continuum lowering can be
zero even in a dense plasma numerically, the effect of the pressure ionization can be zero.

2.2.5 Local thermodynamic equilibrium (LTE) and collisional
radiative equilibrium (CRE)
We can obtain the fractional population of the average ion model in the local thermo-

dynamic equilibrium (LTE) by the Thomas-Fermi-Shell model[11]. In the model, using
the Fermi-Dirac distribution =~

E,—u
P, =D, /[1 +exp ( o )] | (2.4)
and the number of free electrons by the Thomas-Fermi model
v L (2mekeT N
Ne= NN = 5 ( - I, (EEF) (2.5)
where "
*° Yy
= d
Liya(@) /o 1+ exp(y — ) 4
and
Ze:Z_ana (26)

the population for a given electron energy level is obtained. Here u, kg, i, and m, are the
chemical potential, the Boltzmann constant, the Dirac constant defined by h = h/2m,
and the electron mass, respectively. h is the Planck constant. By the two iterative
calculations, i.e., the Egs. (2.4), (2.5), and (2.6) and the equation for the energy level of
the SHM, i.e., Eqs. (2.2) and (2.3), the fractional population of the average ion model
in the LTE can be obtained.

I 5(x) is called the Fermi integral. A simple numerical formula is given by Latter[16]

\/7_1. . e 62:1: 633; e4z eSa: eﬁz
Lijp(z) = 76 1- 93/2 + 33/2  43/2 + 53/2  G3/2 + 73/2
(—oo < z < —2.0)
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= 0.678091 + 0.53619667z + 0.16909748z + 0.018780823z°

—0.0023575446z* — 0.0006396107972° (-2.0< 2 <0)
= 0.678091z + 0.53638z + 0.1668233522 + 0.0206067x>
—0.006014912* + 0.000490398z° (0 <z <3.0)
= 0.757064709 + 0.3922888z + 0.270552522 — 0.01682933z>
+0.0008258364z* — 0.00001819771° (3.0 < 2 < 10.0)
2 3 1.2337005 1.0654119 9.7015185
= =I2 (1 + + +
3 z2 4 6
+242.781502 N 1231:13(;691> (10.0 < z < 10°)
X x
= ga:3/2 (10° < z < 00)

3

In laser produced plasmas, due to the large mean free path of the X-ray compared
with a size of the plasma, the LTE assumption for the plasma is not appropriate[6]. One
of the non-LTE plasma model is the collisional radiative equilibrium (CRE) model in
which all radiation are assumed to escape from the plasma and the electron temperature
has been kept constant. Though the population of excited states decreases due to the
radiative decay, the electron collision makes the excited population again. There is an
energy flow from free electrons to the radiation field. This model is a good approximation
for the population of excited states in optically thin plasmas, since a change in the plasma
temperature is sometimes small enough.

Figure 2.5 shows the atomic processes that are taken into account in the CRE model,
in which the atomic processes of the radiative recombination, the three-body collisional
recombination, the collisional ionization, the radiative deexcitation, the collisional deex-
citation, and the collisional excitation are taken into account. The rate equation of the
average ion model Eq. (2.1) in which TRP = 0, TZY = 0, T/ = 0, and T4V = 0 is solved
for the steady state dP,/dt = 0.

Figure 2.6 shows the density dependence of the fractional population of the average
ion model in the CRE where the electron temperature is kept to be 500 eV. Material
is gold (Z = 79). The ionization degree Z. is not so different for each case. The
detail of Z, will be shown in Fig. 2.7. From Fig. 2.6 we see that, if the density is high
enough, for example, 10 g/cm?, the fractional population is almost the same as that in
the LTE. The reciprocal of the slope is the temperature of the corresponding plasma. If
the density is low enough, the radiative decay rate becomes much faster than that of the
collisional excitation rate. As a result, the fractional populations of the lower excited
states decrease. Even in the low-density region, the reciprocal of the slope of the highly
excited states is still equal to the temperature of the plasma. This means that the highly
excited electrons are thermodynamically equilibrated with the free electrons.

In Fig. 2.7, the equicontour of Z, (averaged ionization degree) of the gold plasma in
the CRE is compared with that in the LTE.

In the case of the LTE, with increasing plasma density, the ionization degree decreases
due to the reduction of the density of states for free electrons. At high densities more
than 1 g/cm?® and low temperatures less than 100 eV, the ionization is enhanced because
of the pressure ionization. Note that even gold plasma is calculated to be fully ionized
at temperatures about 10 keV if we assume the LTE.

In the case of the CRE, even if the plasma temperature is higher than 10 keV,
electron energy levels with principal quantum number less than or equal to two are
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Figure 2.5: Atomic processes that are taken into account in the CRE model. The width
of each arrow indicates the relative magnitude for the corresponding process.
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Figure 2.6: The density dependence of the fractional population of the average ion model
in the CRE where the electron temperature is kept to be 500 eV. Material is gold
(Z =179).
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fully occupied. This is simply because of the large rate coefficients of the radiative
decay to these levels compared with those of the collisional excitation and ionization.
At high temperatures (1 ~ 10 keV) and low densities, the plasma is almost in the
Coronal equilibrium, determined only by the electron temperature. As the plasma density
increases further, the electron collisional process becomes dominant and tends to increase
the ionization degree. At low temperatures (10 ~ 100 eV), the population is essentially
determined by the collisional process and the LTE state is realized.

2.2.6 Formulas of the opacity and emissivity

Once the population is determined, the spectral opacity x(v) and emissivity n(v) can be
calculated using the hydrogenic formulae. Here, v is the frequency of the X-ray. There
are three main processes by which a plasma emits or absorbs X-ray, i.e., the free-free, free-
bound (bound-free), and bound-bound processes which are related to the rate coefficients
and the scattering process, the effect of which is usually included in the opacity.

On establishing the formulae for the opacity and emissivity in average ion model,
some of the formulae is derived by the relation among the Einstein coefficients A, . (v),
Bp,w(v), and By n(v). The coefficients represent the spontaneous emission rate, the
induced emission rate, and the absorption rate, respectively. Through the coefficients,
the relation between the Planckian radiation (number of photons)

I(v) = 22/3 / {exp (kf}e) - 1}

and the bound electron distribution

Py VB n(W)I(v) = {An,w (V) + Bp,w (V) I(V)} P Vi (n' <n) (2.7)

is satisfied in the LTE.
From Eq. (2.7) and the relation between the fractional populations of different energy

levels PV D .
n n n v
= - 2.
Pu/Vw Dy ( k-BTe) ’ (2:8)
another relations among the Einstein coefficients
2hv3

An,n’ = 7Bn,n’ (29)
and

Dn’Bn',n = Dan,n’ (210)

are obtained.
For the emission by the free-free process, the simple formula of bremsstrahlung[17)

8 2 12 7.eb hv
=2 NiNexp | -
) =3 (3mekBTe> mecs e P ( kBTe> g

is used where N, e, and c¢ are the number density of ions, the electronic charge, and
the speed of light, respectively. gg is the Gaunt factor for the free-free process, which
reflects the difference between the quantum-mechanical and the classical calculations. It
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increases in the low frequencies, but for the X-ray, it is not so important. As for the
absorption, use of Egs. (2.8), (2.9), and (2.10) yields

abS( ) _ PnVn’Bn,n’ (1/) = ex hv c (l/)
Xt = PuVe A ) T P\ BT, ) 2R

and

Xind(V) =exp |- hv Xa,bs(y) — 62 ﬂﬁ(l/)
f ksT, ) 2hv3 '

For the free state, D, = D,, is assumed.
The bound-free absorption cross section from level n to the free state is

_ 2%7%e¥m, Z, % gus

Tne = 3v/3chbndy3

(cm®)

in the hydrogenic case[18]. Using the above we have
X‘?;If)s (V) = o-nc]ViPn‘/m

where V, is the vacancy of the free state defined by

o =o (Gazt) /[ e (Gt
=1--C= 1
Ve=1 D, exp ( e + exp Pl ,

where E. = hv — |E,|. Usually, V. ~ 1, because E,. is much larger than the chemical
potential p. If the plasma is dense enough, this assumption breaks down and the bound-
free absorption is reduced by the factor V. By Egs. (2.9) and (2.10), we obtain the
relations

2ms P,
nfb(’/) = O'nc_cz_M'D:DnVn
and
ind 62
The formula for the bound-bound emission is
27(62 Dn 3 !
nbb(V) — m—ecg'};i]vipn’vnmfnn'(hy) ¢(y)a (TL > n)

Jnw denotes the absorption oscillator strength and ¢(v) is a line profile function that
satisfies [ ¢(v) dv = 1. By Egs. (2.9) and (2.10), we also have

ngs(y) — 71'62 Mpnn'fnn’(ﬁ(y)
b MeC

and
2

ind; \ _ _C
Xbb (V) = 2hV37?bb(V)-

Although the process of the induced emission is required for the fractional popula-
tion to be the Fermi-Dirac distribution in the LTE limit, the effect in the opacity and
emissivity calculation of laser produced plasmas is negligibly small.
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The cross section of the simple Thomson scattering is expressed as
o = st [ e \?
T=73 MeC2

4

and therefore,
XS(V) = orNe = %?Em—jzgf e
is used for the formula of the scattering process in some cases. For the simulation of
laser produced plasmas, the scattering process does not contribute a lot to the resultant
spectral opacity and emissivity.
Figure 2.8 shows the emissivity of the gold plasma in the CRE model where the
electron temperature is 200 eV and the density is 0.1 g/cm?.
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Figure 2.8: Emissivity of the gold plasma in the CRE model where the electron temper-
ature is 200 eV and the density is 0.1 g/cm?.

In order to show the relative intensity of the bound-bound transition, the Lorentzian
profile

L ,(E) — l Wr%n’
" T (E — Enw)? + (Wap)?
with
WL, =475 x 107°E,,,,* (keV)

is used to plot Fig. 2.8.

2.3 [-splitting effect in spectral opacity and emissiv-
ity

In this section, we show the splitting of electron energy levels due to the difference in the

azimuthal quantum number, i.e., the [-splitting effect. The SHM including the [-splitting
is developed by Perrot[19].

In his model, the effective charge is

1 n—1

Zn =/ — Z Pn'onn’ (1 - ’2‘5nn') -+ Epn’Qn’n Z Tnigni
n' =0

n'<n
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where z,; = P/ Dy,
I
i = 73 [n? = 2U(L + 1) — 1] + vy,

and 1o

l (E.) |:2 — (.’,_.L_) ] (2n2 > ,nf2)
Gnn’ = TA\N n
0 (2n? < n'?).
For the diagonal elements, the author has done a more accurate estimation using the
exact hydrogenic wave functions.

The numerical values are shown in Table 2.2 for reference. If the [-splitting is ne-
glected, Y7 2100 = 0.

Table 2.2: Numerical values of some of the constants needed in the SHM with [-splitting.

n 1 2 3 4 5 6 7
gnn  0.270672 0.366310 0.371802 0.329523  0.295072  0.296580  0.320910
v, 0.000 0.070 0.020 0.012 —0.100 —0.400 —0.420

Using Z,, the electron energy level including the [-splitting is

Z,
E,=E,—- Z P [an'Sn’ - Q'n’nsn] - n_;gnl Z In'n
nl

n!

where .
D

Sn = -y Z TniGni-
" 2o

E, is the same expression as Eq. (2.3).

Figure 2.9 shows electron energy levels of the gold ions as a function of the number
of bound electrons in the ground state. Figure 2.9 (a) shows the case without I-splitting
(I-degenerate), while Fig. 2.9 (b) shows the case with [-splitting. From Fig. 2.9, we
find that the electron energy level E; of Au™, for example, splits into four sublevels
with the width of about 300 eV by including the [-splitting effect. As the number of
bound electrons increases, the energy gaps between different principal quantum numbers
decreases, while the energy split in the same principal quantum number increases. This
shows that the [-splitting effect is more important in the partially ionized plasmas than
in highly ionized plasmas.

The fractional population in the LTE and the resultant opacity and emissivity are
obtained if electron energy levels including the l-splitting can be known. But on calcu-
lating the fractional population in the CRE, they are not sufficient. As shown in 2.2.3,
we use the rate coefficients of the electron collisional ionization, and therefore, the three-
body collisional recombination, which only depend on the energy level as the [-splitting
effect, inclusion of the [-splitting in the atomic process is not so difficult. But for the
electron collisional excitation and radiative decay, and therefore, the electron collisional
deexcitation, it requires not only the energy level but also the oscillator strength between
n, | sublevels. In this thesis, the oscillator strength of H-like ions for F;, Li-like ions for
E,[20], Na-like ions for Ej3[21], Cu-like ions for E4[22] are used.
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Figure 2.9: Electron energy levels of the gold plasma as a function of the number of
bound electrons in the ground state. (a) Without [-splitting. (b) With [-splitting.

Figure 2.10 shows the fractional population divided by the statistical weight of the
level. In the model, the [-splitting energy levels up to n = 4 are included. In the LTE, the
fractional population is determined by the Fermi-Dirac distribution, i.e., the population
imbalance between sublevels is determined by the energy differences. In the CRE, the
population imbalance is determined by a magnitude of the radiative decay rate. As a
result, the population imbalance becomes larger in the CRE than in the LTE due to the

fact that the radiative decay rate of a state with larger azimuthal quantum numbers is
larger.
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Figure 2.10: Electronic population of the average ion model divided by the statistical
weight of the level. (a) Local thermodynamic equilibrium (LTE). (b) Collisional radiative
equilibrium (CRE). [-splitting effect is more important in the CRE than in the LTE.

Figure 2.11 shows the emissivity of the gold plasma in the CRE including the I-
splitting, where the electron temperature is 200 eV and the density is 0.1 g/cm®. The
corresponding figure without /-splitting was already given in Fig. 2.8

We remark that the relatively strong line emission due to the 4 — 5 transition (about
570 eV) seen in Fig. 2.8 splits into three relatively strong lines due to the transitions of
4f — 5g (about 520 eV), 4d — 5f (about 730 eV), and 4p — 5d (about 850 eV). The lines
of 4d — 5d (about 390 eV) and 4d — 5p (about 630 eV) are relatively weak because of
smaller oscillator strengths of these lines.

In Fig. 2.8, we can see that the relative intensity of the lines due to the 5—6 transition
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Figure 2.11: Emissivity of the gold plasma in the CRE model with [-splitting where the
electron temperature is 200 eV and the density is 0.1 g/cm3. The corresponding figure
without [-splitting is shown in Fig. 2.8.

is as strong as that of line due to the 4—5 transition. However, inclusion of the [-splitting
reduces 5 — 6 lines intensity. This is because of the line shift from 5—6 transition of about
160 eV to 5g—6h transition of about 60 eV, which is the strongest among 5—6 transitions
when the [-splitting is included. Since the emissivity is proportional to the photon energy
as (hv)3, the intensity of 5g — 6h transition decreases by a factor of (60/160)% ~ 0.05.
The lines seen at about 280 and 180 eV are due to the 4d — 4f and 4p — 4d transitions,
respectively. They are due to the transitions between sublevels for which the [-splitting
is responsible.

2.4 Line profile modeling for X-ray transport

In the case of high-Z plasmas like gold treated in this thesis, the largest contribution to
the global structure of the X-ray spectra is the {-splitting effect (hundreds eV) which has
been already included in the model as shown in Sec. 2.3. Although the effect of the j-
splitting (tens eV) has been predicted by theoretical calculation[23], in order to introduce
the j-splitting, the development of a new SHM including the j-splitting is required.

Apart from the more precise treatment of the physical system of the average ion, we
develop a line profile modeling for the average ion model. The difficulty encountered
in applying the spectral opacity and emissivity based on the average ion model to a
hydrodynamic code can be deduced the line profile modeling, since they are those of one
fictitious ion of averaged charge. In this thesis, we propose a line profile for the average
ion model of which widths are obtained by the line group structure of the same index in
hydrogenic model, for example, 2 — 3, 3 — 4,4 — 5, etc. The strength of the 2 — 3 line
in the average ion model, for example, reflects the contributions from the 2 — 3 lines of
Li-like through Ne-like ions in the reality. This estimation of the line width is natural
for the basic line profile for the average ion model, since this information has been lost
when we use the average ion model.

The model which enables to yield the population of different charge states from the
fractional population of the average ion model was first proposed by Mayer[5], and an
extension for the CRE by Ito et al.[10]. In this thesis, a simpler Mayer’s statistical method
is studied. In his model, the fractional population P, in the level n of the average ion
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model divided by the statistical weight D,; z, = P,/D, is assumed to be the probability
of the electron occupation in the level n. Then, the population of the ion which carries
a different number of the bound electrons in the level n can be given by the binomial
distribution. For example, the population of the ion Fp,—5 which carries 5 electrons in
the level of n = 4 is given by

32!
(32— 5)15!

The comprehensive calculation had been done by Stein et al.[24].

Using the statistical method, we can estimate the population of each charge state.
This is sometimes called the abundance of ions. Figure 2.12 shows the abundance in
the gold plasma. Figure 2.12 (a) shows the case in the LTE, while Fig. 2.12 (b) shows
the case in the CRE. The ionic charge states of the closed shell are dominant in certain
temperature ranges at about 700eV ~ 1.2keV for the Ne-like (n = 2), at about 250 ~
350eV for the Ni-like (n = 3), and at about 40eV for the Nd-like (n = 4) in the LTE, and
at about 2 ~ 2.6keV for the Ni-like, 45 ~ 60eV for the Nd-like in the CRE, respectively.
The structure due to the closed subshell of Pd-like (4d'°) can also be seen at about 350eV
in Fig. 2.12 (b) and at about 100eV in Fig. 2.12 (a).

Fp,—5 = 21%z,%23'® 24°(1 — 24)%7%(1 — 25)% - - - (2.11)
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Figure 2.12: Ionic distribution of the different charge states estimated by the statistical
method. The closed shell structure, dominant in certain temperature ranges can be seen.
(a) Local thermodynamic equilibrium model. (b) Collisional radiative equilibrium model.
The structure due to the closed subshell can be also seen.

At a given transition, the line position shifts according to a number of bound electrons,
and the strength is weighted by the binomial distribution. In the case of large D,, the
binomial distribution can be approximated by the Gaussian distribution. In real high-Z
plasmas, this discreet structure of the line spectra is sometimes smeared out by another
effects, for example, the term-splitting effect and the Stark effect. In this case, the line
group profile of the transition from & to k' in the average ion model can be approximated

by
1 (E — Egpr)?
W(F) = ———— St
Prw (E) s AB exp (2(3 2B ) )’
where AEyy is the energy shift of the line when the charge state changes by unity and
s is the standard deviation defined by s = P,V,,. The free-bound emissivity and bound-
free opacity can be also obtained by the same idea as in the case of the bound-bound
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transition. This line profile modeling is valid only in the LTE[25], the modeling is also
used, however, in the CRE because the difference in the abundance between the LTE
and CRE is assumed to be relatively small in the parameter region of the laser-produced
plasmas treated here. In Fig. 2.13, the opacity of the gold plasma in the CRE is shown,
where the electron temperature is 200 eV, and the density 0.01 g/cm®. Figure 2.13 (a)
shows the opacity of the one fictitious ion of the average ion model with the Lorentzian
line profile. Figure 2.13 (b) shows the line group of the 4f — 5¢ transition, composed of
lines from different charge states. The thick line profile in Fig. 2.13 (b) corresponds to
the Gaussian profile, the half width of which is determined by the standard deviation of
the line group.
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Figure 2.13: Opacity of the gold plasma in the CRE where the electron temperature is
200 eV, and the density 0.01 g/cm?®. (a) Simple Lorentzian line profile. (b) Line group
of the 4f — 5¢ transition composed of lines from different charge states. The thick line
profile corresponds to the Gaussian profile, the half width of which is determined by the
standard deviation of the line group.

We showed two figures in Fig. 2.14 which shows the emissivity to be compared with
Fig. 2.8 and 2.11. Figure 2.8 and 2.11 change their profile as shown in Figure 2.14. Figure
2.8 and 2.14 (a) illustrate the case without [-splitting, while Fig. 2.11 and 2.14 (b) are
the case with [-splitting,.

From Fig. 2.14 (a), the full width of the half maximum in the typical lines are about
100eV (4—5), 165eV (4 —6), and 62eV (5 — 6)..In-the simulation studied in Ref. [4], the
effective line width of 150eV is assumed to reproduce the experimental X-ray conversion
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Figure 2.14: Emissivity of gold plasma in the CRE model, where electron temperature is
200 eV, and plasma density 0.1 g/cm®. The line profile modeling is taken into account.
(a) Without Il-splitting. (b) With [-splitting.

rate. The above-mentioned line widths obtained by the statistical method give a physical
basis for the effective line width of the simulation.

From Figure 2.14 (b), the full width at the half maximum in the typical lines are
about 93 eV (4f — 5g), 86 eV (4d — 5f), and 19 eV (4d — 4f). The effective line widths
of An = 0 transitions are relatively narrow, because the centers of these lines are not so
affected by the change in the ionic charge state. For this plasma parameter, a number of
electrons in the level of n = 4 changes. For the 4d — 4 f transition, a number of electrons
in the inner shell does not change. As a result, the position of the lines does not move.
The line width due to the j-splitting is comparable to that determined by the statistical
method[26, 23]. This effect will be discussed in Sec. 2.5.

By installing the spectral emissivity and opacity based upon the model shown above
in the simulation code ILESTA-1D, a hydrodynamics simulation has been carried out.
Figure 2.15 shows the time-integrated X-ray spectra observed in the laser irradiation
side[4] where the experimental spectrum is shown by the solid line and the numerical one
based upon a rather simple opacity modeling in which the principal quantum number n
is only taken into account in the electron energy level is shown by the broken line. In the
experiment, six beams with wavelength of 0.35 pum irradiates a large spot size (1 mm in
diameter) with the intensity of 3.3 x 10* W/cm? and the pulse duration of 800 ps. The
beams are focused on a 0.436-pum-thick gold foil.

A typical feature is that the experimental spectrum has a strong peak near 200 eV
and flat area in 400 ~ 800 eV. The same structure in spectrum has also been observed in
OMEGA experiment[3]. In contrast, the numerical spectrum of the original ILESTA-1D
consists of two peaks: One is near 200 eV, which corresponds to line emissions due to
the deexcitation into the level of n = 4, and the other is near 700 ~ 800 eV, which
corresponds to the line emissions due to the deexcitation into the n = 5 level. Clearly,
the X-ray spectrum seen in the simulation is harder than that in the experiment.

Figure 2.16 shows the X-ray spectrum with the [-splitting effect. By comparing
Fig. 2.16 with the numerical results shown in Fig. 2.15, the peaked spectrum at 700 ~
800 eV in Fig. 2.15 becomes flat due to the I-splitting and the peaked spectrum at 300 eV
are due to the An = 0 transitions stemming mainly from the 4d — 4f transition.

There were simulations for the X-ray generation by laser produced plasmas with
the [-splitting and either the LTE assumption[27] or the CRE assumption[28] model.
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Figure 2.15: Time-integrated spectra of X-rays at the laser irradiation side where the
experimental result is shown by the solid line and the simulation result by the broken
line. The figure is taken from Ref. [4]. This is the case where six beams with wavelength
of 0.35 pm irradiates a large spot size (1 mm in diameter) with the intensity of 3.3 x
10 W/cm? and the pulse duration of 800 ps. The beams are focused on a 0.436-pm-thick
gold foil.
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Figure 2.16: X-ray spectrum from the gold plasma calculated by the ILESTA-1D code,

installing the new opacity and emissivity including the l-splitting effect.
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In both simulations, they used the average ion model, but have failed to reproduce the
corresponding experimental spectrum. From the above consideration, all of the CRE, the
[-splitting effect, and the line profile modeling for the average ion model are important to
reproduce the global structure of the X-ray spectrum of the corresponding experiment.

2.5 Accuracy and limitation

In this section, an accuracy of the atomic model used in Sec. 2.3 and 2.4 is examined
in detail. From the content in this section, the limitation of the opacity and emissivity
model will be clarified.

2.5.1 Energy level and oscillator strength

For the laser produced plasma like a gold plasma, atomic data of the level of n = 4 are
the most important. For the electron energy level and the oscillator strength, the results
by the Hartree-Fock-Slater (HFS) model[7] is used for reference. In the HFS model, the
electronic structure is solved using the one electron approximation in the self-consistent
field. The Schrodinger equation in the spherically symmetric potential V(r) is written
by

[— 2:; V2 + V(r)] u(r) = Eu(r) (2.12)

where E and u(r) are the electron energy eigenvalue and the wave function, respectively.
The wave function can be separated into the radial and the angular parts by substituting

u(r) = Ru(r)Yu(0, ) = X2y, 9, 9)

r

into Eq. (2.12), where Y},,(6, ¢) is the spherical harmonics and x,(r) is given by the
equation

A2y (T
K1) e rPtr) = O,

M 11+ 1)R?
knl(r)2 = -2 E - (—27?2—7);——V(r)

wherel =0, 1, 2, ---, n—1. V(r) is usually expressed as a sum of the potential screened
by bound electrons and the effective potential due to the electron-electron correlation:

V(r) = Vo(r) + Vexe(r).
Vo(r) is given by the Poisson equation
V2Vo(r) = —4me® [Z8(r) — p(r)]

where ¢ is the Delta function, and p(r) is defined by

1
pr) = 4rr? %:P"l‘
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Xni(7) is normalized to be N
/0 an(r)2 dr = 1.

For the effective potential due to the electron-electron correlation, the local approxima-
tion by Slater

24 \'/3
Voo = = (2 0(1) (Ry)
is used. When the wave functions are obtained, the dipole oscillator strength[29] can be
obtained by
2
1max(l, I') vphy (R'nl )
3 21+1 Ry ap?

where v™, is the frequency of the transition nl — n'l', Ry is the Rydberg constant, and
the radial integral (dipole moment) R"" is defined by

fn’l’,nl =

'l o0 2
Rnl = 0 .R,nll/'I‘R.ngT dr.

Using the HF'S model, we have calculated the electron energy level and the absorption
oscillator strength of the gold ions, of which levels up to 3 are fully occupied by bound
electrons. Dependence on a number of bound electrons for 4p—4d and 4d —4f transitions
is shown in Fig. 2.17, while dependence for 4p — 5d, 4d — 5f, and 4f — bg transitions is
shown in Fig. 2.18.

The oscillator strength is shown in (a), while the transition energy is shown in (b). In
(a)’s of Figs. 2.17 and 2.18, the broken lines are the oscillator strength used in the atomic
model explained in Sec. 2.3, which does not depend on a number of bound electrons in the
level of n = 4. The values are those of the Cu-like (1522522p%3523p%3d'® + one electron)
gold ions which are the results by the MCDF code. In the MCDF code, the relativistic
effect and the effect of the configuration interaction using the wave function of the one
electron approximation are taken into account. The data in the case of Cu-like ion are
much more accurate than that by the simple HFS model. The difference between results
of the MCDF code and the HFS model in the Cu-like ion is estimated to be at most
about 20 %. As a number of electrons in the level of n = 4 increases, the oscillator
strength of n = 4 — 5 decreases, while the oscillator strength between sublevels of n = 4
increases. From the figure, errors in the oscillator strength used in Sec. 2.3 are estimated
at most about a factor of 2 to those of the level of n = 4.

In (b)’s in Figs. 2.17 and 2.18, the broken lines are the transition energy of the
SHM including [-splitting, while the solid lines are the corresponding HF'S results. As a
number of bound electrons in the level of n = 4 increases, the transition energy from the
level of n = 4 to the level of n = 5 decreases, while the transition energy between the
sublevels of n = 4 increases. The SHM including the [-splitting support the tendency
and the deviation from the HFS results are at most less than 15 % to those of the level
of n =4.

2.5.2 j-splitting in the electron energy level

The importance of the j-splitting in the energy level structure of the high-Z ions like
gold is first shown by Finkenthal[26]. Table 2.3 shows the detailed transition energy and
oscillator strength by the RELAC code[23]. The RELAC code can give a parametric
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Figure 2.17: Transition energy and absorption oscillator strength of the 4p — 4d and
4d — 4f transitions of the gold ions. (a) Oscillator strength. (b) Transition energy. Solid
lines are results by Hartree-Fock-Slater model, while the broken lines are those used in

this thesis.
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potential for the given electronic configuration of the ion. Using the potential, we can
calculate detailed ab initio energy levels. Compared with the RELAC calculation, the
transition energy of 4d — 4 f obtained by the SHM does not differ substantially. But the
transition energy of 4p — 4d by the RELAC code splits into two line group, i.e., at about
33 A for 4p, 2 —4d and at about 50 A for 4p; /2 — 4d. The line group of the lower energy
corresponds to transition given by the SHM, but the line group of which energy is higher
than that of 4d — 4f is purely j-splitting effect.

Table 2.3: RELAC calculations for 4d — 4f and 4p — 4d transitions of Rbl-like ions

Au42+ Pb45+

M (B) gf Mm () gf
3/2—-5/2 49.28 4.01 45.52 4.26
4p%4d — 4pbaf 5/2—5/2 55.23 0.23 5186 0.06
3/2—-7/2 5400 343 5022 3.58
3/2—1/2 3793 121 33.67 1.14
3/2—-3/2 3705 389 3311 3.25
3/2—-5/2 4035 2.08 3575 1.72
5/2—3/2 3765 291 3344 2.90
5/2—-5/2 3795 5.21 33.73 4.85
5/2—"T7/2 38.08 3.30 33.68 4.96
3/2—-3/2 5572 150 51.32 1.60
4p4d — 4p°;p4d® 5/2-3/2 5443 1.84 50.22 1.90
5/2—5/2 5402 311 49.85 3.40

Transition J—J

4p°4d — 4p°, ,4d°

In the experiment of the Pb, the two-peaked structure of the X-ray is observed.
Figure 2.19 shows the time-integrated X-ray spectra where the experimental spectrum
is shown by the solid line, while the numerical one is by the broken line. The irradiated
laser intensity is 2 x 10* W/em2. This condition is not so different from that of Figs.
2.15 and 2.16, but the 100-um-diameter spot size is 10 times smaller. We may guess
that the local temperatures in the plasma may be higher than that in the experiment
shown in Fig. 2.15, in which relatively uniform plasma is produced due to the large laser
energy. By the simulation, the X-ray conversion rate can be perfectly reproduced, but
the two-peaked structure seen in the experiment can not. From Table 2.3, the two-peaked
structure in the X-ray spectrum is due to the 4d — 4f and 4p;/; — 4d transitions for the
line group at about 300 ~ 320eV and the 4ps3/, — 4d transitions for the line group at
about 340 — 380eV.

2.5.3 Validity of statistical model

Using the statistical model, we can calculate the population for each charge state from
the fractional population of the average ion model. In order to show the accuracy of
the statistical method, we compare the results with those by the detailed configuration
accounting (DCA) model[30]. In the DCA model, the rate equation for each charge state
is solved separately. Figure 2.20 shows the ionic distribution of each charge state in the
aluminum plasmas of which ion density are 102 cm™3 in the CRE model. The solid lines
are the ionic distribution of each charge state obtained from the fractional population
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Figure 2.19: Time-integrated X-ray spectra by the laser irradiation of 2 x 10* W/cm?
where the experimental spectrum is shown by the solid line and the numerical one by
the broken line. The laser condition is not so different from that of Fig. 2.15, but the
spot size of 100 pm in diameter is 10 times smaller. The numerical simulation can not
reproduce the two-peaked structure at about 300 ~ 400eV.

of the average ion model, while the dashed lines are those by the DCA model. The
numbers in the figure show the charge states. Although it also shows a small shift of the
distribution of the charge state to the lower temperature side, the distribution can be
well reproduced even in the case of low-Z plasma.

Next, we show the population calculated by the statistical model lead to the Saha
equilibrium in the LTE limit. Fp — is assumed to be the probability of finding & bound
electrons in the level n. The ratio of the probability of finding &£ and £+1 bound electrons

is given by
Fp,—t _ D, D, 9 1—z,
Fpo=k+1 k k+1 T

where z, = P, /D, and
Dp\___ Dal
k)" (Da— k)&

l—wn_ex (En—u)
z, P\ TT

is derived because z, is the Fermi-Dirac distribution. If the change in E,, and p is small
enough when a number of bound electrons in the level changes, the fraction p; becomes
that of the Saha equilibrium. The assumption is used in the average ion model, so that
the population by the statistical method becomes that of the Saha equilibrium in the
LTE limit.

In the LTE,

2.5.4 Comparisons with the results of detailed opacity codes

The opacity workshop: WorkOp is held every 3 years. The opacity code based on the
model shown in this section was submitted to the comparison study twice in 1994 and
1997. In this subsection, the typical results and a difference from results by the other
detailed opacity codes are briefly shown[31, 32]. In the WorkOp:94, the opacities in the
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Figure 2.20: Ionic distribution of each charge state in the aluminum plasmas of which
ion density are 102 cm™2 in the CRE model. The solid lines are the ionic distribution
of each charge state obtained from the fractional population of the average ion model,
while the dashed lines are those by the DCA model. The numbers in the figure show the
charge states. Although it also shows a small shift of the distribution of the charge state
to the lower temperature side, the distribution can be well reproduced even in the case
of low-Z plasma.

CRE are also discussed. From the WorkOp:97, the objective was limited to the opacity
in the LTE.

More than ten opacity codes had been submitted. For the atomic model, the average
ion model or the detailed configuration accounting model is used. For the energy levels,
the simple SHM including the [-splitting or a solution to the Schrodinger or Dirac equa-
tion within the one electron approximation, using either the parametric potential or the
self-consistent field is used.

The code we have submitted is based on the average ion model and the SHM including
the l-splitting. The code is named ” CORONA?”. In the code, the population for different
charge states is calculated by the statistical model shown in Sec. 2.4. In the process,
excited states among sublevels of the same principal quantum number are also taken
into account. The level of n = 3 for example, 2 x 6 x 10 states are taken into account
for the electronic configuration. In calculating the detailed spectral opacity, the line
profile becomes much more important. In the code, the natural broadening due to the
lifetime of the level, the Doppler broadening due to the ion motion, and the electron
collisional broadening shown by Griem[33] are taken into account. In the model, the
(angular frequency) width of a line, i.e. one half its damping constant, becomes

\%? hag Ry \'2[/ 1r*]|. 3kgT, r2 3kgT,
w=8 (§> ENG (kBTe) ! 0,()2 L9 ZAEZ + f (47 2 f g ZAEf
where ) ) )
T nk 2
<k E;z' k‘> ~ 5 <7> [Snk +1- 3lk(lk -+ 1)]

In this equation, 7 and f means the initial state and final state.
First, the case of the hydrogen is shown in Fig. 2.21, where the electron temperature
is 1 eV and the density 1 X 107® g/cm3®. The hydrogen is not high-Z treated in this
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chapter, but the model for hydrogen is of fundamental for other cases. The average
ionization degree by the CORONA is about 0.012, while the results by detailed codes are
0.077 ~ 0.078. The difference is due to the atomic modeling. In the CORONA, the Fermi-
Dirac distribution in the average ion model is used while the Saha-Boltzmann distribution
is used in the detailed codes. For hydrogenic ions, the Fermi-Dirac distribution can not
give the correct ionization degree. The Planck and Rosseland mean opacities by the
CORONA are about 6.0 x 10*cm?/g and about 7.2 x 10°cm?/g, while those by detailed
codes are 1.6 ~ 1.7 x 10°%cm?/g and 4.4 ~ 4.6 x 10°cm?/g. The difference in the Planck
mean opacity is due to the modeling on the free-free process. The detailed treatment of
the Gaunt factor for the free-free process is required. In the results by detailed codes,
bound-free edge of the M-shell can not be seen. The difference in the Rosseland mean
opacity is due to the modeling of the bound-bound spectral profile. In the detailed
codes, the microfield in the plasma is calculated. As other problem in the CORONA, we
quote that the series limits of the bound-bound transition do not merge into bound-free
edge even though the states up to n = 100 are taken into account. The corresponding
experimental results can be found in Ref. [34]
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Figure 2.21: Hydrogen plasma opacity where the electron temperature is 1 eV and the
density 1 x 1075 g/cm3.

Figure 2.22 shows the opacity of the carbon where the electron temperature is 20 eV
and the density 10 g/cm®. The carbon is also not high-Z treated in this chapter, but
this case shows the importance of treating the free states. The average ionization degree
by the CORONA is about 3.5, and the Planck and Rosseland mean opacities by the
CORONA are about 6.0 x 10*cm? /g and about 7.2 x 10%cm? /g, while we couldn’t obtain
the consensus for the parameters among the detailed codes. In Fig. 2.22, the K-edge of
the H-like carbon can be seen at about 275 eV, but the structure becomes dull because
the continuum state near ionization threshold is almost occupied by free electrons. This
treatment for the free states can be easily installed into the average ion model. The
treatment is delicate. As a conclusion, we need experimental data to be compared with
theoretical calculations. The numerical value of this opacity may be important for the
inertial confinement fusion research.

Table 2.4 shows the density dependence of the mean opacities of iron plasmas. The
upper values are results by the CORONA, while the lower values are results by detailed
opacity codes. The average ionization degree Z, ~ 8.6 are almost the same for all cases.
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Figure 2.22: Carbon plasma opacity where the electron temperature is 20 eV and density
10 g/cm?.

The line spectra which contribute the resultant opacity are those of ions with 17 ~ 18
bound electrons (Cl-like and Ar-like). Under this condition, the contribution of the term-
splitting becomes important. This effect is enhanced in the low density. From Table 2.4,
as the plasma density increases, the difference between the results by the CORONA and
the detailed opacity codes decreases. For the dense plasma more than 0.01g/cm3, the
line broadening due to the electron collisional process becomes significant, so that the
term-splitting effect relatively reduced. As it seldom occurs that the plasmas of which
density is less than 10~2g/cm? becomes important in the usual laser produced plasma,
we can conclude the opacity data by the CORONA is good enough for the simulation of
the laser produced plasmas.

Table 2.4: Density dependence of the mean opacities of iron plasmas. The upper values
are results by the CORONA, while the lower values are by the detailed opacity codes.

Condition xp(cm?/g) n(omZ/)

16.35 (eV), 107 (g/cm?) (37;84Xx12?)4) (155)3X><1%3)

20 (V) 1077 (/e (39414X><1(1)Z4) o ase a0

2463 (o), 0 gfom®) M2 NI00 (B0
1.4 x 10 9.0 x 10°

31.70 (eV), 107° (g/cm?) Br4x 109  (3~4x 10

In Figs. 2.23 and 2.24, the opacity calculated by the CORONA is compared with the
corresponding transmission measurement. The transmission is defined by

T = exp(—xpd)

where ¥, p, and d are the opacity, the density of the plasma, the thickness of the plasma,

respectively. The solid line is the result by the CORONA and the thin line is the
experimental one.
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Figure 2.23 shows the case where the density is 0.01g/cm?® and the temperature 20eV.
The corresponding mean opacity is shown in Table 2.4. The detail of the experiment
can be found in Ref. [35]. The M-edge structure of iron plasma is seen in. Though the
three-peaked structure by the CORONA is shifted to the lower energy side by about
25 eV, the global structure of the spectrum is well reproduced. Determining the position
of three-peaks which is related to the accuracy of the energy level calculation is also
difficult for other detailed opacity codes, since the effect of the spin-orbit interaction
becomes important in this three-peaked structure.

Figure 2.24 shows the case where the density is 0.0113g/cm® and the temperature
59eV. The detail of the experiment can be found in Ref. [36]. The L-edge structure of
iron plasma is seen in, and the CORONA can well reproduce the experimental result,
since the SHM can calculate the values of the electron energy level of n = 2 accurately,
compared with those of the level of n = 3.
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Figure 2.23: The opacity calculated by the CORONA are compared with the correspond-
ing transmission measurement, where the density is 0.01g/cm?® and the temperature 20eV.
The solid line is the result by the CORONA and the thin line is the experimental one.
M-edge structure can be seen in the figure.

2.6 Summary

We have summarized atomic models that have been used in the hydrodynamic codes of
the inertial confinement fusion research, i.e., the screened hydrogenic model (SHM), the
detail of the rate coefficients, the model for the pressure ionization and the continuum
lowering, the collisional radiative equilibrium (CRE) model and the local thermodynamic
equilibrium (LTE) model, and the detail of formulae of the emissivity and opacity cal-
culations.

In Sec. 2.3, we have shown a new model for calculating the spectral opacity and
emissivity of high-Z plasma like gold for solving the X-ray transport in hydrodynamic
codes. In the model, plasmas are assumed in the CRE. The [-splitting effect, i.e., the
consideration of the azimuthal quantum number in the electron energy levels is introduced
using the SHM developed by Perrot. As a result of a gold plasma, the electron energy
level E; of Au™?, for example, splits into four sublevels with the width of about 300 eV
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Figure 2.24: The opacity calculated by the CORONA is compared with the corresponding
transmission measurement, where the density is 0.0113g/cm? and the temperature 59eV.
The solid line is the result by the CORONA and the thin line is the experimental one.
L-edge structure can be seen in the figure.

by including the [-splitting effect. The transitions between the sublevels, such as 4d —4f,
are important elements to understand the strong peak near 200 eV in the experimental
spectra of gold plasmas.

In Sec. 2.4, we have shown a line profile modeling for the average ion model. For the
opacity and emissivity of the partially ionized high-Z plasmas like gold, the line profile
is approximated to be the Gaussian profile of which width is determined by the ionic
distribution of different charge states. This opacity and emissivity are installed into the
hydrodynamic code ILESTA-1D to examine the experimental spectra. As a result of the
simulation, the peaked X-ray near 200 eV seen in the experiment stems from the lines
due to the An = 0 transition between the sublevels of n = 4. [n addition, relatively flat
spectra in hv = 400 ~ 800 eV seen in the experiment can be explained as a result of the
[-splitting of the line of the 4 — 5 transition. The line group of the 4f — 5g, 4d — 5f, and
4p — 5d transitions mainly forms this flat structure.

In the simulation of the X-ray generation by laser produced plasmas like gold, the
assumptions that the plasmas are in the CRE, the [-splitting effect, and the line profile
modeling if the average ion model is used, are essentially important to reproduce the
global structure of the X-ray spectrum of the corresponding experiment.

In Sec. 2.5, we have examined the accuracy of this atomic model for the opacity and
emissivity calculation of the high-Z plasmas in detail.

We have compared the values of the electron energy level and oscillator strength with
the values by the Hartree-Fock-Slater (HFS) model. From the HFS results, as a number
of electrons in the level of n = 4 increases, the oscillator strength of n = 4 — 5 decreases,
while the oscillator strength between sublevels of n = 4 increases. Errors in the oscillator
strength used in Sec. 2.3 are estimated at most about a factor of 2 to those of the level
of n =4.

We have discussed the j-splitting effect briefly. For the high-Z ions like gold, the
transition energy of the 4d — 4f obtained by the SHM with [-splitting does not differ
substantially from the detailed theoretical value including the spin orbit interaction. The
transition energy of the 4p — 4d, however, split into two line group, i.e., at about 33 A
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for 4p,/, — 4d and at about 50 A for 4ps/2 — 4d. The line group of the lower energy
corresponds to transition given by the SHM, but the the line group of which energy is
higher than that of 4d — 4f is purely j-splitting effect. The two-splitted structure of
the soft X-ray region is actually observed in the experiment of the Pb. Inclusion of the
j-splitting effect would be a next subject in future.

We have shown the accuracy of the population for each charge state that is calculated
from the fractional population of the average ion model by the comparison with those ob-
tained by the detailed configuration accounting (DCA) model on the aluminum plasmas.
In the DCA model, the rate equation for each charge state is solved separately. Although
it also shows a small shift of the distribution of the charge state to the lower temperature
side, the distribution can be well reproduced even in the case of low-Z plasma.

Finally, we have shown the comparison study between the spectral opacity based on
the model developed in this chapter and the results by detailed opacity codes for the
case of hydrogen, carbon, and iron plasmas.

For the low density and low discharged hydrogen plasma, it is difficult to estimate
the correct average ionization degrees with the average ion model.

In the case of the dense carbon plasma of which density is more than the solid density,
the continuum state near ionization threshold is almost occupied by free electrons. This
treatment for the free states can be easily installed into the average ion model. But there
are no reliable experimental results of such extreme condition that can be compared with
the theoretical results.

From the density dependence of the mean opacity of iron plasmas, we have obtained
the applicable density limit of the present model. In the case of low density less than
0.01g/cm3, the contribution of the term-splitting becomes important. As it seldom occurs
that the plasmas of such density becomes important in the usual laser produced plasma,
we can conclude the opacity data by the CORONA is good enough for the simulation of
the laser produced plasmas.

For the energy level related to the L shell (n = 2), the SHM can give accurate values
which can be compared with the experimental ones, while for the energy level related to
the M shell (n = 3), the SHM can not give accurate values enough. Determining the
energy level related to the M shell is also difficult for other detailed opacity codes, since
the effect of the spin-orbit interaction becomes important.
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Chapter 3

Atomic models of highly ionized
plasmas

3.1 Introduction

In this chapter, treat the atomic model of highly ionized ions. Main applications are line
spectra from highly ionized plasmas: for example, line spectra due to the impurity in
laser imploded plasmas, and X-ray spectrum from stellar plasmas. If number of bound
electron in the open-shell becomes larger than three, or smaller than (2n? — 3), number
of possible terms of energy levels suddenly increase, so that main objectives are H-like,
He-like, and Li-like ions. In the inertial confinement fusion research, spectroscopic mea-
surements of X-ray from imploded plasmas more than solid density have been carried
out[2, 3]. Recently, new interest in opacity of stellar plasmas has arisen and precise opac-
ity experiments have been carried out[1]. In order to know density and/or temperature
of the plasma, spectroscopic measurements have been widely used in experiment. A lot
of detailed experimental results, for example, line profiles has been collected[9, 10]. Even
a commercial software for analyzing X-ray spectra from plasmas is also available[11].
Essentially important point in the analysis of X-ray spectra from these plasmas are that
precise theoretical modeling and numerical calculations are required for understanding
the experimental results. Practically, we need modeling of the plasma effect in atomic
processes, atomic data for the elementary processes, calculation of the line profile of each
line spectrum or modeling on the line profile for the atomic model, etc.

For energy level and oscillator strength, using a detailed atomic code like the GRASP[7),
we can obtain fairly accurate data of isolated ions. Numerical values of experimental data
and results of atomic code are also available in literature, for example, Kelly’s table[8]
and the Opacity Project book by Seaton[9]. However, above-mentioned sets of data are
sometimes not enough for building up models of atomic process in the plasmas. From
the Grotrian diagram, only data for the dipole allowed transition are available, but the
line strength is sometimes strongly affected by the states which are not available. More-
over, we meet a relatively large error in the published data. In this section, we propose
new method of energy level data recommendation by screening constant of the screened
hydrogenic model.

There are still difficult points for some purposes in treating plasma effects. Among
them, we discuss a problem that we always meet when we want to build up a model
of atomic process, i.e. cutting off the highly excited states, is discussed and simple
estimation for that is shown.

47
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In future, we will integrate opacity code like the case of high-Z plasmas discussed in
previous chapter. Since there are a lot of effects we have to study and a lot of work due

to the spectroscopic measurement of the plasma density and temperature, we couldn’t
complete the work.

3.2 Energy level recommendation by screening con-
stant

3.2.1 Introduction

When analyzing spectroscopic data from plasmas, we have to make an appropriate atomic
model of the plasma. In the process, we need atomic data of elementary processes, for
example, electron energy level, oscillator strength, etc. As for energy level, many authors
have published data. They are summarized as theoretical calculations, spectroscopic

" data, and recommended values. However, the problem is which data we should use for
the model. In Table 3.1 are displayed the energy level data for the ground state 1 1S
of He-like ions from various authors for example. Usually among the data, systematic
differences exist. We have to carefully select the most reliable data from among many
published data. This work is called recommendation.

A selection of most reliable data which show a simple atomic number (Z) dependence
is one method. The raw numerical values of energy level are not appropriate as an index
for data recommendation since their Z2? dependence is large enough to suppress other Z
dependence. The simplest index is a value of the energy level divided by Z2. In Fig. 3.1,
the numerical values in Table 3.1 divided by Z?2 are plotted. All data are almost on the
same curve.

14'0 : L) 1 T L L) L] L] L] L] lllt
~ OF 3
98 10.0E Sugar
> g OE Martin
o “YE Cowan
g 8.0E OoP
w 7.05 J Plante
60 E L1 1 331 1 L1 1111
1 10! 10°

Nuclear Charge (Z)

Figure 3.1: Z dependence of the numerical value of energy level divided by Z? for the
ground state 115, of He-like ions. All data are almost on the same curve.

The quantum defect[10] is sometimes used. As the advance of modern computers has
enabled us to operate MCDF codes[7], accurate data beyond experimental results are
available by numerically for simple ions. However, accurate calculations for complex ions
are still difficult, so that the recommendation among the experimental and numerical
data is sometimes necessary.



3.2. ENERGY LEVEL RECOMMENDATION BY SCREENING CONSTANT 49

Table 3.1: Energy level data of He-like ground state from various authors. Among the
data, systematic differences exist. (Atomic unit)

n Kelly Sugar Martin Cowan  Opacity Project Plante

2 0.903557 0.903572 0.893390
3 2.77968 2.77969 2.76580 2.779961
4  5.65543 5.65545 5.63940 5.655943
5 9.53172 9.53160 9.51350 9.532325
6 14.4087 14.4088 14.3878 14.40974
7 20.2879 20.2896 20.2625 20.28892
8 27.1696 27.1682 27.1371  27.17072
9 35.0549 35.0559 35.0118 35.05615
10 43.9450 43.9475 43.8866 43.94636
11 53.8414 53.8417 53.7610 53.84270
12 64.7455 64.7457 64.6365 64.74663
13 76.6588 76.6588  76.6592 76.5115 76.65982
14 89.5831 89.5799  89.5840 89.3865 89.58405
15 103.521 103.518  103.522 103.5213
16  118.474 118.475 118.137 118.4738
17 134.445 134.446 134.4437
18  151.436 151.438 150.886 151.4337
19 169.448 169.439 169.451 169.4463
20 188.488 188.475 188.491 187.636 188.4845
21 208.559 208.540 208.548 208.5513
22 229.659 229.641 229.656 229.6498
23 251.793 251.775 251.764 251.7835
24 274966 274.944 274.952 274.9560
25  299.183 299.165 299.184
26 324.443 324.420 324.416 321.886 324.4326
27 350.760 350.737 350.728
28  378.125 378.097 378.1125
29  406.551
30 436.040 436.0310
31  466.598
32  498.228 498.2284
33 530.937
34 564.731 564.7469
35  599.605

36  635.508 635.6334
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On the other hand, the screened hydrogenic model (SHM) was first proposed by
Slater[11] to calculate non-hydrogenic energy level within the hydrogenic model. In
the model, the screening constant represents a reduction factor of the nuclear charge
the outer shell electron feels in the presence of the inner electron. Mayer[12] calculated
many screening constants, showing the importance of line transitions in the mean opacity
calculation of iron plasmas. Since the Mayer’s screening constants were based on the
hydrogenic wave function, they were not plausible for partially ionized high-Z plasmas.
More[13] determined a new set of screening constants, by enormous ionization energy
database. Improvement reproducing the hydrogen-like ions and an extension including
the l-splitting have been done by Marchand et al.[14] and by Perrot[15], respectively.

Since the simple iterative calculation using the SHM and the average ion model[16]
gives an electronic population with good accuracy and the emissivity and the opacity
could be calculated easily, the SHM’s have been widely used in the simulation of inertial
confinement fusion. Even the X-ray spectra from high-Z plasmas like gold could be
reproduced by hydrodynamic code[17]. Since an accuracy of the resulting opacity and
emissivity depends on the screening constants, a new set of the screening constants is
required if we need a more accurate result. In the process of obtaining a new set of the
screening constants, we have found simple Z dependence of the screening constant. This
Z dependence gives not only a simple description of the energy level of ions but is also
useful as an index for energy level data recommendation.

In this section, we study the Z dependence of the screening constant of ions, especially
of He-like ions, and propose a new usage of the screening constant, i.e. an energy level
data recommendation and an interpolation of reliable data using the Z dependence. In
Sec. 3.2.2, we compare the Z dependence of the screening constant and of the quantum
defect and show that the screening constant is more appropriate than the quantum
defect as an index for energy level recommendation. In Sec. 3.2.3, the Z dependence
of the screening constant for He-like ions is discussed and its simple fitting formula of
the energy level is given for future reference. The Z dependence of other electronic
configurations, Li-like, Be-like, and Ne-like ions, is also discussed and the accuracy of the
Kelly’s datal[8] is discussed. In Sec. 3.2.4, we discuss the physical meaning of this simple
Z dependence of the screening constant.

3.2.2 Screening constant and quantum defect

In the hydrogenic assumption, an electronic configuration of an ion is expressed by

(Py, Py, -+, Py, - --) where Py is the number of electrons in the level labeled by k. Using
the screening constant Y, we calculate the screened charge Zj, and the electron energy

k&'
level Ej, of the kth level in atomic units by

Zk; = Z- Z ak,kIPkl - O'k’k(Pk b 1), (31)

k' <k
Zi?
E = — 2
£ T T onme (3:2)

where Z is the atomic number (nuclear charge) of the ion and n(k) is the principal
quantum number of the kth level. Egs. (3.1) and (3.2) can be applied for the highest
level.

Using the Z dependence of 0 = Yyt 0k, P + 0k, (Pr — 1), we recommend energy
level. For He-like ions, the screened charge and the energy level of the kth level are
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expressed by

Zy = 4 —0p1 (3.3)

ZY (Z—oy,1)?

on(k)2  2n(k)?

Energy levels of He-like ions are calculated and experimentally measured by many
authors. In this thesis, the famous wave length table by Kelly[8], comprehensive work by
Sugar[18] and Martin[19], detailed theoretical calculations by Accad et al.[20], compre-
hensive data collection and recommendation by Seaton group for the Opacity Project[9],
and recent relativistic calculations by Plante et al.[21] are selected for this recommen-
dation study. The data of Kelly, Sugar, and Martin had been obtained around 1980, so
they contain relatively large errors. Accad’s calculation for excited states is based on the
relativistic theory of & where « is the fine structure constant for Z’s up to 10. Plante’s
one is relativistic all-order many-body calculations including the Breit corrections, which
is considered to be the exact value when relative error is discussed for the energy level
recommendation study.

Figure 3.2 shows the Z dependence of the screening constant o for the ground state
135, of He-like ions. Although the screening constant can be calculated as 0.625 for
all ground state of He-like ions from the variation method using the hydrogenic wave
function[22], those calculated from the energy level of actual ions have Z dependence.
From Fig. 3.2, the data of the Opacity Project are found on the different line. While
Kelly’s data and Plante’s data are only plotted to avoid the complexity of the figure, the
other data are almost on the same line of Kelly’s and Plante’s.
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Figure 3.2: Z dependence of the screening constant for the ground state 1S, of He-like
ions. Data of the Opacity Project are on the line different from Kelly’s and Plante’s
ones. Simple Z3 dependence of the screening constant is observed.

On the other hand, the energy level Ej is expressed as
(Z-1)
~2(n(k) — €2
by the quantum defect, and therefore, the quantum Jdefect is calculated to be

e =n(k) — _%

B =
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from the energy level. Figure 3.3 shows the Z dependence of the quantum defect. Same
data are plotted in both Fig. 3.2 and 3.3, but the appearance is different. Three different
data shown by the quantum defect are almost on the same curve and seem to have the
same Z dependence.
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Figure 3.3: Z dependence of the quantum defect for the ground state 1S, of He-like
ions. Compared to Fig. 3.2, three different data are almost on the same curve.

Having been estimated the Z dependence and made extrapolation by the quantum
defect, data of the Opacity Project[9] are found on the different line. From the math-
ematical point of view, the difference in energy level expression between the quantum
defect and the screening constant is the subtraction of a constant either from the numer-
ator or from the denominator in the hydrogenic energy level expression —Z2/(2n?). From
Fig. 3.3, the quantum defect converges to a small value near zero as Z increases. Even in
this case, the screening constant monotonously decreases. For high-Z ions, energy level
data recommendation by the screening constant is more useful and more accurate than
that by the quantum defect.

3.2.3 Atomic number dependence of the screening constant

It is important to note the fact that the screening constant has a clear Z dependence.
From Fig. 3.2, the screening constant have the Z dependence as Z3 for Z = 10 ~ 40.
Figure 3.4 (a) shows the Z dependence of the screening constant up to Z = 70 and (b)
shows up to Z = 100. From Fig. 3.4, a gradual increase in the power index of Z is found.
The Z dependence of the screening constant is approximately Z2 for Z = 10 ~ 40, Z33
for Z = 40 ~ 70, and Z* for Z > 70.

From Ref. [21], the Breit correction and the QED contribution to the energy level are
about 0.3 % of the ionization potential for the ground state of He-like ion of Z = 70,
for which o ~ —1.8 and the energy level calculated by the screening constant is accurate
with error less than 0.1 %. Even in the high-Z case, the energy level can be expressed
as the simple Z* dependence of the screening constant.

Figure 3.5 shows the Z dependence for ions of smaller Z’s of 11S,. We also see a
slight deviation of the Opacity Project’s data from the curve of the most reliable data by
Kelly and Plante. For the data of 11Sp, the Z~1° dependence of the screening constant
is the best fit. By the dependence, the energy levels of five elements including He atom
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Figure 3.4: Z dependence of the screening constant for the ground state 13S; of He-like
ions of large Z. The Z dependence gradually changes from Z3 to Z*. (a) Up to Z = 70.
(b) Up to Z = 100.

can be plotted on the line. However, this dependence changes from level to level. For
example, the Z dependence of smaller Z’s of He-like 2P, is shown in Fig. 3.6, where we
find clear Z—! dependence.

This monotone Z dependence of the screening constant enables a much more accurate
interpolation or extrapolation. Figure 3.7 (a) shows errors in the screening constant
by the interpolation. In the process, two ions, Z’s of which differ by 4, are used. For
reference, the results by the simple linear interpolation are also shown. From Fig. 3.7 (a),
absolute values of the interpolation error are always less than 0.01 except some results by
the linear interpolation. For high-Z ions, the error by the linear interpolation is usually
several times larger than that by the interpolation for which the specific Z dependence is
taken into account. The error in the screening constant is the smallest if the interpolation
is done, taking into account the Z dependence of Z3 for Z = 10 ~ 40, Z3% for Z =
40 ~ 70, and Z* for Z > 70. These results correspond to the previously described Z
dependence of the screening constant.

Figure 3.7 (b) shows errors of the resulting energy level calculated from the interpo-
lated screening constants. The errors in energy level are usually less than 0.0001 except
some cases of larger Z’s in the case of the linear interpolation and some cases of Z = 10.
For ions of which atomic number being around 10, there is no difference between the
simple linear interpolation and the interpolation with the assumption of the specific Z
dependence of the screening constant. From Eqs. (3.3) and (3.4), the error in energy
level is Z/2 times smaller than that in the corresponding screening constant. The errors
in the screening constant are about 1% for He and about 0.6% for Ne. Therefore, the
errors in energy level are about 1% for He and about 0.1% for Ne.
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Figure 3.5: Z dependence of the screening constant for the ground state 115, of He-like

ions of small Z. The screening constant shows the Z~!5 dependence. This dependence
changes from level to level.
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Figure 3.6: Z dependence of the screening constant for 23P; of He-like ions of small Z.
The screening constant shows the Z~! dependence.
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Figure 3.7: Screening constant and resulting energy level by different interpolations are
compared for ground state 1S, of He-like ions. Results using Z, Z%%, Z3, Z33, and
Z* dependence are shown. Values of two ions, Z’s of which differ by 4, are used for
the interpolations. Error is defined by the difference between Plante’s value and that
from interpolation divided by the Plante’s value. (a) Screening constant. For high-Z
ions, error by the linear interpolation is usually several times larger than that by the
interpolation for which the specific Z dependence is taken into account. (b) Resulting
energy level from the screening constant. Error in energy level is Z/2 times smaller than
that in the corresponding screening constant.
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We see the same Z3® dependence of o for different electronic configurations, 2'S;,
21P;, 239, 23P,, 23P,, and 23P; for 10 < Z < 40. However, the dependence of smaller
Z’s is slightly different in each case. Table 3.2 shows the power index on Z in the Z
dependence of the screening constant. We could not find simple Z dependence for ions
of smaller Z’s of 21Sy. The most general power indexes of the Z dependence are Z~! for
Z <5, Z3 for 10 < Z < 40, and Z* for Z > 70,

Table 3.2: Power indexes of the Z dependence of the screening constant for He-like ions.
The general power indexes are Z~! for Z < 5, Z3 for 10 < Z < 40, and Z* for Z > 70.

State Z <10 10<Z2<40 Z>170

15, -15 3 4
215, (1) 3 4
2P, —05 25 3.5
235, -15 3 4
237 -1 3 4
23p, -1 35 4
2%p, -1 2.5 3.5

We also see such simple Z3 dependence for other excited states of He-like ions. Fig-
ure 3.8 shows the screening constant for 1Sy up to n = 5. As the principal quantum
number increases, it becomes hard to obtain reliable data of energy levels. In Fig. 3.8,
we see two strange data of Z = 20 and 24 in the case of n == 4. These data are from
Sugar’s. As the same feature of a slightly zigzag shape can be seen in the case of n =5
for the same Z’s, these data are likely to be obtained either by interpolation or by
extrapolation from other reliable ones.
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Figure 3.8: Z dependence of the screening constant for 'Sy of He-like ions of n = 2, 3, 4,
and 5. Two strange data of Z = 20 and 24 in n = 4 are observed.

Figure 3.9 shows the screening constant for 61S;. As the screening constant has
simple Z2 dependence up to n = 5, it would be strange if such simple Z dependence
disappears from n = 6. Experimental data were usually obtained as transition energy
and the accuracy would decrease if the data is expressed as energy level. This may be
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one reason we could not see simple Z dependence in published data. The data of highly
excited levels with n larger than 5 are also important for practical purpose, because
the recombination rate and ionization rate via highly excited states are important, for
example, in calculating the total rates by the collisional radiative model{23]. Making
reliable data for the levels will be a future study but it would be possible by the simple
n dependence of the screening constant. :

1.1 : —o—Kelly
: —=—Martin

/\ —o— OpacityProject
3
I

Screening Constant
T

0.9

0 1I03 15 20°
Atomic Number? (Z°)

Figure 3.9: Z dependence of the screening constant for 6 1Sy of He-like ions. The data of
Kelly, Opacity Project, and Martin are shown. No simple Z dependence is found from
published data. As the screening constant has a simple Z2 dependence up to n = 5, it
would be strange if such simple Z dependence disappears from n = 6.

It is useful for future reference to make a fitting formula in which the above-mentioned
Z dependence of the screening constant is taken into account. We define the fitting
formula as

a(Z)=A+§+C Z*+ D Z*. (3.6)
The Z dependence as Z~1, Z® and Z* are selected because the fitting formula should be
as simple as possible. Its accuracy turns out to be not so different, compared with the
case where the detailed Z dependence shown in Table 3.2 are used. Table 3.3 shows the
coefficients for n < 5 of the fitting formula. Coefficients are fitted for Z = 2 ~ 100 in the
cases of n =1 and 2 and for Z = 2 ~ 28 in the cases of 3 < n < 5, because many data
enough for determining the coefficients are not available. In the case of 3 < n < 5, the
fitting procedure has been done by setting D to zero. By the fitting formula using only 4
fitting parameters, the energy level of ground state for all He-like ions can be calculated
within errors of a few % for He, less than 0.7 % for Z < 10, less than 0.2 % for Z < 20,
and less than 0.1 % for Z > 20. For excited levels, errors are much smaller.

Figure 3.10 shows the Z dependence of the screening constant for the ground state of
Li-like ions. We see the same simple Z dependence and a slight deviation of the Opacity
Project’s data from the line of the Kelly’s ones.

Figure 3.11 shows the Z dependence of the screening constant for the ground state
of Be-like ions. We see the same simple Z dependence up to Z = 28. However, the Z
dependence of Kelly’s data changes from Z = 29. We also see this discontinuous feature
of Kelly’s data for the ground state of B-like, C-like, N-like, O-like, and F-like ions. The
error in energy level due to the discontinuity is estimated to be about 0.7 % for the
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Table 3.3: Coefficients of the fitting formula Eq. (3.6) of the screening constant for He-
like ions. By the fitting formula, the energy level can be calculated with errors of a few
% for He atom, less than 0.2 % for Z > 10, and less than 0.1 % for Z > 20 for the ground
state 115, . For excited levels, errors are much smaller

State A B C (x107%) D (x1079)
115, 0.60235  0.14475 —3.7661 —4.5829
215, 0.89629  0.14475 —4.6833 —5.8777
315, 0.95175 —0.0094002 —5.9158
41S, 0.96283 —0.0019478 —4.8696
515, 0.96948  0.0018069 —4.0580
2P, 1.0217 —0.010643 —1.6037 —0.061952
31,  1.0167 —0.054228 —2.5306
4P, 1.0121 —0.038371 —2.3249
5P, 1.0097 —0.030917 —2.0685
239,  0.74822  0.13025  —6.7655 —3.7628
335; 0.84991  0.16137  —6.3903
435, 0.89014 0.12183  —5.1827
539; 0.91366  0.094767 —4.2989
23p, 0.87102  0.25573  —4.4113 —6.1519
33P, 0.94689  0.12920  —5.8933
43P, 0.96060  0.094481  —4.7643
53P, 0.96854  0.07557  —3.9755
23p,  0.88313  0.21127  —4.5429 —6.2528
33P,  0.94858  0.1171 —5.6097
43P, 0.96159  0.087552 —4.5165
53P, 0.96936  0.069957 —3.7825
23pP, 0.90350 0.12518  —1.4139 —0.26904
33P, 0.94449  0.1438  —2.1156
43P, 0.95881  0.10535  —1.9209
53P, 0.96717  0.083903 —1.6985
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Figure 3.10: Z dependence of the screening constant for the ground state of Li-like ions
of Kelly’s and Opacity Project are shown. The simple Z2 dependence is observed. The
data of the Opacity Project are on the curve different from those of Kelly’s.

ground state of Z = 29 ion if the simple Z® dependence is adopted. We have to take
attention about the discontinuity of the Kelly’s energy level data.

2.25p—— ?
€ b . [0 R.LKelly -
8220 % .| & OpacityProject }J
[2) : H
[ ‘AAf .
8 2.15 U .
o)) : :
D H

£ 2.10} q;thD L R ]
3 o
5 2.05 B ]
n =]

2.00 L .

0 20%25% 30° 35° 403

Nuclear Charge® (Z%)

Figure 3.11: Z dependence of the screening constant for the ground state of Be-like ions.
Though the Z2 dependence is observed, Kelly’s data of Z > 29 are on the different line.
As the screening constant has the simple Z3 dependence, the data of Z > 29 would not
be trusted. This tendency in Kelly’s data is observed in B-like, C-like, N-like, O-like,
and F-like ions, as well.

Figure 3.12 shows the Z dependence of the screening constant for the ground state
of Ne-like ions. Here, there is not discontinuous feature at Z = 29. Ne-like ions are

abundant in plasmas, so relatively accurate data for high-Z ions might be obtained by
experiments.

In any case, as a number of bound electron increases, relative value of the screening

constant to Z in Eq. 3.4 increases, the energy level data recommendation by the screening
constant becomes difficult.
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Figure 3.12: Z dependence of the screening constant for ground state of Ne-like ions. The
simple Z3 dependence is observed. Data of the Opacity Project and Kelly are almost on
the same curve.

3.2.4 Discussions

As n increases, fitting coefficients vary monotonously. This shows that Eq. (3.6) involves
a physical meaning.

To discuss the physical meaning of the Z dependence of the screening constant, it
is useful to summarize the screened hydrogenic model (SHM). Here, we quote Perrot’s
electrostatic expression[15]. In his formulation, the screening constant is defined as re-
lated to the interaction energy between two electrons. His hamiltonian for the electronic
system is defined by

Z2
< H>= ZP <2n2

(3.7)

)+;2PP Un,n’

n'<n

The first term in the first sum is the kinetic energy and the second term is the interaction
energy between nuclear charge Z and the reduced hydrogenic wave function ¥(Z,r) where
U(Z,r) is used instead of the hydrogen-like wave function of ¥(Zr). The second sum is
the interaction energy between two electrons expressed by the screening constant oy, .
This equation is different by the factor (1—dy, n/2) from Perrot’s original one where &,
is the Kronecker’s §. While More[13] introduced this factor fo satisfy thermodynamic
consistency to the plasmas when applying the SHM of which electronic system contains
the population P, > 1, the factor is omitted here because there is no difference when the
interaction energy between two electrons are discussed. If we use the definition

Zn = Z- Z Pn'Un,n’a (38)
n'<n
Z,? Z
En = Pn’ > n',n .
“5n2 n;n ~ 50 (3.9)

total energy of the electronic system becomes

Z2
< H>=- ZP22
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The inner shell electrons screens the nuclear charge, so the interaction with the outer shell
electrons is included in the energy level. This result is natural in view of the electrostatic
interaction and gives the same expression introduced by More[13].

In the central-field approximation, the spin-orbit interaction[24] is

Z £(rk)Lk . Sk
k

where Ly is the orbital angular momentum operator and S is the spin angular momentum
of the kth electron. The function £(r) is given by

1 14V
&) = om2c2r dr
in a central-field potential V(). m and c are the mass of electron and the speed of light.
Since we use Schiff’s notations, units are not atomic but cgs-Gaussian.
Using the coulomb potential V(r) = —Ze?/r in the SHM and the classical orbit
radius r = axn(k)?/Zx, we obtain

62 Zk4
§re) = 2me2ag3 n(k)8

where e and ayp are the elementary charge and the Bohr radius. By comparison with the
Eq. (3.7), o should be proportional to a factor Z,>/n*. Though the simple Z® dependence
of the screening constant can be explained as the spin-orbit interaction of the hydrogenic
wave function in the Coulomb potential, the coefficient C in Table 3.3 does not decrease
so rapidly as n~* when n increases.

3.2.5 Summary

Energy level data recommendation by the screening constant of the screened hydrogenic
model is proposed. For high-Z ions, the screening constant is more useful and more
accurate than the quantum defect for energy level data recommendation. While the
quantum defect converges to a small value near zero as Z increases, the screening constant
monotonously decreases. Furthermore, the screening constant has clear Z dependence as
Z3 for Z =10 ~ 40, as Z>5 for Z = 40 ~ 70, and as Z* for Z > 70. Using the simple Z
dependence, we have made a fitting formula for He-like ions. By the fitting formula, the
energy level of ground state for all He-like ions can be calculated with errors of a few %
for He, less than 0.2 % for Z > 10, and less than 0.1 % for Z > 20. For excited levels,
errors are much smaller. The same Z dependence of the screening constant was found
for different ions, Li-like, Be-like, and etc. We have seen discontinuous Z dependence
of the screening constant in Kelly’s data for B-like, C-like, N-like, O-like, and F-like
ground state ions. The error in energy level due to the discontinuity is estimated to be
about 0.7 % for the ground state of Be-like ion of Z = 29 if the simple Z3 dependence is
adopted. Though this simple Z® dependence of the screening constant can be explained
as the spin-orbit interaction of the hydrogenic wave function in the Coulomb potential,
the coefficient in the fitting formula does not decrease so rapidly as n~* as also predicted
by the spin-orbit interaction when n increases.
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3.3 Occupation probability in the “chemical picture”

3.3.1 Introduction

Calculating spectra of opacity and emissivity is one of the most important subjects in
atomic process study of plasmas. In calculating them, we usually have to make an
appropriate model for analysis. But we always meet a difficult: how many excited states
we have to take into account. In the Schrédinger equation of the Coulomb potential,
there are infinite number of eigenvalues near ionization limit. If a certain plasma effect,
i.e. cutting off the highly excited states is neglected, the number of states diverges and
atomic level population cannot be calculated. This is known as divergence of the atomic
internal partition function and has been discussed for a long time[25]. This problem is
schematically shown in Fig. 3.13.

Statistical
Welght (2n?)

Bound State | Free State

Population

Figure 3.13: Schematic figure of the statistical weight and the population of atomic
system in a plasma. There is infinite number of eigenvalues near ionization limit if we
neglect a plasma effect.

Roughly speaking, two models are proposed: one is a model which solves the detailed
interaction between charged particles like the Planck-Larkin partition function (physical
picture)[26] and the other is a model which does not discuss the details of the interaction
but the energy and the statistical weight before and after reaction (chemical picture)[27].
In this section, we report a new analytical expression of the occupation probability of
highly excited states in the “chemical picture” using the Holtsmark field and saddle-point
estimates.
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3.3.2 Formulation

We follow a basic formulation of occupation probability by Hummer([25]. The Boltzmann
law for atomic level populations says that the population NV; of state i with energy E;
relative to the ground state of an atom in thermal equilibrium at temperature 7" is

E;
N; x g; exp( kT) (3.10)

where g; is the statistical weight of the state . The total number of atoms of the species
in question is then proportional to the so-called internal partition function

Zing = Zgz exp ( ,f;) (3.11)

As the sum over all bound atomic states includes those near the ionization limit for which
E; — const., Zin(T) diverges.

The approach that we have exploited is known as the occupation probability method,
in which an occupation probability w; is inserted into the Boltzmann law and the partition
function. Thus we rewrite Egs. 3.10 and 3.11 as

E; ~
N; = w;g; exp <—ﬁ>/Zim(T) (3.12)

and

E;
Zint(T Zw,g, exp ( kT) (3.13)

We can interpret w; as the probability of finding the atom in state ¢ relative to similar
ensembles of non-interacting particles or as the factor by which interactions with the
plasma reduce the phase space available to the atomic state in equation. If w; — 0
sufficiently rapidly as i — oo, the internal partition function Zi, (7)) is finite.

The basic idea of the Stark ionization picture is that a bound state 7 can exist only
if the field strength F' is smaller than some critical value Ff, which depends on the state
t. The probability that the bound state i exists is then

= /0 " arp(F), (3.14)

where P(F) is the microfield distribution function. In this section, we try to find a
simple expression of w; using the saddle-point estimates for F¥ and the Holtsmark field
for P(F).

In the saddle-point estimates of F?, the orbital electron in a hydrogenic ion was
assumed to move in the sum of the Coulomb potential arising from the nuclear charge
Z, and the potential F-r, where F' is the magnitude of the microfield assumed to be
spatially uniform and independent of time. This composite potential has a saddle point,
as illustrated in Fig. 3.14. The assumption is that no bound states exist above the saddle
point. For a state of ionization potential F,, the critical field is then easily shown to be

F4E,) = By’ (3.15)
"4z, '
In the following, we use atomic units. For a hydrogenic ion we have
Z 2
E, = (3.16)

on?’



64 CHAPTER 3. ATOMIC MODELS OF HIGHLY IONIZED PLASMAS
Z}

"~ T6nt
n is the principal quantum number of the state.

(3.17)

V()
Fr
r
Za
“\[77
Saddle Point

Figure 3.14: Schematic figure of the saddle point of hydrogenic ions in uniform electric
field.

The probability of finding the field vector F in F, F + dF' is in general

Wo(F) = / . -/6 (F — ZF,) p(r1, 7o, -+, 1y) dridry - - -dry, (3.18)
=1

where the Coulomb field produced by the jth particle is
Fj=~Zyri/r;’. (3.19)

Z, is perturber charge[28]. p is the probability of having particle 1 in 7y, 7y +dry, etc. If
the charged particles are evenly distributed, Eq. 3.18 can be reduced to be the Holtsmark
field,

H(B) = RhW(F) = -f;,@/xexp[—xg‘ﬂ] sin(Bz) dz (3.20)
where 8 = F'/ Fy, s
Fy =212, (%) , (3.21)

and N, is the number density of the perturber ion. In Fig. 3.15, we show the Holtsmark
field for reference.

We are now discussing highly excited states. If the saddle-point estimates are a good
approximation, such highly excited states rapidly decrease even in the presence of weak
electric field. All we have to take into account is then 8 ~ 0 part of the Holtsmark field.
If B ~ 0, we know simple relation sin(8z) ~ fSz. Using the relation, we can analytically
integrate the equation of the Holtsmark field as

432

H(B) = =, )

(6) =~ (522)
Actually, we can see the parabolic shape near § ~ 0 in Fig. 3.15.
Using the saddle-point estimates, we have
F¢ 52 z 8

n = dF P(F) = “ . .

un = | ) = Srrine g2 (3.23)
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Figure 3.15: Holtsmark field. We can see the parabolic shape near § ~ 0.

This expression is so simple that we can estimate the occupation probability by the nu-
clear charge and the principal quantum number of the ion, and the nuclear charge and the
number density of the perturber ion. In detail, the occupation probability is proportional
to the 8th power of the nuclear charge and inverse proportional to the 12th power of the
principal quantum number of the ion. And it is inversely proportional to the nuclear
charge cubed and the number density squared of the perturber ion. Equation (3.23) can
be more than unity for small n. In the case, we have to adopt unity instead of the given
value by Eq. (3.23).

Fortunately we can appeal to theoretical calculation to support our result. Hummer
showed the numerical results of the occupation probability for H and Het plasmas pre-
sented in Figure 3 in Ref. [29]. We can see simple n~'? dependence of the occupation
probability. In Table 3.4 are displayed the occupation probabilities for two models for
hydrogenic carbon. In this case, microfield stems from the mixture of C®* and C°*.
Equation (3.23) is changed to be

527,8
2T rin12(Z 32N, + Z,,’s/ ’N,")?’

Wy, = /0 " 4P P(F) = (3.24)

where Z," and N,' is the nuclear charge and the number density of another ion. The
first model in Table 3.4 is given by Eq. (3.14) using the Holtsmark field exactly[30].
The second is the result by Eq. (3.24). We can see that Eq. (3.24) roughly gives the
critical principal quantum number where bound states disappear. Due to the quadratic
approximation for the Holtsmark field, numerical values of the occupation probability
near the critical principal quantum number are at most three times larger than those
estimated with the exact one. For highly excited states, Eq. (3.24) gives almost exact
values.

Of course, there should be a certain limitation of this simple expression for the oc-
cupation probability since we used the Holtsmark field and the saddle-point estimates
in the chemical picture. However, this simple expression of the occupation probability
gives basic reference numerical values for quantitative comparison study with the result
by a detailed model in which the ion-ion correlation is taken into account or the quantum
mechanical calculation has been done.
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Table 3.4: Comparison of occupation probabilities at 7, = 1 x 10¢ and p = 1 x 10~%g/cm?
for hydrogenic carbon.

n Holtsmark This Model
1 1.00 1
2 9.97(-1) 1
3 9.50(-1) 1
4 4.90(-1) 1.68(—1)
5 5.25(—2) 1.16(-2)
6 4.63(-3) 1.30(-3)
7 5.19(—4) 2.04(—4)
8  7.79(-5) 4.11(-5)
9  3.19(-6) 2.82(—6)

3.3.3 Summary

We propose a simple analytical expression for the occupation probability of highly ex-
cited states in low-density hydrogenic plasmas. This expression is based on the “chemical
picture” and is derived by using the Holtsmark field and the saddle-point estimates. We
believe that this expression would be a basic model in the chemical picture since ion-ion
correlation is neglected and the simple saddle-point estimates are used. If density of
the plasma is low enough and the temperature is high enough, this expression would be
a good approximation. If not, this model roughly gives the critical principal quantum
number where bound states disappear and basic reference numerical values of the occu-
pation probability for quantitative comparison study with numerical results by detailed
modeling.
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Chapter 4

Conclusions

We have developed a general opacity code “CORONA”. The code can calculate opacity
and emissivity used in the hydrodynamic code of laser plasma simulations.

As the atomic model, the azimuthal quantum number [ has been taken into account in
the electron energy levels. Based on the statistical model, we have given a solution for the
difficulty we meet whenever we use the average ion model; the line profile modeling. Using
the opacity and emissivity, we were able to reproduce the corresponding experimental
results from laser produced high-Z plasmas, especially, spectra from the plasmas.

For highly ionized plasmas, we have shown a new method for the electron energy level
data recommendation. In the method, the screening constant of the screened hydrogenic
model is used as the index. We have also shown a simple expression of cutting-off the
highly excited states. These method and model will help us to make an appropriate
model of highly ionized plasmas.

We summarize the results of the different chapters in the followings as conclusions.

Chapter 1

We have summarized atomic models that have been used in the hydrodynamic codes of
the inertial confinement fusion research, i.e., the screened hydrogenic model (SHM), the
detail of the rate coefficients, the model for the pressure ionization and the continuum
lowering, the collisional radiative equilibrium (CRE) model and the local thermodynamic
equilibrium (LTE) model, and the detail of formulae of the emissivity and opacity cal-
culations.

In Sec. 2.3, we have shown a new model for calculating the spectral opacity and
emissivity of high-Z plasma like gold for solving the X-ray transport in hydrodynamic
codes. In the model, plasmas are assumed in the CRE. The [-splitting effect, i.e., the
consideration of the azimuthal quantum number in the electron energy levels is introduced
using the SHM developed by Perrot. As a result of a gold plasma, the electron energy
level E; of Au™0, for example, splits into four sublevels with the width of about 300 eV
by including the l-splitting effect. The transitions between the sublevels, such as 4d —4f,
are important elements to understand the strong peak near 200 eV in the experimental
spectra of gold plasmas.

In Sec. 2.4, we have shown a line profile modeling for the average ion model. For the
opacity and emissivity of the partially ionized high-Z plasmas like gold, the line profile
is approximated to be the Gaussian profile of which width is determined by the ionic
distribution of different charge states. This opacity and emissivity are installed into the

69
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hydrodynamic code ILESTA-1D to examine the experimental spectra. As a result of the
simulation, the peaked X-ray near 200 eV seen in the experirnent stems from the lines
due to the An = 0 transition between the sublevels of n = 4. In addition, relatively flat
spectra in hv = 400 ~ 800 eV seen in the experiment can be explained as a result of the
I-splitting of the line of the 4 — 5 transition. The line group of the 4f — 59, 4d — 5f, and
4p — 5d transitions mainly forms this flat structure.

In the simulation of the X-ray generation by laser produced plasmas like gold, the
assumptions that the plasmas are in the CRE, the [-splitting effect, and the line profile
modeling if the average ion model is used, are essentially important to reproduce the
global structure of the X-ray spectrum of the corresponding experiment.

In Sec. 2.5, we have examined the accuracy of this atomic model for the opacity and
emissivity calculation of the high-Z plasmas in detail.

We have compared the values of the electron energy level and oscillator strength with
the values by the Hartree-Fock-Slater (HFS) model. From the HFS results, as a number
of electrons in the level of n = 4 increases, the oscillator strength of n = 4 — 5 decreases,
while the oscillator strength between sublevels of n = 4 increases. Errors in the oscillator
strength used in Sec. 2.3 are estimated at most about a factor of 2 to those of the level
of n = 4.

We have discussed the j-splitting effect briefly. For the high-Z ions like gold, the
transition energy of the 4d — 4f obtained by the SHM with [-splitting does not differ
substantially from the detailed theoretical value including the spin orbit interaction. The
transition energy of the 4p — 4d, however, split into two line group, i.e., at about 33 A
for 4p,/2 — 4d and at about 50 A for 4p3/y — 4d. The line group of the lower energy
corresponds to transition given by the SHM, but the line group of which energy is higher
than that of 4d — 4f is purely j-splitting effect. The two-splitted structure of the soft
X-ray region is actually observed in the experiment of the Pb. Inclusion of the j-splitting
effect would be a next subject in future.

We have shown the accuracy of the population for each charge state that is calculated
from the fractional population of the average ion model by the comparison with those ob-
tained by the detailed configuration accounting (DCA) model on the aluminum plasmas.
In the DCA model, the rate equation for each charge state is solved separately. Although
it also shows a small shift of the distribution of the charge state to the lower temperature
side, the distribution can be well reproduced even in the case of low-Z plasma.

Finally, we have shown the comparison study between the spectral opacity based on
the model developed in this chapter and the results by detailed opacity codes for the
case of hydrogen, carbon, and iron plasmas.

For the low density and low discharged hydrogen plasma, it is difficult to estimate
the correct average ionization degrees with the average ion model.

In the case of the carbon plasma more than the solid density, the continuum state
near ionization threshold is almost occupied by free electrons. This treatment for the
free states can be easily installed into the average ion model. But there are no reliable
experimental results of such extreme condition that can be compared with the theoretical
results.

From the density dependence of the mean opacity of iron plasmas, we have obtained
the applicable density limit of the present model. In the case of low density less than
0.01g/cm3, the contribution of the term-splitting becomes important. As it seldom occurs
that the plasmas of such density becomes important in the usual laser produced plasma,
we can conclude the opacity data by the CORONA is good enough for the simulation of
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the laser produced plasmas.

For the energy level related to the L shell (n = 3), the SHM can give accurate values
which can be compared with the experimental ones, while for the energy level related to
the M shell (n = 3), the SHM can not give accurate values enough. Determining the
energy level related to the M shell is also difficult for other detailed opacity codes, since
the effect of the spin-orbit interaction becomes important.

Chapter 2

Energy level data recommendation by the screening constant of the screened hydrogenic
model is proposed. For high-Z ions, the screening constant is more useful and more
accurate than the quantum defect for energy level data recommendation. While the
quantum defect converges to a small value near zero as Z increases, the screening constant
monotonously decreases. Furthermore, the screening constant has clear Z dependence as
Z3 for Z = 10 ~ 40, as Z3® for Z = 40 ~ 70, and as Z* for Z > 70. Using the simple Z
dependence, we have made a fitting formula for He-like ions. By the fitting formula, the
energy level of ground state for all He-like ions can be calculated with errors of a few %
for He, less than 0.2 % for Z > 10, and less than 0.1 % for Z > 20. For excited levels,
errors are much smaller. The same Z dependence of the screening constant was found
for different ions, Li-like, Be-like, and etc. We have seen discontinuous Z dependence
of the screening constant in Kelly’s data for B-like, C-like, N-like, O-like, and F-like
ground state ions. The error in energy level due to the discontinuity is estimated to be
about 0.7 % for the ground state of Be-like ion of Z = 29 if the simple Z3 dependence is
adopted. Though this simple Z3 dependence of the screening constant can be explained
as the spin-orbit interaction of the hydrogenic wave function in the Coulomb potential,
the coefficient in the fitting formula does not decrease so rapidly as n=* as also predicted
by the spin-orbit interaction when n increases.

We propose a simple analytical expression for the occupation probability of highly
excited states in low-density hydrogenic plasmas. This expression is based on the “chem-
ical picture” and is derived by using the Holtsmark field and the saddle-point estimates.
We believe that this expression would be a basic model in the chemical picture since
ion-ion correlation is neglected and the simple saddle-point estimates are used. If den-
sity of the plasma is low enough and the temperature is high enough, this expression
would be a good approximation. If not, this model roughly gives the critical principal
quantum number where bound states disappear and basic reference numerical values of
the occupation probability for quantitative comparison study with numerical results by
detailed modeling.
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