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内容梗概

本論文は、著者に よる高密度プ ラズマからのX線 スペク トルに関する理論的研究 をま

とめた ものであ る。

近年 、レーザー生成プラズマか らのX線 が注目されている。金などの高Z物 質に短波

長レーザ ーを照射す ることにより、注入 したエネルギーの半分以上 を軟X線 で取 り出す

ことが可能であ り、また低Z物 質に照射す る場合は、その物質に特徴的な光子エネルギー

のX線 を高輝度で生成す ることが出来る。高Zプ ラズマか らの軟X線 は、高出力レーザー

を用いることによ り慣性核融合の ドライバ ーとして、低Zプ ラズマか らの軟X線 はX線

露光装置の光源などとしての応用が考 えられている。

これ らX線 を光源 として工学的に利用する上では、最終的な性能試験 などには実験で

プラズマか らのX線 のエネルギー、スペク トルをとる必要 とされ るであろうが 、最適な

光源設計の手段 として、計算機 コードによるシ ミュレーシ ョンは欠かせ ない存在 とな り
つつある。

本論文では、レーザ ー生成プ ラズマの ような、比較的高密度プ ラズマ中でのX線 生成

を流体 コードを用いてシ ミュレーシ ョンする際に使用する原子モデルについて 、モデル

を構築、数値計算 した。高Z物 質に照射する場合については、実際に流体 コードに導入

しシ ミュレーシ ョンを行 った。

本論文 は以下の4章 より構成 されてい る。

第1章 は、緒論であ る。レーザー生成プラズマか らの軟X線 の実験 、シ ミュレーシ ョ

ンについて現在 までの研究状況 、シ ミュレーシ ョンで使用する原子過程で重要 となる素

過程 、モデルをまとめた。その上で 、本論文で扱 う内容の 、プ ラズマ中でのX線 生成 シ

ミュレーシ ョンでの位置づけを、金などの高Zプ ラズマ と電離の進んだプ ラズマの場合

について明 らか にした。

第2章 では、レーザー生成高Zプ ラズマか らの軟X線 生成のシ ミュレーシ ョンにお

ける原子モデルについて述べ た。金 などの高Z物 質に短波長、高強度 レーザーを照射す

ることに より高効率で軟X線 を生成することが 出来ることが実験的に知 られている。従

来の流体 コードによるシ ミュレーシ ョンではエネルギ ー変換効率は精度 よく再現で きる

が 、X線 スペ ク トルは うま く再現で きなか った。方位量子数を遮蔽水素モデルの電子エ

ネルギー準位 に導入 し、従来 よ り問題 とな っていた平均 イオンに対す るラインプロ ファ

イルのモデル を作成 した。このモデルでX線 の吸収係 と放射係数を計算することにより、

比較的簡単で計算量の少ない流体シ ミュレーシ ョンであ りなが ら、実験 と比較で きるX

線スペ ク トル を計算 出来 るようになった。また、このモデルで水素や炭素プラズマなど

の低Zプ ラズマのオパシテ ィーを計算 、詳細 なオパシテ ィーコードと比較 、検討 した結

果、比較的簡単な計算であ りなが ら、精度 よく計算で きてい ることが確認 された。また、

このモデ ルの不十分 な点を明 らかにした。

第3章 では、比較的電離が進んだプラズマか らのX線 スペ クトル を扱 う場合の原子モ

デルについて述べた。これ らの イオンか らの線スペ ク トルは古 くか らプ ラズマ診断の道

具 として用い られてきたため 、た くさんのデータ、理論の蓄積がある。しか しなが ら、水

素様 、ヘ リウム様 、 リチウム様 イオン以外の イオン種 については未だ、シ ミュレーシ ョ

ンコードで用い るための原子モデル としては十分な取 り扱 い方法が確立 されていない点

が数多 くある。スペ ク トルを計算する上で重要 となる電子のエネルギ ー準位は、た くさ

んの計算 、実験結果が出版 されている。しか しなが ら、それ らは誤差を必ず含 んでお り、

適応範 囲などが 明 らかでない場合が多い。その中か ら、いか にして最 も信頼で きるデ ー

タを選択す るか について新 しい手法を提案 した。プ ラズマ効果は、今なお、問題 に よっ

ては未だモデルの未確立 な部分が存在す る。高励起状態数 とい う視点か らプ ラズマ効果

を考察し、新 しい簡便 な式 を導出した。

第4章 は結論であ り、以上の研究において得 られた結果をまとめ本論文の総括 とした。
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Chapter 1

Introduction

 After laser was invented in 1960, the wavelength becomes shorter, and engineering has 

 achieved the high efficiency and high power[l]. By the irradiation of high-intensity laser 
 light, we can easily make high energy-density plasmas. Usually, the plasmas emit high 

 intensity X-rays. Since the electron-collisional excitation rate is proportional to the 

 reciprocal of the transition energy and the radiative decay rate is proportional to the 

 square of the transition energy, bound electrons are collisionally excited and radiatively 

 decay in plasmas. Free electrons in a plasma, and large energy gap between excited states 

 and ground state enable the high efficiency of energy conversion from laser to X-ray. 

   There are a lot of free electrons in a high-Z plasma, so that almost all laser en-

 ergy can be efficiently absorbed into the plasma by the classical absorption (inverse-
 bremsstrahlung). The electronic levels of the high-Z ions are so complicated and so 

 many that emitted X-ray from ions are not so much re-absorbed by the other ions in the 

 plasma. As a result, relatively high conversion rate will be achieved farther in high-Z 

 plasmas. When high-Z materials like gold is irradiated by the laser light of which in-
 tensity is 1013 ' 1015 W/cm2 and wavelength 0.26 N 0.35 µm, more than one half of 

 the absorbed energy is converted into soft X-ray as shown by experiments[2, 3, 4]. In 
 Fig. 1.1, the typical X-ray conversion rate as a function of the laser intensity is shown. 

 Gold is the converter material. Experimental results are marked with black, while the 

 corresponding simulation is marked with open ones. 

   There are many applications for the soft x-ray: for example, indirectly driven inertial 

 confinement fusion[5]. Many experiments have been carried out to study the X-ray 
 conversion rate, and spectrum, and sophisticated hydrodynamic codes have been used to 

 analyze the experimental results[3, 4]. By the simulations using the hydrodynamic codes, 
 the X-ray conversion rate, defined as total X-ray energy divided by absorbed laser energy 

 can well be reproduced. However, the X-ray spectra by the simulations do not coincide 

 with the corresponding experimental ones. For the practical application, not only the 

 amount of the X-ray emission but also the x-ray spectra from the plasma is sometimes 

 required. Since the electron energy level of high-Z ions like gold is so complex and so 

 many that appropriate atomic model, i.e., opacity and emissivity for hydrodynamic codes 

 are required to reproduce the detailed X-ray spectrum. 

    In Chap. 2, we show a new atomic model for calculating the spectral opacity and 

 emissivity of high-Z plasmas. Gold plasmas are mainly treated in this thesis; however, 

 the atomic model can be applied to the other elements. Simply gold is a typical high-Z 

 element, so that a lot of experimental results can be available for comparison study. The 

 spectral opacity and emissivity are essentially important in solving the radiative transfer

7
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Figure 1.1: X-ray conversion rate as a function of the laser intensity. Wavelength of the 

laser is 0.35 ,um. Gold is the converter material. Experimental results are marked with 

black, while the corresponding simulation is marked with open ones.

in the hydrodynamic code. In usual hydrodynamic codes, the average ion model in which 

the principal quantum number n is only taken into account in the electron energy levels 

has been widely used. In the new atomic model for high-Z plasmas, we take into account 

not only the principal quantum number n, but also the azimuthal quantum number 1 in 

the electron energy levels. We also give a solution for the difficulty whenever we meet if 

we use the average ion model, i.e., the line profile modeling for the average ion. 

  We treat the atomic model of highly ionized ions in Chap. 3. Main applications are line 

spectra from highly ionized plasmas: for example, line spectra due to the impurity in laser 

imploded plasmas, and X-ray spectrum from stellar plasmas. If number of bound electron 

in the open-shell becomes larger than three, or smaller than (2n2-3), number of possible 
terms of energy levels suddenly increase, so that main objectives are H-like, He-like, and 
Li-like ions. In the inertial confinement fusion research, spectroscopic measurements 
of X-ray from imploded plasmas more than solid density has have been carried out[7, 
8]. Recently, new interest in opacity of stellar plasmas has arisen and precise opacity 
experiments have been carried out[6]. In order to know density and/or temperature 
of the plasma, spectroscopic measurements have been widely used in experiment. A 

lot of detailed experimental results, for example, line profiles has been collected[9, 10]. 
Even commercial software for analyzing X-ray spectra from plasmas is also available[11]. 
Essentially important point in the analysis of X-ray spectra from these plasmas are that 

precise theoretical modeling and numerical calculations are required for understanding 
the experimental results. Practically, we need modeling of the plasma effect in atomic 

processes, atomic data for the elementary processes, calculation of the line profile of each 
line spectrum or modeling on the line profile for the atomic model, etc. 

  For energy level and oscillator strength, using a detailed atomic code like the GRASP[7], 
we can obtain fairly accurate data of isolated ions. Numerical values of experimental data
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and results of atomic code are also available in literature, for example, Kelly's table[8] 
and the Opacity Project book by Seaton[9]. However, above-mentioned sets of data are 
sometimes not enough for building up models of atomic process in the plasmas. From 

the Grotrian diagram, only data for the dipole allowed transition are available, but the 

line strength is sometimes strongly affected by the states which are not available. 

  There are still difficult points for some purposes in treating plasma effects. Among 

them, we discuss a problem that we always meet when we want to build up a model 

of atomic process, i.e. cutting off the highly excited states, is discussed and simple 

estimation for that is shown.

Figure 1.2: Atomic physics treated in this thesis. The Darken areas are treated.

  Finally using Fig. 1.2, we explain the atomic physics treated in this thesis. The Darken 
areas are treated. In the simulation of X-ray generation in plasmas, hydrodynamics, pop-
ulation kinetics of ions, and radiative transfer in the plasma are solved numerically. If we 
can assume that the plasma is in the LTE, the relation like the Saha-Boltzmann deter-
mines population. If not, rate equation should be solved. In most cases, we can assume 
a certain quasi-steady state approximation even in the non-LTE case. In Chap. 2, we
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Chapter 2

X-ray spectra from high-Z plasmas

2.1 Introduction

When an intense laser light (N 1014 W/cm2) of short wavelength (0.26 N 0.35 ,um) 
irradiates on a high-Z material, more than 50 % of the absorbed energy is converted 
into soft X-rays as observed in experiments[1]. There are many applications for the 
soft X-ray: for example, indirectly driven inertial confinement fusion[2] and efficient 
and convenient X-ray source. Many experiments have been carried out to study the 

X-ray conversion rate, and spectrum, and sophisticated hydrodynamic codes have been 

used to analyze the experimental results[3, 4]. The simulations using the hydrodynamic 
codes can well be reproduce the X-ray conversion rate, defined as total X-ray energy 

divided by absorbed laser energy. However, the X-ray spectra by the simulations do 

not coincide with the corresponding experimental ones. In this chapter, we show a new 

atomic model for calculating the spectral opacity and emissivity of high-Z plasmas. Gold 

plasmas are mainly treated in this thesis; however, the atomic model can be applied to 
the other elements. Simply gold is a typical high-Z element, so that a lot of experimental 

results can be available for comparison study. The spectral opacity and emissivity are 

essentially important in solving the radiative transfer in the hydrodynamic code. In usual 

hydrodynamic codes, the average ion model in which the principal quantum number n 

is only taken into account in the electron energy levels has been widely used . In the new 
atomic model for high-Z plasmas, we take into account not only the principal quantum 

number n, but also the azimuthal quantum number 1 in the electron energy levels . We 
also give a solution for the difficulty whenever we meet if we use the average ion model , 
i.e., the line profile modeling for the average ion. 

  In Sec. 2.2, models which are usually used in laser plasma simulations are summarized . 
We explain the average ion model, the screened hydrogenic model (SHM), detail of 
the rate coefficients, models for the pressure ionization and the continuum lowering, 

the collisional radiative equilibrium model (CRE), the local thermodynamic equilibrium 
model (LTE), and detail of formulae for the emissivity and opacity calculations 

  In Sec. 2.3, we show the importance of the inclusion of the azimuthal quantum number 
in the electron energy levels for partially ionized high-Z plasmas. A spectral emissivity 
with the electron energy level in which the principal quantum number and the azimuthal 
quantum number are taken into account is calculated and compared with that obtained 
without the azimuthal quantum number. 

  The spectral opacity and emissivity calculated by the average ion model are relatively 
simple, spend less computation time, so that application to hydrodynamic codes has 

                           11
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been easily done. But there always exists a difficulty in solving radiation transport in 

hydrodynamic codes because the spectral opacity and emissivity are calculated as those 

of one fictitious ion of averaged charge. In Sec. 2.4, we show a line profile modeling of the 

opacity and emissivity in the average ion model. In the modeling, the effective line width 

is estimated by the distribution of the line group stems from the different charge-state. 

The new spectral opacity and emissivity are calculated to install in a hydrodynamic code 

ILESTA-1D and a numerical simulation for a gold plasma is carried out and compared 

with its experimental result. 

  In Sec. 2.5, we show the accuracy and limitation of this opacity and emissivity model. 

We compare the electron energy level and the oscillator strength used in the model to 

those by the Hartree-Fock-Slater model. The ionic distribution of each charge state by 

the statistical model with which the effective line width is estimated is compared with the 

result by the detailed configuration accounting model for the aluminum plasma. Based on 

the statistical model, detailed spectral opacities for the plasmas including low-Z elements 

can be calculated and have been compared with the results by detailed opacity codes and 

experimental results.

2.2 Models for opacity and emissivity calculations 

In this section, models that have been widely used in laser plasma simulations are sum-

marized.

2.2.1 Average ion model 

The population in a plasma will be determined if the rate equations for the ions of all 
charge states and all excited states could be solved. The word :population is used for the 
number density of ions with different electronic configuration. For the high-Z plasmas, 
however, it is practically impossible to solve all of the rate equations due to many charge 
states and excited states, so that an appropriate simplification is required[5, 6]. For the 
case of laser produced plasmas, the average ion model has been widely used. In Fig. 2.1, 
the average ion model is shown schematically. In this model, rate equations are solved for 
one fictitious hydrogenic ion including an averaged number of bound electrons for each 
level, instead of solving the rate equations for all ions of different electronic configuration. 
The models in which the principal quantum number is taken into account in the electron 
energy level have been widely used for the rate equations of one fictitious ion. Hereafter, 
a fractional number of electrons in the level k of the average ion model is called the 
fractional population. 

  The rate equation for the fractional population Pk in the 'level k of the average ion 
model can be written by 

           dPk _ 
            dt TckVk - TkcPk + T, (TDkPk'Vk - Tkk,PkVk') 

                                              k'>k 

               + E (T kPk'Vk - TD'PkVk,) (2.1) 
                           k' <k 

where Vk = 1 - Pk/Dk is the vacancy of the level k. Dk is the statistical weight of the 
level k. If k is the principal quantum number, D., = 2n2. Tck and Tkc are the rate for 

the recombination from the free state and the ionization from the level k, respectively.
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Figure 2.1: Schematic figure of the average ion model.

TDk and Tk k are the rate of the deexcitation from the level k' to the level k and the 
excitation from the level k' to the level k, respectively. In a plasma, due to such various 

mechanisms as electron collisional and radiative processes, recombination, ionization, 

deexcitation and excitation occur, i.e. 

                      T = TCD + TRD + TDD                               kc kc kc kc 
                                    CU RU AU                          T

ck = Tck + Tck +T ck , 

                       T U = TCU + ITRU                                k'k k'k k'k , 

                     TD = TCD + TRD                                  k'k k'k k'k 

T kC,D, Tk D, and TDD are the three body collisional recombination, the radiative recom-
bination, and the dielectronic recombination, respectively. T kU, T kU, and T kU are the 
electron collisional ionization, the radiative ionization, and the autoionization, respec-

tively. TV U and TAY are the electron collisional excitation and the radiative excitation, 
respectively. TV D and Tk k are the electron collisional deexcitation and the radiative 
decay, respectively.

2.2.2 Screened hydrogenic model (SHM) 

If the electronic configuration of an atom or ion is determined, the energy level (ionization 
potential) of a bound electron can be calculated theoretically, using for example, Hartree-
Fock-Slater method[7]. In the simulation of the laser-produced plasma, however, the 
average ion model with a fractional number of electrons in the levels is used for solving 

the rate equations of one fictitious hydrogenic ion. For such situation, the screened 

hydrogenic model (SHM) is the best fit. 
  Figure 2.2 is the schematic figure of the screened hydrogenic model (SHM). In the 

SHM, using the screening constant that represents an extent to which an electron in the 

lower level shields the nuclear charge, energy levels of non-hydrogenic ion can be expressed 

by the hydrogenic energy level with the shielded nuclear charge. In this subsection, we 

show the SHM by More[8]. If the fractional population P7z for all levels are determined,
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.Z)

Figure 2.2: Schematic figure of screened hydrogenic model (SHM).

the effective charge Zn wh ich is the effective charge the electron in th 

1  Zn = Z - E Unn'Pnl - 2UnnPn, 
             n' <n

e level n feels is

(2.2)

and the electron energy level En is 

                     ZZ,2 Zn             E
n 2n2 + 2n2 UnnPn +

   ZnI 

   ~2 Un'nPnl 
n'>n n

(Ry) (2.3)

where Z is the nuclear charge (atomic number), and Unn' is the screening constant. The 
set of the screening constants calculated by More is widely used in the calculation of the 

opacity and emissivity, and of the equation of state in hydrodynamic codes, since the 

model fulfills the thermodynamic consistency when applied to plasmas. More's set of the 

screening constant is shown in Table 2.1

Table 2.1: More's set of the screening constants

n 1 2 ~ 3 4 5 6 7 8 9 10

1 0.3125 0.9380 0.9840 0.9954 0.9970 0.9970 0.9990 0.9990 0.9999 0.9999

2 0.2345 0.6038 0.9040 0.9722 0.9979 0.9880 0.9900 0.9990 0.9999 0.9999

3 0.1093 0.4018 0.6800 0.9155 0.9796 0.9820 0.9860 0.9900 0.9920 0.9999

4 0.0622 0.2430 0.5150 0.7100 0.9200 0.9600 0.9750 0.9830 0.9860 0.9900

5 0.0399 0.1597 0.3527 0.5888 0.7320 0.8300 0.9000 0.9500 0.9700 0.9800

6 0.0277 0.1098 0.2455 0.4267 0.5764 0.7248 0.8300 0.9000 0.9500 0.9700

7 0.0204 0.0808 0.1811 0.3184 0.4592 0.6098 0.7374 0.8300 0.9000 0.9500

8 0.0156 0.0624 0.1392 0.2457 0.3711 0.5062 0.6355 0.7441 0.8300 0.9000

9 0.0123 0.0493 0.1102 0.1948 0.2994 0.4222 0.5444 0.6558 0.7553 0.8300

10 0.0100 0.0400 0.0900 0.1584 0.2450 0.3492 0.4655 0.5760 0.6723 0.7612

2.2.3 Rate coefficients in the average ion model 

The typical rate coefficients used in the simulation of laser produced plasmas are sum-
marized in Ref. [6, 9, 10, 11]. For the rate coefficient of the electron collisional ionization, 
the Seaton's formula[10], 

           Tk,U = 6.80 x 10-11Te-a/2NeUk 2 exp(-26 ) (sec-1)
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is used where Te and Ne are the electron temperature in unit of keV and the number 

density of the plasma in unit of cm 3, respectively. Uk = I Ek I /Te where Ek is the ionization 
potential of the electron in the level k. 

  For the rate coefficient of the electron collisional excitation, the Bethe approximation 

using the Gaunt factor[6], 

       TkkU = 5.00 x 10-i0NeTe-3/ZUkk' exp(-ukk')Gkk'fkk' (sec 

is used where Ukk' = JEk - Ek'I/Te. If the k is the principal quantum number, 

  Gnn' = 0.19 L1+0.++,'(,'0 n) 2) Unn') } exp (Unn') Ei (Unn' ) 
where 

                              00 _                    El (x) = f e - y dy. 
Values of the hydrogenic oscillator strength could be found in Table 13 of Ref. [12]. An 
approximate formula 

                  exp(x)Ei (x) = In x+1 0.4                      X ) (1 + x)2 
is used for the calculations. More detailed numerical formula can be found in Ref. [10]. 

  The three-body collisional recombination rate Tk D and the collisional deexcitation 
rate TV D are derived with the principle of the detailed balance relation. In the local 
thermodynamic equilibrium (LTE) limit, the collisional processes balance each other; 

                               CD 0 CU 0                           T
ck Vk = Tkc Pk 

                      T k' - k°Vk'° = Tk DPk'°Vk°, 

where the superscript 0 means the value in the LTE. The population in the LTE will be 

shown in Sec. 2.2.5.

2.2.4 Pressure ionization and continuum lowering 

In laser produced plasmas, high density and low temperature are sometimes realized. In 
this case, the orbit radii of bound electrons become comparable to the ion sphere radius, 
and as a result, the pressure ionization and the continuum lowering occur. The pressure 
ionization is due to the disappearance of bound states. Even in low-density plasmas, the 
electron energy levels are shifted to the red side (lower energy side). In dense plasmas, 
due to the potential of the nearby ions, energy levels are strongly shifted to the red side; 

the continuum level is lowered. 

  The model by Zimmerman and More[13] is usually used to describe the continuum 
lowering and the pressure ionization. 

  The continuum lowering is expressed by the reduction of the ionization potential 

                   AE= 5R
0 (AU) 

where R0 is the ion sphere radius in atomic unit. R0 is defined by 

                             3 rR03N' 1
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and Ze is the average ionization degree of the plasma and the definition in the average ion 

model will be shown in Eq. (2.6). The pressure ionization is expressed by the decrease of 
the statistical weight of the level. In the model, the statistical weight of the hydrogenic 

ion is expressed by 

                                               r ° a                           D
n=Dn° 1-F a -

where Dn° is the statistical weight of the isolated ion. In the case of the hydrogenic ion, 

Dn° = 2n2. rn° is the orbital radius of the neutral atom expressed by 

                            rn° _ n2 
                    n (AU)

. 
                      Zn 

a and a are adjustable parameters to be selected for the ionization degrees in the low-
temperature and high-density limit to be those by the Thomas-Fermi model. In the 
case of gold plasma, a = 2 and 0 = 4 are used[14]. In Ref. [13], they have used the 
orbital radii of neutral atom instead of that of the ion in the plasma. Figure 2.3 shows 

the difference between the two models where the electron temperature is 10 eV in both 

cases. Figure 2.3 (a) shows the results by the original description by Zimmerman and 
More, in which the orbital radii of the neutral atom are used. Figure 2.3 (b) shows in 
contrast the results in which the orbital radii of the ion in the plasma are used instead.
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Figure 2.3: Statistical weight of bound states of the hydrogenic model in dense plasma 

where the temperature is 10eV in both cases. (a) Zimmerman and More's original model. 
The orbital radii of the neutral atom are used. (b) The orbital radius of the ion in the 
plasma is used instead.

  From Fig. 2.3 we observe that, as the density increases, the statistical weight de-

creases from the highly excited states. In the case where the orbital radii of the ion in 

the plasma are used, the statistical weights do not monotonously decrease. When the 

pressure ionization occurs, the effective nuclear charge Z., increases and the orbital radius 
decreases. As a result, the statistical weight increases. After that, the statistical weights 

again decrease. 

  Figure 2.4 shows the temperature dependence of the statistical weight. When the 

temperature increases, the plasma is highly ionized due to the electron collisional ion-

ization, and the orbital radii are so small that its effect on the pressure ionization is 

reduced.
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  Busquet[15] has used the coefficients oz = 1 and 6 = 1. As a result, the statistical 
weight becomes 

                                         -1 -1 

        Via= 1+R0° 1+EEo N1- EEo,                       n n n 

where En° is the ionization potential of the isolated ion. The statistical weight disappears 

if the reduction of the ionization potential DEn becomes equal. to En°. This behavior is 

very reasonable for the average ion model. Busquet proposed to use AEn of the neutral 

atom. 

  We met a difficulty that the pressure ionization sometimes disappeared when we tried 

to use LEn in the plasma instead of that of the isolated ion like what we did in the case 

of Zimmermann and More's model. Since the equation of the Busquet's model does 

not include the density, i.e., the pressure ionization is included through the continuum 

lowering, this strange phenomenon can be realized. As the continuum lowering can be 

zero even in a dense plasma numerically, the effect of the pressure ionization can be zero.

2.2.5 Local thermodynamic equilibrium (LTE) and collisional 
     radiative equilibrium (CRE) 

We can obtain the fractional population of the average ion model in the local thermo-

dynamic equilibrium (LTE) by the Thomas-Fermi-Shell modei[11]. In the model, using 
the Fermi-Dirac distribution 

                Pn = Dn / 11 + exp ( kBTe~/ J (2.4) 
and the number of free electrons by the Thomas-Fermi model 

                          1 2mekBTe 3/2 I
Z l (2.5)                Ne = NeNi=27r2 h2 (kB_reJ 

where 

                           ~ 00 yl/2                     Il/2 (x) = Jo 1 + exp(y - x) dy 
and 

                            Ze = Z - > Pn, (2.6) 

the population for a given electron energy level is obtained. Here µ, kB, h, and me are the 

chemical potential, the Boltzmann constant, the Dirac constant defined by h = h/27r, 
and the electron mass, respectively. h is the Planck constant. By the two iterative 

calculations, i.e., the Eqs. (2.4), (2.5), and (2.6) and the equation for the energy level of 
the SHM, i.e., Eqs. (2.2) and (2.3), the fractional population of the average ion model 
in the LTE can be obtained. 

  I1/2(x) is called the Fermi integral. A simple numerical formula is given by Latter[16] 

                               ex e2x e3x e4x e5x esx 

    I112(X) = 2 e x 1 - 23/2 + 33/2 - 43/2 + 53/2 - 63/2 + 'T3/2 

                           (-oo < x < -2.0)
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         = 0.678091 + 0.53619667x + 0.16909748x2 + 0.018780823x3 

            -0 .0023575446x4 - 0.000639610797x5 (-2.0 < x < 0) 
          = 0.678091x + 0.53638x + 0.16682335x2 + 0.0206067x3 

            -0 .00601491x4 + 0.000490398x5 (0 < x < 3.0) 
          = 0.757064709 + 0.3922888x + 0.2705525x2 - 0.01682933x3 

            +0.0008258364x4 - 0.00001819771x5 (3.0 < x < 10.0)            2 x2 3 (1 +1.2337005 7005 + 1.0654119 + 9.7015185                               2 4 6 

             242.71502 12313.691            + x8 + x10 ) (10.0 < x < 105) 
          = 

2x3/2 (105 < x < 00) 
  In laser produced plasmas, due to the large mean free path of the X-ray com 

with a size of the plasma, the LTE assumption for the plasma is not appropriate[6] 
of the non-LTE plasma model is the collisional radiative equilibrium (CRE mod

19

                                                                      pared 
                                                                                . One 

                                                         el in 
which all radiation are assumed to escape from the plasma and the electron temperature 
has been kept constant. Though the population of excited states decreases due to the 
radiative decay, the electron collision makes the excited population again. There is an 
energy flow from free electrons to the radiation field. This model is a good approximation 
for the population of excited states in optically thin plasmas, since a change in the plasma 
temperature is sometimes small enough. 

  Figure 2.5 shows the atomic processes that are taken into account in the CRE model, 
in which the atomic processes of the radiative recombination, the three-body collisional 
recombination, the collisional ionization, the radiative deexcitation, the collisional deex-
citation, and the collisional excitation are taken into account. The rate equation of the 
average ion model Eq. (2.1) in which TDD = 0, T kU = 0, Tk k = 0, and T kU = 0 is solved 
for the steady state dP,,/dt = 0. 
  Figure 2.6 shows the density dependence of the fractional population of the average 

ion model in the CRE where the electron temperature is kept to be 500 eV . Material 
is gold (Z = 79). The ionization degree Ze is not so different for each case. The 
detail of Ze will be shown in Fig. 2.7. From Fig. 2.6 we see that, if the density is high 

enough, for example, 10 g/cm3, the fractional population is almost the same as that in 
the LTE. The reciprocal of the slope is the temperature of the corresponding plasma . If 
the density is low enough, the radiative decay rate becomes much faster than that of the 

collisional excitation rate. As a result, the fractional populations of the lower excited 

states decrease. Even in the low-density region, the reciprocal of the slope of the highly 

excited states is still equal to the temperature of the plasma. This means that the highly 

excited electrons are thermodynamically equilibrated with the free electrons. 

  In Fig. 2.7, the equicontour of Ze (averaged ionization degree) of the gold plasma in 
the CRE is compared with that in the LTE. 

  In the case of the LTE, with increasing plasma density, the ionization degree decreases 

due to the reduction of the density of states for free electrons. At high densities more 

than 1 g/cm3 and low temperatures less than 100 eV, the ionization is enhanced because 
of the pressure ionization. Note that even gold plasma is calculated to be fully ionized 

at temperatures about 10 keV if we assume the LTE. 

  In the case of the CRE, even if the plasma temperature is higher than 10 keV , 
electron energy levels with principal quantum number less than or equal to two are
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fully occupied. This is simply because of the large rate coefficients of the radiative 

decay to these levels compared with those of the collisional excitation and ionization. 

At high temperatures (1 - 10 keV) and low densities, the plasma is almost in the 
Coronal equilibrium, determined only by the electron temperature. As the plasma density 

increases further, the electron collisional process becomes dominant and tends to increase 

the ionization degree. At low temperatures (10 - 100 eV), the population is essentially 
determined by the collisional process and the LTE state is realized.

2.2.6 Formulas of the opacity and emissivity 

Once the population is determined, the spectral opacity X(v) and emissivity rj(v) can be 
calculated using the hydrogenic formulae. Here, v is the frequency of the X-ray. There 
are three main processes by which a plasma emits or absorbs X-ray, i.e., the free-free, free-
bound (bound-free), and bound-bound processes which are related to the rate coefficients 
and the scattering process, the effect of which is usually included in the opacity. 

  On establishing the formulae for the opacity and emissivity in average ion model, 

some of the formulae is derived by the relation among the Einstein coefficients An, n. (v), 
Bn,n,(v), and Bni,n(v). The coefficients represent the spontaneous emission rate, the 
induced emission rate, and the absorption rate, respectively. Through the coefficients, 
the relation between the Planckian radiation (number of photons) 

                    I(V) = 2hv3 ex by - 1              C2 /~ p (kBTe)
and the bound electron distribution

hn'UnBn,,n(v)I(v) = {An,n,(v) +Bn,n,(v)I(v)}PnVn' (n' < n) (2.7)

is satisfied in the LTE. 

  From Eq. (2.7) and the relation between the fractional populations of different energy 
levels 

                   Pn/Vn = Dn exp - by , (2.8)                          n /Vn n kB1e 

another relations among the Einstein coefficients 

                              2hv3                                      A
n n• = 2 Bn, n'                               C (2.9) 

and 

                                Dn,Bnl,n = DnBn,n' (2.10) 
are obtained. 

  For the emission by the free-free process, the simple formula of bremsstrahlung[17] 

              (v) _ 8 27r l1/2 Zee6 N N ex by            rltr 3 C3mekBTel mec3 i e P C-kBTe/ 9ff 
is used where N;, e, and c are the number density of ions, the electronic charge, and 

the speed of light, respectively. gif is the Gaunt factor 'for the free-free process, which 

reflects the difference between the quantum-mechanical and the classical calculations. It



2.2. MODELS FOR OPACITY AND EMISSIVITY CALCULATIONS 

increases in the low frequencies, but for the X-ray, it is not so important. 

absorption, use of Eqs. (2.8), (2.9), and (2.10) yields 

                       _ PnVn, Bn t by c2              Xff S(v) P
n,VnAnl n7lfr(v) = exp kgTe 2hv317ff (v) 

           

, () 
and 

2 

            Xbd(v) = exp -kBTe) Xb s(v) = 2hv377ff(v)-
For the free state, Dn,, = Dn is assumed /. 

  The bound-free absorption cross section from level n to the free state is

                          267r4e16meZn4gbf (
cm 2)                    ~nc = 

3/ch6n5v3 

in the hydrogenic case[18]. Using the above we have 

                       X(v) = 6ncNAVc,                    bbs 

where Vc is the vacancy of the free state defined by 

                                     - ft E, 
          VC 

where Ec = 

potential ,a. 
                        V, free absorption (2.9) 

relations 
                              2hv3 PC 

                      llfb (v) = Qnc C2 Ni Dc DnVn 
and 

2 

                      Xbfd(v) = 2hv3rlfb(v)• 

  The formula for the bound-bound emission is 

                   27re2 Dn 3 
        llbb (v) = 

m c3h2 NiPnFVn D fnn' (hv) O(v),                               e n~ 

An, denotes the absorption oscillator 
satisfies f q(v) dv = 1. By Eqs.                          (2.10), 

                                    7fe2 

                       Xbbs(v) m cNiPnVnIfnn~4'(v) 

e and 

2 

                      Xbind b (v) 2hv3%b(v). 

  Although f         the

     23 

As for the

    = 1 - Dc = exp C kcBT              J / ~1 + exp C kB 
T by - En . Usually, Vc N 1, because Ec is much larger than the chemical 

If the plasma is dense enough, this assumption breaks down and the bound-
  is reduced by the factor                         By Eqs. and (2.10), we obtain the

(n' > n).

lllator strength and ~(v) is a line profile function that 
(2  .9) and              we also have

             process o the induced emission is required for the fractional popula-
tion to be the Fermi-Dirac distribution in the LTE limit, the effect in the opacity and 

emissivity calculation of laser produced plasmas is negligibly small.
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  The cross section of the simple Thomson scattering is expressed as 

                                   87r e2 2 
                               QT 3 

7rteC2 

and therefore, 
                                      87r e4 

                      Xs(v)=QTNe= Ne                                               2c4                           m
e 

is used for the formula of the scattering process in some cases. For the simulation of 

laser produced plasmas, the scattering process does not contribute a lot to the resultant 

spectral opacity and emissivity. 

  Figure 2.8 shows the emissivity of the gold plasma in the CRE model where the 

electron temperature is 200 eV and the density is 0.1 g/cm3. 
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Figure 2.8: Emissivity of the gold plasma in the CRE model where the electron temper-

ature is 200 eV and the density is 0.1 g/cm3. 

  In order to show the relative intensity of the bound-bound transition, the Lorentzian 

profile 
L 

                  inns (E) _ 1 Wnn,                            7r (E - Enn')2 (yV n,)2 

with 

                   Wnn, = 4.75 x 10-6Enn, (ke'V) 

is used to plot Fig. 2.8. 

2.3 1-splitting effect in spectral opacity and emissiv-

   ity 

In this section, we show the splitting of electron energy levels due to the difference in the 

azimuthal quantum number, i.e., the l-splitting effect. The SHIM including the I-splitting 

is developed by Perrot[19]. 
   In his model, the effective charge is 

                                                                n-1               Zn = Z - Pn'Qnn' (1 - 18nn'J ~" Pn'gn'n E xnlgnl 
                               n' <n 2 n' 1=0

s
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where xnl = Pnl/Dn, 

                   9nl= 42[n2-21(1+1)-1]+vn, 

and 

                           1 n' 5 2
- n' 2 1/2                                 (-

/ (2n2 > n'2)           qnn' - 7r (n) n 
                    0 (2n2 < n'2). 

For the diagonal elements, the author has done a more accurate estimation using the 

exact hydrogenic wave functions. 

  The numerical values are shown in Table 2.2 for reference. If the 1-splitting is ne-
          n-1 

glected, ~l=0 xnl9nl = 0-

Table 2.2: Numerical values of some of the constants needed in the SHM with l-splitting.

n 1 2 3 4 5 6 7

qnn 0.270672 0.366310 0.371802 0.329523 0.295072 0.296580 0.320910 
vn 0.000 0.070 0.020 0.012 -0.100 -0.400 -0.420

  Using Zn, the electron energy level including the 1-splitting is 

                Enl = En - E Pn'[gnn'Sn' - gn'nSn] - Z2 9nl qn'n 
                                    n' n n' 

where 

                                    Zn n-1 
                           Sn = n2 57, xnl9nl 

                                                 1=0 

En is the same expression as Eq. (2.3). 
  Figure 2.9 shows electron energy levels of the gold ions as a function of the number 

of bound electrons in the ground state. Figure 2.9 (a) shows the case without 1-splitting 
(1-degenerate), while Fig. 2.9 (b) shows the case with 1-splitting. From Fig. 2.9, we 
find that the electron energy level E4 of Au+40, for example, splits into four sublevels 
with the width of about 300 eV by including the 1-splitting effect. As the number of 
bound electrons increases, the energy gaps between different principal quantum numbers 
decreases, while the energy split in the same principal quantum number increases. This 
shows that the 1-splitting effect is more important in the partially ionized plasmas than 
in highly ionized plasmas. 

  The fractional population in the LTE and the resultant opacity and emissivity are 
obtained if electron energy levels including the 1-splitting can be known. But on calcu-
lating the fractional population in the CRE, they are not sufficient. As shown in 2.2.3, 
we use the rate coefficients of the electron collisional ionization, and therefore, the three-
body collisional recombination, which only depend on the energy level as the 1-splitting 
effect, inclusion of the 1-splitting in the atomic process is not so difficult. But for the 
electron collisional excitation and radiative decay, and therefore, the electron collisional 
deexcitation, it requires not only the energy level but also the oscillator strength between 
n, l sublevels. In this thesis, the oscillator strength of H-like ions for El, Li-like ions for 
E2[20], Na-like ions for E3[21], Cu-like ions for E4[221 are used.
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Figure 2.9: Electron energy levels of the gold plasma as a function of the number of 

bound electrons in the ground state. (a) Without 1-splitting. (b) With 1-splitting.

  Figure 2.10 shows the fractional population divided by the statistical weight of the 

level. In the model, the l-splitting energy levels up to n = 4 are included. In the LTE, the 

fractional population is determined by the Fermi-Dirac distribution, i.e., the population 

imbalance between sublevels is determined by the energy differences. In the CRE, the 

population imbalance is determined by a magnitude of the radiative decay rate. As a 
result, the population imbalance becomes larger in the CRE than in the LTE due to the 

fact that the radiative decay rate of a state with larger azimuthal quantum numbers is 

larger.

   100 

     10-1 
5 

0 c 10-2 
a c a
. 10-3 

   10-

     10-5 
        10-2

4 3 2 n=1

(a)

   10-1 100 

Temperature (keV)
101

c 

0 
c D._

100 

10-1 
5 

10.2 

103 

10-

105 
  10-2

4 n=3

(b)

   10-1 100 

Temperature (keV)
101

Figure 2.10: Electronic population of the average ion model divided by the statistical 

weight of the level. (a) Local thermodynamic equilibrium (LTE). (b) Collisional radiative 
equilibrium (CRE). 1-splitting effect is more important in the CRE than in the LTE.

  Figure 2.11 shows the emissivity of the gold plasma in the CRE including the l-

splitting, where the electron temperature is 200 eV and the density is 0.1 g/cm3. The 
corresponding figure without 1-splitting was already given in Fig. 2.8 

  We remark that the relatively strong line emission due to the 4 - 5 transition (about 
570 eV) seen in Fig. 2.8 splits into three relatively strong lines due to the transitions of 
4 f - 5g (about 520 eV), 4d - 5 f (about 730 eV), and 4p - 5d (about 850 eV). The lines 
of 4d - 5d (about 390 eV) and 4d - 5p (about 630 eV) are relatively weak because of 
smaller oscillator strengths of these lines. 

  In Fig. 2.8, we can see that the relative intensity of the lines due to the 5-6 transition
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Figure 2.11: Emissivity of the gold plasma in the CRE model with 1-splitting where the 

electron temperature is 200 eV and the density is 0.1 g/cm3. The corresponding figure 
without 1-splitting is shown in Fig. 2.8.

is as strong as that of line due to the 4 - 5 transition. However, inclusion of the 1-splitting 

reduces 5 - 6 lines intensity. This is because of the line shift from 5 - 6 transition of about 

160 eV to 5g-6h transition of about 60 eV, which is the strongest among 5-6 transitions 

when the 1-splitting is included. Since the emissivity is proportional to the photon energy 

as (hv)3, the intensity of 5g - 6h transition decreases by a factor of (60/160)3 N 0.05. 
The lines seen at about 280 and 180 eV are due to the 4d - 4 f and 4p - 4d transitions, 
respectively. They are due to the transitions between sublevels for which the 1-splitting 
is responsible.

2.4 Line profile modeling for X-ray transport 

In the case of high-Z plasmas like gold treated in this thesis, the largest contribution to 

the global structure of the X-ray spectra is the 1-splitting effect (hundreds eV) which has 
been already included in the model as shown in Sec. 2.3. Although the effect of the j-
splitting (tens eV) has been predicted by theoretical calculation[23], in order to introduce 
the j-splitting, the development of a new SHM including the j-splitting is required. 

  Apart from the more precise treatment of the physical system of the average ion, we 
develop a line profile modeling for the average ion model. The difficulty encountered 
in applying the spectral opacity and emissivity based on the average ion model to a 
hydrodynamic code can be deduced the line profile modeling, since they are those of one 
fictitious ion of averaged charge. In this thesis, we propose a line profile for the average 
ion model of which widths are obtained by the line group structure of the same index in 
hydrogenic model, for example, 2 - 3, 3 - 4,4 - 5, etc. The strength of the 2 - 3 line 
in the average ion model, for example, reflects the contributions from the 2 - 3 lines of 
Li-like through Ne-like ions in the reality. This estimation of the line width is natural 
for the basic line profile for the average ion model, since this information has been lost 
when we use the average ion model. 

  The model which enables to yield the population of different charge states from the 
fractional population of the average ion model was first proposed by Mayer[5], and an 
extension for the CRE by Ito et al. [10]. In this thesis, a simpler Mayer's statistical method 
is studied. In his model, the fractional population Pn in the level n of the average ion
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model divided by the statistical weight D,,; x,,, = P,,,I D,, is assumed to be the probability 
of the electron occupation in the level n. Then, the population of the ion which carries 

a different number of the bound electrons in the level n can be given by the binomial 

distribution. For example, the population of the ion FP4_5 which carries 5 electrons in 

the level of n = 4 is given by 

             FP4=5 = x12 x28 x318 32! x45(1 - x4)32-5(1 - x5)50... (2.11)                      (32 - -5)! 5! 

The comprehensive calculation had been done by Stein et al.[24]. 
  Using the statistical method, we can estimate the population of each charge state. 

This is sometimes called the abundance of ions. Figure 2.12 shows the abundance in 

the gold plasma. Figure 2.12 (a) shows the case in the LTE, while Fig. 2.12 (b) shows 
the case in the CRE. The ionic charge states of the closed shell are dominant in certain 

temperature ranges at about 700eV - 1.2keV for the Ne-like (n = 2), at about 250 -
350eV for the Ni-like (n = 3), and at about 40eV for the Nd-like (n = 4) in the LTE, and 
at about 2 - 2.6keV for the Ni-like, 45 - 60eV for the Nd-like in the CRE, respectively. 
The structure due to the closed subshell of Pd-like (4d10) can also be seen at about 350eV 
in Fig. 2.12 (b) and at about 100eV in Fig. 2.12 (a). 
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Figure 2.12: Ionic distribution of the different charge states estimated by the statistical 

method. The closed shell structure, dominant in certain temperature ranges can be seen. 

(a) Local thermodynamic equilibrium model. (b) Collisional radiative equilibrium model. 
The structure due to the closed subshell can be also seen.

  At a given transition, the line position shifts according to a number of bound electrons, 

and the strength is weighted by the binomial distribution. In the case of large D,' the 

binomial distribution can be approximated by the Gaussian distribution. In real high-Z 

plasmas, this discreet structure of the line spectra is sometimes smeared out by another 
effects, for example, the term-splitting effect and the Stark effect. In this case, the line 

group profile of the transition from k to k' in the average ion model can be approximated 
by 

                  ,~ E 1 ex (E - Ekk,)2                OW ( ) = 
27CSQEkk, p 2(sLEkk,)2 

where AEkk' is the energy shift of the line when the charge state changes by unity and 

s is the standard deviation defined by s = P7,V,,. The free-bound emissivity and bound-

free opacity can be also obtained by the same idea as in the case of the bound-bound
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transition. This line profile modeling is valid only in the LTE[25], the modeling is also 
used, however, in the CRE because the difference in the abundance between the LTE 

and CRE is assumed to be relatively small in the parameter region of the laser-produced 

plasmas treated here. In Fig. 2.13, the opacity of the gold plasma in the CRE is shown, 
where the electron temperature is 200 eV, and the density 0.01 g/cm3. Figure 2.13 (a) 
shows the opacity of the one fictitious ion of the average ion model with the Lorentzian 

line profile. Figure 2.13 (b) shows the line group of the 4 f - 5g transition, composed of 
lines from different charge states. The thick line profile in Fig. 2.13 (b) corresponds to 
the Gaussian profile, the half width of which is determined by the standard deviation of 

the line group.
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Figure 2.13: Opacity of the gold plasma in the CRE where the electron temperature is 

200 eV, and the density 0.01 g/cm3. (a) Simple Lorentzian line profile. (b) Line group 
of the 4 f - 5g transition composed of lines from different charge states. The thick line 
profile corresponds to the Gaussian profile, the half width of which is determined by the 
standard deviation of the line group.

  We showed two figures in Fig. 2.14 which shows the emissivity to be compared with 

Fig. 2.8 and 2.11. Figure 2.8 and 2.11 change their profile as shown in Figure 2.14. Figure 

2.8 and 2.14 (a) illustrate the case without l-splitting, while Fig. 2.11 and 2.14 (b) are 
the case with 1-splitting. 

  From Fig. 2.14 (a), the full width of the half maximum in the typical lines are about 
100eV (4 - 5), 165eV (4 - 6), and 62eV (5 - 6),. In the simulation studied in Ref. [4], the 
effective line width of 150eV is assumed to reproduce the experimental X-ray conversion
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Figure 2.14: Emissivity of gold plasma in the CRE model, where electron temperature is 

200 eV, and plasma density 0.1 g/cm3. The line profile modeling is taken into account. 
(a) Without 1-splitting. (b) With 1-splitting.

rate. The above-mentioned line widths obtained by the statistical method give a physical 

basis for the effective line width of the simulation. 

  From Figure 2.14 (b), the full width at the half maximum in the typical lines are 
about 93 eV (4f - 5g), 86 eV (4d - 5f), and 19 eV (4d - 4f). The effective line widths 
of do = 0 transitions are relatively narrow, because the centers of these lines are not so 
affected by the change in the ionic charge state. For this plasma parameter, a number of 
electrons in the level of n = 4 changes. For the 4d - 4 f transition, a number of electrons 
in the inner shell does not change. As a result, the position of the lines does not move. 
The line width due to the j-splitting is comparable to that determined by the statistical 
method[26, 23]. This effect will be discussed in Sec. 2.5. 
  By installing the spectral emissivity and opacity based upon the model shown above 

in the simulation code ILESTA-1D, a hydrodynamics simulation has been carried out. 

Figure 2.15 shows the time-integrated X-ray spectra observed in the laser irradiation 

side[4] where the experimental spectrum is shown by the solid line and the numerical one 
based upon a rather simple opacity modeling in which the principal quantum number n 

is only taken into account in the electron energy level is shown by the broken line. In the 

experiment, six beams with wavelength of 0.35 µm irradiates a large spot size (1 mm in 
diameter) with the intensity of 3.3 x 1014 W/cm2 and the pulse duration of 800 ps. The 
beams are focused on a 0.436-µm-thick gold foil. 

  A typical feature is that the experimental spectrum has a strong peak near 200 eV 

and flat area in 400 - 800 eV. The same structure in spectrum has also been observed in 

OMEGA experiment[3]. In contrast, the numerical spectrum of the original ILESTA-1D 
consists of two peaks: One is near 200 eV, which corresponds to line emissions due to 
the deexcitation into the level of n = 4, and the other is near 700 N 800 eV, which 
corresponds to the line emissions due to the deexcitation into the n = 5 level. Clearly, 
the X-ray spectrum seen in the simulation is harder than that in the experiment. 

  Figure 2.16 shows the X-ray spectrum with the 1-splitting effect. By comparing 
Fig. 2.16 with the numerical results shown in Fig. 2.15, the peaked spectrum at 700 -
800 eV in Fig. 2.15 becomes flat due to the 1-splitting and the peaked spectrum at 300 eV 
are due to the do = 0 transitions stemming mainly from the 4d - 4 f transition. 

   There were simulations for the X-ray generation by laser produced plasmas with 
the 1-splitting and either the LTE assumption[27] or the CRE assumption[28] model.
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Figure 2.15: Time-integrated spectra of X-rays at the laser irradiation side where the 

experimental result is shown by the solid line and the simulation result by the broken 

line. The figure is taken from Ref. [4]. This is the case where six beams with wavelength 
of 0.35 µm irradiates a large spot size (1 mm in diameter) with the intensity of 3.3 x 
1014 W/cm2 and the pulse duration of 800 ps. The beams are focused on a 0.436-µm-thick 
gold foil.
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Figure 2.16: X-ray spectrum from the gold plasma calculated by the ILESTA-1D code, 

installing the new opacity and emissivity including the 1-splitting effect.



32 CHAPTER 2. X-RAY SPECTRA FROM HIGH-Z PLASMAS 

In both simulations, they used the average ion model, but have failed to reproduce the 

corresponding experimental spectrum. From the above consideration, all of the CRE, the 

l-splitting effect, and the line profile modeling for the average ion model are important to 

reproduce the global structure of the X-ray spectrum of the corresponding experiment.

2.5 Accuracy and limitation 

In this section, an accuracy of the atomic model used in Sec. 2.3 and 2.4 is examined 

in detail. From the content in this section, the limitation of the opacity and emissivity 

model will be clarified.

2.5.1 Energy level and oscillator strength 

For the laser produced plasma like a gold plasma, atomic data of the level of n = 4 are 
the most important. For the electron energy level and the oscillator strength, the results 
by the Hartree-Fock-Slater (HFS) model[7] is used for reference. In the HFS model, the 
electronic structure is solved using the one electron approximation in the self-consistent 

field. The Schrodinger equation in the spherically symmetric potential V (r) is written 
by 

                  2me V2 + V (r)] u(r) = Eu(r) (2.12) 
where E and u(r) are the electron energy eigenvalue and the wave function, respectively. 
The wave function can be separated into the radial and the angular parts by substituting 

               u (r) = Rnl (r)Ynl (0, ~) = Xnl (r) Yn (e, ~) 

into Eq. (2.12), where Yn(O, 0) is the spherical harmonics and Xnl(r) is given by the 
equation 

                     d2 
dr (r) + knl (r)2Xnl (r) = 0, 

                         l(1+1)h2                 knl(r)2 = 22e f E - 2mer V(r) I 
where l = 0, 1, 2, ... , n - 1. V (r) is usuy ally expressed as a sure of the potential screened 
by bound electrons and the effective potential due to the electron-electron correlation: 

                    V(r) = Vo(r) + Vexc(r). 

Vo (r) is given by the Poisson equation 

                   V2V0(r) = -47re2 [ZS(r) - p(r)] 

where S is the Delta function, and p(r) is defined by 

                     p(r) 4 r2 > Pnl. 
                                                     nl
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Xnl(r) is normalized to be 

                           or Xnl (r)2 dr = 1. 
0 For the effective potential due to the electron-electron correlation, the local approxima-

tion by Slater 

                V1. 24 P(r) 1/3 (Ry)                 = - () 
                                7r 

is used. When the wave functions are obtained, the dipole oscillator strength[29] can be 
obtained by 

                                     Rn'11)2                             1 max(l, l') ynli, ( nl fn~i',nl - 3 21+1 Ry a02 
where v; j1l, is the frequency of the transition nl - n`l`, Ry is the Rydberg constant, and 
the radial integral (dipole moment) Rnl1' is defined by 

               =~~                          Rill Rn,l,rRn( r2dr. 

0 

  Using the HFS model, we have calculated the electron energy level and the absorption 
oscillator strength of the gold ions, of which levels up to 3 are fully occupied by bound 
electrons. Dependence on a number of bound electrons for 4p - 4d and 4d - 4f transitions 
is shown in Fig. 2.17, while dependence for 4p - 5d, 4d - 5f, and 4 f - 5g transitions is 
shown in Fig. 2.18. 
  The oscillator strength is shown in (a), while the transition energy is shown in (b). In 
(a)'s of Figs. 2.17 and 2.18, the broken lines are the oscillator strength used in the atomic 
model explained in Sec. 2.3, which does not depend on a number of bound electrons in the 

level of n = 4. The values are those of the Cu-like (1s22s22p63s23p63d10 + one electron) 
gold ions which are the results by the MCDF code. In the MCDF code, the relativistic 
effect and the effect of the configuration interaction using the wave function of the one 
electron approximation are taken into account. The data in the case of Cu-like ion are 
much more accurate than that by the simple HFS model. The difference between results 
of the MCDF code and the HFS model in the Cu-like ion is estimated to be at most 
about 20 %. As a number of electrons in the level of n = 4 increases, the oscillator 
strength of n = 4 - 5 decreases, while the oscillator strength between sublevels of n = 4 
increases. From the figure, errors in the oscillator strength used in Sec. 2.3 are estimated 
at most about a factor of 2 to those of the level of n = 4. 

  In (b)'s in Figs. 2.17 and 2.18, the broken lines are the transition energy of the 
SHM including 1-splitting, while the solid lines are the corresponding HFS results. As a 
number of bound electrons in the level of n = 4 increases, the transition energy from the 
level of n = 4 to the level of n = 5 decreases, while the transition energy between the 
sublevels of n = 4 increases. The SHM including the 1-splitting support the tendency 
and the deviation from the HFS results are at most less than 15 % to those of the level 
of n = 4.

2.5.2 j-splitting in the electron energy level 

The importance of the j-splitting in the energy level structure of the high-Z ions like 
gold is first shown by Finkenthal[26]. Table 2.3 shows the detailed transition energy and 
oscillator strength by the RELAC code[23]. The RELAC code can give a parametric
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potential for the given electronic configuration of the ion. Using the potential, we can 
calculate detailed ab initio energy levels. Compared with the RELAC calculation, the 
transition energy of 4d - 4 f obtained by the SHM does not differ substantially. But the 
transition energy of 4p - 4d by the RELAC code splits into two line group, i.e., at about 
33 A for 4p1/2 - 4d and at about 50 AA for 4P3/2 - 4d. The line group of the lower energy 
corresponds to transition given by the SHM, but the line group of which energy is higher 
than that of 4d - 4 f is purely j-splitting effect.

Table 2.3: RELAC calculations for 4d - 4 f and 4p - 4d transitions of Rbl-like ions

Transition J-J
  Au 42+ Pb45+ 

Am (A) gf Am (A) gf

4p64d - 4p64 f
3/2 - 5/2 49.28 4.01 45.52 4.26 
5/2 - 5/2 55.23 0.23 51.86 0.06 
3/2 - 7/2 54.00 3.43 50.22 3.58

            3/2 - 1/2 
            3/2 - 3/2 

4p64d - 4p5 1/24d2 5/2 - 3/2 
            5/2 - 5/2 
            5/2 - 7/2

37.93 

37.05 

40.35 

37.65 

37.95 

38.08

1.21 

3.89 

2.08 

2.91 

5.21 

3.30

33.67 

33.11 

35.75 

33.44 

33.73 

33.68

1.14 

3.25 

1.72 

2.90 

4.85 

4.96

            3/2 - 3/2 
4p64d - 4p5 3/24d2 5/2 - 3/2 

            5/2 - 5/2

55.72 1.50 51.32 

54.43 1.84 50.22 

54.02 3.11 49.85

1.60 

1.90 

3.40

  In the experiment of the Pb, the two-peaked structure of the X-ray is observed. 

Figure 2.19 shows the time-integrated X-ray spectra where the experimental spectrum 

is shown by the solid line, while the numerical one is by the broken line. The irradiated 

laser intensity is 2 x 1014 W/cm2. This condition is not so different from that of Figs. 
2.15 and 2.16, but the 100-/µm-diameter spot size is 10 times smaller. We may guess 
that the local temperatures in the plasma may be higher than that in the experiment 
shown in Fig. 2.15, in which relatively uniform plasma is produced due to the large laser 
energy. By the simulation, the X-ray conversion rate can be perfectly reproduced, but 
the two-peaked structure seen in the experiment can not. From Table 2.3, the two-peaked 
structure in the X-ray spectrum is due to the 4d - 4 f and 4p1/2 - 4d transitions for the 
line group at about 300 - 320eV and the 4P3/2 - 4d transitions for the line group at 
about 340 - 380eV.

2.5.3 Validity of statistical model 

Using the statistical model, we can calculate the population for each charge state from 
the fractional population of the average ion model. In order to show the accuracy of 
the statistical method, we compare the results with those by the detailed configuration 
accounting (DCA) model[30]. In the DCA model, the rate equation for each charge state 
is solved separately. Figure 2.20 shows the ionic distribution of each charge state in the 

aluminum plasmas of which ion density are 1020 cm-3 in the CRE model. The solid lines 

are the ionic distribution of each charge state obtained from the fractional population
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Figure 2.19: Time-integrated X-ray spectra by the laser irradiation of 2 x 1014 W/cm2 
where the experimental spectrum is shown by the solid line and the numerical one by 

the broken line. The laser condition is not so different from that of Fig. 2.15, but the 

spot size of 100 µm in diameter is 10 times smaller. The numerical simulation can not 

reproduce the two-peaked structure at about 300 ' 400eV.

of the average ion model, while the dashed lines are those by the DCA model. The 

numbers in the figure show the charge states. Although it also shows a small shift of the 

distribution of the charge state to the lower temperature side, the distribution can be 

well reproduced even in the case of low-Z plasma. 

  Next, we show the population calculated by the statistical model lead to the Saha 

equilibrium in the LTE limit. Fp,,=k is assumed to be the probability of finding k bound 

electrons in the level n. The ratio of the probability of finding k and k + 1 bound electrons 

is given by 

                        Fp=k _ D,, D,,, 1-x                            n- n n X n                 F'p,,,=k+1 k A k + 1 xn 
where xn = P,,,/D,, and 

                        Dn 
- Dn!                   k ) (Dn - k)!k!' 

In the LTE, 

                    1 - xn C En p ) 
                                = exp 

                            xn kBTe 

is derived because xn is the Fermi-Dirac distribution. If the change in En and µ is small 

enough when a number of bound electrons in the level changes, the fraction Pk becomes 

that of the Saha equilibrium. The assumption is used in the average ion model, so that 

the population by the statistical method becomes that of the Saha equilibrium in the 

LTE limit.

2.5.4 Comparisons with the results of detailed opacity codes 

The opacity workshop: WorkOp is held every 3 years. The opacity code based on the 
model shown in this section was submitted to the comparison study twice in 1994 and 
1997. In this subsection, the typical results and a difference from results by the other 
detailed opacity codes are briefly shown[31, 32]. In the WorkOp:94, the opacities in the
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Figure 2.20: Ionic distribution of each charge state in the aluminum plasmas of which 

ion density are 1020 cm-3 in the CRE model. The solid lines are the ionic distribution 

of each charge state obtained from the fractional population of the average ion model, 

while the dashed lines are those by the DCA model. The numbers in the figure show the 

charge states. Although it also shows a small shift of the distribution of the charge state 

to the lower temperature side, the distribution can be well reproduced even in the case 

of low-Z plasma.

CRE are also discussed. From the WorkOp:97, the objective was limited to the opacity 
in the LTE. 

  More than ten opacity codes had been submitted. For the atomic model, the average 
ion model or the detailed configuration accounting model is used. For the energy levels, 
the simple SHM including the l-splitting or a solution to the Schrodinger or Dirac equa-
tion within the one electron approximation, using either the parametric potential or the 
self-consistent field is used. 

  The code we have submitted is based on the average ion model and the SHM including 
the 1-splitting. The code is named "CORONA". In the code, the population for different 
charge states is calculated by the statistical model shown in Sec. 2.4. In the process, 
excited states among sublevels of the same principal quantum number are also taken 
into account. The level of n = 3 for example, 2 x 6 x 10 states are taken into account 
for the electronic configuration. In calculating the detailed spectral opacity, the line 

profile becomes much more important. In the code, the natural broadening due to the 
lifetime of the level, the Doppler broadening due to the ion motion, and the electron 
collisional broadening shown by Griem[33] are taken into account. In the model, the 
(angular frequency) width of a line, i.e. one half its damping constant, becomes 

       ?Cl 3,2 hap Ry 11,2 r2 \ 3kBTe r2 3kBTe   w=8C3l Me NeCkBTe/ a ao2 a)9(2AEi + f ao2 f g 2AEf 
where 

                            ,r2 nk            (k ~_~ a2 k)-2(Z)2[5nk2+1-31k(lk+1)].           \ /0 
In this equation, i and f means the initial state and final state. 

  First, the case of the hydrogen is shown in Fig. 2.21, where the electron temperature 
is 1 eV and the density 1 x 10-6 g/cm3. The hydrogen is not high-Z treated in this
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chapter, but the model for hydrogen is of fundamental for other cases. The average 

ionization degree by the CORONA is about 0.012, while the results by detailed codes are 

0.077 - 0.078. The difference is due to the atomic modeling. In the CORONA, the Fermi-

Dirac distribution in the average ion model is used while the Saha-Boltzmann distribution 

is used in the detailed codes. For hydrogenic ions, the Fermi-Dirac distribution can not 

give the correct ionization degree. The Planck and Rosseland mean opacities by the 
CORONA are about 6.0 x 104cm2/g and about 7.2 x 105cm2/g, while those by detailed 
codes are 1.6 .' 1.7 x 105cm2/g and 4.4 - 4.6 x 105cm2/g. The difference in the Planck 
mean opacity is due to the modeling on the free-free process. The detailed treatment of 

the Gaunt factor for the free-free process is required. In the results by detailed codes, 

bound-free edge of the M-shell can not be seen. The difference in the Rosseland mean 

opacity is due to the modeling of the bound-bound spectral profile. In the detailed 

codes, the microfield in the plasma is calculated. As other problem in the CORONA, we 

quote that the series limits of the bound-bound transition do not merge into bound-free 
edge even though the states up to n = 100 are taken into account. The corresponding 

experimental results can be found in Ref. [34]
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Figure 2.21: Hydrogen plasma opacity where the electron temperature is 1 eV and the 

density 1 x 10-6 g/cm3.

  Figure 2.22 shows the opacity of the carbon where the electron temperature is 20 eV 

and the density 10 g/cm3. The carbon is also not high-Z treated in this chapter, but 
this case shows the importance of treating the free states. The average ionization degree 
by the CORONA is about 3.5, and the Planck and Rosseland mean opacities by the 
CORONA are about 6.0 x 104cm2/g and about 7.2 x 105cm2/g, while we couldn't obtain 
the consensus for the parameters among the detailed codes. In Fig. 2.22, the K-edge of 
the H-like carbon can be seen at about 275 eV, but the structure becomes dull because 
the continuum state near ionization threshold is almost occupied by free electrons. This 
treatment for the free states can be easily installed into the average ion model. The 
treatment is delicate. As a conclusion, we need experimental data to be compared with 
theoretical calculations. The numerical value of this opacity may be important for the 
inertial confinement fusion research. 

  Table 2.4 shows the density dependence of the mean opacities of iron plasmas. The 
upper values are results by the CORONA, while the lower values are results by detailed 
opacity codes. The average ionization degree Ze N 8.6 are almost the same for all cases.
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Figure 2.22: Carbon plasma opacity where the electron temperature is 20 eV and density 
10 g/cm3.

The line spectra which contribute the resultant opacity are those of ions with 17 , 18 

bound electrons (Cl-like and Ar-like). Under this condition, the contribution of the term-
splitting becomes important. This effect is enhanced in the low density. From Table 2.4, 
as the plasma density increases, the difference between the results by the CORONA and 
the detailed opacity codes decreases. For the dense plasma more than 0.01g/cm 3, the 
line broadening due to the electron collisional process becomes significant, so that the 

term-splitting effect relatively reduced. As it seldom occurs that the plasmas of which 

density is less than 10-2g/cm2 becomes important in the usual laser produced plasma, 
we can conclude the opacity data by the CORONA is good enough for the simulation of 

the laser produced plasmas.

Table 2.4: Density dependence of the mean opacities of iron plasmas. The upper values 

are results by the CORONA, while the lower values are by the detailed opacity codes.

Condition XP (cm2/g) XR(cm2/g)

16.35 (eV), 10-5 (g/cm3)  7.8 x 103 

(34x104)
 9.5 x 101 

(1,3x103)

20 (eV), 10-5 (g/cm3)
 9.1 x 103 

(3,4x104)
 8.6 x 102 

(6 , 8 x 104)

24.63 (eV), 10-5 (g/cm3)
 1.2 x 104 

(3,4x104)
 3.9 x 103 

(1 , 2 x 104)

31.70 (eV), 10-5 (g/cm3)
 1.4 x 104 

(3 , 4 x 104)
 9.0 x 103 

(3,4x104)

  In Figs. 2.23 and 2.24, the opacity calculated by the CORONA is compared with the 

corresponding transmission measurement. The transmission is defined by 

                           T = exp(-Xpd) 

where X, p, and d are the opacity, the density of the plasma, the thickness of the plasma, 

respectively. The solid line is the result by the CORONA and the thin line is the 

experimental one.
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  Figure 2.23 shows the case where the density is 0.01g/cm 3 and the temperature 20eV. 
The corresponding mean opacity is shown in Table 2.4. The detail of the experiment 

can be found in Ref. [35]. The M-edge structure of iron plasma is seen in. Though the 
three-peaked structure by the CORONA is shifted to the lower energy side by about 

25 eV, the global structure of the spectrum is well reproduced. Determining the position 

of three-peaks which is related to the accuracy of the energy level calculation is also 

difficult for other detailed opacity codes, since the effect of the spin-orbit interaction 

becomes important in this three-peaked structure. 

  Figure 2.24 shows the case where the density is 0.0113g/cm' and the temperature 
59eV. The detail of the experiment can be found in Ref. [36]. The L-edge structure of 
iron plasma is seen in, and the CORONA can well reproduce the experimental result, 

since the SHM can calculate the values of the electron energy level of n = 2 accurately, 

compared with those of the level of n = 3.
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Figure 2.23: The opacity calculated by the CORONA are compared with the correspond-

ing transmission measurement, where the density is 0.01g/cm3 and the temperature 20eV. 
The solid line is the result by the CORONA and the thin line is the experimental one. 

M-edge structure can be seen in the figure.

2.6 Summary

We have summarized atomic models that have been used in the hydrodynamic codes of 

the inertial confinement fusion research, i.e., the screened hydrogenic model (SHM), the 
detail of the rate coefficients, the model for the pressure ionization and the continuum 

lowering, the collisional radiative equilibrium (CRE) model and the local thermodynamic 
equilibrium (LTE) model, and the detail of formulae of the emissivity and opacity cal-
culations. 

  In Sec. 2.3, we have shown a new model for calculating the spectral opacity and 
emissivity of high-Z plasma like gold for solving the X-ray transport in hydrodynamic 
codes. In the model, plasmas are assumed in the CRE. The 1-splitting effect, i.e., the 
consideration of the azimuthal quantum number in the electron energy levels is introduced 
using the SHM developed by Perrot. As a result of a gold plasma, the electron energy 
level E4 of Au +40, for example, splits into four sublevels with the width of about 300 eV
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Figure 2.24: The opacity calculated by the CORONA is compared with the corresponding 

transmission measurement, where the density is 0.0113g/cm3 and the temperature 59eV. 
The solid line is the result by the CORONA and the thin line is the experimental one. 
L-edge structure can be seen in the figure.

by including the 1-splitting effect. The transitions between the sublevels, such as 4d - 4 f , 
are important elements to understand the strong peak near 200 eV in the experimental 
spectra of gold plasmas. 

  In Sec. 2.4, we have shown a line profile modeling for the average ion model. For the 
opacity and emissivity of the partially ionized high-Z plasmas like gold, the line profile 
is approximated to be the Gaussian profile of which width is determined by the ionic 
distribution of different charge states. This opacity and emissivity are installed into the 
hydrodynamic code ILESTA-1D to examine the experimental spectra. As a result of the 
simulation, the peaked X-ray near 200 eV seen in the experiment stems from the lines 
due to the do = 0 transition between the sublevels of n = 4. In addition, relatively flat 
spectra in by = 400 - 800 eV seen in the experiment can be explained as a result of the 
1-splitting of the line of the 4 - 5 transition. The line group of the 4 f - 5g, 4d - 5f, and 
4p - 5d transitions mainly forms this flat structure. 

  In the simulation of the X-ray generation by laser produced plasmas like gold, the 
assumptions that the plasmas are in the CRE, the l-splitting effect, and the line profile 
modeling if the average ion model is used, are essentially important to reproduce the 
global structure of the X-ray spectrum of the corresponding experiment. 

  In Sec. 2.5, we have examined the accuracy of this atomic model for the opacity and 
emissivity calculation of the high-Z plasmas in detail. 

  We have compared the values of the electron energy level and oscillator strength with 
the values by the Hartree-Fock-Slater (HFS) model. From the HFS results, as a number 
of electrons in the level of n = 4 increases, the oscillator strength of n = 4 - 5 decreases, 
while the oscillator strength between sublevels of n = 4 increases. Errors in the oscillator 
strength used in Sec. 2.3 are estimated at most about a factor of 2 to those of the level 
of n = 4. 

  We have discussed the j-splitting effect briefly. For the high-Z ions like gold, the 
transition energy of the 4d - 4 f obtained by the SHM with 1-splitting does not differ 
substantially from the detailed theoretical value including the spin orbit interaction. The 
transition energy of the 4p - 4d, however, split into two line group, i.e., at about 33 A
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for 4p1/2 - 4d and at about 50 A for 4P3/2 - 4d. The line group of the lower energy 
corresponds to transition given by the SHM, but the the line group of which energy is 
higher than that of 4d - 4 f is purely j-splitting effect. The two-splitted structure of 
the soft X-ray region is actually observed in the experiment of the Pb. Inclusion of the 
j-splitting effect would be a next subject in future. 

  We have shown the accuracy of the population for each charge state that is calculated 
from the fractional population of the average ion model by the comparison with those ob-
tained by the detailed configuration accounting (DCA) model on the aluminum plasmas. 
In the DCA model, the rate equation for each charge state is solved separately. Although 
it also shows a small shift of the distribution of the charge state to the lower temperature 
side, the distribution can be well reproduced even in the case of low-Z plasma. 

  Finally, we have shown the comparison study between the spectral opacity based on 
the model developed in this chapter and the results by detailed opacity codes for the 
case of hydrogen, carbon, and iron plasmas. 

  For the low density and low discharged hydrogen plasma, it is difficult to estimate 
the correct average ionization degrees with the average ion model. 

  In the case of the dense carbon plasma of which density is more than the solid density, 
the continuum state near ionization threshold is almost occupied by free electrons. This 
treatment for the free states can be easily installed into the average ion model. But there 
are no reliable experimental results of such extreme condition that can be compared with 
the theoretical results. 

  From the density dependence of the mean opacity of iron plasmas, we have obtained 
the applicable density limit of the present model. In the case of low density less than 
0.01g/cm', the contribution of the term-splitting becomes important. As it seldom occurs 
that the plasmas of such density becomes important in the usual laser produced plasma, 

we can conclude the opacity data by the CORONA is good enough for the simulation of 

the laser produced plasmas. 

  For the energy level related to the L shell (n = 2), the SHM can give accurate values 
which can be compared with the experimental ones, while for the energy level related to 

the M shell (n = 3), the SHM can not give accurate values enough. Determining the 
energy level related to the M shell is also difficult for other detailed opacity codes, since 

the effect of the spin-orbit interaction becomes important.
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Chapter 3

Atomic models of highly ionized 

plasmas

3.1 Introduction

In this chapter, treat the atomic model of highly ionized ions. Main applications are line 

spectra from highly ionized plasmas: for example, line spectra due to the impurity in 

laser imploded plasmas, and X-ray spectrum from stellar plasmas. If number of bound 

electron in the open-shell becomes larger than three, or smaller than (2n2 - 3), number 
of possible terms of energy levels suddenly increase, so that main objectives are H-like, 
He-like, and Li-like ions. In the inertial confinement fusion research, spectroscopic mea-
surements of X-ray from imploded plasmas more than solid density have been carried 
out[2, 3]. Recently, new interest in opacity of stellar plasmas has arisen and precise opac-
ity experiments have been carried out[1]. In order to know density and/or temperature 
of the plasma, spectroscopic measurements have been widely used in experiment. A lot 

of detailed experimental results, for example, line profiles has been collected[9, 10]. Even 
a commercial software for analyzing X-ray spectra from plasmas is also available[11]. 
Essentially important point in the analysis of X-ray spectra from these plasmas are that 

precise theoretical modeling and numerical calculations are required for understanding 
the experimental results. Practically, we need modeling of the plasma effect in atomic 

processes, atomic data for the elementary processes, calculation of the line profile of each 
line spectrum or modeling on the line profile for the atomic model, etc. 

  For energy level and oscillator strength, using a detailed atomic code like the GRASP[7], 
we can obtain fairly accurate data of isolated ions. Numerical values of experimental data 

and results of atomic code are also available in literature, for example, Kelly's table[8] 
and the Opacity Project book by Seaton[9]. However, above-mentioned sets of data are 
sometimes not enough for building up models of atomic process in the plasmas. From 

the Grotrian diagram, only data for the dipole allowed transition are available, but the 

line strength is sometimes strongly affected by the states which are not available. More-

over, we meet a relatively large error in the published data. In this section, we propose 

new method of energy level data recommendation by screening constant of the screened 

hydrogenic model. 

  There are still difficult points for some purposes in treating plasma effects. Among 

them, we discuss a problem that we always meet when we want to build up a model 

of atomic process, i.e. cutting off the highly excited states, is discussed and simple 

estimation for that is shown.

47
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  In future, we will integrate opacity code like the case of high-Z plasmas discussed in 

previous chapter. Since there are a lot of effects we have to study and a lot of work due 
to the spectroscopic measurement of the plasma density and temperature, we couldn't 

complete the work.

3.2 Energy level recommendation by screening con-

stant

3.2.1 Introduction 

When analyzing spectroscopic data from plasmas, we have to make an appropriate atomic 
model of the plasma. In the process, we need atomic data of elementary processes, for 
example, electron energy level, oscillator strength, etc. As for energy level, many authors 
have published data. They are summarized as theoretical calculations, spectroscopic 
data, and recommended values. However, the problem is which data we should use for 
the model. In Table 3.1 are displayed the energy level data for the ground state 115'0 
of He-like ions from various authors for example. Usually among the data, systematic 
differences exist. We have to carefully select the most reliable data from among many 

published data. This work is called recommendation. 
  A selection of most reliable data which show a simple atomic number (Z) dependence 

is one method. The raw numerical values of energy level are not appropriate as an index 

for data recommendation since their Z2 dependence is large enough to suppress other Z 

dependence. The simplest index is a value of the energy level divided by Z2. In Fig. 3.1, 

the numerical values in Table 3.1 divided by Z2 are plotted. All data are almost on the 

same curve.
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Figure 3.1: Z dependence of the numerical value of energy level divided by Z2 

ground state 11So of He-like ions. All data are almost on the same curve.

for the

  The quantum defect[1O] is sometimes used. As the advance of modern computers has 
enabled us to operate MCDF codes[7], accurate data beyond. experimental results are 
available by numerically for simple ions. However, accurate calculations for complex ions 

are still difficult, so that the recommendation among the experimental and numerical 

data is sometimes necessary.
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Table 
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3.1: Energy level data of He-like ground state 
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  On the other hand, the screened hydrogenic model (SHM) was first proposed by 
Slater[11] to calculate non-hydrogenic energy level within the hydrogenic model. In 
the model, the screening constant represents a reduction factor of the nuclear charge 

the outer shell electron feels in the presence of the inner electron. Mayer[12] calculated 
many screening constants, showing the importance of line transitions in the mean opacity 

calculation of iron plasmas. Since the Mayer's screening constants were based on the 

hydrogenic wave function, they were not plausible for partially ionized high-Z plasmas. 

More[13] determined a new set of screening constants, by enormous ionization energy 
database. Improvement reproducing the hydrogen-like ions and an extension including 

the 1-splitting have been done by Marchand et al.[14] and by Perrot[15], respectively. 
  Since the simple iterative calculation using the SHM and the average ion model[16] 

gives an electronic population with good accuracy and the emissivity and the opacity 
could be calculated easily, the SHM's have been widely used in the simulation of inertial 

confinement fusion. Even the X-ray spectra from high-Z plasmas like gold could be 

reproduced by hydrodynamic code[17]. Since an accuracy of the resulting opacity and 
emissivity depends on the screening constants, a new set of the screening constants is 

required if we need a more accurate result. In the process of obtaining a new set of the 

screening constants, we have found simple Z dependence of the screening constant. This 

Z dependence gives not only a simple description of the energy level of ions but is also 

useful as an index for energy level data recommendation. 

  In this section, we study the Z dependence of the screening constant of ions, especially 

of He-like ions, and propose a new usage of the screening constant, i.e. an energy level 

data recommendation and an interpolation of reliable data using the Z dependence. In 

Sec. 3.2.2, we compare the Z dependence of the screening constant and of the quantum 

defect and show that the screening constant is more appropriate than the quantum 

defect as an index for energy level recommendation. In Sec. 3.2.3, the Z dependence 

of the screening constant for He-like ions is discussed and its simple fitting formula of 

the energy level is given for future reference. The Z dependence of other electronic 

configurations, Li-like, Be-like, and Ne-like ions, is also discussed and the accuracy of the 

Kelly's data[8] is discussed. In Sec. 3.2.4, we discuss the physical meaning of this simple 
Z dependence of the screening constant.

3.2.2 Screening constant and quantum defect 

In the hydrogenic assumption, an electronic configuration of an ion is expressed by 

(Pl, P2i ... , Pk, ...) where Pk is the number of electrons in the level labeled by k. Using 
the screening constant E , we calculate the screened charge Z'k and the electron energy 

                          k, k' 
level Ek of the kth level in atomic units by 

                      Zk = Z - ok,kiPk' - O'k,k(Pk - 1), (3.1) 
                                       k' <k 

                Ek = - 2V k)2 (3.2) 

where Z is the atomic number (nuclear charge) of the ion and n(k) is the principal 
quantum number of the kth level. Eqs. (3.1) and (3.2) can be applied for the highest 
level. 

   Using the Z dependence of 9 = Ek'<k ak,k'Pk' + Uk,k(Pk - 1), we recommend energy 
level. For He-like ions, the screened charge and the energy level of the kth level are



3.2. ENERGY LEVEL RECOMMENDATION BY SCREENING CONSTANT 51

expressed by 

                       Zk = Z-ak,1 (3.3) 
                          z k2 (ZO)2 (3

.4)                     Ek = 2
n(k)2 2n(k)2 

Energy levels of He-like ions are calculated and experimentally measured by many 
authors. In this thesis, the famous wave length table by Kelly[8], comprehensive work by 
Sugar[18] and Martin[19], detailed theoretical calculations by Accad et al.[20], compre-
hensive data collection and recommendation by Seaton group for the Opacity Project[9], 
and recent relativistic calculations by Plante et al. [21] are selected for this recommen-
dation study. The data of Kelly, Sugar, and Martin had been obtained around 1980, so 

they contain relatively large errors. Accad's calculation for excited states is based on the 

relativistic theory of a2 where a is the fine structure constant for Z's up to 10. Plante's 

one is relativistic all-order many-body calculations including the Breit corrections, which 

is considered to be the exact value when relative error is discussed for the energy level 

recommendation study. 

  Figure 3.2 shows the Z dependence of the screening constant a for the ground state 

1 'So of He-like ions. Although the screening constant can be calculated as 0.625 for 

all ground state of He-like ions from the variation method using the hydrogenic wave 

function[22], those calculated from the energy level of actual ions have Z dependence. 
From Fig. 3.2, the data of the Opacity Project are found on the different line. While 
Kelly's data and Plante's data are only plotted to avoid the complexity of the figure, the 
other data are almost on the same line of Kelly's and Plante's.
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Figure 3.2: Z dependence of the screening constant for the ground state 11So of He-like 
ions. Data of the Opacity Project are on the line different from Kelly's and Plante's 
ones. Simple Z3 dependence of the screening constant is observed.

  On the other hand, the energy level Ek is expressed as 

                        Ek = (Z - 1)2                          2(
n(k) - E)2 

by the quantum defect, and therefore, the quantum defect is calculated to be 

                       c = n(k) - - (Z - 1)2 
                              2Ek

(3.5)
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from the energy level. Figure 3.3 shows the Z dependence of the quantum defect. Same 

data are plotted in both Fig. 3.2 and 3.3, but the appearance is different. Three different 

data shown by the quantum defect are almost on the same curve and seem to have the 

same Z dependence.
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Figure 3.3: Z dependence of the quantum defect for the ground state 11So of He-like 

ions. Compared to Fig. 3.2, three different data are almost on the same curve.

  Having been estimated the Z dependence and made extrapolation by the quantum 

defect, data of the Opacity Project[9] are found on the different line. From the math-
ematical point of view, the difference in energy level expression between the quantum 

defect and the screening constant is the subtraction of a constant either from the numer-

ator or from the denominator in the hydrogenic energy level expression -Z2/(2n2). From 
Fig. 3.3, the quantum defect converges to a small value near zero as Z increases. Even in 

this case, the screening constant monotonously decreases. For high-Z ions, energy level 

data recommendation by the screening constant is more useful and more accurate than 

that by the quantum defect.

3.2.3 Atomic number dependence of the screening constant 

It is important to note the fact that the screening constant has a clear Z dependence. 
From Fig. 3.2, the screening constant have the Z dependence as Z3 for Z = 10 - 40. 
Figure 3.4 (a) shows the Z dependence of the screening constant up to Z = 70 and (b) 
shows up to Z = 100. From Fig. 3.4, a gradual increase in the power index of Z is found. 

The Z dependence of the screening constant is approximately Z3 for Z = 10 - 40, Z3.5 

for Z = 40 - 70, and Z4 for Z > 70. 

  From Ref. [21], the Breit correction and the QED contribution to the energy level are 
about 0.3 % of the ionization potential for the ground state of He-like ion of Z = 70, 
for which a - -1.8 and the energy level calculated by the screening constant is accurate 
with error less than 0.1 %. Even in the high-Z case, the energy level can be expressed 
as the simple Z4 dependence of the screening constant. 

  Figure 3.5 shows the Z dependence for ions of smaller Z's of 1'So. We also see a 
slight deviation of the Opacity Project's data from the curve of the most reliable data by 
Kelly and Plante. For the data of 1'So, the Z-1.5 dependence of the screening constant 
is the best fit. By the dependence, the energy levels of five elements including He atom
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Figure 3.4: Z dependence of the screening constant for the ground state 1'So of He-like 

ions of large Z. The Z dependence gradually changes from Z3 to Z4. (a) Up to Z = 70. 
(b) Up to Z = 100.

can be plotted on the line. However, this dependence changes from level to level. For 

example, the Z dependence of smaller Z's of He-like 2 3P1 is shown in Fig. 3.6, where we 

find clear Z-1 dependence. 

  This monotone Z dependence of the screening constant enables a much more accurate 

interpolation or extrapolation. Figure 3.7 (a) shows errors in the screening constant 
by the interpolation. In the process, two ions, Z's of which differ by 4, are used. For 

reference, the results by the simple linear interpolation are also shown. From Fig. 3.7 (a), 
absolute values of the interpolation error are always less than 0.01 except some results by 

the linear interpolation. For high-Z ions, the error by the linear interpolation is usually 

several times larger than that by the interpolation for which the specific Z dependence is 

taken into account. The error in the screening constant is the smallest if the interpolation 

is done, taking into account the Z dependence of Z3 for Z = 10 -' 40, Z3.5 for Z = 

40 - 70, and Z4 for Z > 70. These results correspond to the previously described Z 

dependence of the screening constant. 

  Figure 3.7 (b) shows errors of the resulting energy level calculated from the interpo-
lated screening constants. The errors in energy level are usually less than 0.0001 except 

some cases of larger Z's in the case of the linear interpolation and some cases of Z = 10. 

For ions of which atomic number being around 10, there is no difference between the 

simple linear interpolation and the interpolation with the assumption of the specific Z 

dependence of the screening constant. From Eqs. (3.3) and (3.4), the error in energy 
level is Z/2 times smaller than that in the corresponding screening constant. The errors 
in the screening constant are about 1% for He and about 0.6% for Ne. Therefore, the 
errors in energy level are about 1% for He and about 0.1% for Ne.
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Figure 3.7: Screening constant and resulting energy level by different interpolations are 

compared for ground state 11So of He-like ions. Results using Z, Z2.5, Z3, Z3.5, and 

Z4 dependence are shown. Values of two ions, Z's of which differ by 4, are used for 

the interpolations. Error is defined by the difference between Plante's value and that 

from interpolation divided by the Plante's value. (a) Screening constant. For high-Z 
ions, error by the linear interpolation is usually several times larger than that by the 

interpolation for which the specific Z dependence is taken into account. (b) Resulting 
energy level from the screening constant. Error in energy level is Z/2 times smaller than 
that in the corresponding screening constant.
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  We see the same Z3 dependence of a for different electronic configurations, 21So, 

2 'Pi, 2 3S1, 2 3Po, 2 3P1, and 2 3P2 for 10 < Z < 40. However, the dependence of smaller 

Z's is slightly different in each case. Table 3.2 shows the power index on Z in the Z 

dependence of the screening constant. We could not find simple Z dependence for ions 

of smaller Z's of 21So. The most general power indexes of the Z dependence are Z-1 for 

Z < 5, Z3 for 10 < Z < 40, and Z4 for Z > 70,

Table 3.2: Power indexes of the Z dependence of the screening constant for He-like ions. 

The general power indexes are Z-1 for Z < 5, Z3 for 10 < Z 40, and Z4 for Z > 70. 

                 State Z<10 10<Z<40 Z>70

11So 

21So 

21P1 

23S, 

2 3Po 

2 3P, 

2 3P2

-1 .5 

(-1) 
-0 .5 
-1 .5 
-1 

-1 

-1

3 

3 

2.5 

3 

3 

3.5 

2.5

4 

4 

3.5 

4 

4 

4 

3.5

  We also see such simple Z3 dependence for other excited states of He-like ions. Fig-

ure 3.8 shows the screening constant for 'So up to n = 5. As the principal quantum 

number increases, it becomes hard to obtain reliable data of energy levels. In Fig. 3.8, 

we see two strange data of Z = 20 and 24 in the case of n == 4. These data are from 

Sugar's. As the same feature of a slightly zigzag shape can be seen in the case of n = 5 

for the same Z's, these data are likely to be obtained either by interpolation or by 

extrapolation from other reliable ones. 
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Figure 3.8: Z dependence of the screening constant for 'So of He-like ions 

and 5. Two strange data of Z = 20 and 24 in n = 4 are observed.

of n = 2, 3, 4,

  Figure 3.9 shows the screening constant for 61So. As the screening constant has 

simple Z3 dependence up to n = 5, it would be strange if such simple Z dependence 

disappears from n = 6. Experimental data were usually obtained as transition energy 

and the accuracy would decrease if the data is expressed as energy level. This may be



3.2. ENERGY LEVEL RECOMMENDATION BY SCREENING CONSTANT 57

one reason we could not see simple Z dependence in published data. The data of highly 

excited levels with n larger than 5 are also important for practical purpose, because 

the recombination rate and ionization rate via highly excited states are important, for 

example, in calculating the total rates by the collisional radiative model[23]. Making 
reliable data for the levels will be a future study but it would be possible by the simple 

n dependence of the screening constant.
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Figure 3.9: Z dependence of the screening constant for 61So of He-like ions. The data of 
Kelly, Opacity Project, and Martin are shown. No simple Z dependence is found from 

published data. As the screening constant has a simple Z3 dependence up to n = 5, it 
would be strange if such simple Z dependence disappears from n = 6.

  It is useful for future reference to make a fitting formula in which the above-mentioned 

Z dependence of the screening constant is taken into account. We define the fitting 

formula as 

                 a(Z) =A+B+CZ3+DZ4. (3.6) 
The Z dependence as Z-1, Z3 and Z4 are selected because the fitting formula should be 
as simple as possible. Its accuracy turns out to be not so different, compared with the 
case where the detailed Z dependence shown in Table 3.2 are used. Table 3.3 shows the 
coefficients for n < 5 of the fitting formula. Coefficients are fitted for Z = 2 - 100 in the 
cases of n = 1 and 2 and for Z = 2 - 28 in the cases of 3 < n < 5, because many data 
enough for determining the coefficients are not available. In the case of 3 < n < 5, the 
fitting procedure has been done by setting D to zero. By the fitting formula using only 4 
fitting parameters, the energy level of ground state for all He-like ions can be calculated 
within errors of a few % for He, less than 0.7 % for Z < 10, less than 0.2 % for Z < 20, 
and less than 0.1 % for Z > 20. For excited levels, errors are much smaller. 

  Figure 3.10 shows the Z dependence of the screening constant for the ground state of 
Li-like ions. We see the same simple Z dependence and a slight deviation of the Opacity 
Project's data from the line of the Kelly's ones. 

  Figure 3.11 shows the Z dependence of the screening constant for the ground state 
of Be-like ions. We see the same simple Z dependence up to Z = 28. However, the Z 
dependence of Kelly's data changes from Z = 29. We also see this discontinuous feature 
of Kelly's data for the ground state of B-like, C-like, N-like, O-like, and F-like ions. The 
error in energy level due to the discontinuity is estimated to be about 0.7 % for the
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Table 3.3: Coefficients of the fitting formula Eq. (3.6) of the screening constant for He-
like ions. By the fitting formula, the energy level can be calculated with errors of a few 

% for He atom, less than 0.2 % for Z > 10, and less than 0.1 % for Z > 20 for the ground 
state 11So . For excited levels, errors are much smaller

State A B C (x10- ) D (x10-8)
11So 

2'So 

3'So 

41So 

5'So 

2 1P, 

31P1 

41P1 

51Pi 

23S, 

33S, 

43S, 

53S, 

2 3P0 

3 3Po 

4 3Po 

5 3Po 

2 3P1 

3 3P, 

4 'Pi 

5 3P, 

2 3P2 

3 3P2 

4 3P2 

5 3P2

0.60235 

0.89629 

0.95175 

0.96283 

0.96948 

1.0217 

1.0167 

1.0121 

1.0097 

0.74822 

0.84991 

0.89014 

0.91366 

0.87102 

0.94689 

0.96060 

0.96854 

0.88313 

0.94858 

0.96159 

0.96936 

0.90350 

0.94449 

0.95881 

0.96717

 0.14475 

 0.14475 
-0 .0094002 
-0 .0019478 

 0.0018069 
-0 .010643 
-0 .054228 
-0 .038371 
-0 .030917 

 0.13025 

 0.16137 

 0.12183 

 0.094767 

 0.25573 

 0.12920 

 0.094481 

 0.07557 

 0.21127 

 0.1171 

 0.087552 

 0.069957 

 0.12518 

 0.14386 

 0.10535 

 0.083903

-3 .7661 
-4 .6833 
-5 .9158 
-4 .8696 
-4 .0580 
-1 .6037 
-2 .5306 
-2 .3249 
-2 .0685 
-6 .7655 
-6 .3903 
-5 .1827 
-4 .2989 
-4 .4113 
-5 .8933 
-4 .7643 
-3 .9755 
-4 .5429 
-5 .6097 
-4 .5165 
-3 .7825 
-1 .4139 
-2 .1156 
-1 .9209 
-1 .6985

-4 .5829 
-5 .8777

-0 .061952

-3 .7628

-6 .1519

-6 .2528

-0 .26904
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Figure 3.10: Z dependence of the screening constant for the ground state of Li-like ions 
of Kelly's and Opacity Project are shown. The simple Z3 dependence is observed. The 
data of the Opacity Project are on the curve different from those of Kelly's.

ground state of Z = 29 ion if the simple Z3 dependence is adopted. We have to take 
attention about the discontinuity of the Kelly's energy level data.
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Figure 3.11: Z dependence of the screening constant for the ground state of Be-like ions. 

Though the Z3 dependence is observed, Kelly's data of Z > 29 are on the different line. 

As the screening constant has the simple Z3 dependence, the data of Z > 29 would not 

be trusted. This tendency in Kelly's data is observed in B-like, C-like, N-like, O-like, 

and F-like ions, as well.

  Figure 3.12 shows the Z dependence of the screening constant for the ground state 

of Ne-like ions. Here, there is not discontinuous feature at Z = 29. Ne-like ions are 

abundant in plasmas, so relatively accurate data for high-Z ions might be obtained by 

experiments. 

  In any case, as a number of bound electron increases, relative value of the screening 

constant to Z in Eq. 3.4 increases, the energy level data recommendation by the screening 

constant becomes difficult.
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Figure 3.12: Z dependence of the screening constant for ground state of Ne-like ions. The 
simple Z3 dependence is observed. Data of the Opacity Project and Kelly are almost on 
the same curve.

3.2.4 Discussions 

As n increases, fitting coefficients vary monotonously. This shows that Eq. (3.6) involves 
a physical meaning. 

  To discuss the physical meaning of the Z dependence of the screening constant, it 

is useful to summarize the screened hydrogenic model (SHM). Here, we quote Perrot's 
electrostatic expression[15]. In his formulation, the screening constant is defined as re-
lated to the interaction energy between two electrons. His hamiltonian for the electronic 

system is defined by 

2 

          <H>=> Pn(2n2 n~n)+~~PPPn,ZQn,n,. (3.7)                               n n n'<n n2 

The first term in the first sum is the kinetic energy and the second term is the interaction 

energy between nuclear charge Z and the reduced hydrogenic wave function T(Znr) where 
'I/(Znr) is used instead of the hydrogen-like wave function of '1 (Zr) . The second sum is 
the interaction energy between two electrons expressed by the screening constant an ,n,. 
This equation is different by the factor (1- Sn, n, /2) from Perrot's original one where 6n, n' 
is the Kronecker's S. While More[13] introduced this factor to satisfy thermodynamic 
consistency to the plasmas when applying the SHM of which electronic system contains 

the population Pn > 1, the factor is omitted here because there is no difference when the 

interaction energy between two electrons are discussed. If we use the definition

                        Zn = Z - E Pn, Qn, n, , 
                                                  n' _<n 

                   V Zn,                        En = 2n2 + E Pn' n72 on', n, 
                                                    n'>n 

total energy of the electronic system becomes 

2 

                      <H>=-EPn2.           2n 

n

(3.8)

(3.9)
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The inner shell electrons screens the nuclear charge, so the interaction with the outer shell 

electrons is included in the energy level. This result is natural in view of the electrostatic 

interaction and gives the same expression introduced by More[13]. 
  In the central-field approximation, the spin-orbit interaction[24] is

1: (rk) Lk - Sk 

k

where Lk is the orbital angular momentum operator and Sk is the spin angular momentum 
of the kth electron. The function fi(r) is given by

fi(r) _
1

2m2c2

1 dV 

r dr

in a central-field potential V(r). m and c are the mass of electron and the speed of light. 
Since we use Schiff's notations, units are not atomic but cgs-Gaussian. 

  Using the coulomb potential V (r) = -Zke2/r in the SHM and the classical orbit 
radius rk = akn(k)2/Zk, we obtain

~(rk)
C2 Zk4

2me2a03 n(k)6

where e and ao are the elementary charge and the Bohr radius. By comparison with the 

Eq. (3.7), a should be proportional to a factor Zk3/n4 Though the simple Z3 dependence 
of the screening constant can be explained as the spin-orbit interaction of the hydrogenic 

wave function in the Coulomb potential, the coefficient C in Table 3.3 does not decrease 

so rapidly as n-4 when n increases.

3.2.5 Summary 

Energy level data recommendation by the screening constant of the screened hydrogenic 
model is proposed. For high-Z ions, the screening constant is more useful and more 
accurate than the quantum defect for energy level data recommendation. While the 

quantum defect converges to a small value near zero as Z increases, the screening constant 
monotonously decreases. Furthermore, the screening constant has clear Z dependence as 
Z3 for Z = 10 - 40, as Z3.5 for Z = 40 c 70, and as Z4 for Z > 70. Using the simple Z 
dependence, we have made a fitting formula for He-like ions. By the fitting formula, the 
energy level of ground state for all He-like ions can be calculated with errors of a few % 
for He, less than 0.2 % for Z > 10, and less than 0.1 % for Z > 20. For excited levels, 
errors are much smaller. The same Z dependence of the screening constant was found 
for different ions, Li-like, Be-like, and etc. We have seen discontinuous Z dependence 
of the screening constant in Kelly's data for B-like, C-like, N-like, 0-like, and F-like 

ground state ions. The error in energy level due to the discontinuity is estimated to be 
about 0.7 % for the ground state of Be-like ion of Z = 29 if the simple Z3 dependence is 
adopted. Though this simple Z3 dependence of the screening constant can be explained 
as the spin-orbit interaction of the hydrogenic.wave function in the Coulomb potential, 
the coefficient in the fitting formula does not decrease so rapidly as n-4 as also predicted 
by the spin-orbit interaction when n increases.
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3.3

    CHAPTER 3. ATOMIC MODELS OF HIGHLY IONIZED PLASMAS 

Occupation probability in the "chemical picture"

3.3.1 Introduction

Calculating spectra of opacity and emissivity is one of the most important subjects in 
atomic process study of plasmas. In calculating them, we usually have to make an 
appropriate model for analysis. But we always meet a difficult: how many excited states 
we have to take into account. In the Schrodinger equation of the Coulomb potential, 
there are infinite number of eigenvalues near ionization limit. If a certain plasma effect, 
i.e. cutting off the highly excited states is neglected, the number of states diverges and 
atomic level population cannot be calculated. This is known as divergence of the atomic 
internal partition function and has been discussed for a long time[25]. This problem is 
schematically shown in Fig. 3.13.

1

mc
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smdsncal

Weight (26)
t

o$

Population

Figure 3.13: Schematic figure of the statistical weight and the population of atomic 

system in a plasma. There is infinite number of eigenvalues near ionization limit if we 

neglect a plasma effect.

  Roughly speaking, two models are proposed: one is a model which solves the detailed 

interaction between charged particles like the Planck-Larkin partition function (physical 
picture) [26] and the other is a model which does not discuss the details of the interaction 
but the energy and the statistical weight before and after reaction (chemical picture) [27]. 
In this section, we report a new analytical expression of the occupation probability of 

highly excited states in the "chemical picture" using the Holtsmark field and saddle-point 

estimates.



3.3. OCCUPATION PROBABILITY IN THE "CHEMICAL PICTURE" 63 

3.3.2 Formulation 

We follow a basic formulation of occupation probability by Hummer[25]. The Boltzmann 
law for atomic level populations says that the population Ni of state i with energy Ei 

relative to the ground state of an atom in thermal equilibrium at temperature T is 

                  Ni a gi exp (-a) (3.10) 
where gi is the statistical weight of the state i. The total number of atoms of the species 

in question is then proportional to the so-called internal partition function 

                     Zi.t = ~ gi exp (•Ei) - ET . (3.11) 
i As the sum over all bound atomic states includes those near the ionization limit for which 

Ei -+ const., Zi,,t (T) diverges. 
  The approach that we have exploited is known as the occupation probability method, 

in which an occupation probability wi is inserted into the Boltzmann law and the partition 

function. Thus we rewrite Eqs. 3.10 and 3.11 as 

                           EiNi = wigi exp (-)/2(T) kT int (3.12) 
and 

                  Zi,,t (T) _ > wigi eXp (_). kT (3.13) 
i We can interpret wi as the probability of finding the atom in state i relative to similar 

ensembles of non-interacting particles or as the factor by which interactions with the 

plasma reduce the phase space available to the atomic state in equation. If wi -4 0 
sufficiently rapidly as i -4 oo, the internal partition function Zint (T) is finite. 
  The basic idea of the Stark ionization picture is that a bound state i can exist only 
if the field strength F is smaller than some critical value Fc, which depends on the state 
i. The probability that the bound state i exists is then 

                       wi = JFiCdFP(F) F, c , (3.14) 
where P(F) is the microfield distribution function. In this section, we try to find a 
simple expression of wi using the saddle-point estimates for FC and the Holtsmark field 
for P(F). 

  In the saddle-point estimates of FC, the orbital electron in a hydrogenic ion was 
assumed to move in the sum of the Coulomb potential arising from the nuclear charge 
Za, and the potential F• r, where F is the magnitude of the microfield assumed to be 
spatially uniform and independent of time. This composite potential has a saddle point, 
as illustrated in Fig. 3.14. The assumption is that no bound states exist above the saddle 
point. For a state of ionization potential E, the critical field is then easily shown to be 

2 

                        Fc(E.) = EZa. (3.15) 
In the following, we use atomic units. For a hydrogenic ion we have 

                              V En = 2n2 , (3.16)
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n is the
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3 

                  Fn = 16n4. (3.17) 
principal quantum number of the state.
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Figure 3.14: 

field.

Schematic figure of the saddle point o f hydrogenic ions in uniform electric

  The probability of finding the field vector F in F, F + dF is in general 

n 

         W0(F) = f ... f S F - E Fj p(r1, r2, ... , rn) drldr2 ... drn 
                                     j=1 

where the Coulomb field produced by the jth particle is 

                            Fj = -Zprj/rj3. 

Zp is perturber charge[28]. p is the probability 
the charged particles are evenly distributed, q 

field, 

           H(,6) = FoW (F) = 2,Q f x exp[-x3/2] sin((3x) dx 
where Q = FIFO, 

                                4Np 2/3                      FO =27rZp(N 
                            15 

) 

                                 Fig. and Np is the number density of the perturber ion. 

field for reference. 

   We are now 

approximation, 

electric field. A 

                      sin(ox)                            Ox. If /3N0,wekn 
integrate the equation of the Holtsmark field as 

                            42 
                 H(fi) _ 

Actually, we can see the parabolic shape near Q ' 0 in Fig. 3.15. 
  Using the saddle-point estimates, we have 

                          F° 52Z 8                  wn = f dF P(F) = 2177r4n12Z 3N 2 -                                                          p p

(3.18)

    of having particle 1 in r1, r1 + dr1, etc. If 

  E .3.18 can be reduced to be the Holtsmark

(3.19)

(3.20)

                    (3.21) 

In      3.15, we show the Holtsmark

discussing highly excited states. If the saddle-point estimates are a good 

such highly excited states rapidly decrease even in the presence of weak 

11 we have to take into account is then Q ti 0 part of the Holtsmark field. 

                ti ow simple relation                          Using the relation, we can analytically

(3.22)

(3.23)
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Figure 3.15: Holtsmark field. We can see the parabolic shape near 0 r 0.

This expression is so simple that we can estimate the occupation probability by the nu-

clear charge and the principal quantum number of the ion, and the nuclear charge and the 

number density of the perturber ion. In detail, the occupation probability is proportional 

to the 8th power of the nuclear charge and inverse proportional to the 12th power of the 

principal quantum number of the ion. And it is inversely proportional to the nuclear 

charge cubed and the number density squared of the perturber ion. Equation (3.23) can 
be more than unity for small n. In the case, we have to adopt unity instead of the given 

value by Eq. (3.23). 
  Fortunately we can appeal to theoretical calculation to support our result. Hummer 

showed the numerical results of the occupation probability for H and He+ plasmas pre-

sented in Figure 3 in Ref. [29]. We can see simple n-12 dependence of the occupation 
probability. In Table 3.4 are displayed the occupation probabilities for two models for 
hydrogenic carbon. In this case, microfield stems from the mixture of C6+ and C5+ 

Equation (3.23) is changed to be 

                 Fn 52Z 8             wn = f dF P(F) = 217ir4n12 Z 3/2N + Z i3/2N • 2' (3.24)                                     ( P P P P ) 

where ZP' and NP' is the nuclear charge and the number density of another ion. The 

first model in Table 3.4 is given by Eq. (3.14) using the Holtsmark field exactly[30]. 
The second is the result by Eq. (3.24). We can see that Eq. (3.24) roughly gives the 
critical principal quantum number where bound states disappear. Due to the quadratic 

approximation for the Holtsmark field, numerical values of the occupation probability 

near the critical principal quantum number are at most three times larger than those 

estimated with the exact one. For highly excited states, Eq. (3.24) gives almost exact 
values. 
  Of course, there should be a certain limitation of this simple expression for the oc-
cupation probability since we used the Holtsmark field and the saddle-point estimates 
in the chemical picture. However, this simple expression of the occupation probability 

gives basic reference numerical values for quantitative comparison study with the result 
by a detailed model in which the ion-ion correlation is taken into account or the quantum 
mechanical calculation has been done.
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Table 3.4: Comparison of occupation probabilities at Te 

for hydrogenic carbon.

= 1x106 and p = 1x10-2g/cm3

n Holtsmark This Model

1 

2 

3 

4 

5 

6 

7 

8 

9

    1.00 

9.97(-1) 
9.50(-1) 
4.90(-1) 
5.25(-2) 
4.63(-3) 
5.19(-4) 
7.79(-5) 
3.19(-6)

1 

1 

1 

1.68(-1) 
1.16(-2) 
1.30(-3) 
2.04(-4) 
4.11(-5) 
2.82(-6)

3.3.3 Summary 

We propose a simple analytical expression for the occupation probability of highly ex-
cited states in low-density hydrogenic plasmas. This expression is based on the "chemical 

picture" and is derived by using the Holtsmark field and the saddle-point estimates. We 
believe that this expression would be a basic model in the chemical picture since ion-ion 
correlation is neglected and the simple saddle-point estimates are used. If density of 
the plasma is low enough and the temperature is high enough, this expression would be 
a good approximation. If not, this model roughly gives the critical principal quantum 
number where bound states disappear and basic reference numerical values of the occu-

pation probability for quantitative comparison study with numerical results by detailed 
modeling.
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Chapter 4

Conclusions

We have developed a general opacity code "CORONA". The code can calculate opacity 

and emissivity used in the hydrodynamic code of laser plasma simulations. 

  As the atomic model, the azimuthal quantum number 1 has been taken into account in 

the electron energy levels. Based on the statistical model, we have given a solution for the 

difficulty we meet whenever we use the average ion model; the line profile modeling. Using 

the opacity and emissivity, we were able to reproduce the corresponding experimental 

results from laser produced high-Z plasmas, especially, spectra from the plasmas. 

  For highly ionized plasmas, we have shown a new method for the electron energy level 

data recommendation. In the method, the screening constant of the screened hydrogenic 

model is used as the index. We have also shown a simple expression of cutting-off the 

highly excited states. These method and model will help us to make an appropriate 

model of highly ionized plasmas. 

  We summarize the results of the different chapters in the followings as conclusions.

Chapter 1 

We have summarized atomic models that have been used in the hydrodynamic codes of 

the inertial confinement fusion research, i.e., the screened hydrogenic model (SHM), the 
detail of the rate coefficients, the model for the pressure ionization and the continuum 

lowering, the collisional radiative equilibrium (CRE) model and the local thermodynamic 
equilibrium (LTE) model, and the detail of formulae of the emissivity and opacity cal-
culations. 

  In Sec. 2.3, we have shown a new model for calculating the spectral opacity and 
emissivity of high-Z plasma like gold for solving the X-ray transport in hydrodynamic 
codes. In the model, plasmas are assumed in the CRE. The 1-splitting effect, i.e., the 
consideration of the azimuthal quantum number in the electron energy levels is introduced 
using the SHM developed by Perrot. As a result of a gold plasma, the electron energy 
level E4 of Au+40, for example, splits into four sublevels with the width of about 300 eV 
by including the l-splitting effect. The transitions between the sublevels, such as 4d - 4 f , 
are important elements to understand the strong peak near 200 eV in the experimental 
spectra of gold plasmas. 

  In Sec. 2.4, we have shown a line profile modeling for the average ion model. For the 
opacity and emissivity of the partially ionized high-Z plasmas like gold, the line profile 
is approximated to be the Gaussian profile of which width is determined by the ionic 
distribution of different charge states. This opacity and emissivity are installed into the

69
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hydrodynamic code ILESTA-1D to examine the experimental spectra. As a result of the 
simulation, the peaked X-ray near 200 eV seen in the experiment stems from the lines 
due to the An = 0 transition between the sublevels of n = 4.:[n addition, relatively flat 
spectra in by = 400 r 800 eV seen in the experiment can be explained as a result of the 
1-splitting of the line of the 4 - 5 transition. The line group of the 4 f - 5g, 4d - 5f, and 
4p - 5d transitions mainly forms this flat structure. 

  In the simulation of the X-ray generation by laser produced plasmas like gold, the 
assumptions that the plasmas are in the CRE, the 1-splitting effect, and the line profile 
modeling if the average ion model is used, are essentially important to reproduce the 

global structure of the X-ray spectrum of the corresponding experiment. 
  In Sec. 2.5, we have examined the accuracy of this atomic model for the opacity and 

emissivity calculation of the high-Z plasmas in detail. 
  We have compared the values of the electron energy level and oscillator strength with 

the values by the Hartree-Fock-Slater (HFS) model. From the HFS results, as a number 
of electrons in the level of n = 4 increases, the oscillator strength of n = 4 - 5 decreases, 
while the oscillator strength between sublevels of n = 4 increases. Errors in the oscillator 
strength used in Sec. 2.3 are estimated at most about a factor of 2 to those of the level 
of n = 4. 

  We have discussed the j-splitting effect briefly. For the high-Z ions like gold, the 
transition energy of the 4d - 4 f obtained by the SHM with 1-splitting does not differ 
substantially from the detailed theoretical value including the spin orbit interaction. The 
transition energy of the 4p - 4d, however, split into two line group, i.e., at about 33 A 
for 4p1/2 - 4d and at about 50 A for 4P3/2 - 4d. The line group of the lower energy 
corresponds to transition given by the SHM, but the line group of which energy is higher 
than that of 4d - 4 f is purely j-splitting effect. The two-spli.tted structure of the soft 
X-ray region is actually observed in the experiment of the Pb. Inclusion of the j-splitting 
effect would be a next subject in future. 

  We have shown the accuracy of the population for each charge state that is calculated 
from the fractional population of the average ion model by the comparison with those ob-
tained by the detailed configuration accounting (DCA) model on the aluminum plasmas. 
In the DCA model, the rate equation for each charge state is solved separately. Although 

it also shows a small shift of the distribution of the charge state to the lower temperature 

side, the distribution can be well reproduced even in the case of low-Z plasma. 

  Finally, we have shown the comparison study between the spectral opacity based on 

the model developed in this chapter and the results by detailed opacity codes for the 

case of hydrogen, carbon, and iron plasmas. 

  For the low density and low discharged hydrogen plasma, it is difficult to estimate 

the correct average ionization degrees with the average ion model. 

  In the case of the carbon plasma more than the solid density, the continuum state 

near ionization threshold is almost occupied by free electrons. This treatment for the 

free states can be easily installed into the average ion model. But there are no reliable 

experimental results of such extreme condition that can be compared with the theoretical 

results. 

  From the density dependence of the mean opacity of iron plasmas, we have obtained 

the applicable density limit of the present model. In the case of low density less than 

0.01g/cm 3, the contribution of the term-splitting becomes important. As it seldom occurs 
that the plasmas of such density becomes important in the usual laser produced plasma, 

we can conclude the opacity data by the CORONA is good enough for the simulation of
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the laser produced plasmas. 

  For the energy level related to the L shell (n = 3), the SHM can give accurate values 
which can be compared with the experimental ones, while for the energy level related to 

the M shell (n = 3), the SHM can not give accurate values enough. Determining the 
energy level related to the M shell is also difficult for other detailed opacity codes, since 

the effect of the spin-orbit interaction becomes important.

Chapter 2 

Energy level data recommendation by the screening constant of the screened hydrogenic 
model is proposed. For high-Z ions, the screening constant is more useful and more 
accurate than the quantum defect for energy level data recommendation. While the 

quantum defect converges to a small value near zero as Z increases, the screening constant 
monotonously decreases. Furthermore, the screening constant has clear Z dependence as 
Z3 for Z = 10 - 40, as Z3.5 for Z = 40 - 70, and as Z4 for Z > 70. Using the simple Z 
dependence, we have made a fitting formula for He-like ions. By the fitting formula, the 
energy level of ground state for all He-like ions can be calculated with errors of a few % 
for He, less than 0.2 % for Z > 10, and less than 0.1 % for Z > 20. For excited levels, 
errors are much smaller. The same Z dependence of the screening constant was found 
for different ions, Li-like, Be-like, and etc. We have seen discontinuous Z dependence 
of the screening constant in Kelly's data for B-like, C-like, N-like, O-like, and F-like 

ground state ions. The error in energy level due to the discontinuity is estimated to be 
about 0.7 % for the ground state of Be-like ion of Z = 29 if the simple Z3 dependence is 
adopted. Though this simple Z3 dependence of the screening constant can be explained 
as the spin-orbit interaction of the hydrogenic wave function in the Coulomb potential, 
the coefficient in the fitting formula does not decrease so rapidly as n-4 as also predicted 
by the spin-orbit interaction when n increases. 

  We propose a simple analytical expression for the occupation probability of highly 
excited states in low-density hydrogenic plasmas. This expression is based on the "chem-
ical picture" and is derived by using the Holtsmark field and the saddle-point estimates. 
We believe that this expression would be a basic model in the chemical picture since 
ion-ion correlation is neglected and the simple saddle-point estimates are used. If den-
sity of the plasma is low enough and the temperature is high enough, this expression 
would be a good approximation. If not, this model roughly gives the critical principal 

quantum number where bound states disappear and basic reference numerical values of 
the occupation probability for quantitative comparison study with numerical results by 
detailed modeling.
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