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In this note we study F-projective stable stems in dimension # with 7=
n=22, where F denotes the complex (F=C) or quaternionic (F=H) number
field. D. Randall [9] determined them in dimension <6.

We use the notations and terminologies defined in the previous paper
[8] or the book of Toda [11] without any reference.

1. Definitions and results

Given a pointed space X and a positive integer m, we define

image of p¥: {FP,, X} — {S*!, X} if m=nd—1
ol (X) = { .

0 if m=%E—1 mod(d).
An element of 7,7 (X) is said to be F-projective. In this note we only con-
sider the case of X being the spheres. Remark that z,;"; (S') is a subgroup of
G,i-1-;. We say that the m-stem G,, is fully F-projective if there exist integers
I and n with m=nd—I—1 and 75" ,(S")=G,,.

Given a positive integer m, we consider the following problems.

(Q.1),, Compute 75" ,(S*) for each n and [ with m=nd—I—1.
(Q.2),, What elements of G,, are F-projective?
(Q.3),, Is G, fully F-projective?

Of course answers of (Q.1), solve (Q.2), and (Q.3),. Our main results are
tabled as follows. Here 0 means that the problem is completely solved but no
signed place not completely solved yet®. Details are given in (1.6) and § 2.

In what follows in this section we prove some general results. Since
pr is the composition of pf, and the canonical map CP,,— HP,, we have

*) Recently in his dissertation, R.E. Snow has determined the C-projectivity of the 2-com-
ponents for the stems less than or equal to 15.
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(Q.1)n (Q-2)n (Q-3)n
;\F H c H c H c

7 0 0 0 0 no no

8 0 0 0 no yes

9 0 0 0 no yes
10 0 0 0 no yes
11 0 0 0 0 yes yes
13 0 0 0 0 yes yes
15 0 no yes
17 no
21 0 yes
22 0 0 yes yes

Proposition 1.1. 757 ,(S") is contained in =5 .(S") for any | and n.
We have also

Proposition 1.2. If acG,, or beG, is F-projective, then abeG,,,, is
F-projective.

Proposition 1.3. If 0=j<d, #n{fin,-(S™7) is equal to the image of
Durii™: {FPn+lz,In Srd=i} — {Sthd-1 Gni=i},

These can be proved easily so we omit the details.
In [7] we proved the following.

Proposition 1.4. 7z{54),-1(S™) contains a cyclic subgroup of the order
den[F {n, k}ap(n, k)].

Recall that FP,, , can be identified with the Thom space (FP;)"[3]. Let
M (F) be the order of £, in the J-group J(FP,), which was determined by Adams-
Walker [2] and Sigrist-Suter [10]. Then we have

Proposition 1.5. If m=n mod (M. ,(F)), then

”(SmF+k)d—1(S"'d—j) = ”(iik)d—l (S"d-j)
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for 0= j<d.

Proof. For a vector bundle 7, S(7) and D(7) denote the associated
sphere and disk bundle respectively. Without any loss of generality we may
assume m>n. By assumption there exists an integer / and a fibre homotopy
equivalence [3]

[ S(m—n),., Dl — S((m—n)d+-1)

where j denotes the real j-dimensional trivial vector bundle over FP,,,. Natu-
rally we can extend f’ to a fibre homotopy equivalence

D((m—n)&,, D) — D((m—n)d+1)
and to a fibre homotopy equivalence
f,/: (D(mEkHEB_I_)) S(mgk+l®_l)) - (D(”Ekﬂ@((m—n)d‘f‘l) ’
S D(m—n)d+1)).
Hence we have a homotopy equivalence

7" E'FP iy oy = (FPyy)ts1®1
— (FPk+1)n5k+1®((m—n)d+l) — E(m-")d+lFPn+k+l,k+l

where E denotes the reduced suspension. Consider the following diagram in
which the horizontal sequences are the natural cofibrations.

E'p d
7 d- m+k k
E'Smtiyi-1 —————— E'FP,,;, C E'FP, pi1441
1744
- d l y f
Et=matly s ¢

- ! d-1 -n)d+1 -n)d+1
Em n)d + S(n+k) > F(m-n)yd+ FPrH—k,k c Em-n)d+ FPn+k+l,k+l

7 » E1t1§mtk)yd-1

q

—_— E(m—n)d+l+1S(n+k)ri—l .
By cellular approximation we may assume that there exists
fi E'FP, ,— E™"FP, 4
with Zof=f""oi and so there exists

h: EI+1S(m+k)d—l — E(m—n)d+l+lS(n+k)d—l

with hog=gqeo f’””. In the stable category f is clearly an equivalence and so &
is an equivalence, too. Therefore in the stable category we have the following
commutative square in which the vertical stable maps are equivalences.
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.y
S(mtkyd-1 n FP, .,

J h J f
E(m_n)dpn+k,k

EmmdQeitd-l___— 5 BmmmdEP,

This and (1.3) complete the proof.
We prove a negative result.

Theorem 1.6. Let p, (k=0) denote the Adams element in Ggy, [1]. Then
w, is not H-projective.

Proof. Consider a commutative diagram in which f and f’ are stable maps

Séntsk-1 Priznn N HPHZ“,‘2 (- HP,,+2k+1,2k+1
|- |1 |7
Gan+ek=1 __ffg”jﬂ_) Sin-2 — 5 C(fopPuroes) -

Apply K to this diagram; since K(X)=0 if X is a finite complex with cells of
only odd dimensions, we have the following commutative diagram

0~ K(HP,ip2) < K(HP, ppr12841) € R(S"%) «— 0
* /3% _
]\f ,[ d T* ]\
0 K(S“"‘Z) K(C(f°Pn+2k,k))<— K(St+8) «—0

Let ac K(C(fop,s1s)) be an element which maps to the generator g¢*'e
K(S*?), and beK’(C(fop,,H,,,z,e)) be the generator of the image of =»* with
f*(b)=2"*. Then a and b generate K(C(fo p,sn2)). We have

J(a) = 22" 'a+ b
for some integer A, and

ec(foDurona) = NJ(224R—2271)
k
Putf'*(@:i a;z"*. Then

‘#2(1:/*(‘1)) — 2 ai(z2+4z)n+i — g a{(;{‘f__f)4n+2i-jzn+j ,

'\,’/'Z(f’*(a)) =f’*(,\lr2(a)) — 22n—1 ‘é:;) a,z"“—{—)\,z"”k .

Comparing the coefficients of 2**%*, we have
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2k-1 .
A= ‘Z_,(‘) a‘.(g’;}__’ >4n+2i—zk+(22n+4k_22,,_1)a2k

]

and so
clfopurama) = 3 B Yoy
On the other hand
0 = FH(ch(gt ™) = ch(F(g ) = 3] aeh())*
=St

Since ¢,(¢)=t+higher terms, we have
Gy=ay= - =ay =0
and then
ec(f °Pn+2k,zk) =0.
Since u, has non-trivial e,~invariant, the conclusion follows.
Since py=mn, p,is C-projective. We shall prove that u, is C-projective (2.9).
2. Computations

From now on, we work in the stable category of pointed spaces and stable
maps between them with exceptions in (2.3), (ii) of (2.4), (2.5) and (2.7).
Concerning with F-projective 7-stems we have

Theorem 2.1. (i) #35/(S*)=Z/den[H {n, 2} ay(n, 2)].
(i) 755 (S?)=Z[den[C {n, 4} atc(n, 4)].

Proof. Given fe {HP,,,, S*"}, we have
ec(foPuta,2) = —deg(f)ay(n, 2)

from Theorem 1.1 of [7]. Since e;: G;— Z/[2*-3-5 is an isomorphism, the con-
clusion (i) follows. By the same methods (ii) follows too.
By an easy calculation we have

den[H {n, 2} acy(n, 2)]12%-3-5
and these are equal when for example n=4, and
den[C {n, 4} ac(n, 4)]12%.3-5

and these are equal when for example n=13. Thus, since G,=Z{c}PZ,;,
we have



510 H. OsHIMA
Corollary 2.2. 220G, is not H-projective but C-projective, and o is not
C-projective.

Recall that g,=p%: S7—S* denotes the Hopf map. Let g,=E" ‘g,Em,.4(S")
for n>4. Then we have

Lemma 2.3. g;=v;+ay(5).
We have also
Lemma 24. (i) <{», mv, w)>=<n, mg., ngQD%mn(n, 2v,v> for any

integers m and n with mn=0 mod(2).
(i)  {ns, ve, 2vo} 1= {ms, Mgs, 2nge},=E&; for any odd integers m and n.

Proof. We have

Ny MGy Mooy = <1, My, NG >+, MLy, NZ) by (3.8) of [11],
<{n, mv, ng.,C<{n, mv, n >+, mv, na,> by (3.8) of ibid.,
<{n, my, na,y = <{n, mv, 16na,> since 3a; = 0
c<n, 16mv, na;> by (3.5) of ibid.,
=0 since 8v = 0,
and so

<n, mv, ng..>C<n, mv, nv)
but their indeterminacies are equal to 7»G,, hence
<y mv, ng.y = <7, mv, nv)
D%mn(n, 2v, vy by (3.5) and (3.8) of [11].
We have also

<n, moty, ng..> = {n, 4mat,, ng..> D{4n, ma,, ng.>=0
and so
<{n, may, ng.)=0
and then

<N, Moo, NPy = {7, My, niz):)%mn(n, 2v, v>.

Thus the conclusion (i) follows.
By the proof of (6.1) of [11]

E2€3 =& = {775, Vg, 2”9}1 .

Given ac 7z,,(S?) and b€ 74(S®) with boa=0, we consider the Toda bracket
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{ns, E'b, Ela}1E7’13(S5)/(”10(S5)E2”+’75E1”12(S5)) .

By Toda [11] it is easy to see that #7E'w,(S%)=7,(S%)E?%a=0. Hence
{ns, E'b, E'a}, consists of a single element. Then by the same methods as the
proof of (i) we have

{75, ve, 209}, = {ms5, mvg, 2nv}, = {5, mgs, 2ngo},

for any odd integers m and n. Thus the conclusion (ii) follows.
We have

Lemma 2.5. (i) ¢*: {HP,,;, S*" '} —{S*, S} is an isomorphism.
(i) *: {HP, 5, S*" 2} —{S*, S*%} is an isomorphism if n is odd.
(i) If n is even, we have a split exact sequence:

% ¥
0__) {S4n+4 S4n 2} q N {HPn+2 2 Sn 2} N {S4n S4n 2} — O

Proof. Considering the Puppe exact sequence associated with the cofi-
bration §***— HP,,, ,CHP,,,,, we obtain (i), since G,=G5=0. Recall that

Dat1,1 = M4yt Sints — HPn+1,1 = S*

from [5] (or see (1.14) of [8]). We have the following exact sequence:

{Su+1) G-z} TITN, Prrin* S, {Qents Gen- 2} > {HP, ;. S~ 2
wulge} = Z,{v%}
%
s {St, Sw-2} s [Gin+3 Gun-7)

=0

Since p,.11*(g-)=ng%=m?, p,..,* is epimorphic and ¢* is isomorphic if # is
odd. Thus the conclusion (ii) follows. If zis even, p,., ;*=0 and we obtain the
short exact sequence in (iii). Hence {HP,.,,, S*""?}=Z, or Z,(pZ,. Suppose
that {HP,,;, S*" %} =Z,. Then ¢*(»?) is divisible by 2. Hence p,.,,*(¢*(»?))
=0since 2Gy=0. But gop,.s:=Puiz1=(n41)gs1s therefore p,.,,*(g*(?))=
(n+1)°40. This is a contradiction. Thus {HP,.,, S*" %} =Z,PZ,. This
completes the proof. ’

Recall that KO*(HP,)=KO*[£]/(§"). Using the complexification ¢: KO*—
K* we can easily prove the following. Details are omitted.

Lemma 2.6. %(8)=3E+ 339,22+ 3%,2

Now we determine H-projective 8 and 9-stems. Recall that Gy= Z,{5}
DZ,{€} and Go=2Z,{*} PZ,{nE} PZ,{u} with the relations no=5+& and
no=0% We have
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Theorem 2.7. The groups =30(S*9) (j=1, 2) are given by the following
table.

n mod (4) ins1(S*7Y) mins (S %)
1 Z,{&} Z,{n¢€}
2 Z,{o} Z,{v}
3 Zy{nc} Z,{n*s}
0 0 Z,{v%}

Proof. By (i) of (2.5), {HP,.; 3 S*" '}=Z,. Let f be a generator of it.
Then z3/,,(S*™!) is a subgroup of G generated by fop,.,, and we have the
following commutative diagram

S4n+6 S4n+7

\(7"—1— 18.. Pn+z,2l X"*j-‘
Pn +1,1

Sois Tt G < HP,,,, — St
N
Sint
Since p,411="1g4, and p,,, ;=(n+1)g,, .4, we have
FoPri2 260, ngw, (n+1)g> .
By (i) of (2.4) this Toda bracket contains %n(n—l—l)(ﬂ, 2, v>. Hence
170G, if =0 or 3 mod(4)

<{n, 2v,v> if n=1 or 2 mod(4)

_{ {0, 76}  if =0 or 3 mod(4)
e 8 if n=1 or 2 mod (4)

<77’ LN (”+1)gw> = {

Hence
(¥) fopus22=0o0r %o if =0 or 3 mod (4), and & or » if n=1 or 2 mod (4).

Suppose that n=1 mod(4). By (ii) of (2.4), &= {ns, ngs, (n+1)gs},. Consider
the following diagram:
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S g13

\Z Ja 2
E?g,

' ———>8 < E*HP,———S®

75
S5
Then we have
&< Image of (E?p,)*: [E2HP,, S°] — m5(S®)
and EE#{(S?%), and then
it (S%) = Z,{¢} .
If n=2, we have
Ean-1 = B {5, nge, (n+1)ge}1 € {Man-1, 18ans (n+1)gans3} an-s
by Proposition (1.3) of [11]. Since the Toda bracket in the right hand is a
coset of 7., ((S*" )+ 1)g4pr 4+ T4n1 B °715(S%) =0, we have
Eipm1 = {Man-1, N8 (M+1)ganr3} ans -

Since [HP,.; 2, S* |2 {HP,.,, S* '}, f is representable by an unstable map,
we denote it by the same letter f. Then
Enn =f°Pn+2,z .
Thus 755 .(S*")=Z,{¢} if n=1mod(4). From (ii) of (2.5), {HP,.,, S*" %}
=0{HP, 5, S*" '} =2Z,if nisodd. Hence z{/:(S*" %) =Z,{n€} if n=1mod (4).
We use the Adams dj- and ez-invariants [1]. Let ¢, KO™! be the gen-

erator, and put e;=gre,€ KO™°. For fe {HP,,,,, S* '} we have the commuta-
tive diagram:

ey
R AN HP,.,, C HP,,;,

lz Fobusos lr; b

Sent1 = "7 g1 = S C(foppz) -

Apply KO~*-9 to this diagram, then we have the following commutative diagram
in which the horizontal sequences are exact:

0« I?O"”‘Q(HP,,H,Z)(— f0—4n—9(HP”+3’3) (_12'0—4”—9(‘34”3) <0

* . ] -

0« fo—u—s(Sm—l)‘]_ I?O_“_g(C(fopﬁg,z)) - l:-(VO"‘”"Q(S“”*s) 0.
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Let aEIgO‘4”'9(C( foPuiz22) be an element which maps to a generator of
KO8 =Z, and b€ KO~*~C(fop,.,,)) be the element which is the
image of the generator of KN(')‘““*’(S“+ $=Z,. Since K’Z)“"“‘-’(HP,,JrZ,Z)=Z2 {e,£"}
and KO~"~(HP, ,, ;)= Z,{e"} BZ,{e."*?} we have

f¥(a) = xeE"+ye" "

for some x, y&Z,. We have also
¥i(a) =3 a4 nb
for some A Z,, and
ex(foPuizg) =N
We have :
F*((@)) = f*(3* a+nb) = 34 f(a)+ 1 f*(b)
— 34”+4xe9§”—|—(34"+"y+x)elg"” ,
and
¥ (@) = ¥(f*(a) = V(weE"+yeE"*?)
— 2P E) () (E )
— x34eg(34n§”+34n—1nylgﬂ+1+34n—2ny2'£n+2)
+ye 342 gn2 by (2.6)
= w34 e E" (234 2+ 34 +8)e, E42 since e,y, = 0
and ey, = ¢, .

Comparing the coefficients of ¢,£"*%, we have
A=mnx (inZ,).
On the other hand the following triangle is commutative by (i) of (2.5).
i
S4” = HPn-}-l,l - HP”+2'2
x l f
S4n—l .

Hence we have the commutative triagle

3 —~—
RO-+-9(S*) KO HP,.,,)

7* EO’-M—s(qu)
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and * f* j*(a)=xe,£" where j*(a) is the generator of KO~*-9S*"1=Z. Since
n¥*=d4(n)#0, we have x=0 and so

er(foparas) =n.

Since eg(no)=0 [1], by (¥) we know that 7 ,(S*')=Z,{ns} if n=3 mod(4),
or 0if =0 mod(4). Then zJ/5(S* ?)=Z,{n*sc} if n=3 mod(4) from (2.5).

Suppose that # is even. By the fact e (v*)=e (7€)=0 and the proof of
(1.6), we see that

Z,{0%} CrSEA(S*?)C Z, {0 DZ,{nE} .

If 232 (S 2)=Z,{v*} DZ,{n€}, nii:(S*"?) contains the J-image 7’oc=1r47¢,

that is, there exists k€ {HP,,.; 5, S**~?} with hop, ., ,=7%. Using KO~ and
the same methods as above we have

eR(h°Pn+z,z) =nx=0
for some xeZ,, but this is a contradiction since ex(7%c)=0 [1]. Therefore
(**) it (S* %) = Z,{v%} if n is even.

Next suppose that n=2 mod (4). By (¥), z3f (S )=2Z,{p} or Z,{¢}. If
i (SN =2Z,{&}, 73 :(S*?) contains n€. This contradicts to (**). Thus
i 1(S*)=Z,{p} and the proof is completed.

Concerning with C-projective 8-stems we prove

Theorem 2.8. 73,5 ,(S*™") is equal to

1) G, if n=2 or 4 mod(8),
@) 0 if n is odd,

(i) Z,{no} or Gy  if n=0 or 6 mod(8).

Proof. Suppose that # is even. Since @;0p,144=Pu+s,=7 from (i) of
(1.13) of [8], w55%7(S*™!) contains oogzop,.ss=0cn. Then by (1.1) and (2.7),
Zone (S 1)=Gy if n=2 or 4 mod(8). : ,
Next suppose that z is odd. Put n=2m-+1. Consider the following
Puppe exact sequences:

{S4m+3) S4m+l} ( Pom-+2 1) {S4m+4 S4m+l} , {CP2m+3 ” S4m+l}

p2m+2 1

{S4m+2 S4m+l} {S4m+3 S4m+l}
%
{geme, Semei} L, {CPyprs5 S} —— {CPpisz, S}

— {S4m+5’ S4m+1} .
Since poyr21="1and P’=12g.., {CPy, 45 S} =Z),. Leta€ {CPy, 5 S}
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be an element with i*(a)=¢*(g.). Then a is a generator. Let f& {CP,,.s54
S*"*1} be an element. Then f|cp, ., .=xa for some integer x. Consider the
following commutative diagram:

S4m+9

/ l Domisa

i
CP. 2m+3,2 c CP. omte3 CPyyi54

s |

CPZ,,,-H;,] CP2m+4,2 f
xa
ok
Sem+4 = HPm+2,l ‘-'x"é--> Stm+l

where the fact p,, s, =0 assures the existence of s. We have
Xgomogol = Xgnog = XAoT .
Since 7* is monomorphic in the above Puppe sequence, we have

Xgoomoq = Xa .
Then

foDomis,a = Xaos = Xgomogos = xg.00 =0

since woqos€ G;=0. This completes the proof.
Concerning with C-projective 9-stems we prove

Theorem 2.9. 7354(S™) is equal to

(i) G, if n=>5, 7 mod(8), 3,9 mod(16), or 17 mod(32),
(il) Z,{n’c} DZ,{n¢} if n=11 mod (16) or 1 mod(32),

(i) Z,{»%} if n=0 mod (4),

@iv) O if n=2 mod (4).

Proof. By (1.1) of [7]
ec(f o Puss,5) = —deg(f)ac(m, 5)

for f€ {CP,.55 S™}. Hence x3,50(S*) contains p if and only if »,(C {n, 5} X
ac(n, 5))=—1, since ec(#)=% and e (v’)=-e (16)=e(7°c)=0. By (1.16) and

(3.1) of [8] and an elementary analysis, we have
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4 if n=4, 5, 6 or 7 mod (2%)

3 if =3 mod(2?) 8, 9 or 10 mod (2*)
vy(C{n, 5}) =< 2if n=1, 2 mod (2*) or 16 mod (2°)

1 if =32 mod(2°)

0 if =0 mod(2°),

—5if n=5 or 7 mod(2?)

—4 if n=6 mod (2%), 3 or 9 mod(2¢)

—3 if n=10 mod(2¢), 11 or 17 mod(2°)

—2 if n=4, 8 mod(2*), 18 mod(2°%), 27 or 33 mod (2°)
—1 if n=16, 28 mod (2°), 2 mod (25) or 59 mod (27)

=0 if =0, 12 mod(2°), 1, 34 mod (2%) or 123 mod(27) .

vyac(n, 5)) = |

Hence 73,54(S?*) contains y if and only if n=5, 7 mod (2%, 3, 9 mod(2*), or
17 mod (25).

If n is odd, g0 p,i55="Pn+s1="7 and m3,50(S?) contains {S?*8, S} °@4°P 15,5
=Gyon=2Z,{n’c} PZ,{n€}. Thus the conclusions (i) and (ii) follow.

Next consider the case of # being even. First we show that z354(S?*) does
not contain J-image 7o =v347n€. Consider a commutative diagram:

Priss
R AL N CP,s5s C CPn+6,6

L I

S2n+9 o S2n S C(f°Pn+s,5)

We apply KO if =0 mod(4) or KO+ if n=2 mod (4) to this diagram. The
methods for #=0 mod(4) and =2 mod(4) are quite similar to a part of the
proof of (2.7), so we sketch the proof only for =0 mod(4). Put n=4m. We
have the following commutative diagram:

0 Eé(CP4m+5,5) — k\é(CPm%ﬁ) — ]?é(ssmﬂo) —0

I 15 B

0 ¢— KO(S*) «——— KO(C(foPunsss) «— KO(S™19) 0.
Let a and b be elements of KO(C( foPum+s,s)) such that a _a maps to a generator
of KO(SS'”)’VZ and b is the image of the generator of KO(S“'”“")’VZ Then
Yi(a) = 3*"a+\b

for some A& Z,, and
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er(foPumiss) =M.
Slnce KO(CP,,,,J,G o) =Z {25, 25"+, 8"+ 2} D Z,{=" %} [4], we may put f'*(a)=
Zd 25"t for some integers d; (0<7/<2) and d;=Z,. Analysing the equation
f*(%(a))=+3(f"*(a)), we know that A=0. Hence J-image 7’c is not con-
tained in 73,54(S?), since ex(n’c)=0 [1]. Therefore z3,54(S*)=0, Z,{+*} or
Z,{n&} if n is even.

Second we show (iii). Cnsider the following diagram in which the tri-
angle is commutative by (1.15) of [8].

2n+9

(%”)7 l Puisa

Pa+4 1 — CPn+4,1 C CP,,+5'2

gew+? 1 5 S 2n-+6
N

Since p,441=7, V’P,41=0 and there exists A& {CP,.5,, S*} with hoi=1%
Then hop,,s, 2=vzo(in+3>gw:v3 if n=0 mod (4) or 0 if =2 mod(4). Thus

S2n

7onao(S™)=2Z,{v*} if n=0 mod (4), and the conclusion (iii) follows.

Third we show (iv). Suppose that =2 mod(4). Consider the following
diagram in which the two horizontal and one vertical sequences are parts of
suitable Puppe exact sequences.

{S2n+4’ SZn} — 0
k >k 4 Pn ’* ., ’
{5079, 5} —L s {CP sy S7} —— {CPyssp S7} ——120 {S¥105)
i =0
s
{SZn+2 SZn} {CP”+2 2 SZ } ___z_______> {SZn’ S?.n}
= Z{r} N D22
Priza {2+, S7}
= Zu{g-}

Since p,.,,=7 and 7*=12g..%0, p,,,,* is monomorphic and the image of ¢,* is
not contained in the image of "%, and so {CP,; 3, S*}=Z and ¢* is isomorphic
on a free subgroup. Then we can choose k€ {CP,., ,, S*} which is a generator
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of a free part and satisfies #/*i"*/*(h)=deg(h)=C {n,4}. Let s& {S**°, CP,,, 4}
be an element with p,,;s=7,05. Let f be any element of {CP, 55, S*}. Then
foi,=(deg(f)/C {n, 4} )h-+eoq for some e< {S?*5, S?*} and

SoPaiss = foiios = (deg(f)/C {n, 4} )hos+eogos .

Since qosz(%n—l{i)gm or (%n—}—lS)gm from (1.15) of [8], gos is divisible by
2, and then

fobuiss = (deg(f)/C {n, 4})hos
for {S**6, S} =Z,. By (1.16) and (3.1) of [8], we know easily that

Cin, 4} = 24/(n, 24) — 22-3/(% 3),

4 if n=6 mod(8)
vy(C {n, 5}) = { 3 if n=10 mod(16)
2 if n=2 mod(16).

Hence if #=6 mod(8) or 10 mod(16), C {n, 5} /C {n, 4} =0 mod(2) and fop,.ss
=0 since deg(f) is a multiple of C{n, 5}. Thus the conclusion (iv) follows if
n=6 mod(8) or 10 mod(16). In case of =2 mod(16), we constructed the
following commutative diagram in the proof of (v) of (3.1) in [8] and found that
g;08, is divisible by 2.

S2n+9

/ l Passs

CPn +4,4 c C‘Pn +5,5

L]

CPn+2,2 = SZn V S2”+2 - CPn+3,3 c CPn+4,4 C CPﬁ+5,5

Choose u& {CP,,;, S} with deg(x)=1. Then f|cp, , ,=deg(f)u+eoq, for
some ec< {S?*%, §?}, and
fobuiss = 3foPuiss since 2G, = 0
:f | CPn +2,2°s3

= deg(f)uos;+eoq,os,
= deg(f)uos, since e€ G,=Z; and 2| q,0s; .

By (1.16) and (3.1) of [8]
v(C{m, 5})=1
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hence deg(f)=0 mod(2) and

f °Pn+5,5 =0

since uos; G, and 2G,=0. Thus 73,5 ¢(S*)=0 if =2 mod (16) and the proof
is completed.
We determine H-projective 10-stems. Recall that G,=2Z,{nu} BZ;{B.}.

Theorem 2.10. 3% ,(S*3)=Z,{B,} if n=1 mod(3) or 0 if nE1 mod (3).
Proof. Consider the following diagram:
Sin+6 §int7
Y“)gw Prszz l wm
g Pt qu & opp % g

Given fe {HP,,,, S*" %, we have foi=mg.. for some integer m with mn=
0 mod(2), since p,.;,=ng.. and O0=foiop,,, ,=mm?. By definition of Toda
bracket we have

f°Pn+z,ze<f°i; Pn+1,u (”"l‘ l)gw> .

Since all Toda brackets which appear in this proof have zero indeterminacies
from a similar method as the proof of (i) of (2.4), we have

{fot, pasrpy (M+H1)ge) = <Mge, Ngw, (n+1)g)
- —;—mn(n+ 1)<v, 20, v>+ma(n+1<anama -

But
v, v, v> = —2v, v, 2v> by (3.10) of [11]

= v, v, v> by (3.5) of ibid.
= —2v, 2v,v> by (3.8) of ibid .
=0

and

loy, ay, o> =By by p. 180 of ibid.
and then

f°Pn+2,2 = mn(n+1)86, .

Conversely for any m with mn=0 mod(2) there exists f& {HP,,;, S*" %} with
foi=mg... Thus the conclusion follows.
We prove
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Theorem 2.11. 755 4(S* ™) is equal to

(D) Gy if n=1mod (6),
(i) Z,{np} if n=3 mod (6),
(i) Z;{B.} if n=4 mod (6),
@) 0 if n=0 mod (6),

v) OorZ{B}  if n=2mod(6),
(vi) Z,{nu} or Gy, if n=5 mod(6).

Proof. First we suppose that z# is odd. Since ¢,0p,.55=7Puis51="1,
7 onro(S?7Y) contains pogyo p,4s5=pn and (vi) follows, (i) also follows from (1.1)
and (2.10). Given f€ {CP, 55 S* '}, we have

0 =f|CP,,+1,1°Pn+l,l =f‘cp,,+1,1°7]
SOfICP,,.H ‘:0 and
onro(SP 1) = image of pi5 *: {CPyus4 ST} — {S¥49, S} .

In case of =3 mod(6) we construct a commutative diagram:

SZn+9

lpn+5,4

CP}H-S,4

|2

1
CPn+4,a C CPn+5,4

Lol

i )
CP,,, = S C CP,y, < CP,y; c CP,sy

Since ¢;0 Ppi54=Pn+5,1="1 §3°2P,+54=0 and there exists s, with fos;=2p, .5 4. By
(1.15) of [8] gzos,=(n+3)g... Then 4g,05,=0 and there exists s, with 7os,=4s,.
Since ¢,05,& G5=0, there exists s, with fos;=s,. Thus the construction of the
above diagram is completed. Given f& {CP,,s4, S* '}, we have

8f°Pn+5 4 =f|cp,,+2,,°53
= 0, since G30G, =0

50 3nq9(S?71) does not contain Z;{B3,} and hence (ii) follows.

Next we suppose that z is even. If z3,54(S? ) contains 7y, that is, there
exists f& {CP, s, S '} with fop,.s=nu, we have the following commutative
triangle
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~O-—6n—9(SZn—1)

f / \&(w)

KO 6n— Q(CP +5) KO 6n— 9(SZ”+9)

n+5
But 6n+9=1 mod(8) (if =0 mod(4)) or 5 mod(8) (if #=2 mod(4)) and hence
KO™*~%(CP,,5)=0 by Theorem 2 of Fujii [4] and
dg(1p) = pus*f* = 0.

This is a contradiction since dg(7x)=0 [1]. Thus #z55(S*™!) does not con-

tain 7. Hence (v) follows.
In case of #=0 mod(6), we obtain the following commutative diagram by

the methods used in the proof of (3.1) of [8].

S2n+9

pn+5,5
/ N

CP,yyy & CPuss

|

C CPyy © CPuss

CPn+2,2 C CPn+3,3
l 25.5 2%.5

CP,,, = 8% C CP,yp C CP,i55
Given f€ {CP, 55 S* '}, we have
2%-5f0Puiss =f|cp,,+, o8MEG0Gy = Z,.

Thus 73,59(S?1) does not contain Z,{B3,}. Hence (iv) follows.
In case of n=4 mod(6), we construct the following commutative diagram

which implies (iii) since kogop,s ;& <ay,a1,0>=P.

a
— 3 Q2n+6 ,._1_9 S2n+3

o \i/
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=0 assures the existence of 2. By Theorem 2.6 of Randall [9], there exists
f with fop,.s ,=ay. Consider the Puppe exact sequence

o~ — {CP,,+2 b S T P"”l {82+3, Semi2}y s {CPn+3,2) L) g
{CP, 151 S+ =0 — .

Since p,i5,=(n+1)7=n, the above p¥,, is an epimorphism, hence {CP,,,,

S#+3} =0, Considering the suitable Puppe sequences, we know easily that
% {CP,:+5,4) Sz”+3}-—->{CP”+4’3, S2n+3} and q%“: {578, S2n+6}_> {CP,,H,:,, S2n+6}
are isomorphisms. Consider the Puppe exact sequence

P,ﬁs,z q;k
A e L B (o M
g {CPn+3,2) S} =0 — -

Then we have the following diagram
*

{S2n+6 S2n+6} ______) {CP,,H - S2n+6}

' Lal* lal*
E 3

0__> n.z” (S2n+2) _ {S2n+6 S2n+3} qz {CP”+4,3, S2n+3} ___>0

gT ¥

{CP n+5,4 Sen+3}

By Theorem 2.6 of [9], oy E7555(S*?). Hence the image of a; in the left
hand side is contained in 7355(S**?), and the image of ;s in the right hand
side is zero. Therefore i*(ct;0 f)=au+(f07)=0 and a,0f=0. Thus there exists
g with Qngf,

This completes the proof.

We determine F-projective 11-stem. Given f& {HP,;;, S*} we have

1
ex(foPurss) = —Edeg(f)(xg(n, 3)
by (1.5) of [8]. Since e%: G;;— Zy, is an isomorphism, we have

Theorem 2.12. 75% (S~ Z/den[; H {n, 3} atg(n, 3)].
We have also
Theorem 2.13. #35,(S?) is isomorphic to

(i) Z/2den[C {n, 6} ac(n, 6)] if n=0 mod (2), 5,7 mod(8), 11 mod (16)
1 or 3 mod(32),
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(i) Z/den[C {n, 6}ac(n, 6)] if n=9 mod(16), 17 o 19 mod (32).

Proof. Let u(n) be the order of the cyclic group z551,(S*). Given f&
{CP, .56 S™}, we have

€k(foPuras) = 5 au f)— deg(Nac(n, 6)
for some integer a,(f) by (1.5) of [8]. Choose f, with deg(f,)=C {n, 6}. Then

u(n) = den[ L af)— ) C o, 6}ac(n, 6)]

for ek: G,,—>Zs, is an isomorphism. Thep it is easy to see that u(m) is
equal to den[C {n, 6}ac(n, 6)] or 2den[C {n, 6}a.(n, 6)], and equal to
2den|[C {n, 6} ac(n, 6)] if v,(den[C {n, 6} ac(n, 6)])=1. By (1.16) and (3.1) of [8],
vy(den[C {n, 6}ac(n, 6)])=1 if and only if n=7 mod(8), 11 mod(16) or =0
mod(2) and #%4 mod(8), 50 mod(64)and 0 mod(128). First suppose that
n=4 mod(8), 50 mod(64) or 0 mod(128). Since gso p,+66="Pu+s,1 =" Tnz11(S*")
contains u7ogsop,i66=pn’=4¢ and hence u(n) is even and in fact u(n)=
2den[C {n, 6} ac(n, 6)]. Thus u(n)=2den[C {n, 6}ac(n, 6)] if n is even. Next
consider the case of n being odd. By (1.16), (3.1), (iii) of (1.4) of [8] and an
easy calculation, we check that a¢(f,)=0 mod(2) (if n=3 mod (4) or 33 mod (64))
or 1 mod(2) (if n=5 mod(8), 9 mod(16), 17 mod(32) or 1 mod(64)). Then by
also an easy calculation u(n) is determined as the forms given in Theorem. The
proof is completed.

It is easily seen from (1.16) and (2.1) of [8] that den [%H{& 3}au(3, 3)]

=504, and hence G, is fully H-projective and fully C-projective by (1.1).
Thus we have

Corollary 2.14. G, is fully H- and C-projective.

Concerning with F-projective 12-stems, we have no problems, since G,,=0.
Recall that G;,=2Z,{B,ct;}. We have

Theorem 2.15. zJE,,(S*?) is equal to
(i) Gy if n=0 or 2 mod(3),
(i) 0 if n=1 mod (3).

Proof. Since ;0,43 3=Py+3,=(n+2)g. from (2.10) of [5] (or see (1.14) of
[8]), 7&5511(S* %) contains B 0g,0p, 45 3=(n+2)B ;. Thus the conclusion (i)
follows. Suppose that #=1mod(3). Then 8¢,0p,.;;=0 and there exists
se {S*"*1, HP, ., } with i,06=8p, ;5. Given f& {HP,,;,, S* 2} we have

f°Pn+3,3 = 16f°Pn+3,3 = 2f°i1°s .
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But 2{HP,,,,, S**"%=0 by (2.5). Thus 2foi;os=0 and the conclusion (ii)
follows.
We have also

Theorem 2.16. 755 ,3(S?) is equal to
(1) Gy if n=0 or 2 mod (3),
(i) O if n=1 mod (3).

Proof. By Randall [9, Theorems 2.5, 2.6], a,E735,513(S***) if and only if
n=0or 2 mod(3). Then (i) follows from (1.2). In case of #=1 mod(6), (ii)
was proved in the proof of (vii) of [8]. By the same methods we can prove (ii)
in case of n=4 mod(6). We omit the details.

Concerning with F-projective 14-stems, we prove the following. Recall

that G,=2,{c* PZ,{x}.
Theorem 2.17. 3% ,.(S*%)=Z,{c*} if n=6 mod(8).

Proof. Suppose that #=6 mod(8). Since g0p,i32=7Pu+s1=(2+2)g,
3¢10P,43,=0 and there exists s {S**!!, HP,,,,} with 70s=3p,.3, Since
00 Pprg=(n+1)oogu=(n+1)ov=0, there exists f& {HP, 5, S* %} with foi,
=o. Put#n=8m-+6. Then by (ii) of (1.13) of [8], we have

ec(s) = (8m+7)(20m+-17)/2¢.3.5 .
Hence #5s=0 mod(2*) and
f°Pn+3,2 :f°3pn+3,2) since 2G, = 0
= oS
2

= 0o .

Thus 752 11(S** %) contains o2 By the following Theorem (2.18), noz i 11(S*3)
(which is a subgroup of 75/ ,,(.S**~%)) does not contain 7« and hence 735 1,(S*3)
does not contain «. This completes the proof.

. Recall that Gy =2Z,{n«} BZ;s{p} PZ,; and there is a split exact sequence

0= Zy{ni} — Gy —C5 Z/25:3.5 > 0 .

We have
Theorem 2.18. zJ7 5(S*) is isomorphic to
(1)  Z,{nx} DZ[v(n) if n=0 or 3 mod(4),
(1)  ZJv(n) if n=5 mod(8),

(iil) Z,{ne} BZ[v(n) or Z|v(n) if n=2 mod (4) or 1 mod(8),
and 3t 15(S*) does not contain nx if n=5 mod (8), where v(n)=den[H {n, 4} X
au(n, 4)].

Proof. The conclusions (i), (ii) and (iii) follow from (1.2) of [8], because
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neEminn15(S*) if n=0 or 3 mod(4) from (2.2) of [8]. Next consider the case
of n=5mod(8). Since gzop,.ss=(n+3)gs, 3gs0P,+4.=0 and there exists
s {8, HP, ., ,} with 40s=3p,.,,. Let ac {HP, 3, S*} be an element
with deg(a)=H {n, 3}. Then a generates a free part of {HP,.,;, S*} which is
of rank 1. Given f& {HP,.,,, S}, we have

foty = (deg(f)/H {n, 3})a+-eoq,
for some e {HP,,;,, S*"} =G, and

3f°Pn+4,4 = foijos
= (deg(f)/H {n, 3})aos+eoq,os
= (deg(f)/H {n, 3})aos, since G4 G, = 0.

But by (1.16) and (2.1) of [8], »y(H {n, 3})=3 and vy(H {n, 4})=6. Thus
deg(f)/H {n, 3} =0 mod(8) since deg(f) is a multiple of H {n, 4}. Suppose
that z5 1,(S*) contains 7+« for some x which is orthogonal to Z,{n«}, then
n~+x=fop,.s 4 for some f& {HP,,,,, S*}. Then

1i+3% = 3fo P4 = (deg(f)/H {m, 3)}acs

and hence nx-3x is divisible by 8. This is a contradiction, for #(zx)=2.
Thus 735 1,(:.5*) does not contain nx+x for any x& G5 which is orthogonal to
Z,{n«}. This completes the proof.

By (1.16) and (2.1) of [8] we have easily that v,(v(r))<4, and v,(v(n))=4 if
and only if =25 mod(32). Hence we have

Corollary 2.19. pe G is not H-projective but 2p or 2p-+n« is H-projective.
By (1.1), (2.18) and the above split exact sequence we have

Theorem 2.20. 735 15(.S*") is isomorphic to

(1) Z,{nx} DZ|w(n) if niseven,

(il) Z,{nx} BZ|w(n) or Z|w(n) if n is odd,
where w(n)=den [C {n, 8} ac(n, 8)].

By (1.16) and (3.1) of [8] we have that v,(w(n))=>5 if and only if =50
mod(64), and in case of #=2 mod(4), we have that vy(w(n))=1 if and only if
n=14, 22, 26, 34 mod(36), 10, 38, 46, 74 mod (108), 82 or 190 mod (324), and
vs(w(n))=1 if and only if n=2, 14, 18 mod(20), 10, 30, 70 or 90 mod (100).
Hence we have

Corollary 2.21. Gy is fully C-projective and the smallest n for which
755 15(S?") =G5 is 178.

Recall that G, =Z,{mm*} BZ,{vr} BZ,{#*p} DZ,{m}. We have
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Proposition 2.22. 7 and the Adams element p,=G,, are not contained in
7ona17(S?) if n=E 3 mod (27).

Proof. Since ec(7z) =ec(u2)=% from (12.13) of [1], it will suffice to show

that v,(C {n, 9%} ac(n, 9))=0 if =3 mod (27). Indeed by (1.16) and (3.1) of [8]

we have
C {n, 9}/(C {n, 8}den[C {n, 8}t ac(n, 8)])
_ { 1 or 2 if n=3 mod(27) or 1 mod(2°)

1 otherwise

and an calculation shows that if #ZE3 mod(2’) and 1 mod(2°) we have
vy(C {n, B ac(n, 9))=0, and if n=1 mod(2?) we have v,(C {n, 8} ac(n, 9))=0
and hence v,(C {n, 9} ac(n, 9))=0, and the conclusion follows.

By Randall [9, Theorems 2.5, 2.6] we know that vEx35,,(S**%) if and
only if =3 mod(4). And by (i) of (1.13) of [8], p,+9,=(n+8)n=nn, and so
nE w355 12(S?+18) if and only if n is odd. Thus if n=3 mod (4), 73,5 17(S*) con-
tains vk, 77* and 7’p. Hence we have

Corollary 2.23. If n=3 mod(4), then n35%.1:(S™) contains Z,{nm*}P
Z vk} DZ,{"*p}.

Recall that there exists a split exact sequence [1]
0—>Z2—>Glgi>Z264—>0.
By (1.5) of [8] we have
Proposition 2.24. =z3f,o(S*) contains a cyclic subgroup of the order
den[%H{n, 5}ay(n, 5)] .
Take f& {CP,19,1 S*} with deg(f)=C{n, 10}. From (1.5) of [8]

efe(fOPnﬂo,lo) = —lz—am—--lz—C{n, 10}0{0(”: 10)

for some integer a,, and so 73,5 19(S*) contains a cyclic subgroup of the order

den [%am—%C{n, 10} ac(n, 10)]. Even if we can not determine a,, mod(2),

we have den[% alo—%C {n, 10} ac(n, 10)]=den[% C{n, 10} a(n, 10)] when

*) vC {n, 10}ac(n, 10))=—1.
For example if #=10, 12, 14 mod (2*), 18, 20, 22 mod (2°), 6, 34, 36 mod(2°) or
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102 mod(27), then C{n, 10} =C {n, 7} den [C {n, 7} ac(n, 8)] by (3.1) of [8] and
(*) is satisfied. This follows from elementary but routine calculation using
(1.16) of [8]. Hence we have

Proposition 2.25. If n=10, 12, 14 mod(2*), 18, 20, 22 mod(2°), 6, 34,

36 mod (2°) or 102 mod (27), then z3519(S?") contains a cyclic subgroup of the order
den [% C {n, 7} -den [C {n, Thae(n, 8)]-atc(n, 10) ]

Recall that G, =2Z,{nx} DZ,{c% from [6]. By (1.2) and (2.17) we have
Proposition 2.26. If n=4 mod (8), then =i 19(S*?) contains o°.

Since py 1=(m—1)7, by (2.26) we have

Proposition 2.27. If n="7 mod(16), then 755 »1(S*)=G,,.

Recall that G,=Z,{¢x} DZ,{vs} from [6]. Since py ,=(m—1)g., by (1.2)

and (2.7) we have

Proposition 2.28. z5f 1o(S* %) is equal to G,, if n=3 mod (4), and contains

Z,{&x} if n=2 mod (4) or Z,{vc} if n is odd.
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