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1. Introduction

The purpose of the present paper is to clarify certain algebraic properties of
the spectrum of the second order ordinary differential operator

where u(x) is a meromorphic function defined in a region of the complex plane
and d — ' = d/dx. The integro-diίferential operator

A(u) = d ~ l - \-u'(x) + u(x)d - -d
\2 4

plays crucial role in our approach, where A - B denotes the product of the operators
A and B. The operator A(ύ) is usually called the A-operator or the recursion
operator. The Λ-operator generates the infinite sequence of differential polynomials
as follows; put Z0(u) = 1 and define functions Zn(u\ neNby the recurrence relation
Zn(u) = A(u)Zn_ί(u\ nεN. Then it turns out that Z» are the differential
polynomials in M,t/, ,M(2π~2) with constant coefficients. We call the differential
polynomials Zn(u\ nεZ+ the KdV polynomials.

Now, let V(u) be the vector space over the complex number field C spanned
by Zn(u\ nεZ+, then A(u)eEnd(V(u)), i.e. A(u) can be regarded as the operator in
V(u\ If V(u) is finite dimensional then the principal part of the problem concerned
with H(u) can be reduced to consideration of certain algebraic properties of
A(u)eEnd(V(u)). We want to call this method the A-algorithm. The main purpose
of the present paper is to investigate the spectrum of H(u) by the Λ-algorithm.

On the other hand, the present work is deeply related to the algebraic theory
of the Darboux transformation. Those problems were discussed in [18]. See
also [17].

The contents of this paper are as follows. In §2, the precise definitions of
the A -operator and the KdV polynomials are given. In §3, the expansion theorem
for the KdV polynomials is obtained. In § 4, the notion of A -rank is introduced. In
§ 5, the spectrum Γ(u) of the opertor H(u) is defined and certain class of eigenfunctions
of H(ύ) are exactly constructed by using the Λ-operator. In §6, the problem
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related to the classical theorem of Ince is discussed. In § 7, the trace formulae of
McKean-Trubowitz type are proved by A -algorithm.

A part of the present paper is announced in [16].
The author would like to express his sincere thanks to Dr. Yordan P. Mishev

for a number of useful advice.

2. KdV polynomials

Let si be a differential algebra over the complex number field C of polynomials
in infinite formal symbols w v,veZ+ =7Vu{0} with the derivation δ = Σ?=0uv+ίd/duv.
We denote its subalgebra of polynomials without constants by jtf0. Put j^0 = δ<s/0

then one can define the inverse δ~ l of the derivation δ : <$#0 -* j/0. On the other
hand, put

then it is known that K-fi'1 -A)"'1! belong to j^0 for all neN (cf. [20] or [15,
p. 621 Lemma 3.1]). Hence the set {Λn\\neN} is well defined as the orbit in j/0,
where Λ = δ~1 K. Since Λnl are the polynomials in u&u^ -,u2n_2, nεN (cf. [20]
or [15]), we denote them by Pn(u&u^~ ,u2n..2)\

On the other hand, let u(x) be a meromorphic function of the one complex
variable x. Let ^(u) be the differential algebra of differential polynomials in
u(x). Now let us identify the derivatives w(v) = dvu(x) e jtf(u\ v e Z+ and the differential
operator d with the variables uv,veZ+ and the derivation δ respectively. By this
identification, we can define the subalgebras J/O(M) and e£/0(

M) correponding to J/Q
and j/o respectively. Then one can define the operator d~l: jtf0(u)-+ J^O(M) by
identifying with the operator δ~ 1 : j^0 -> j/0. The operators K and A are identified
with the third order differential operator

K(u)=-u'(x) + u(x)d--d3

2 4

and A(u) = d'l' K(u) respectively. Moreover put

) = Pn(u(x),u'(x\ - - -, t/<2"- 2>(x)),

and Z0(tφc)) = 1, which are called the KdV polynomials. We also use the differential
polynomials Xn(u(x)) = dZn(u(x)\ The KdV polynomials Zn(u\ neZ+ are represent-
ed by the recurrence relation

1(u)9 neN
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with Z0(w)=l. At the same time, they are represented by the commutator
representation of Lax type

(1) ZΠ(W)=V1[^Π(M),7/(W)],

where

(2) An(u)= £ (Zjίu)d~Xjμ)) H(ur-J

7 = 0 2

and [A,E]=A'B-BΆ (cf. [10, p.220, Lemma 12.3.1] or [20, p.4]).

3. Expansion theorem

In this section, we consider the expansion theorem for the KdV polynomial.
First we have the following.

Lemma 1. For any λeC and meN, Zm(u(x) + λ) belongs to V(u\ i.e., there exist
αmv(Λ),v =0,1, ••-,#! such that

v = 0

The coefficients αwv(Λ.) satisfy the recurrence formulae

far V=1,2, ,

with α0 0W=l.

Proof. First assume that

v = 0

are valid for any l<m. Actually this is true for m = l. Differentiating both sides
of the above, we have

Hence, by (2), one has
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ι=o

= Σ Σ«(
! = 0v = 0

Let f(x) be a nontrivial solution of the equation

(4) H(u + λ)f(x) = -f"(x) + (u(x) + λ)f(x) = 0,

then, by (1), one verifies

(5) Xm+1(u

and

(6) Am(u + λ)f(x) = Σ αm
v = 0

Combining (5) and (6), one has

/ v = 0

Calculate the right hand side of the above and eliminate /" and /"' by (4) and

/"'(*) = u'(x)f(x) + (u(x) + λ)f(x),

then we have immediately

Xm+1(u(x)

v = 0

v = l

This implies that there exist αm+lv(Λ),v = l,2, ,w + l such that
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v = l

and

for v = m + l

for v=l,2, ,w.

This completes the proof.

Note that we can not determine αm0(A) by the recurrence formulae (3). To
determine them, we prove the following.

Lemma 2. The differential polynomial Zm(u(x)) contains βmu(x)m as its term, while

the remainder terms ofZm(u(x)) contain derivatives ofu(x) as their variables, where

βm= (2m)!

22ra(w!)2'

Proof. We prove this by induction on m. First, note that the assertion holds

for m=l because Z1(u(x))=%u(x). Assume now that the assertion is correct for
m-\. Put

then each term of Ym(u) contains derivatives of u(x) as its variables. By direct
calculation, we have

- iχm-2)« "- 3u'2

1

4 m~1

Note that

Λ 2w-l
m m-

2m

holds. Therefore it suffices to show that each term of A(u)Ym(u) contains the

derivatives of u(x) as their variable. Conversely assume that at least one of terms

of A(u)Ym(u) contains no derivatives of u(x) as its variables. Let / be the lowest
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degree of such terms. This implies that K(u)Ym(u) contains the term of the form
lβul~ίuf. On the other hand, we have

Hence one can see that Y(u) contains the term 2lβul~l. This is contradiction.

Therefore this completes the proof.

Since Zv(0) = 0 for v>l and Z0(0) = 1, one verifies readily

v = 0

On the other hand, by lemma 2, we have

(2m)!

This implies

Calculating the recurrence formulae (3) with the above expression for αm0(A), we have

the following.

Theorem 3. Define α(

v

n),v = 0,l,2, ,« by the recurrence formulae

1 for v = n

υ for v= 1,2, •••,« — !

α(

v

0) = l.

(7)
v = 0

or any λeC.

Next we consider certain arithmetic properties of the coefficients
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Proposition 4. The binomial coefficients α(

v

π),v = 0, I, ,H satisfy the following
relations;

(8) Σ(-ιr1«8"1)«?)=ι,

(9) (-l)vα(

0

v¥v">=0.
v = 0

Proof. Suppose n>\. Since Zw(0)=0, by Theorem 3, we have

zn(i-i)=£(-irvv">zv(i)=o
v = 0

On the other hand, by (7), one verifies

Σ (-ιrv;>zv(i)=(-ιr Σ (-iMV-
v=0 v=0

Hence (9) follows. Next we prove (8) by induction on n. Since αj^oή1* = 1, (8) holds
for n = \. Assume that

holds. Then we have

v = l

v = l

v = l

since α^^α^Γ/^1. The first term of the above vanishes by (9) and the second

term coincides with 1 by the assumption. This completes the proof.

3. Λ-rank

In this section we introduce the notion of Λ-rank. Let V(ύ) be the vector
space over C spanned by the infinite sequence of the KdV polynomials Zm(w),weZ+,

i.e.,
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F(«)= (J CZm(«).
meZ +

If V(ύ) is finite diminsional, then we say that the Λ-rank of the meromorphic
function u(x) is finite and define rank^w(x) by

) = dimc V(u) — 1 .

First we have the following.

Lemma 5. If n = rankAu(x) < oo fλe« V(u) is spanned by Zv(w), v = 0,1, •••,«,
/.*., F(w)=φw

v=0CZv(4

Proof. Since ZO(M)^O and F(w) is finite dimensional, there exists meN such
that Zoίi/XZ^iiX jZ^M) are linearly independent and Z0(M),Z1(M), ,Zm(M),Zm+1(M)
are linearly dependent. Hence there exist cv,v=0,lj >ttί such that

v = 0

Then, operating with Λ(u) on both sides of the above, we have

= Σ cvA(u)Zv(u)
v = 0

m-1

Σ cvZv
v = 0

v=0 v=0

m

= Σ (cv - 1 + cmcv)Zv(u) 4- cmc0Z0(u).
v = l

Similarly to the above, one verifies that ZW+V(M) can be expressed as the linear
combination of Z0(u)9Zt(u)9 9ZJiu) for any veN. This implies dimF(M)=m + l.
Hence m=n follows. This completes the proof.

Suppose n = rank^wCx) < oo then, by lemma 1, there uniquely exist av(u\ v = 0, 1, ,
n such that

(10) Zn+ί(u(*))= Σ oφ
v = 0
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We call 0v(w),v = 0,l, ,Az the Λ-characteristic coefficients of u(x\ Moreover we
call the monic polynomial of degree n 4- 1

the Λ-characteristίc polynomial. By Theorem 3, we have readily the following.

Proposition 6. For any λeC

) — λ) =

holds.

Hence, if n = rank^w(jc) < oo then there exist αv(/l;w),v=0,l, •••,/! such that

v = 0

Of course, flv(0;M)=αv(w) holds for any v= 0,1, •••,/!. More precisely, we have the
following.

Lemma 7. //* n = rankytw(x) < oo then αv(Λ;w),v = 0, 1, ••-,/! are the polynomials
in λ of degree n — v- f l ;

Proof. By Therem 3, we have

v = 0

v = 0

On the other hand, we have

v=0
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0j=v

This implies that

are valid for v= 0,1, •••,«. This completes the proof.

4. Construction of eigenfunctions

In this section we construct special class of exact solutions of the eigenvalue
problem

(11) (H(u)-λ)f(x)=09 λeC

by the ^-algorithm when Λ-rank of u(x) is finite.
Suppose « = rank^w(x)<oo and put

(12) F(x;λ) = Zn(u(*)-λ)- Σ av(λ u)Zv_M*)-λ\
v = l

Then, since τa,nkΛ(u(x) — λ)=n, F(x\λ) is not identically zero for any λeC. One
verifies

Λ(u(x)-λ)F(x;λ)

= a0(λ;u).

Hence

K(u(x)-λ)F(x;λ)

= iW^)

= 0

follows. Suppose that u(x) is holomorphic at x=a. Let fj(x;λ)J=l,2 be the
fundamental system of solutions of (11) such that

(A(a;X) /2(«;Ί)\=/l <Λ
\fί(a;λ) ffc λ)) VO \)'
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Then, by [19, p.23, Theorem 7], there exist α/A)j= 1,2,3 such that

F(x λ) = MWiί* λ)2 + *2(λ)f,(x λ)f2(x λ) + *,(λ}f2(x A)2,

that is, F[x λ) can be represented as the quadratic form with the variables fj(x λ), j
= 1,2. We have the following.

Lemma 8. The coefficients <Xj(λ)J= 1,2,3 are the polynomials in λ expressed as

F(aιλ) for y=l

Fx(a;λ) for j=2

^FJft ,λ)-(u(a)-λ)F(a ,λ) for y = 3.
2

Proof. Note that/^α λ) =f2(a λ) = 1 and/ί(α A) =/2(α λ)=0. Then, by direct
calculation, one verifies

and

Fxx(a A) = 2κί(λ)(u(a) - λ) + 2α3(4

By lemma 7, ̂  A), F^α A) and ̂ (α A) are polynomials in λ. This completes
the proof.

Let J(A,M) = α2(A)2— 4α1(A)α3(A) be the discriminant of the quadratic form
F[χ-9λ). Then, by lemma 8, we have immediately

(13) Λ(λ,u) = Fx(a;λ)2-2F(aιλ)Fxx(aιλ) + 4^

Hence A(λ,u) is the polynomial in λ. To investigate it more precisely, we have
the following.

Lemma 9. F(x λ) is the monic polynomial of degree n in λ for any x.

Proof. By Theorem 3 and lemma 7, we have

j=o

v = l f c = 0
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-f lower terms

= Σ (-l)v"1α(

0

v"1)α(;+1Uw-f lower terms.
v = l

The assertion immediately follows from the formula (8).

Hence we have the following.

Corollary 10. The discriminant A(λ\u) is the polynomial of degree 2n + \ in λ\

Δ(λ ;u)=- 4λ2n + 1 + lower terms.

Therefore, if we put

then 9Γ(u) <2n + l follows, where # denotes cardinality of the set. Moreover, since

A(λ\u) and I\u) are independent of choice of the holomorphic point x = a of
u(x\ In the case of Hill's operator, Γ(u) corresponds to its periodic spectrum (cf.
[12]). Hence we call Γ(u) the A-spectrum.

Now suppose λjGl\u) then there exist the constants /?/7 ,/=l,2j=0,l, ,2«

such that

Thus we proved the following.

Theorem 11. Suppose n = rank^w(x) < oo. Then the A-spectrum Γ(u) is uniquely
defined for u(x) and %Γ(u)<2n + l holds. Moreover, if λjEP(u)J=Q9l,- ,2n then

are the corresponding eigenfunctions of the eigenvalue problem (11).

Such an algorithm to construct eigenfunctions as above has been already
developed by several authors from somewhat different point of view. See e.g.
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[12, §6, pp. 235-236].
On the other hand, it is known that Zj(u)dZy(u) e s40(u) hold for any i,jeZ+

(cf. [6, p. 168, Proposition 12.1.12]). Hence there exist lίj(u)=d~l(Z^u)dZJ(u))€
st0(u),i,jeN. Put

n

) = In + ίk(u(x))- Σ av(ύ)Ivk(u(x))9 k = 1,2, -,n
0

then they are the nontrivial first integrals of the 2n - 2 th order ordinary differential
equation (10), i.e., dJk(u) = 0. Hence there exist the constants ck such that
Jk(u) = ck,k= 1,2, •••,«. Using these relations, one can reduce the expression of
F(x;λj)9λjeΓ(u) as the differential polynomials. Here we refer [6] for the
Hamiltonian method in the study of the differential equation (10). See
also [2] and [21].

5. Ince's theorem

Let ^(x) be the Weierstrass elliptic function with the real primitive period
ωί=π and the imaginary primitive period ω3. Put p(x) = ̂ (x-\-^ω3), xeR. Ince
[9] proved that if nεZ+ then the differential operator H(n(n + l)p(x)) in the class
of functions of period 2π has 2n + 1 simple eigenvalues λ0< λί <- <λ2n. See also
[1] and [11]. Hence, by the results of soliton theory (cf. [7, p. 84] or [12, p.
234]), τankΛn(n + l)0>(x)=n follows. The purpose of this section is to prove the
above fact within the framework of A -algorithm.

Suppose rank^iφc) = 1 and fceC\{0}. Put uk = uk(x)=ku(x). Since

one verifies

(14) <=^k

2

k

where a0(u) and a^u) are the A -characteristic coefficients of u(x\ This also implies

(15) (utf =Λk

3 -4a,(u)ul - I6a0(u)kuk + c,

where c is a constant. By (14) and (15), one can eliminate the derivatives u(

k\x\s>2
and (u'k(x))2lj> 1 from the differential polynomial Zm(uk). Thus we have

(16)



422 M. OHMIYA

where Pm(uk) and Qm(uk) are the polynomials in uk. On the other hand, one verifies

d , 8

duk

 m duk

Now put

and

which are the polynomials in uk. Then, by (14) and (15), one verifies

Here we show the following.

Lemma 12. Pm(uk) is the polynomial of degree m in uk;

The leading coefficient pmm(k) satisfies the recurrence relation

HT\ » (I*(17) Pm+ lm+ 1 W

Moreover

Proof. We prove this by induction on m. The assertion is obviously correct

for m — 1. Assume that the assertion is correct for m. Operate with A(u) on both

sides of (16). Then we have

m 2/4- 1

(18) Zm+1(uk)=Λ(uk)(Pm(uk)+ OKK)= Σ

-~Σ J(J-
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Eliminate u'k and (u'k)
2 by (14) and (15) respectively. Then Zm+ί(uk) turns out to

be the polynomial of degree m + 1 in wfc, that is,

and Qm+ι(uk) = Q. Moreover one verifies (17) by calculating the coefficient of w™
in (18). This completes the proof.

Finally we prove the following.

Theorem 13. If rank^w(x) = 1 then

holds for any neN.

ι / >rank^ - u(x) — n

Proof. For brevity, we use the notation vn =
 n{n2ί}u in this proof. By lemma

12, we have

(19)
7=0 \

Moreover, pn+ιn+ιC*n2 1))=0 follows from (17). On the other hand, let us consider
the system of n + 1 linear algebraic equations

,20)

for the n + 1 unknowns b0,bί9 - ,bn. The coefficient matrix of the system of linear

equations (20) is the upper triangle matrix with the diagonal elements pmm(n{n2 l\
m =0, 1, ,«. By induction based on the recurrence formula (17), one easily verifies

Hence Pmnf^ΐ^)^, m = 0,l, ,w follows. Thus (20) is uniquely solvable. Let
b&b^ -,bn be the unique solutions of (20). Then, by (19) and (20), one has

i=0 1=0 j=0
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1 - n+
7=0 2 /

This implies rankΛvn<n. On the other hand, suppose that

v = 0

are valid for some c0,cl5 ••-,£„. Then, similarly to the above, one verifies that
co = c\ — ' ' ' == cn = 0 hold. Thus we proved τa.nkΛvn = n. This completes the proof.

Here we briefly mention about the function of Λ-rank 1. Let rank^φc) = 1

then there exist the ^-characteristic coefficients flv(w),v=0,l such that

Z2(u(x)) = MiOZM*)) + α0(ιι)Z0(«(x)).

We have

u" - 3w2 + 4aΐ(u)u + 8fl0(w) = 0

This equation has the following three type solutions; the rational function
2λ2(λx + a)~2 + b, the trigonometric function 2λ2sin~2(λx + a) + b, and the elliptic

function 2λ2£P(λx-\-d)-\-b. Therefore we have the following.

Corollary 14. The following are valid',

. /Φ+iμ2, \
rankJ — - —+b =«,

trankJ / +b =«,
\sm2(λx + a)

7. McKean-Trubowitz type trace formula

Let q(x\ — oo<jc<oobea real smooth function of period 1, then the spectrum

of Hill's operator — d2 4- q(x) in the class of functions of period 2 is a discrete series

Let fv(x),veZ+ be corresponding normalized eigenfunctions. In [13], McKean
and Trubowitz proved that there exist εve/?,veZ+ such that

(21) f>v/v(*)2 = l,
v = 0
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where ε0>0 and εv>0 with equality if and only if λ2v = λ2v-ι. See also [12], [4]
and [5]. In this section, we want to understand the above trace formula (21) of
McKean-Trubowitz type from the viewpoint of Λ -algorithm.

Suppose n = rs,nkΛu(x)<ao and define F(x\λ) by (12). Then we have the
following.

Theorem 15. For any λeC,

Λ(u)F(x λ) = λP(x λ) - Ω(A tι)

holds, where Ω(A w) is the Λ-characteristic polynomial.

Proof. Put

P(λ) = (λ-Λ(u))F(χ λ)

then one has

dx

= λFx(x λ) - (\'(x)F(x λ) + u(x)Fx(x λ) - ~Fxxx(x λ)

= -K(u-λ)F(x'ίλ) = 0.

This implies that P(λ) is the polynomial with constant coefficients. On the other

hand, since (λ — Λ(u))F(x;λ) can be expressed as the linear combination of

ZO(M),ZI(M), ,ZΠ+I(M), there exist the polynomials pj( λ) J= 0,1, •••,« + ! in λ with

constant coefficients such that

P(λ)=ΣPj(λ)ZJ{u).
j=o

Since

j=0 j=0

and ZQ(u)9'",Zn(u) are linearly independent, we have

By Theorem 3, one verifies
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(λ-Λ(u))P(χ ,λ)

= Σ(-ιγ-
j=o

- £ α^
v = l j=0

-tί-irM
7=0

+ £ fl^Wi
v = l j=0

Therefore we have

and

On the other hand, by lemma 7 and Proposition 4, we have

Σ (-i)v~Mr "(-
v = 1

v = l

v=l j=v

= ΓΣ (- i)v- ̂ r v + υV"+ ' - Σ f Σ (
\ v = l / j=ί\v=l

;=ι

Hence we have

This completes the proof.
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One easily verifies that

0 0

0 a0(u)

0 ajμ)

0 a2(u)

1 aJiu)

is the matrix of Λ(u)eEnd(V(u)) relative to the basis Z0(u),—9ZJίu) of V(u\
Hence

λ 0 0 ••• 0 -a0(u)

-1 λ 0 .. 0 -a^u)

0 -I λ ••• 0 -a2(u)

det(λ-Λ(u)) =

0 0

0 0

= Ω(A;ιι)

follows. Hence if we put

-1 λ -fl.-Λ*)

... -1 λ-ajμ)

then we have the following.

Corollary 16. Γ0(u) is the set of eigenvalues of Λ(u)eEnd(V(u)). Moreover
P(xiμj) are the eigenvectors of A(u) corresponding to the eigenvalues ^.6/"0(w),
y = 0, !,«••,« respectively.

Hence, if n — τankΛu(x)<oo and #jΓ0(w)=w-fl then V(u) is spanned by

By lemma 9, /^x Λ,) is the polynomial of degree n in λ for each x. Hence
if #Γ0(w)=«-f 1 then, by Lagrange's interpolation formula, we have

(23) ;*)= Σ
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Operate with Λ(ύ) on both sides of (23) then, by Theorem 16, one has immediately

i*j

Therefore, we have

j=o j=o ί=oμ7 —μf 7 = 0 ί=oμj —μ(
iφj iφj

Thus we proved the following.

Proposition 17. If n = τankΛu(x)<ao and $Γ0(u) = n + l then the formula

(24) |εf>/(x;^) = l

holds, where Γ0(u) = {μ0yμίy "yμn} and

n 1
(25) 4W )=Π

Furthermore, by operating with Λ(u)m both sides of (24), one has

Next suppose that F(x\μ^ has at least one zero x = 0/ of second order for

each y =0,1, •••,«, i.e.

Then, by (13), Λ(μy;w)=0 are valid for any y = 0,l, •••,«. Hence ΓO(M) c Γ(M) holds
in this case. Therefore, by Theorem 11, we proved the following.

Theorem 18. Suppose that n = ranldφc) < oo and %rQ(u) = n-\-\. Moreover
assume that F(x^j)J=Q9l9'-,n have at least one zero of second order
respectively. Then

are the corresponding eigenfunctions of eigenvalues μ/ of the eigenvalue problem (11)
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and the following trace formulae are valid for all meZ+;

(26)
j=o

(27) £ μ^<*)2 = V ~ W,
7=0 2

where ε(*\j =Q,\, -,nare defined by (25). The right hand side of (21) is the differential
polynomial in u(x). Particularly

(28)

holds.

Proof. It suffices to prove (27). Differentiate twice both sides of (26), then
we have

2 Σ 4iW2 + 2 Σ fiΦjίχ)Φj(χ) = 52z>w).
;=o ;=o

Eliminate φ](x) by φ'j(x) = (u(x)—μj)φj(x) from the above then one easily verifies

(27) by direct calculation. Moreover, by [6, p. 168, Proposition 12.1.12], it turns

out that the right hand side of (27) belongs to J#Q(U). The formula (28) follows
immediately from (27). This completes the proof.

It is well known that the trace formulae of McKean-Trubowitz type (26) and
(27) have many applications. Particularly, they play fundamental roles in many
geometric theories of Hill's operator. See [3], [8], [13] and [14].
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