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1. Introduction

The purpose of the present paper is to clarify certain algebraic properties of
the spectrum of the second order ordinary differential operator

H(u)= — 02+ u(x),

where u(x) is a meromorphic function defined in a region of the complex plane
and 0='=d/dx. The integro-differential operator

Aw)y=08"1- (%u’(x) +u(x) —%a3>

plays crucial role in our approach, where 4 - B denotes the product of the operators
A and B. The operator A(u) is usually called the A-operator or the recursion
operator. The A-operator generates the infinite sequence of differential polynomials
as follows; put Zy(u)=1 and define functions Z,(u), ne N by the recurrence relation
Z,uy=AuZ,_,u), neN. Then it turns out that Z(u) are the differential
polynomials in u,i/,---,u®"~? with constant coefficients. We call the differential
polynomials Z,(u), ne Z, the KdV polynomials.

Now, let V(u) be the vector space over the complex number field C spanned
by Z,(u), ne Z,, then A(u)e End(V(u)), i.e. A(u) can be regarded as the operator in
Mu). If V(u) is finite dimensional then the principal part of the problem concerned
with H(u) can be reduced to consideration of certain algebraic properties of
A(u)e End(V(1)). We want to call this method the A-algorithm. The main purpose
of the present paper is to investigate the spectrum of H(u) by the A-algorithm.

On the other hand, the present work is deeply related to the algebraic theory
of the Darboux transformation. Those problems were discussed in [18]. See
also [17].

The contents of this paper are as follows. In §2, the precise definitions of
the A-operator and the KdV polynomials are given. In §3, the expansion theorem
for the KdV polynomials is obtained. In §4, the notion of A-rank is introduced. In
§ 5, the spectrum I(u) of the opertor H(u) is defined and certain class of eigenfunctions
of H(u) are exactly constructed by using the A-operator. In §6, the problem
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related to the classical theorem of Ince is discussed. In §7, the trace formulae of
McKean-Trubowitz type are proved by A-algorithm.

A part of the present paper is announced in [16].

The author would like to express his sincere thanks to Dr. Yordan P. Mishev
for a number of useful advice.

2. KdV polynomials

Let .o/ be a differential algebra over the complex number field C of polynomials
in infinite formal symbols u,,ve Z, =NuU {0} with the derivation 6 =X ,u,, ,0/0u,.
We denote its subalgebra of polynomials without constants by &/, Put o/,=02,
then one can define the inverse 6! of the derivation 6:.9/, - &/,. On the other
hand, put

L1 1

K=—u;+uy6—=-63

277 4

then it is known that K-(6~1-K)"~ 1 belong to «Z, for all neN (cf. [20] or [15,
p. 621 Lemma 3.1]). Hence the set {A"1|ne N} is well defined as the orbit in =7,
where A=6"1-K. Since 4"1 are the polynomials in ug,uy,-+,us,_,, n€N (cf. [20]
or [15]), we denote them by P,(ug,uy, Uz, 5);

A" =P (ug,uy, Uz o).

On the other hand, let u(x) be a meromorphic function of the one complex
variable x. Let /(1) be the differential algebra of differential polynomials in
u(x). Now let us identify the derivatives u™™ = 8"u(x) € o/(u), ve Z, and the differential
operator ¢ with the variables u,,ve Z, and the derivation J respectively. By this
identification, we can define the subalgebras .« o(#) and 7(u) correponding to =,
and </, respectively. Then one can define the operator 0™ o(u) > o (1) by
identifying with the operator 6~ ':./, — o/, The operators K and A are identified
with the third order differential operator

Kw)= %u’(x) +u(x)d— %63

and A(u)=0"1- K(u) respectively. Moreover put
Zn(u(x)) = Pn(u(x)s u’(x), R u(2n - 2)(X)), neN

and Z,(u(x)) = 1, which are called the KdV polynomials. We also use the differential
polynomials X, (u(x))=0Z,(u(x)). The KdV polynomials Z,(u), ne Z, are represent-
ed by the recurrence relation

Zn(u) = A(u)Zn - 1(“)) neN
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with Zy(u)=1. At the same time, they are represented by the commutator
representation of Lax type

1
D) Z,()= 0" A, HG,
where
© A= 3. (2000~ X)) Hap

and [4,B]=A-B—B-A (cf. [10, p.220, Lemma 12.3.1] or [20, p.4]).

3. [Expansion theorem

In this section, we consider the expansion theorem for the KdV polynomial.
First we have the following.

Lemma 1. For any A€ C and me N, Z,(u(x)+ A) belongs to V(u), i.e., there exist
amv(l)’v =0, 1, e m Such that

Z,ulx) + 2) = ioamwzv(u(x».

The coefficients a,,,A) satisfy the recurrence formulae
Ly A or v=m+1
© = | y

Xy — l(l)+lamv('l) for V= 192,'“,m

With aoo(l) = 1.

Proof. First assume that
1
Zu(x)+ A=Y, u(DZ,(u(x)).
v=0

are valid for any /<m. Actually this is true for m=1. Differentiating both sides
of the above, we have

]
X(u(x)+2)= Y o, ()X,(u(x)).

v=1

Hence, by (2), one has
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A (te(x)+ 2)

g (Zy(u(x)+ A)o— —X (u(x)+ ) Hu(x)+ )"~

=3 ¥ n 00— Xt Ho)
Let f(x) be a nontrivial solution of the equation
@ Hlu+ 2 (5) = 700+ @lx) + D () =0,
then, by (1), one verifies
5) Ko (05)+ 2 0) = 5[ A+ ) Ha A1)

- %H(u + DA, (u+ D) ()

and
© A+ D)= 5, 2 X000~ X, )0

Combining (5) and (6), one has
X100+ /()
= S+ D) $ 20 N2 S 6= S )
Calculate the right hand side of the above and eliminate f” and /" by (4) and
£ =101+ )+ D),
then we have immediately
X 1)+ 21 )

= 'Z_n:oam(l)(K(u)Zv(u(X)) +A0Z,(u(x))f (x)
= amm(l)X m+ l(u(x))f (X) + il (amv - l(l) + j'amv(/‘L)’Y v(u(x)))f (X)

This implies that there exist a,,,,(4),v=1,2,---;m+1 such that
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m+1

X1 ((x)+2)= Zl U+ 1,(A) X ((x))

and

- for v=m+1
s = | 2
Oy — 1(4) + A0t (A) for v=1,2,---,m.

This completes the proof.

Note that we can not determine «,,4(4) by the recurrence formulae (3). To
determine them, we prove the following.

Lemma 2. The differential polynomial Z,(u(x)) contains B,u(x)" as its term, while
the remainder terms of Z,(u(x)) contain derivatives of u(x) as their variables, where

_ (2m)!
=St

P

Proof. We prove this by induction on m. First, note that the assertion holds
for m=1 because Z,(u(x))=1u(x). Assume now that the assertion is correct for
m—1. Put

Ym(u)=Zm— l(u)_ﬁm— lum— 19

then each term of Y, () contains derivatives of u(x) as its variables. By direct
calculation, we have

Z,(U)= By 1 A" + AW) Y (11)

2 = LB = 1)m— 2
2m 4

—%ﬂm_ Jm— D™ 2" + A() Y, (u).

Note that

2m—1

Pn="om

ﬂm—l

holds. Therefore it suffices to show that each term of A(w)Y,(u) contains the
derivatives of u(x) as their variable. Conversely assume that at least one of terms
of A(w)Y,(u) contains no derivatives of u(x) as its variables. Let / be the lowest
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degree of such terms. This implies that K(u)Y,(«) contains the term of the form
Ipu'~'«. On the other hand, we have

Kw)Y) =§Ym(u)u' ; Ym(u)'u—iYm(u)"'.

Hence one can see that Y(u) contains the term 2/pu'~!. This is contradiction.
Therefore this completes the proof.

Since Z,(0) =0 for v>1 and Z,(0) = 1, one verifies readily
Z, (A=Y a(DZ,(0)=po(4).
v=0

On the other hand, by lemma 2, we have

2m)!
Z(A)=B A" =——"A"

m( ) ﬂm 22m(m!)2
This implies

2m)!
amo(z)=2—f,,;”7’!)zxm.

Calculating the recurrence formulae (3) with the above expression for a,,4(4), we have
the following.

Theorem 3. Define a,v=0,1,2,---,n by the recurrence formulae

1 for v=n
ot(,")= a(‘."_]”-i-a(‘."_l) for V=1,2,"',n_1
(2n) _
—22”(n!)2 for v=0

with «l®=1. Then
) Z )+ )= 3 aPZ, )i
v=0

holds for any AeC.

Next we consider certain arithmetic properties of the coefficients .
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Proposition 4. The binomial coefficients a,v=0,1,---,n satisfy the following
relations;

®) 2 (=17 tag PP =1,
v=1
©) Y (—1oa=0.
v=0

Proof. Suppose n>1. Since Z,0)=0, by Theorem 3, we have

Z(1—1)= 3 (~ 1y ~aPZ,(1)=0

v=0

On the other hand, by (7), one verifies
3 (— ) aZ () =(~17 ¥ (- 1)afol.
v=0 v=0

Hence (9) follows. Next we prove (8) by induction on n.  Since a{’a{"’ =1, (8) holds
for n=1. Assume that

n—1
T (— 1o a1
v=1
holds. Then we have
3 (— 1)~ o Y
v=1

n—1
— Z(—l)v—1“8_1)(a£":11)+a£”—1)+(—l)n_lag'_l)as,")
v=1

n n—1
— Z (_ l)v— lag— l)a(vn_—ll) + Z (_ l)v— la((;/— ”ocf,"' 1),
v=1 v=1
since a®=a""V=1. The first term of the above vanishes by (9) and the second
term coincides with 1 by the assumption. This completes the proof.

3. A-rank

In this section we introduce the notion of A-rank. Let V(u) be the vector
space over C spanned by the infinite sequence of the KdV polynomials Z,(u),me Z .,
ie.,
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Vw= ) CZ,(u).

meZ +

If V(u) is finite diminsional, then we say that the A-rank of the meromorphic
function u(x) is finite and define rank.u(x) by

rank au(x)=dim, V(u)— 1.

First we have the following.

Lemma 5. If n=rankau(x)<oo then W(u) is spanned by Z[(u), v=0,1,---,n,
ie, Vu)=®,-,CZ(u).

Proof. Since Zy(u)#0 and V(u) is finite dimensional, there exists me NV such

that Z(u),Z(u),---,Z,(u) are linearly independent and Zy(u),Z,(),**,Zn(4),Z 4+ 1(%)
are linearly dependent. Hence there exist c,,v=0,1,---,m such that

Zm+l(u)= Z Cva(u)'
v=0
Then, operating with A(x) on both sides of the above, we have
Z s (W)= AW)Z,, 1 1 (1)

= e, AWZ,W)
v=0

m—1

=cmZm+ 1(“) + Z Cva+ l(u)
v=0

m m—1
=Cp Z chv(u)+ Z Cvzv+ l(u)
v=0 v=0

m
= Z (Cv -1 + Cmcv)Zv(u) + CmCOZO(u)'
v=1

Similarly to the above, one verifies that Z,, (4) can be expressed as the linear
combination of Zyu),Z,u),--,Z,(u) for any ve N. This implies dimV(u)=m+ 1.
Hence m=n follows. This completes the proof.

Suppose n=rank..u(x) < co then, by lemma 1, there uniquely exist a,(u),v=0,1,---,
n such that

(10) Z, 11 (u)= 3 20Z, ).
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We call a,(u),v=0,1,---,n the A-characteristic coefficients of u(x). Moreover we
call the monic polynomial of degree n+1

QA;u)y=A""1— i a,wi’

v=0

the A-characteristic polynomial. By Theorem 3, we have readily the following.

Proposition 6. For any 1eC
rank 4(u(x) — 1) = rank au(x)
holds.

Hence, if n=rank.iu(x)<oo then there exist a,(A;u),v=0,1,---,n such that

Zi ) —D)= 3 a(d; 0 Z,(u(x) — A).

v=0

Of course, a,(0;u)=a,(u) holds for any v=0,1,---,n. More precisely, we have the
following.

Lemma 7. If n=rank.u(x)<oo then a(A;u),v=0,1,---.,n are the polynomials
in A of degree n—v+1,

n
a(A;w)y=—al OV Y alau)ai .
Jj=v

Proof. By Therem 3, we have
Zy i \(u(x))=Z, ;. (u(x)— )+ 1)

=Zy )= D)+ 3 o0 VZ )~ D

= 3 (@d;u) a0 Z ) — A)
v=0

On the other hand, we have

Z, (X)) = ), au)Z {(u(x)—2)+ 1)

j=0

™M=

aju) XI: oV Z (u(x)—A)AI Y
v=0

i=0
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-3 Zn:a‘v"’al(u)l"")Z‘,(u(x)—,l).

v=0\j=v
This implies that
a(A;u)+alrt oyt Z aPau)i ="
j=v

are valid for v=0,1,---,n. This completes the proof.

4. Construction of eigenfunctions

In this section we construct special class of exact solutions of the eigenvalue
problem

(11) (Hw)—)f(x)=0, AeC

by the A-algorithm when A-rank of u(x) is finite.
Suppose n=rank.u(x)<oo and put

(12) Fx; )= Z,u(x)— A= Y afA;0)Z,_ y(u(x)—2).

v=1

Then, since rank.a(u(x)—A)=n, F(x;1) is not identically zero for any Ae C. One
verifies

Alu(x)—)Rx; )
P (1u'(x) i) 10—0° Fixi
2 4
=ay(4;u).
Hence
K(u(x)— )F(x; 2)
= %u'(x)l;'(x N /1) + (u(x) - l)F x(x 5 '1) - %F xxx(x ; ’1)
=0

follows. Suppose that u(x) is holomorphic at x=a. Let f{x;4),j=1,2 be the
fundamental system of solutions of (11) such that

fila; 2) fz(a;l))_<1 0)‘

@) fia;d) \o 1
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Then, by [19, p.23, Theorem 7], there exist af4),j=1,2,3 such that
Fox; )=ay(A) 1065 4) + aa(D) £1065 D o063 D) + a3 (D) folx; A2,

that is, F{x; 1) can be represented as the quadratic form with the variables f{(x; 1), j
=1,2. We have the following.

Lemma8. The coefficients af4),j=1,2,3 are the polynomials in A expressed as
Ra;l) Jor j=1
afd)= g Fa; ) for j=2

[%Fn(a;z)—(u(a)—ama;n for j=3.

Proof. Note that f,(a;A)=f,(a;A)=1and fi(a;)=f(a;)=0. Then, by direct
calculation, one verifies

Ra;2)=a,(1)
F{a;)=0,(1)
and
F, (a;2)=2a,(A)(u(@)— 1)+ 2a3(A).

By lemma 7, Fa;4), F(a;) and F,(a;A) are polynomials in 4. This completes
the proof.

Let A(A,u)=a,(A)>—4a,(A)as(A) be the discriminant of the quadratic form
F(x;2). Then, by lemma 8, we have immediately

(13) A(Au)=F(a;1)* —2Fa; WF,(a; ) +4ula)— DFa; 2)*.

Hence 4(A,u) is the polynomial in 4. To investigate it more precisely, we have
the following.

Lemma 9. F(x;A) is the monic polynomial of degree n in A for any x.

Proof. By Theorem 3 and lemma 7, we have
Fle; )= Y. (=11 o Z u(x)an
Jj=0

n v—1
+ Z a(vn+1),1n—v+1 Z (_1)v—k—laav—l)zk(u(x))lv—k—l
v=1 k=0
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+lower terms

n+1
=) (=1 taf " Val* VA" +lower terms.

v=1

The assertion immediately follows from the formula (8).
Hence we have the following.

Corollary 10.  The discriminant A(A ; u) is the polynomial of degree 2n+1 in 1,

A(A;u)= —4A*"*! 1 lower terms.

Therefore, if we put
Iu)={1e Q4(A;u)=0},

then #I(u) <2n+ 1 follows, where # denotes cardinality of the set. Moreover, since
0 1
——A4(A;u)=8Fa; l)(—u’(a)F(a 54)
da 2
+ )~ D a3 )= Fola z)) -0,

A(A;u) and I(u) are independent of choice of the holomorphic point x=a of
u(x). In the case of Hill’s operator, I'(u) corresponds to its periodic spectrum (cf.
[12]). Hence we call I'(u) the A-spectrum.

Now suppose 4;eI(u) then there exist the constants B;,i=1,2,j=0,1,---,2n
such that

F(x;lj)=(ﬁljf1(X;lj)+ﬂ2jf2(x;'1j))2'

Thus we proved the following.

Theorem 11.  Suppose n=rank.au(x)<oco. Then the A-spectrum I(u) is uniquely
defined for u(x) and $I'u)<2n+1 holds. Moreover, if A;e Iu),j=0,1,---,2n then

gj(x)=\/ F(x;lj, j=011a"';2n

are the corresponding eigenfunctions of the eigenvalue problem (11).

Such an algorithm to construct eigenfunctions as above has been already
developed by several authors from somewhat different point of view. See e.g.
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[12, §6, pp. 235-236].

On the other hand, it is known that Z (u)0Z ,(u)e.sa?o(u) hold for any i,jeZ,
(cf. [6, p. 168, Proposition 12.1.12]). Hence there exist I;{u)=0""(Z(u)0Zu))e
oA o(u),i,je N. Put

Jk(u(x)) = In + lk(u(x)) - Z av(u)lvk(u(x))’ k= 1:21 N

v=0

then they are the nontrivial first integrals of the 2n - 2 th order ordinary differential
equation (10), ie., 0J,(u) =0. Hence there exist the constants ¢, such that
Ji(u) = ¢,,k=1,2,---,n. Using these relations, one can reduce the expression of
F(x;4),A;je ) as the differential polynomials. Here we refer [6] for the
Hamiltonian method in the study of the differential equation (10). See
also [2] and [21].

5. Ince’s theorem

Let 2(x) be the Weierstrass elliptic function with the real primitive period
w, =7 and the imaginary primitive period w;. Put p(x)=2(x+1w;), xeR. Ince
[9] proved that if ne Z, then the differential operator H(n(n+ 1)p(x)) in the class
of functions of period 2x has 2n+1 simple eigenvalues A, <A, <:--<A,, See also
[1] and [11]. Hence, by the results of soliton theory (cf. [7, p. 84] or [12, p.
234]), rank.n(n+1)P(x)=n follows. The purpose of this section is to prove the
above fact within the framework of A-algorithm.

Suppose rank.u(x)=1 and ke C\{0}. Put u,=u,(x)=ku(x). Since

1 1
Z\W=zu,  Zyu)=—(3u—u"),

2 8

one verifies
" 3 2
(14) U= %uk —4a,(u)u, —Bay(uk,
where a,(u) and a,(u) are the A-characteristic coefficients of u(x). This also implies
AY 2 3 2

(15) ()’ = Euk —4a, (Wui — 16ay(wku, + c,

where c is a constant. By (14) and (15), one can eliminate the derivatives u{?(x),s > 2
and (4j(x))*,/>1 from the differential polynomial Z,(u,). Thus we have

(16) Zm(uk) = Pm(uk) + Qm(uk)u;u
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where P, (1) and Q,,(1,) are the polynomials in ,. On the other hand, one verifies

0 0
OZ ) = =Pttt +—— Qi 14)* + Ottt
O, Ouy,

Now put
2, , d
R, (u) =\ 1y —4a,(wui; — 16ao(w)ku,+ ¢ Omluy)
k Oy,
3
+ <Euf —4a, (Wu,— 8ka0(u))Qm(uk)
and

0
Sm(uk) = aP m(uk)’
k

which are the polynomials in u,. Then, by (14) and (15), one verifies
aZm(uk) = Rm(uk) + Sm(uk)u;c'

Here we show the following.

Lemma 12. P, (u,) is the polynomial of degree m in u,;
P m(uk)= 2 P m;(k)ui'
j=0

The leading coefficient p,,.(k) satisfies the recurrence relation

(2m + 1)(2k —m(m + 1))
Pmm(K)-
4k(m +1)

(17) Pm+1m+1(k)=

Moreover
Onlti) = Ry (1) =0
holds.
Proof. We prove this by induction on m. The assertion is obviously correct

for m=1. Assume that the assertion is correct for m. Operate with A(x) on both
sides of (16). Then we have

m ; 1 .
(18) Z 1 1() = AP pt1) + Qi) = 3. Z?Til—)pm,(k)ui“

j=0

Lm o tm
- Z I)ij(k)“i 2(uh:)z - Z.]ui 1uk'
4 =2 4j=1
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Eliminate u; and (4;)* by (14) and (15) respectively. Then Z,,, ,(x,) turns out to
be the polynomial of degree m+1 in u,, that is,
Z ()= Py 1 (i)

and Q, . ()=0. Moreover one verifies (17) by calculating the coefficient of uJ"*!
in (18). This completes the proof.

Finally we prove the following.

Theorem 13. If rank.au(x)=1 then

kAn(n + l)u e
2

holds for any neN.

Proof. For brevity, we use the notation »,=""#1y in this proof. By lemma
12, we have

(19 zn+1(vn)="};pn+l,-(”("2+ ”)vi.

Moreover, p,; 1,+1(%52) =0 follows from (17). On the other hand, let us consider
the system of n+1 linear algebraic equations

(20) Zn: <n(n+1)>bi=pn+ 1j<n(L+L))a Jj=0,1,---,n

2

for the n+1 unknowns by,b,,:--,b,. The coefficient matrix of the system of linear
equations (20) is the upper triangle matrix with the diagonal elements p,,,(*®3),
m=0,1,---,n. By induction based on the recurrence formula (17), one easily verifies

n(n+1) 2m)! )
pmm< 2 ) 22"+ 1)"(m v)zn("*f’(" j+1).

Hence p,.("%+)#0, m=0,1,---,n follows. Thus (20) is uniquely solvable. Let
bo,b,,--+,b, be the unique solutions of (20). Then, by (19) and (20), one has

§ bzio0= 35 i ("(”“))

-E(En e
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u 1) .
= .=Zoprﬁ- I](n_("z;—))v:l =Zn+ l(vn)

This implies rankv,<n. On the other hand, suppose that
Z ¢,Z (v,)=0
v=0

are valid for some cg,cy,---,¢,. Then, similarly to the above, one verifies that
co=c¢;=--=c,=0hold. Thus we proved rank.z,=n. This completes the proof.

Here we briefly mention about the function of A-rank 1. Let rank.au(x)=1
then there exist the A-characteristic coefficients a,(u),v=0,1 such that

Z(u(x))= a,()Z (u(x)) + ao(W)Z o(u(x)).
We have
W' —3u®+4a,(wu+8ay(u)=0

This equation has the following three type solutions; the rational function
2A%(Ax+a)~2+b, the trigonometric function 2A%sin~%(Ax+a)+b, and the elliptic
function 2422(Ax+a)+b. Therefore we have the following.

Corollary 14. The following are valid,

2
anb(m + b) =n,
(Ax+a)?

2
rankA(—_n(—'l+—l)i— + b) =n,
sin?(1x +a)

rank a(n(n+ 1)A2P(Ax +a)+ b)=n.

7. McKean-Trubowitz type trace formula

Let g(x), — o0 <x< oo be a real smooth function of period 1, then the spectrum
of Hill’s operator — 9% + g(x) in the class of functions of period 2 is a discrete series

—w<).0<).1S12<A3S14<"‘<12i_1 SA.25<"‘.

Let f,(x),veZ, be corresponding normalized eigenfunctions. In [13], McKean
and Trubowitz proved that there exist ¢,e R,ve Z, such that

00

(21) Y e fix)?=1,

v=0
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where €, >0 and ¢,>0 with equality if and only if 4,,=4,,_,. See also [12], [4]
and [5]. In this section, we want to understand the above trace formula (21) of
McKean-Trubowitz type from the viewpoint of A-algorithm.

Suppose n=rank.u(x)<oco and define F(x;A) by (12). Then we have the
following.

Theorem 15. For any AeC,
AWFx; ) =AFx; 1) —Q4;u)

holds, where Q(A;u) is the A-characteristic polynomial.

Proof. Put

P(2)=(A—AW)Fx; 2)

then one has

;«z—Aw»F(x;A»
X

=AFx(x;A)—(%u'(x)nx;znu(x)n(x;z)—%Fm(x;x))
— — Ku—)Fx; 1) =0,

This implies that P(4) is the polynomial with constant coefficients. On the other
hand, since (A—A()F(x;1) can be expressed as the linear combination of
Zyu),Z,(u),--,Z,+(u), there exist the polynomials pf4),j=0,1,---,n+1 in A with
constant coefficients such that

n+1

PU)= 3. pANZ .

Since

n+1 n

Z Pj(;l')zj(u) = o(pj()') + aj(u)pn + l('l))Zj(u)
j=0 j

and Zy(u),---,Z,(u) are linearly independent, we have
P(A)=po() +ao()ps+ 1(4)-

By Theorem 3, one verifies
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(A—A@W)FAx; 2)

=Y (=1 e Z (A1
j=0
n v—1
=Y aA;u) Y (1) P VZ war
v=1 j=0

—_ z (— 1)"_"0!3-")Z,-+,(u),1"_f
j=0
n v—1
+ Y ) Y (=1 T IZ,
v=1 i=0

J

Therefore we have

PoA)=(=1y"a@2"* 1 — 3 (=1)""la,(A;u)af D2
v=1

and

Pn+1(A)= —al’=—1.
On the other hand, by lemma 7 and Proposition 4, we have
Pold)=(—1yaga*!

— Y (=1 ey (— o DA L Y g Pau)hI A
v=1 Py

j=v

=((_ 1)”(13')-{- Z (_ l)v— lag—- l)dg”' 1)))‘n+1

v=1

- 30 Y ey
v= j=v

v j=1\v=1

n+1 n J
( Z (_ l)v— lagv— 1)a$n+l))ln+l__ Z ( Z (_ l)v—lagu— ”a‘v"’)al(u)lj
=1

n

=" — ¥ afu)l;

j=1

Hence we have

n

Po(D)+agup,+(H)=1""1 = ¥ a )i’ =Q(;u).

j=0

This completes the proof.
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One easily verifies that

0 0 0 ayu)
1 0 0 au)
0 1 0 a,(u
0 0 - 1 a,u

is the matrix of A(u)e End(V(u)) relative to the basis Zy(u),---,Z,(u) of V(u).
Hence

A 0 0 - 0 —ayw
-1 12 0 - 0 —aw
0 -1 4 -+ 0 —a,u
det(A— A(u))= on :
0 - -1 1 —a,_
0 - o —1 A—a,w)
=Q(4;u)

follows. Hence if we put
To(w)={AIQ(A; u)=0},

then we have the following.

Corollary 16. I'y(u) is the set of eigenvalues of A(u)e End(V(u)). Moreover
F(x;pu;) are the eigenvectors of A(u) corresponding to the eigenvalues p;e I (u),
Jj=0,1,---,n respectively.

Hence, if n=rank.u(x)<oo and #I'j(u)=n+1 then W) is spanned by
Hx ; ﬂ])7_1=07 17 . "n;

Vi) = @ CFx ).

By lemma 9, F(x;A) is the polynomial of degree n in A for each x. Hence
if #o(u)=n+1 then, by Lagrange’s interpolation formula, we have

23) Ax;)= 3 [12" 2Ry,

j=0i=0M;j—H;
i#j
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Operate with A(u) on both sides of (23) then, by Theorem 16, one has immediately

— QA u)+ AF(x; )= --io“’ll_ﬁ[ :.— Bt )

Of;— Ky

Therefore, we have

—Hu w+ 3 A= F(x PRI | Eaay )

j=0 i= ol;— I j=0 i=ofi—l;
#j i#j
Thus we proved the following.

Proposition 17. If n=rank.u(x)<oo and $I'y(u)=n+1 then the formula
(24) Y eMAx;p)=1
j=0

hOIdS’ where FO(u) = {”O)ﬂl) ot "ﬂn} and

L
(25) = []——
i= 0#] H;
i#j

Furthermore, by operating with A(x)" both sides of (24), one has
Y PR p) = Zy(u(x)),  meZ,.
j=
Next suppose that F(x;u;) has at least one zero x=a; of second order for
each j=0,1,---,n, ie.
Haj;“j)=Fx(aj;”j)=0’ j=0’19'“9n-

Then, by (13), 4(u;;u)=0 are valid for any j=0,1,---,n. Hence I'o(t) = I(u) holds
in this case. Therefore, by Theorem 11, we proved the following.

Theorem 18. Suppose that n=rank.u(x)<oo and #Ij(u)=n+1. Moreover
assume that Flx;p),j=0,1,--.,n have at least one zero of second order
respectively. Then

¢ 0 =EPRx;n),  j=0,1,-n

are the corresponding eigenfunctions of eigenvalues y; of the eigenvalue problem (11)
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and the following trace formulae are valid for all me Z ,;

(26) 3 B2 = Zofuts)
@) 3 =0~ (0.0 DZut),

where £",j=0,1,---,n are defined by (25). The right hand side of (27) is the differential
polynomial in u(x). Particularly

29) 3" ¢ = —%u(x)
i=0

holds.

Proof. It suffices to prove (27). Differentiate twice both sides of (26), then
we have

2 ._io“? ¢ +2 __ioﬂ?¢,(x)¢;-’(x) =0%Z,,(u(x)).

Eliminate ¢j(x) by ¢j(x)=(u(x)—p;¢(x) from the above then one easily verifies
(27) by direct calculation. Moreover, by [6, p. 168, Proposition 12.1.12], it turns
out that the right hand side of (27) belongs to o/,(u). The formula (28) follows
immediately from (27). This completes the proof.

It is well known that the trace formulae of McKean-Trubowitz type (26) and
(27) have many applications. Particularly, they play fundamental roles in many
geometric theories of Hill’'s operator. See [3], [8], [13] and [14].
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