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1. Introduction and main results

In this paper we study the spectral property of the 2-dimensional Schrédinger
operators with periodic potentials and constant magnetic fields :

(1.1) H(\) = (Dgy +bz2)? + (Dy, — bz1)? + X2V (z) in  L%*(R?),

where D,, = —i0/dz; (j = 1,2), b € R, V() is a real-valued function on R?, and
A is a positive parameter. The corresponding magnetic field is defined by the 2-form
B = —2bdzy A dzo. We assume that V' (z) satisfies the following conditions :

(H.1) V(z) € C>*(R%R).

(H2) V(x+v)=V(z) on R? forany el =2rZq2rZ.

(H3) V(z) >0 on RZ

(H4) V(z) =0 ifandonlyif zeTl.

(H.5) V"(0) =2 ("1 0 e >0

0 pe
The spectral property of H(\) depends largely on number theoretical properties

of B and I'. In this paper we assume that
(H.6) be (1/4m)Z.

Under the assumption (H.6), the spectrum of H()) has a band structure. Our
main purpose is to study the asymptotic behavior of the spectrum of H(\) when
A tends to infinity. When the magnetic field is absent (i.e. b=0), B. Simon [5] and
A. Outassout [4] proved that the width of the lowest band (the ground state band)
decreases in exponential order when A — oco. Simon used the theory of Brownian
motion in the proof, while Outassout employed the W.K.B. type analysis developed
by B. Helffer-J. Sjostrand [2]. In this paper we prove similar estimates in the presence
of the magnetic field B.

For z, y € R?, we denote by dy (z,y) the Agmon distance associated with V (z)
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(see §3), and we set

so = min dy(0,7).
0= L&y W (O

The hypotheses (H.3) and (H.4) imply that sq > 0. Then we have the following
theorem.

Theorem A. Assume (H.1) ~ (H.6). Let L(\) be the width of the ground
state band. Then, for any n > 0, there exists a constant C,, > 0 such that

(12) L(X) < Cpe=(o2MA g5 X — oo.

We improve the estimate (2) under an additional geometrical assumption. Let
A ={y €T;dv(0,7) = so}.
For zo € R? and r > 0, we set
By (zo,7) = {z € R%*;dy (20, ) < T}

For each v € A, we assume the following.

(H.7) There is a unique geodesic k of length sy joining 0 and .

(H.8) Let zg € kN By (0,50) N By (v, s0) and let T'y CC By (0, s9) N By (7, s0) be
any smooth curve such that Tg Nk = {zo} and T intersects » transversally
at zo. Then there exists a constant C' = C(zp, I'g) > 0 such that

dy (z,0) + dv(z,7) > so + Cdy (z,0)> for any « € Iy.

Theorem B.  Under the hypotheses (H.1) ~ (H.8), the width of the ground
state band of H(\) is

(boA*2 + O(AV?))e %> a5 A — oo,
where by > 0 is a constant depending only on V(x) and B.

We owe the basic ideas of the proof of these theorems to the work of Helffer-
Sjostrand [2] on the tunneling effect of Schrodinger operators and to that of Out-
assourt [4] which applied the technique of Helffer-Sjostrand to periodic potentials
and the tight-binding approximation. The assumption (H.6) allows us to generalize
this idea to the magnetic Schrodinger operators with small modification. In §2, we
introduce a differential operator on a torus, and estimate its eigenvalues by using
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harmonic approximation. In §3, we prove Theorem A by slightly deforming the
periodic potential and comparing the first eigenvalue of the resulting Schrodinger
operator with the one introduced in §2. In order to prove Theorem B, we shall intro-
duce in §4 a W.K.B. solution of the magnetic Schrédinger operator and approximate
the eigenfunctions of the reference problem.

2. Preliminaries

First we introduce various function spaces and magnetic translations which
reduce our problem to that of a differential operators on a torus. For details see
Sjostrand [6] p. 247.

Let E be the fundamental domain of T' = 27Z @ 27w Z, I'* be the dual lattice of
I', and E* be the fundamental domain of I'*. Namely,

E =10,2m) x [0, 27),
I*={y"e€R%~y.-v*c2rZ,"yeT}=ZDZ,
E*=1[0,1) x [0, 1).

Let H%(R?) = {u € L*(R?); Tiu, T;Tju € L?(R?),"i,j € {1,2}}, where
T1 = Dzl + be_},Tz = Dzz - bfL‘l.

We define the inner product of H%(R?) by

2

2
(u,’v)H?;(Rz) = (u,’l})Lz(Rz) + Z(Tiu,Tiv)Lz(lp) + Z (TiTju, TiTjU)Lz(Rz).
i=1 1,J=1

Then, H(}) is self-adjoint with domain H%(R?2).
For v = (m1,72) € T and u € L}, (R?), we define the magnetic translation T2
by

(Tfu) (z) = eib’n’yze—ib(zl%—IZ’YI)U(Q; — ).
{T2},er is an Abelian group, and each TS commutes with the differential operator
H()) defined by (1).
For u € S(R?) and 0 € E*, we define

(Uu)(x;0) = Z ei"'o(Tfu)(:c), r € R2.
ver

For 6 € E*, we define

Hpeo={ve L?OC(RZ);T,?U =e % ae in R%LYyel}
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equipped with the inner product (u,v)y,, = [pu (z)v(z)dz.
Let H = f g+ Bpd0 equipped with the inner product

(u,v)y = (volE*)_I/* dO/EU(:c, 60)v(z, 0)dz.
For 6 € E*, we define
2.1) H(X;0) = (Dg, +bz3)? + (Dgy — bz1)? + X2V (2z) in Hppe
with domain
H% o = {v € Hpo; Tv, TiTjv € Hpg,"i,j € {1,2}}.
We then have the following fundamental proposition (cf. [6] p. 255).

Proposition 2.1. U is uniquely extended to a unitary operator from L?(R?) to
'H, and the following equality holds :

D
(2.2) UHOMU = [ H(X;6)do
E*

Because H();0) has a compact resolvent, the spectum of H();6) is discrete. We
denote by &;(A;6) the j-th eigenvalue of H(\;0) counted with multiplicity. By the
min-max principle, £;(A;0) is a continuous function of § € E*. So, we have

(2.3) o U (A E*), where &;(\E*)={E;()\6);0 € E*}.

E;(\; E*) is either a closed interval or a one-point set. We call £;(\; E*) the j-th
band, and &; (\; E*) the ground state band.

Before going into the precise analysis of the ground state band, we first get the
asymptotic expansion of first order of each eigenvalue. Let N be the set of non-
negative integers and N the set of positive integers. Let

Ao = {(24 + V)/iT + (2k + 1)y/iizi 4, k € N}

(where pj, ps are defined in (H.5)) and let v, be the n-th smallest element of Ag
counted with multiplicity. Then we have the following theorem.

Theorem 2.2. For eachn € N, we have

(2.4) Ea(X;0) = v A +0(A) (A — ),



MAGNETIC SCHRODINGER OPERATOR WITH PERIODIC POTENTIAL 863
where the error term is uniform with respect to 0 € E*.

Proof. The proof is done along the line of Theorem 1 of Simon [5]. We prove
the following two inequalities.

(2.5) En(X0) = v A — O(AY®) (A — o0),
(2.6) En(X;0) < vud + O(AY2) (A — o),

where the error term is uniform with respect to 6 € E*.

As was done in Simon [5], (5) is proved by using the I.M.S. localization formula
and the min-max principle. The presense of the magnetic fields requires no essential
change.

Next we prove (6). To show this, we use the harmonic approximation (cf. [5]).
(H.5) implies that

V(z) = pz1® + pewa® + O(|2®)  (|z] — 0).
Let us introduce the following approximate operator :
(2.7) Ho(\) = (Dg, +bz2)? + (Dgp — bz1)? + A2 (1212 + pozo?) in  L?*(R?).

We use the eigenvalues and eigenfunctions of Hy(A) to approximate £;(A;6). By
the symplectic invariance of Weyl operators, Hy(\) is unitarily equivalent to the
following harmonic oscillator (see Appendix) :

(2.8) —A+my(N)z1? + ma(N)ze? in  L?(R?),
where m1(X) and mg(\) are the roots of

t% — ((u1 + p2)A® +46°)t + pyppX* = 0,m1(A) < ma(N).
Therefore, the eigenvalues of Hy()\) are

Eix(N) = (27 + DVma(N) + (2k + 1)v/m2(V), 4,k eN.
Let

vk = (24 + 1)v/min(u1, ) + (2k + 1)/max(us, ).

In Appendix, we shall show that
(2.9) Eix(N) =0 kA +0(1) (A — oo).

Let {1,k };ken be the complete orthonormal system of L?(R?), where 1, x(A; z) is
the eigenfunction of Hy()) associated with the eigenvalue (25 + 1)y/m1(A) + (2k +
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1)4/m2(A). Each ¢; , can be computed explicitly, and the following estimate holds
(see Appendix) :

(2.10) i k(X 2)| < C; x A2 exp(—cA|z|?),

where Cj; > 0 and ¢ > 0 are constants independent of A > 1. We can choose
{(]n, kn)}nZl (]na kn € N) such that

Un = vjn,kn(n = 1?27 o ')7 (]n,kn) ?é (]m, km) if n 7é m.

Let ¥n = ;. kn» Cn = Cj ks En(N) = &k (A) (R =1,2,---), and

(2.11) (X z;0) = Y e (TF ) (A z) (6 € EY).

yel

We prove the following estimates :

212)  (pa(X;750), m (X 730))145.0 = bum + O(e™) (A — 00),
(213)  (HX;0)0n (X5 250), 0m (X5 230)) 35 5 = UnApm + O(AY2) (A — 00),

where k£ > 0 is a constant independent of A and each error term is uniform with
respect to € E*. The inequality (6) then follows from (12) and (13) by Schmidt’s
orthogonalization process and the Rayleigh-Ritz Principle.

First we show (12). For v = (y1,72) € T', we set

(2.14) 6(v) = ePnz,
Then (H.6) implies that

(2.15) 0(y) € {1,-1}.
From (11) and (15), we have

(2.16) (En(A;230), ©m (XN 30)) 205 4
- /E > Un(Xiz = )n(Nz —7)de

ver

+ 33 [ o 000)
~yerl -yl’ir E

><e_ib(z”z_’“'“)eib(z”;_z”;)wn()\; z — V)Vm(A;z —v')dzx

where v = (71, 72), v = (’Y{a’Yé)-



MAGNETIC SCHRODINGER OPERATOR WITH PERIODIC POTENTIAL 865

The first term of the right-hand side equals

/ UV (X )Y (N 2)dT = Sp-
R2

We denote the second term by R, ., (). Then (10) implies that

|Rnm(M\)| < CrCrmA > ) /E exp(—eX(|z = 7] + |z — +'|*))dz.

€T ~'er
v #Ey
A simple calculation shows that

lz—+|z—+)>>2r% in R? for v,y €@,y #7.

Let k = m2c (> 0). Using the above inequality, we have

(2.17)
[Rnm (M)
1
< CpCphe™** Z Z /Eexp (—Ec/\([ac P+ — ’y'|2)> dz
T
1 1
—kA : 2 /2
< C,Cple ;exp <—§c)\ min |z — | ) ’% Eexp (—50/\|x - > dz

= CpCre Z exp (—%c)\ ;rg}rﬂl |z — ’y|2> /R2 exp (—%c)\|z|2> dz

yer

_ —kA _1oe L 2
= C,Cnre (/Rzexp( 2c|acl dz Zexp 2cA¥éuEllz ¥,

vyer

where we have used the scale change v/ Az — z in the third line.
ForyeT, |v| > 4v/27, we have

2.

| =

: 2

mn (r — >

min |z — % 2

So, there exists a constant C’ > 0 independent of A > 1 such that

1
Zexp (——c)\ min |z — '7[2> <C' forany A>1.
Jer 2 T€EE

Therefore, we get (12).
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Next we show (13). We denote by H°()\) and H°()) the formal differential
operators

(Dg, +b22)® + (Dgp — bz1)? + A2 (11212 + poz2?)
and
(Dg, +bx2)? + (Dg, — bx1)? + NV (z)

respectively. Let Ey = [—m,m) x [—m, 7). Bécause each TZ(y € T') commutes with
H°()), we have by using (11)

(2.18) H(X;0)pn(X;2;0), om(X;2;0))1p 6

(H(
- /E (H° (\)pn (3 73 0)) o (% 73 0) e

:/ Z iv.e(Ho(A)Tf’ﬁn)(/\;$)<Pm()\;J:;G)dz

= [ S e @B ) om0
Eo

yer

(2.19) /E Y e UTE(H(N) — HO(V)¥n) (X 2)pm (N 3 0)da

yer

ir-0 (1B o J—
+/}Eoge (T H°(N)Yn)(X; 2)om (A; ; 0)dz.

Let us recall that
H(An, = En(N)n.
This together with (9) implies that
HO (N ¢ = (va ) + O(1))n (A — 00).

So, the second term of (19) equals

(vn A + O(l))/E Ze”'e(Tfi/)n)(/\;z)wm()\;m;G)dx

yer

= (1A +0(1)) / (X 73 0)pm (N 73 B)
Eo

= (vnA + O(1)) (b + O(e™™Y))
= UpbpmA + O(1),
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where we used (12).
We denote by Ry, ,,(}) the first term of (19). We have

TE((H° () — H°(\)thn) (M 2)
= NTIH{(V(2) — (m°x1® + p2’22?))yn}
_ )\20(,),)6—1'11(21‘12—33271){V(w —v) — (w1 (z1 — '71)2 + po(z2 — ’72)2)}1/171()\; T — 7).

By (H.5), there exists a constant Cp > 0 such that
[V (z) — (m1z1? + pox2?)| < Colz®> in  E,.

Because V(z) is bounded in R? and dis(I'\{0}, E;) > O, there exists a constant
C{ > 0 independent of y € I'\{0} such that

[V (z — )| 4 p1(z1 — 71)* + pa(z2 — 72)* < Chlz — 7| in Eo for any v € T'\{0}.
Using (10), we have for any v € T'
IT2((H°(A) = B (W)n) (X 2)| < CgA*|z — 7[> exp(—cAlz —+|%) in  Eo,

where C{/ > 0 is a constant independent of A > 1 and v € I.
Using (10) again, we have

|R;, (V)] < ClCm A3 Z Z /E |z — v|? exp(—cA|z — v|?) exp(—cA|z — +'|*)dz
0

yeT ~’€l

< CYCu A3 Z exp(—cA min |z —|?)
~er rE€Fg

X Z/ |z — 7[* exp(—cAlx — v[?)dx
vyer Eo

As in the preceding caluculus, there exists a constant C’ > 0 independent of
A > 1 such that

Z exp(—cA min [z — ') < C" (A>1).
Jrer z€Eo

So we have
IRy, (M) < C'C(’,/Cm)\S/ |z|? exp(—c\|z|?)dx
R2
= O(A\'/?)

and we get (13). ]
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3. Proof of Theorem A

In this section, we give the proof of Theorem A. The most important part of
the proof is the exponential decay of eigenfunctions of approximate operators (cf.

[1] §3.3).

First we introduce the Agmon distance. For z, y € R?, we define

G dy(@y) = inf [ V@)

where v : [0,1] — R? is a piecewise C! path satisfying v(0) = z and (1) = y.
dy (z,y) has the following properties (see [1] §2.3, 2.4, and 3.1) : For any y € R?,

(3.2) |Vody(z,y)|> < V(z) ae. in RZ
dy (z,0) is smooth in a neighborhood of 0 and satisfies
|V.dv(z,0)|> = V(z) in a neighborhood of 0.
For o € R? and r > 0, we set
By (zo,7) = {z € R? : dy(xo,z) < T}.
Let

so= min dy(0 > 0).
o= min dv(0,7) (>0)

For sufficiently small n > 0, we choose W,, € C§°(R?) such that

W,=1 on By (0, Z) ,Wy, >0 in R?suppW, C By (0’ g) :

Let

17( =V(z) + Z Wy(z — 7).

v€r\{0}

To approximate & (A\;0) (6 € E*), we introduce the following approximate oper-
ator

3.3) H()) = (Dg, + bx3)? + (Dg, — bz1)? + A2V (2)
in L?(R?) with domain H%(R?).

Since V(w) has a non-degenerate minimum only at the origin, one can argue as
in §2 to show the following fact.
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For anyn € N and sufficiently large ), H (A) has at least n eigenvalues below its
essential spectrum, and the j-th eigenvalue counted with multiplicity has asymptotic
expansion v;A +o(A) (A — o).

Let £()\) be the first eigenvalue of H()\) and let 5()\)(93) be the associated
normalized eigenfunction. We have the following theorem which is analogous to
Helffer-Sjostrand (cf. [2] Lemma 2.4).

Lemma 3.1. For sufficiently small ¢ > 0 we have

A(1—€)d~(z,0) T
(3.4) 179 EOE0) @)y rey = Oele™) (A — o0),
where (u, 'U)HE(R2) = (u, U)Lz(Rz) + Ele(Tiu, Ti’U)Lz(Rz).

Proof. First we show the following equality
(3.5) /m{l(Dzl +b22) () +|(Da, — bs,)(€*%9) [P}

+ [ POXT ~9pl2) - EN)IFPdz =,
R2
where ¢ is any R-valued locally Lipschitzian function in R?, which is constant for

sufficiently large |z|.
We choose x € C§°(R?) such that

1 (Jz| £1)
z) = - 7,0<x<1 in RZ
x(z) { > 9) X
For R > 0, we set

ur(Xiz) = x () #N) (@).

Note that ¢ € H. (R?) and ugr = 0 for |z| > 2R. Then integrating by parts shows
that

(3.6) Re /R . e P{(H(\) — E\)ur ugde
B /112{|(le +bzs)(e*ug)|* +|(Da, — ba1)(e*ur)|* }dz

" /Rz 62A¢()\2(‘7 _ |V<P|2) _ g()\))|uR|2d:1:.

Because ¢ is constant for sufficiently large |z| and ur — ¢ in H%(R2) (R — o0),
we get (5) by taking the limit R — oo in (6).
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Let

We set
¢(@) = d(2,0) and @r(@) = (1 - 6)xrlp(x) (0<6<1).
It follows from (2) that if ¢(z) < R, we have

3.7 [Ver|* = (1-6)*|Ve|?
< (1-6)*V(z),

and Vyg = 0 otherwise. So it follows that if V(w) > 6, we have
(3.8) V — [Ver|? — A2E(N) > 62(2 — 6) — A2E(N).
Because E()\) =vA+0(A) (A — o), for any § > 0, there exists A(§) > 1 such that
(3.9) V—|Ver|? —A2E(\) > 62 it V(z) > 6> A6).
We set
Qf ={z e R%;V(2) > 6},Q; = {z € R,V (z) < 6}.

Then, (5) and (9) imply that
(310) A2 / {1(Day +b22) (5D +|(Day — bw1) (23}
R2

+ 62 /Q . e R 3|2 dx

8

< sup|7 — [Vor|? - )\‘25‘()\)|/ 23R | 3(2d.
Q; Qs

Let

a(6) = 2 sup @r(z).
TEQ,

(H.4) and (H.5) imply that

(3.11) a(8) = 0(6%) (6 —0).
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Besides, there exists a constant C' > 0 such that for any R > 0 and A > \(6)

sup |V — |Vog|? = A2E(\)| < C.
Q5

So, it follows from (10) that
(3.12) A‘2/ {(Day +b22)(@2§)? + (D, — be1) (") [*}de
R2
+ 62/ 62’\"’R|$|2d:1:
R2
< (C+ l)e)‘“(‘s)

Taking the limit R — oo, we have
(3.13) A2 / {|(Das, + bz2)(e*1=993)|? + |(Dg, — bz1) (X109 )2}z
R2

+52/ 62’\(1_6)‘p|$|2dx
R2
< (C+1)e® (A > A®6)).
Plugging (11) to (13), we get (4). J

Lemma 3.2. For anye > 0, o € N?, and R > 0, there exists a constant
Co.e,r > 0 independent of X such that

—)\(d;(z,O)—e)

(3.14) 1826(N\)(z)| < Cac.rE in  By(0,R).

Proof. Because V(z) = 0 <= z = 0 and V(z) is non-degenerate at z = 0, we
have

(3.15) p(z) = di(z,0) € C(R*R).
Let
w(d)(z) = ) g().
Let K, K be any bounded open set of R? satisfying K CC K. Lemma 3.1 implies
(3.16) 122 8]l 1 72y = Oe™).
Because H(\)¢ = £(\)¢, we have

(3.17) —Aw = (EQ) = A2V (z) — AAp + X2|Vo|? + b|z|?)w
+ 2X(Dg, 0)(Dg, + bzo)w + 2A(Dy, ) (Dg, — by)w
— 2bx2(Dy, + bzo)w + 2bzy (D, — bry)w.
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We denote by f(\)(z) the right-hand side of (17). Noting £(A) = v1A 4 o()) and
(16), we have by an a-priori estimate for the Laplacian
(3.18) lwllazxy < Cp gIF P iy + 1w 2 7))
i 2
< C’K’I?)\ [lw(N)
= 0(e*).

”H1(§)

Let K’, K’ be any bounded open set of R? satisfying K’ CC K'. Then the above
argument shows that

(319) sy < Cro (W sz + 0l 2 )
! 2
< CK',I?')\ ”w(A)”Hz(I?/)
= O(e?).

Inductively, for any m € Ny and R > 0, we have
(3.20) ”w”H"‘(B;(O,R)) < Cre®.

where Cg is a constant independent of A.
By using Sobolev’s imbedding theorem and (20), we get (14). OJ

We turn to the proof of the Theorem A. First note that V(z) = V(z) in
By (0,s0 — %), and di(x,0) > dy (,0) in R%. We choose x, € C§°(R?) such that
3 ) 3
suppxy C Bv (0,50 = 7n), 0=<x, <1 in By {080~ 7/,

Xxn =1 on By(0,s0—n).
Let $(A)(z) = Xo(z)$(N)(z). For 8 € E* we set

(3.21) Yo(z) =D e (TE¢)(z)(€ Hpo N C(R?)).
yer

Then, by a direct computation we get
(3.22) H(X;0)d6(A) = ENo(N) +7o(A)
where

To(A)(2) = Xyer €7 (TFT(N)) (@),
F(N)(@) = ~(Bxn)$ — 2V - V& — 2bi((2205, — 7182,)x1)9.
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We estimate |[1g(\) 175, and [[75(A)||7¢5 - Because ||| L2(rzy = 1 and 0 < xn, <
1 in R2, we have

111 = xn)@llL2r2y < 9]l 22 ey < 1.

Using Lemma 3.1, we have

(X = xn)@ll 2®2) < 110]lL2(R2\ By (0,50 —m))

= [|e 219X 1=2 4 12 e\ By (0,50 7))

< Cee—/\(l—e)(so—n)ee/\
— Cee—/\(so—n)+)\e(so—17+1)_

We choose € > 0 such that €(sg — 7+ 1) < 5. Then we have
11 = xn) )l 2 (r2y = O(e™ >0 =2m),

and

(3.23) 9]l L2(ra) = 1+ O(e~Aeo=2m),

Using (21), we have

(G24)  Welldey, = 1013amey + D> €07V (TEY, TEY) 125,
7' €r
y#y!

where Ey = [—7,m) X [—m, 7). We note that the summation of the right-hand side
of (24) ranges over a finite set of indices because v is compactly supported. Let ~,
v €T, v#~". Lemma 3.2 implies

(TB, TE§) 12 5| < / B0 (@ — BN (@ — +)\de
Eo

< C. e~ v (z—'y,O)+)\ee——)\dv (z—’y',O)-{—AedI-
Eo
Because
dv(z —7,0) + dv(z —4',0) > dv(v,7) = so,
we have
(3.25) (T5%, T3 9) L2 (8o | = O™ 0727).

Combining (24) and (23), (25), we have

(3.26) D617, = 1+ O(e N s02m),
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where the error term is uniform with respect to 0 € E*.
Next we estimate ||7g||7, ,. We have

327 ||;~;,||§1B‘9: Z ei(’y—’y,).o(TE:’:Tf’ﬁLz(Eoy
v,y €r

We again note that the summation of the right-hand side of (27) ranges over a finite
set of indices. Let us recall

FA)(@) = ~(8xn)$ — 2V - V6 — 2bi((220z, — 2102,)X) -
We note that
Axn =0,Vx, =0,(220;, —2104,)xn =0 on By(0,s0 — 7).
So, Lemma 3.2 implies
[F(\)(z)| < Cre=2(0=2M in R2,
Using (27) and the above inequality, we have
(3.28) I7oll45.0 = O(e=Mso=2m),

where the error term is uniform with respect to 8 € E*.
Using (22), (26), and (28), we get

dlS(g()\) O'(H()\O))) < ||(H()‘70) _g(A))JGHHB,e < ”FOHHB,O :0(6_>‘(s°_2n)).

”"/)9“7'15,9 - ||¢9“Ha,e

On the other hand,

EN) = 1A+ 0o(N),E1(A;8) = v + o(A), E2(A; 0) = va X + o(A),

where vy = /i1 + /12 < v2 and each error term is uniform with respect to 6 € E*.
These two facts imply Theorem A. ]

4. Proof of Theorem B

In this section, we describe the proof of Theorem B. For this purpose, we shall
get the -dependence of the asymptotic behavior of £ (A; 8). In this proof, the W.K.B.
type analysis plays an important role.

First, we define a distance between the subspaces of a Hilbert space H. Let E,
F be closed subspaces of H, and let IIx be the orthogonal projection onto F'. We
define

N
d(E,F)= sup dis(z,F)=|(1-1p)|ela.
zEE,||z||=1
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Proposition 4.1 (cf. [2, Proposition 2.5]). Let A be a selfadjoint operator
in H. Let I C R be a compact interval. Let 11, Vs, ---, vn € D(A) be linearly
independent, and p,, us, -+, un € I = |a, B] be such that

AYj = pv; +rj, rjll<e (G=1,2,---,N).
Suppose that there exists a constant a > 0 such that
o(A)N[a—2a,a] =0, o(A)N[B,B+ 2a] =0.
Let E be the subspace of H spanned by 1, 13, ---, ¥y and let F' be the range of

EA(I), Ea(-) being the spectral projection associated with A.
Then, we have

where X™" is the smallest eigenvalue of the matrix S = ((¥j,Vr)H)1<i,j<N-
For 6 € E* and () defined in (21), let
E4(2) = {kibo(\); k € C},

and let Fp(\) be the eigenspace of H(\; ) associated with & ()A;6). Using the decay
estimates of eigenfunctions in §3 and this proposition, we have the following.

Lemma 4.2.
i —(so—2n)A
4.1 d (Ep(X), Fo(X)) = O(e™7""7) (A — o0)
where the error term is uniform with respect to 0 € E*.

Proof. First we recall the following estimates. (See §3 (26), (22), and (28).)

(42) ”12;9”713,9 =1+ O(e—)\(so—277))’
(4.3) H(X;0)Pp(A) = EN)ho(A) + 7o (N),
(44) “FBHHB,G = O(e-/\(so—?ﬂ)),

where the error terms in (2) and (4) are uniform with respect to 6 € E*.
In §2, we have shown that

(4.5)EN) = v1d + 0o(N), E1(A;8) = v1 A + 0o(N), E2(A; ) = va A + 0(N), vy < va,
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where each error term is uniform with respect to 6 € E*.
We set k = (v3 — v1)/4 (> 0). Then (5) implies

(46) & ()" 0) € [(vl - k))‘a (’U] + k))‘],
o(H(X;0)) N [(v1 — 2k)\, (v1 — k)A] = 0,
o(H(X;0)) N [(v1 + k), (v1 +2k)A] = 0
for sufficiently large A.

Applying Proposition 4.1, we have

7ol 756
EXllvell3,, ,

O(eMso=2m),

d (Eg(N), Fa(N))

where we used (2) and (4) in the last equality, and the last term is uniform with
respect to 6 € E*. O

Lemma 4.3.

81(,\; 0) = 5()\) + Z ei’y'e(Tf?, 17;)L2(R2) + O(e_(2s°_5'7)’\) ()\ — OO)
v€r\{o}

where the error term is uniform with respect to 0 € E*.

Proof. Let IIg, be the orthogonal projection onto Fy. We set
(4.7) ve = I, Pe.
Lemma 4.2 implies

(4.8) llve — {/;0“7'(5,9 = (g, — 1){170“713,9
~ —
< “"/)0”7'13,9 d (EG()‘)7F9()‘))
— O(e—(30—277)),
(4.9) %6l13ene = lvoll5e o + llve — Woll3es ,
= |lvoll3,, , + O(e™2(0=2m2),

Recalling again the relations (2)~(4), we have

(4.10) H(X;0)(vo —he) = H(\;0)(Ilg, — 1)t
= (Tlg, — 1) H(X; 6)
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= (Ilg, — 1)(E(\)o + 7o)
= E(N) (v — Pp) + (Ilg, — 1)7p
= O(e=(0=3MX) in Hpy,

where we used (3) in the third equality and (8), (4) in the fifth equality. So we get

(4.11) (H(X; )00, Y6) 35 o
= (H(X;0)v9,v0) %5, + (H(X;0)(tbs — v), Do — v6) 1.,
( ()‘ 0)1}077}9)7'13'9 + O(e—(280—577)/\).

Using (3) and H(\;0)vg = E1(X; 0)ve, We get
(412) 81()\, 0)”/00“3‘13,3
= EMPoll3ep,, + (Fo, Po)ris o + O(e~2070M)

= EMNlvell3ey o + For Po)rs o + ENIW6l3ey , — llvollFes.,)
+ O(e—(Zso—sn)/\)‘

Using (9), (2), (4), we have
(4.13) E1(X;0) = E(N) + (Fo, Po)rp o + Oe™ (22075,
A direct computation shows that

(4.14) (Fo, Vo) 1o = (7 9) L2 (r2) + Z e (TBF, 9) 12(ga).

Yer
Y¥#0

Because 7 and 9 are compactly supported and 7 = 0 in By (0, so — n), Lemma
3.2 implies that

(4.15) |(7, ) L2(ay| = Oe™Zeom4mA),
Combining (13), (14), and (15), we get the conclusion. O

Let s, = min,er\(auqo}) dv(7,0). Since V' is periodic, it is easy to see that
S0 < s < 2s¢. Then, Lemma 3.2 implies

4.16) £1(X0)=EN) + Y e (TEF §) 2 ey + O(e™%%) (A — o0).
YEA

where O(e~%*) means O, (e~(*o=™*) for any > 0, and the error term is uniform
with respect to § € E*.
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(H.2) implies that : v € A = —v € A. After a straightfoward calculation, we
have

4.17) (T,}?'F, {/;)Lz(Rz) = (TI_BVT‘, J)Lz(Rz) for any € A.
For v € A and a > 0, let
E(» = {z € R%dy(0,) + dv (y,) < so + a}.

Then, for sufficiently small a > 0, we have

3 3
E$* c By (0, S0 — Zn) U By (’Y, So — Z’?) .

We choose an open domain 2 with smooth boundary such that
0¢Q,v€QEP NQC By(y,s0 —n), B NQ° C By (0,50 — ).

Let ﬁ, = 8QN E®% and let n = (n1,n3) be the outer unit normal of 9S2. Using the
decay estimates of eigenfunctions, we get

Lemma 44. We have mod O(A\~®e%0})

@® (D = [ {52025 -025 25 as

-

—2[)2‘/v 4~5T§7$(x2n1 - $1n2)dS.
Ly

Proof. Using the Green’s formula, we have
(4.19) (TB7, ) 12(re)
= (F, T}E7¢)L2 (R2)
(—(DXn)é — 2VXy - Vo — 2bi(Lxy) b, xn(z +7)TZ, ) 12(e)

[ Tx0)(@) (Vo) @+ 7)) (T2, 9) )

+ | (V) @3V (TE,3) — (X2, 5) Yl + )i

— 2bi /R Z(an)(z)gxn (z +~)TB ¢da
=L +1+1Is,

where L = x20;, — £18,,. We choose x @ € C§°(R?) such that

Xp) = 1 on E(_av), SUPP X pa) C E(_z,;l)
- -
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We compute these terms mod O(A~>e~*°*) in the following way :
(4.20) I, =0,

-0 - — 9 ~
@21) B= [ 35073 - (T2,9)5-dds

r—y

— 2bi / XnX g [LTE ¢ + TB_gLgldz,
Q -

(4.22) I = 2bi /Q XnX g [LTB ¢+ TB ¢Lgldx

— 2 | $T§7$(m2n1 — z1m3)dS.
I,

Lemma 4.4 is an immediate consequence of (19)~(22).
First we estimate I;. We note that

3
Vxn =0 on By(so—n), supp x, C By <0,80 - Z") .

So, Lemma 3.2 implies
(Vo) (@)(e)| < Cpe™(02M* in R
Similary we have
[(Vxn)(@ +7)(TZ,9)(x)] < Cpe=0>M* in R%.

So, (20) is proved.
Next we compute I5. Using Lemma 3.2, we have

(Vo) (@) [6V(TE, ) — (TE.$)Vlxn(z + )|
< C,,e_(d"($’0)+dV(I+7,O)—2n)A

< Cpe (@O Hdv (@ =2mx

So, we get

b= [ e (Va)(@) [V(T2,9) = (12,6)V6] xya+ )
mod O(A™®e™%0M).

Because

Xn(z) =1 on suppxy@ NN xy(z+7) =1 on suppx g neQ,
- -
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we have

I, = /QXEgﬂj(Vxn)[%V(TE.,g)—(TE‘A,«Z)V%]d;U mod O(A~"®e%*)

=~ [ 30V BV (TZ,5) - (T2,) Vs

_ /Q XnX g [BA(TE, 9) - (T2,3) Adlda

Y a (a) 7 B 1 8 ~.
+ /BQ XE(_? [¢8n (T_,YQS) (T—'Y¢) n ¢]Xnd5-
Noting that
~ -~ —(s a— A —— —~ —(sota—
¢V(TE ¢) = O(e (so+a—2n)X) (TE $)Vé = O(e (so+a=2mA) op SUPPVXE(_Q,
we have

o = [ xoxp BATZ,9) ~ (12,8) A3z

~0 = = 0 ~
+ /a o XE® [¢%(T§7¢) - (T§7¢)%¢]X,7ds mod O(A~®e™%?)
for sufficientry small 7. We further compute
SA(TE,$) — (T2 4) 06 |
= $H(NTB ¢ — (TB ¢)H(\)$ — 2bi¢LTB. $ — 2bi(TE. $) L
= ¢TB H(\)$ — (TB ¢)H(N)¢ — 2bi¢LTB. § — 2bi(TB $) L.

Because
HNo=E(N)d on  suppxny,
Tf’yH(A)qAS' = E(,\)nga on suppxn(z+7),

we have

SA(TE ) — (TE,$)A¢
= GE(N)(TB §) — (TB,$)E(N)¢ — 26i¢LTB_$ — 2bi(TB,$) L
= —2bi¢LTB ¢ — 26i(TB $) L

0N SUPPX g(=) N SUPPXy. So, we get
-

I, = _21)1;/ XnX (@ [$LT§7$+ Tl_a,,ng]dw
Q -

5.9 B 7 B 9 = —00,_—S0A
+/an Xp© [¢%(T_7¢) - (T_,Y¢)%¢] XndS mod O(A"®e™%%).
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From this formula one can easily derive (21) by noting that

(4.23) Xn(z) =1 on f-,,,
(4.24) dv(z,0) +dv(z,—7) 2 so+a if xg(z)#1.

Finally we compute I3. A similar argument shows that
I3 = —2bi / X @ (Lxn)(TB,)xn(z +7)dz mod O(A~"®e™*0*).
R2 -
Because

(Lxn)(z) =0 on suppx g NQ°,
-

Xn(z+7)=1 on suppxgwm N,
-

we have

Iy = <2 [ xgto (L) ATZ, B)ds

2bz'/Q(LxE(:.3)x,,$mdx
+ 2bi /Q ngaJXn(Lg)mdw
+ 23 /Q X0 XnBLTE, Gdz
— 2bi /an inaW) anzm(xgnl — z1n2)dS.
Noting that
ST2,6=0("o+721%) on  suppLy e,

we have

2bz'/(LxE(a))x,,$(T§7$)da: =0 mod O\ e *?*)
Q -

for sufficiently large A. (23), (24) imply that

./6 XE(a)XngTE,g(wznl — $1n2)ds
Q —

E/v $T§7$($2n1—171n2)d5 mod O(,\‘°°e—Soz\).

-

881
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Therefore we get (22). O

To approximate (TZ7, ¥) 122y mod O(A~®e%0}), we construct an approxi-
mate eigenfunction of H()\) by the W.K.B. method which we explain below.
For the differential operator

H(A) = (Dg, 4 bz2)? + (Dg, — bz1)? + A?V(z) in R?
we construct an asymptotic solution of the following type
(ao(z) + a1 (@)A1 + ag(z)A "2 + - )e 0@,

where ((z) is a real valued C* function defined near 0 in R%, and ao(z), ai(z), - - -

are complex valued C™ functions defined near 0 in R2. For ey, €3, -, ent1 € C,
we set
N A N+1
a(z) = Zaj ()77, E(\) = Z ex A2k,
=0 k=1

Then we get the following identity :

N
(4.25) P (HN) —EW) | Y aj(@)r—ie>?
=0

= N(V = |Ve|?) + A(Myao — e1a0)

N-1
+ Y $ Myaryy — 2biLay + b*[ala; — Aay — Y exa; p A7
=0

k=142

720,k21
2N-2
+ )\‘N(—2bz’LaN + b2|m|2aN - AaN) — Z )\_l Z €raj,
I=N dtk=1+2
j20,k21

where L = 290;, — £10,, and M, =2V -V + Ap + 2biLe.
So, we shall consider the following equations in the neighborhood of the origin

(4.26) V —|Vy|? =0,
(4.27) M,ao = e;ap,
(4.28); Myaiyy = 2biLa; — b|zai + A+ Y exa;.

J+k=1+2
320,k>1
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If we solve these equations, the right-hand side of (25) is O(A~%) in the neighbor-

hood of the origin. Since V(0) = 0, special attentions should be paid in solving
these eikonal equation (26) and transport equations (27), (28);. We make use of the
arguments of Helffer-Sjostrand [2].

We first consider the eikonal equation. For € > 0 sufficiently small, let §2. be the
set consisting of {0} and the union of the interiors of all minimal geodesics starting
from {0} of length strictly less than so — e. Here by geodesic we mean the curve
satisfying that

7 : [0,a] — R?;smooth curve,

~(t) ¢ T for any t € (0, a,

~(t) — 0 as t — 40,

7| (0,q] is @ geodesic of R*\I" with metric Vdz?.

Qo is an open set. Let d(z) = dy(z,0), then we have
d(z) € C®(Q),|Vd(z)|* =V (z) in Q.

Namely, d(z) solves the eikonal equation (26) (see [1] §4.4). Moreover, d(z) has the
following property (see [1] §2.3 and 3.2).

1 1
(4.29) d(z) = E,mlmf + 5\//@:8% +0(|z]*) (]z| — 0).
Next, we consider the transport equations. Let
X =2Vd-V in Q.

Since this vector field vanishes at the origin, we must impose compatibility condi-
tions on transport equations to guarantee the solvability.

Lemma 4.5. Let a(z) and b(z) be C-valued C*>® functions in Qg with
a(0) = b(0) = 0.
Then, for any c € C, the initial value problem

Xu=au+b in
u(0) =c¢

has a unique solution.

The proof of this Lemma is the same as those in [1] Propositions 2.3.7 and 4.4.2,
where this fact is proved when a(z) and b(z) are real valued.
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Now we determine e;, ez, --- in such a way that the above compatibility con-
ditions are satisfied. To solve the first transport equation (27) :

2Vd - Va() = -(Ad + 2biLd — el)ao,
we set
e1 = (Ad)(0) + 2bi(Ld)(0) = (Ad)(0).

Using (29), we have e; = /u; + /pi2. Lemma 4.5 implies that (27) with initial
condition ag(0) = 1 has a unique solution defined in .
Next, we consider (28) :

2Vd - Va; = —(Ad + 2biLd — e1)a1 + (2biLag — b%|z|>ap + Aao + e2a0).

By choosing e; in such a way that

e = _f(o)(Zbi(Lao)(O) + (Aag)(0) = —(Aag)(0),

one can see by Lemma 4.5 that (28), with initial condition a;(0) = 0 has a unique
solution defined in €.

Inductively, (28); (I =1,2,---) with initial condition a;41(0) = 0 has a unique
solution defined in Qg if we set e;12 = —(Aaq;)(0).

Using the Borel procedure, we have the following.

Lemma 4.6. One can construct

e1, e, - € R (e1 = /1 + /112),

EA) ~eld+ex+esd™ 4+ (A — 00),
Cwalued C* functions ag(z),a1(x),--- in Ly,
C-alued C* function a(z,\) in .,

satisfying that

ao(z) #0 in $o,a0(0) =1,a;(0) =0 (j > 1),
a(z,A) ~ 3725 aj(z)A 7,
(HA) —EN))IN) = O(A~=)e =) in Q. where () = A\1/2a(z, \)e™ 24,

More precisely,
N
max sup |05 (a(z, ) — a; A7) = o~ V+D) orany N €N,
ma sup 02 (0(2.%) = S aA)| = OO) - for amy

sup |24 (H(X) — E(N)B(N)| = O(A™).
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We fix e > 0. By deviding 6(\) by [0(\)||r2(n.) ~ V27 + O(A™1), one can
normalize 6()) so that [|6())||z2(.) = 1. Let K be a compact subset of Q.. We
can choose 1 > 0 sufficiently small such that Q. C By (0, s — n). Let K be the set
composed of all minimal geodesws _|01n1ng K to {0}. Then, Kc Q.. We choose Q:
an open neighborhood of K such that Q cC Q.. We choose x € C5° (R?) such that
x = 1 in a neighborhood of K and suppx C Q. Recall that qS( ) is a normalized
first eigenfunction of H ().

Let By = {k(x0()\));k € C} and Fy, = {kd());k € C}. Then the above lemma

and Proposition 4.1 imply 7(E1,F1) = O(A~°). So we have
|(x8(N), (V) L2(rey| = 1+ O(A™).
So we can assume that gg()\) satisfies
(x8(\), $(N)r2rz) > 0

for sufficiently large A.
Let w(A\) = x(¢(A) — 6(A)). By the same argument as in [1] §4.4 of Helffer, we
have the following lemma.

Lemma 4.7. There exists K: a neighborhood of K with K CC  such that

=0(A"®)eME)  in  H?(K).

This Lemma together with (18) implies that for any v € A we have

~ 0 ——  —— 8
(430) (TB7,9)p2me) = /F {055(T379) (Tﬂa)%e}ds

- 2bi/F 0T§,yt9(:c2n1 — z1n2)dS mod O()\_°°e_8°)‘).

el

We have now arrived at the final step for proving Theorem B.

Lemma 4.8. For~ € A, there exists a constant b, € C\{0} such that

(4.31) (TB7,9) 12 rey = (0, A%2 + O(AV/2))e™*0> (X = o).

Proof. We insert (\) = A'/2a(z, A\)e~*¥=) in (30) and use the definition of
TZ: (TBu)(z) = ez~ ®(=172-22Mm)y (3 — 4) to get

(TB7,9) 12re)
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= Ze—ibmme /~ a(z, Na(@ 7, Ne—b@r-m)
r

-

9 9 —A(d(2)+d(z+7))
x ( 8nd(a: + ) + 6nd(at)) e - ds

+ e—ttmm /~ {a(l., A)%(e—ib(ﬁwz—wz'n)m)_e—ib(zrm—zg’u)

F"Y

Xm%a(z, )\)} e~ Md@)+d=+7) g9

a(z, Na(z + v, \)e 27227 (290, — z1ny)

F—’Y
x e~ Md(@)+d(z+)) g9

— 2bide 01172 /

= Iy, + 1y, + I,

We can assume that f‘_7 intersects x_., transversally at z_., where z_, is the
only point in I'_,Nk_,. Let 7 be the angle between 7’ and Vd at z_.(7/2 < n < ).
Because |Vd(z)|? = V(z) in o, we have

9
%d(x_w) =n-Vd(z_,)
— |Vd(z_,)| cosn
= 1/V(x_y)cosn,
and
9 9]
%d(flt + 7)'-’6:@—7 = %dv(_’% m)lx:z_.,

= —\/—‘;(z-_v)cosn.

So, decreasing a if necessary, we may assume that there exists a constant Cp > 0
such that

) b ~
. - — < - i )
(4.32) 5 d@+7) +5-dz) <-Co in T,
(H.8) implies
(4.33) d(z) + d(z + v) > so + Cdy (z,z_,)* in T_,.

First we compute I, ;. Let

0

(4.34)  bo(z) = ao(z)ao(z + y)e 112 =22m) (—a-nd(w) - %d(w + ,y)> ,

(4.35) J() = /  bo(a)e MA@ g,
r‘_'Y
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Then
(4.36) bo(z) #0 in T_,.

Let

(4.37) z=c(t)(—e<t<e),c0)=z_,|c(t)]=1 on [—e¢

be the curve representing f-v near r_.,. Let
do(t) = d(c(t)) +d(c(t) +7), tE€[—¢¢€.

Because

ct)=z_, +tp+O(t?) (t—0), peR? |p =1,
and there exists a constant C’ > 0 such that

dy(z,z_y) > C'|lc —z_,| near z_,,
(33) implies that there exists a constant C” > 0 such that
do(t) > so + C"t* in a neighborhood of 0.

So, we have

dol#) = so + %d{,’(o)tz +O(%) (t—0),dl(0) > 0.

Then, we can apply the stationary phase method and get

Il

J\) = / E bo(c(t))e B dt
= e M bo(z ) /2ATH2 YT+ O(N2)),

where p = (1/2)dg(0).
So, we have
L= e—so)\(l;;)\3/2 +OOY2Y),
where

b, = e~ 2hy(z_,)/mu/? € C\{0}.
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A similar argument shows that
L2 =e P O(\Y2), I, 3 = e~ O(A/?).
So, we get the conclusion. O
We are now in a position of proving Theorem B. L
Let f(8) = Y. €79, for any 6 € E*. (17) and (31) imply that b, = b_, for

any v € A. Let by = maxgyep- f(f) — mingep~ f(6). Combining (16) and (31), we
get

(4.38)  length of E1(\; E*) = (bpA¥2 + O(A/?))e™%*  (as A — o).

Since b; # 0 for v € A, f(6) is a non-constant real function. So we have by > 0 and
complete the proof of Theorem B. ]

Appendix Eigenvalues and eigenfunctions of Hg(\)

Let us first recall the following well-known fact on the Weyl operator a* (z, D)
(cf. [7]). For a symplectic transformation x on RZ} x Rg, there exists a unitary
operator U on L?(R™) such that

U~ 'a¥(z,D.)U = (a0 x)¥(z, Dz).

We use only the following two cases.

Case i) When yx is the map interchanging z;, §; by §;, —x; respectively, leaving
the other coodinates unchanged, U is the partial Fourier transformation with respect
to z;.

Caske ii) If x is the map (z,&) — (T'z,*T~'€) where T is an n X n real matrix
with det T' # 0, then (U f)(z) = |det T|~Y/2f (T~ 'z).

Next we describe the computation of eigenvalues and eigenfunctions of Hy(\).
For z = (1‘1,12),6 = (51,62) S R2, we set

p(x,€) = (&1 +bx2)? + (&2 — bx1)? + N (1123 + pozl).
Then, we have
(A1) Ho(\) = p*(, Dy).
Let U; be the Fourier transformation with respect to ;. We set

pl(‘z‘)é-) = p(§1,$2a _$17£2)
= N2 + (&o — b€1)2 + (—x1 + b))% + N pozs.
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Then we have

(A2) p*(z, D) = Urp¥ (z, D) U .

Let T = (V'Lél)‘ _lb) and we set

p2(z,€) = p1(Tx,'T~1E)
o w2 —2byEA \ [z
= 61 +€2 + (11311'2) (—2b\//.L_1A 4b2 +N2)‘2 T
For f € L?(R?), we set
(U2f) (@) = pa /AN 2F (T ).
U, is unitary on L2(R?), and we have
(A.3) pY (2, Dy) = Up} (z, Dy) Uy *
WA —2b /A
—2by /A paA? + 4b?

matrix. Let m;(A) and my(\) be the eigenvalues of this matrix such that m; () <
mg(A). Namely, we set

Next, we diagonalize the matrix ( ) by an orthogonal

1 1 1/2
mi(A) = 5 (m + p2)A? + 2b% — {Z(“l — p2)? M+ 267 (g + p2) A + 4b4} ,
1 1 1/2
mz()\) = 5(/.11 + /142))\2 +2b% + {Z(,ul — /L2)2)\4 + 2b2(ll.1 + ,LLQ))\2 + 4b4} .
Then, we get
(11)? +0(1) (n2 > p1)
(A4) mi(A) = § mA? = 2bpA+0(1)  (p2 = 1)
[ 1222 +0(1) (B2 < m),
(1222 +0(1) (u2 > 1)
(A.5) ma(A) = § mA? +2bp A+ 0(1)  (p2 = u1)
[ 1A% +0(1) (w2 < pa).

Let A(M\) = (a1(N), az(X)) where

(A.6)
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) = (o))
= {

A2y + 462 — my(N)
2 2 2 2 21-1/2 H2 1
(M pg +4b° — my(X))° + 4b°u A%} X ( 2b/ATA

(A7)

o = (22

= {(11A? = ma(N))? + 4621 A} 712 x (m;b\—/ﬁj(/\))

Then A()) is an orthogonal matrix and the following equality holds :

tA()‘)( p1 A2 —2b\//Tl)\>A()\):(m1()\) 0 )

—2b\/Ii A Ay + 4b? 0 ma(X)
Let
p3(,€) = p2(AN)z, AN)E) = & + €5 + mi(N)zd + ma(N)a3.
Then

Py (2, Dz) = —A +my (Va3 + ma(N)z3
For f € L%(R?), we set
(Usf)(z) = fF(LAN)z).
Us is unitary on L2(R2), and we have
(A8) py (2, D;) = Uspy (z, Dz)Us !

Let U = U UyUs. U is unitary on L?(R?). So, (A.1), (A.2), (A.3), and (A.8)
imply

(A9) Ho(A) = U(—A + my(N)z? + ma(N)z2)U ™1,

Namely, Ho(A) is unitarily equivalent to the Harmonic oscillator
—A +mi(A)z? + ma(N)z3.

The eigenvalues of —A + my(A\)z? + ma(N\)z2 in  L%(R?) are

(27 + 1)yv/mi(A) + (2k + 1)y/ma(A) (G, k € N),
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and the corresponding eigenfunctions is
wik = mi(X)Bma(X)8Q; (m1(N)421) Qi (ma(X) z,)
1 1
X exp (-57711()\)1/237% - sz(/\)l/zﬂc%) ,

where Q; is the Hermite polynomial of degree j. {w; x}; x>0 is a complete orthonor-
mal system in L?(R?). Therefore, the eigenvalues of Hy()\) are

Eix(N) = (2 + D)V/mi(N) + (2k + 1)y/ma(N) (k€ N),
and the corresponding eigenfunction is (Uwj ) (A; ). So, (A.4), and (A.5) implies

Eik(N) =vjpA +0(1) (A — 00),

where v;x(A) = (25 + 1)y/min(u1, p2) + (2k + 1)y/max (1, p2).
Next, we compute (Uw; x)(A; ). We have
(U2Usw;ik)(A)
_ ml()\)1/8m2()\)1/sul—1/4)\—1/2
x Qj(m1 (W)Y (an (WA iy (@1 + baz) + an (V)z2))
x Qu(ma(\) M4 (ara(WA ™ V2 (21 + baa) + azm(N)z2))
X exp{(—ml()\)l/z(au()\))\_1/11_1/2(3:1 + bxo) + agy (V) xo)?
= ma (V) (ar2(WA iy (@1 + baa) + aze(M)a2)?)/2).

Let
ein(A) = mi(N) Y472 A ay (N),
ci12(A) = mg()\)l/4u1_1/2)\_1a12(/\),
e (A) = ma (N4 (A bari (V) + azn (M),
c22(A) = ma(W) Y4 (i 2A  bara (A) + aga (V).
We have

(U2Usw; k) (A; @)

= mi(N)YBma (W) BT AIAT2Q (11 (W)@ + ca1(N)22) Qk(crz(N)z1 + caa(N)z2)
X exp {—%(011()\)1}1 + Czl(A):L'Q)Z — %(012()\).@1 + 622()\)132)2} .

Let

.f(ml’ 3:2)
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= (Cll(/\)xl + co1 ()\)1,‘2)”(012()\)271 +622()\)£E2)m

1 1
X exp {—5(011()\)%1 + e (N)zg)? - ‘2‘(612()\)331 + 622(/\)932)2} (n,m € N).
A direct computation implies that

(A.10) / e e f(€) x0)dE

(c11¢02 — €12¢21)2 2)

— (— D n(__ D:c m _
(oD, + eman)"(-enDu, + )™ {enp (B

X exp (icllc21 + c1'2022> X 2 exp (————1 a:2>
i +cky Ve + 2, 2(c2 +c2,) !

Because (Uwj x)(A; z) is the Fourier transform with respect to z1 of (UaUsw; k) (A; ),
(Uwj x)(A; ) is a linear combination of (A.10) whose coefficients are independent
of A

Using (A.4), (A.5), (A.6), and (A.7), we have that there exist positive constants
k1, ko, kg, klls k12, ko1, and koo such that

1
< ko),
(N2 + ep(M)2 = 2

leir (W) < k1 A—Y2,) leiz(A)] < k1gA~1/2)
lea1(A)] < ka1 A2, eaa(N)| < kaaAY/2,
leit(A)ear(A) + e12(A)ezz(N)] < ks

(A.11) kX <

for A > 1.
Noting that

(e11(Mezz(V) = e12(M)ear(A)? = ma (W)Y 2ma (N2 1272,
we can find positive constants k4 and ks such that
(A.12) ks < (c11(M\)eaz(A) — c12(N)ea(N))? < ks
for A > 1. So we get
(A.13) |(Uw; ) (X )| < CjxA2 exp(—cAlz|?) on R,
where Cj i and c are positive constants independent of A.

ACKNOWLEDGEMENT.  The author wishes to thank Professor Hiroshi Isozaki
for helpful advice and critical reading of the manuscript which greatly improved
the paper.



(1]
(2]

(3]
(4]

(5]
(6]
(7]

MAGNETIC SCHRODINGER OPERATOR WITH PERIODIC POTENTIAL 893

References

B. Helffer: Semi-Classical Analysis for the Schrodinger Operator and Applications, Lecture
Notes in Mathematics 1336, Springer-Verlag.

B. Helffer and J. Sjostrand: Multiple wells in the semi-classical limit I, Comm. in P.D.E. 9(4)
(1984), 337-408.

L. Héormander: The Analysis of Linear Partial Differential Operators I11, Springer-Verlag.
A. Outassourt: Comportement semi-classique pour l'opérateurs de Schrodinger a potentiel
periodique, J. Funct. Anal. 72 (1987), 65-93.

B. Simon: Semiclassical Analysis of Low-Lying Eigenvalues IIl. Width of the Ground State
Band in Strongly Coupled Solids, Ann. Phys. 158 (1984), 415-420.

J. Sjostrand: Microlocal Analysis for the Periodic Magnetic Schrédinger Equations and
Related Questions, CIME Lectures July (1989), Springer-Verlag.

A. Voros: An Algebra of Pseudodifferential Operators and the Asymptotics of Quantum
Mechanics, J. Funct. Anal. 29 (1978), 104—132.

Department of Mathematics
Faculty of Science

Osaka University
Toyonaka, Osaka 560
Japan








