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We first consider a right artinian ring. Then every projective module P
is a direct sum of indecomposable submodules; P=>1PP,. Furthermore for
I

any simple module 4 in P/J(P) there exists a direct summand P, of P such
that (P,+J(P))/J(P)=A, where J(P) is the Jacobson radical of P. It is clear
that P==>@P; for any proper subset J of I.

J

In this paper we shall study those properties on injectives E with the con-
dition (**) in [3] and [4], e.g. QF-2 algebra [11] (see §1). If E=3VE/ and
I

E+3)E} for J<1I, we say >} E be an irredundant sum. We shall give struc-
J I

ture theorems of artinian rings over which every irredundant sum of injective
in E is injective and every simple module in E/J(E) is lifted to an indecomposable
submodule of E. We have studied perfect rings satisfying (*) (see §1) in [4].
We shall show that they satisfy the above properties and they are right artinian
from these facts.

We shall extend those ideas to more general modules in [5] and study the
dual properties on projectives in [6].

1. Preliminaries

Throughout we consider a ring R with identity and every module is a
unitary right R-module. Let M be an R-module. We shall denote the Jacob-
son radical and an injective envelope of M by J(M) and E(M), respectively. If
M is a small sumbodule in E(M), M is called a small module [7] and [9] and
otherwise we call M a non-small module [3]. 1f M contains a non-zero injective
submodule, M is clearly non-small. We consider the converse case, namely

(*) Every mom-small module contains a mnon-zero injective submodule [4].

In [4] we have studied perfect rings with (*). We shall show that such rings
are right artinian in §4. Furthermore, we shall give some weaker conditions
than (*) and show that rings satisfying new conditions give us new classes of
rings.
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Let M be a module and {M,}; a set of submodules of M. If IM,2>M,
I g
for any proper subset I’ of I, then we say the sum >)M, be irredundant. 1Itis
I

clear that every direct sum is irredundant.

From now on, we assume R is a left and right perfect ring [1]. Let {g;}}
be a complete set of mutually orthogonal primitive idempotents with 1=>g;.
If g,R is a small (resp. non-small) module, we call g; a smail (resp. non-small)
idempotent. Then we obtain a partition {g;}i= {e;}1U {f;}7, where the ¢;
is non-small and the f; is small [3]. We have the following lemma from [4],
Theorem 2.3.

Lemma 1. If R is a left and right perfect ring with (*), then every inde-
composable injective module is of a form eR[e]1(J*), where J=](R), e; is non-small
and 1(J*)= {x€R|x]*=0}.

In this paper we always consider injective modules which are related to
the above form. We note the injective e;R/e;](J*) contains a unique maximal
submodule ¢; J/el(J*¥) and every epimorphism of eR/e](J¥) onto itself is
isomorphic, since Endg(e;R/e;1(J*)) is a homomorphic image of the local ring
e;Re; and 1(J*) is a two-sided ideal. Hence, we quote here a condition in [3] and

[41;
(**) Every indecomposable and injective module contians a unique maximal
submodule, i.e. a cyclic hollow module.

Furthermore, we consider a new condition;
(E-I) Every epimorphism of an R-module onto itself is isomorphic (cf. [5]).

If R is a finite dimensional algebra over a field K, then we can consider
the duality. The above condition (**) is dual to

(**)*  Every indecomposable and projective module contains a unique minimal
submodule.

If R further satisfies (**)* for every left projective module, we call R a
QF-2 ring following Thrall [11]. Hence, in general, we shall call a ring satisfy-
ing (**) a right QF-2* ring in this note. We shall study a right QF-2 ring
(satisfying (**)*) in [6].

From now on, we always assume (**). Then if E, is indecomposable
and injective, J(E,)=E,J is a unique maximal submodule and E,/E, ] is simple,
since R is perfect. Let x be any element in E,—E,J, then xR=E, and so
E,~eR[eA, where e is a non-small idempotent and A4 is a right ideal of R.
We denote E, by E(S,), where S, is a simple submodule. Let M be an R-



ONE-sipeD QF-2 Rings 1 423

module. We denote M/MJ and the natural epimorphism of M onto M/M]
by M and @, respectively. If M, is a submodule of M, @u|M,= pgp,.;
p: My/M,J—M|M]. If there are no confusions, we denote @,(M,) by M,
(actually M,=M /M, ]). If M, is a direct smmand, ¢, | M =Py,

Lemma 2. We assume an R-module M is equal to a sum of iﬁjectz've sub-
modules {E(S,)};. Then ;‘,E(Sw) is trredundant if and only if @u(M)=31P
I

Pu(E(Sa))-
Proof. It is clear that M =;E(Sa,) and the lemma is trivial since MJ is a
small submodule in M [1].

Lemma 3. Let R be a right QF-2* and artinian ring. Then for every
non-small primitive idempotent e there exists a right ideal A such that eR[eA is
injective.

Proof. Let E(eR):é@e,-’R/e,»'Ai, where e;" is non-small and the e;'4;

is a right ideal. Since eR is non-small and e;Rfe;’4; is hollow, z,(eR)=
e;'Rle;'A; for some 7, where =;: E(eR)—e;,'Re;’A; is the projection. Hence,
eR~e,'R.

2. Right artinian rings with (*)

We shall show in §4 that perfect rings with (*) are right artinian. Hence
we shall first add here a characterization of such rings (cf. [4], Theorem 2.3).
Let R be a right artinian. Then we have a standard decomposition of R:

O]
=1

R = :E: :E: fﬁaéfij-le ’

i=17

where {g;;} a set of mutually orthogonal primitive idempotents such that
gi;R~g,y R and g ;R g, R if ik. As in§1 we denote non-small idem-
[1€]
potent by e;; and put E;‘—‘—g €.
b=
Now it is clear that R satisfies (*) if and only if every module M is a direct
sum of an injective submodule and a small submodule. We can restate [4], Theo-
rems 2.3 and 2.4 as follows:

Theorem 1. Let R be right artinian. Then the following conditions are
equivalent.

1) R satisfies (*).

2) There exists n;>0 for each non-small idempotent e;—e;, such that e;Rle; J*:
is injective for all n;<k; and eRle;J"i"" is small.

3) R/r(J)J* is a direct sum of an injective module and a small projective
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module for all k>0 as R-modules.

4) R/A is a direct sum of an injective module and a small module for every
right ideal A contained in r(]).

In this case A=3 DA, and the A, is a right ideal in E;x(]) where J=](R)
and 7(J)= {x=R| Jx=0}.

Proof. Let R=31@¢,RGIVfR as in §1 and D=7(J). Since the f;R

is small, f;D=0 by [9], Proposition 4.8. Hence, D=3}Pe,D and DJ’=>1p
e.DJ°.

1)2). We assume that e;=e and eR is injective and e/? !0, ¢/*=0.
Then ¢J?! is a unique minimal submodule in eR. Hence, ¢/ *=el(]).
Similarly, we obtain eJ?*=el(J*) if eR[eJ?"**! is injective. If eR[eJ° is small
and eR[e]**! is injective, eDCeJ* and hence, eD=¢]*, since eJ°[eJ**! is unique
minimal. Hence, we have proved 1)<2) by [4], Theorem 2.3.

1)-3). D=2 Pe,D=3 Pe;J"i for some n; by the above. Hence,

R/DJ*=3} GijRGBil] De;Rle; J"** and the e;R/e; J*** is injective for k>0 by
[4], Theorem 2.3. ‘

3)—1). We always have DJ*=31Pe,DJ*. Hence, R/D]”zi@fjli’@
E"EBe,-R/e,-D] k. Therefore, the e;R/e;DJ* is injective for any k>0][)ly Krull-

i=1
Remak-Schmidt theorem, since ¢;R is non-small. If ¢,DJ*=0 and ¢,DJ**=0,
e,R is injective and ¢;DJ*"! is a unique minimal submodule in ¢;R and ¢,D ] "'=
e;1(J). Repeating those arguments as in the proof of [4], Theorem 2.3, there
exist an integer #; and a unique series of submodules ¢;]1(J*) of ¢;R such that
e;R/e]1(J*) is injective for t<<m; and e;D=¢]l(J"). Therefore, R satisfies (*)
by [4], Theorem 2.3.

1)—4). It is clear from the fact mentioned before the theorem.

4)—1). Since DJ*<D for k>0, e,R/e;DJ* is not small by [9], Proposi-
tion 4.8. Hence, we can use the same method in 3)—1).
Finally we assume (*) and ¢;=e¢;;. Let ¢,DDe;A;2¢,B; be right ideals. Then
e,;B,=e¢;J' for some t; and ¢R/e;B; is injective by [4], Theorem 2.3. If

eiA;/eiBiiejAj/eij, we can extend 1) to an isomorphism of e;R/e;B; to
e;Rle;B;, since e,Rle,B, is indecomposable and injective for p=i, j. Hence
i=j. Since ¢;;D=e,; D, the set of simple factor modules of composition series

of E;D coincides with one of ¢;,D. Therefore, A= P(E;DNA).

ExampLE 1. There exists a commutative ring R with R/J artinian, which
satisfies the condition in [4], Theorem 2.3. We quote the example in [7],
p.378. Let R=Z,®DZ,., where Z,y=End;(Z,.). Then R has a ring structure
as usual. J(R)=pZDZ,~ and r(J)={(0, 1/p)}. Furthermore, 0—{(0, 1/p)} -
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—R—pZDZ,.(~]J(R))—0 is exact. Hence, R is self-injective and R/r(J)
is a small module. However R does not satisfy (*) by [4], Lemma 2.1, since
@, does not contain any cyclic injective modules.

3. Lifting property on injectives

In this section we assume R is a right artinian ring. Let M be an R-
module. If for any simple submodule 4, of M/M] there exists a direct sum-
mand M, of M such that @(M,)=A4,, then we say M have the Lfting property of
simple module.

Now we shall study injective modules over right QF-2* ring. We define
two weaker conditions than (*).

(*1)  Every non-small module which is a homomorphic image of an injective
module contains a non-zero injective module.

And

(*2) For every non-small module M there exists an indecomposable direct
summand E, of E(M) such that EM)D>MDE,.

We know from (**) that every indecomposable and injective module is
of a form eR/eA, where e is a non-small primitive idempotent and e4 is a right
ideal of R.

Theorem 2. Let R be a right QF-2* and artinian ring. Then the follow-
ing conditions are equivalent.

1) R satisfies (*1).

2) Every irredundant sum of direct summand E, in an injective module E such
that @x(3)Es)=2 D py(E,) is injective.

3) For each non-small idempotent e, there exist right ideals eA,CeA,C -
CeA,_CeA, such that

i) eA,leA, is a uni-serial module such that eA;leA;_, is the socle of eR[eA;_,.

il) eR/eB is small for all right ideals eB=2eA,.
iii) The set of those eR|eA; is the representative set of indecomposable injectives.
(It is possible that eR contains more than one such increasing series).

Proof. 1)-2). Let E be injective and D)E, an irredundant sum in E
with E, injective and indecomposable as in 2). Since R is artinian (hence
noetherian) we may show that >1E, is injective for every finite subset K of 1.

A

Let {ay, a3 -+, a,} be a finite subset of I and E(p):}j E,. We shall show

the above fact by inducton on p. We assume E(p—1) is injective and E=
E(p—1)®K'. Let n: E-K’ be the projection. Then n(E,,) is not a small
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submodule in K', since @3 E.)=2> D pi(E,). Hence, =(E,,) is injective
by (*1) for E,, is hollow. Therefore, E(p)=E(p—1)Pn(E,,) is injective.

2)—3). We shall show that if eR/eA is injective and eR/eB is non-small
for eBDeA, then eR/eB is injective for e=e;. Put E=ZE(eR/eB) and F=
eRleADE. Let f: eRleA—eR/eB be the natural epimorphism and G=
{x+f(x)|xeR[eA} CF. Then G=eR[eA and @y(eR/eA+G)= pp(eR[eA)D
@r(G) since eR/eB is non-small and hence f(x)=+0 for some x. Hence,
¢R/eA+G=eR/eADf(eR[eA) is injective. Therefore, eR/eB=f(eR/eA) is in-
jective. From Lemma 3 we have injective eR/eC; for each e. We may assume
that e4, is a minimal one among eC;. Let ed,leA, be the socle of eR[eA,.
If eRJeA, is non-small, eR/ed, is injective by the above. Repeating those
arguments, we get a series of right ideals e4,CeA,C-:- Ced, such that eR/ed;
is injective and eR/eB is small for all eB=22e4, by [4], Lemma 1.1. Hence, we
have proved 2)—3) by (**).

3)—1). Let M be a non-small module which is a homomorphic image
of injective E. Let E=>)PE(S,). Then there exists E(S,) (~eR/e4;) whose
image is a non-small submodule M, of M. Hence, M,~eR[eC, eCDeA,.
On the other hand, either eC=eA;Ded; for some j or eC=Red, from 3) i).
Hence, eC=eA; by 3) i).

Corollary. Let R be right artinian. Then R satisfies (*) if and only if R
is a right QF-2* and QF-3 ring [11] satisfying (*1), (see Example 2).

Proof. It is clear from Theorems 1 and 2 and [4], Theorem 1.3.

We have considered special irredundant sums in an injective module in
Theorem 2. If we drop the assumption in 2) of Theorem 2, we have the well
known theorem:

Let R be a right noetherian ring. Then the following conditions are equivalent.

1) R s right hereditary.

2) Ewvery irredundant sum of indecomposable injective submodules in an injective
module is injective.

We shall give a proof for the sake of completeness.

1)—2). Itis clear.

2)—1). Let E be injective and let E;, E, be injective submodules. We
shall show E,+E, is injective. We have decompositions E,-=; BE,;, (1=1,2)

where the E,, is indecomposable. Since R is right noetherian, we may show
DVEw+2)E is injective for finite subsets K;. Hence, since we may assume
Ky Ky

that its sum is irredundant, E,+E, is injective. Let A be a submodule of E.
Then we can show by the same argument as in the proof 2)—3) of Theorem 2
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that E/A is injective. Therefore, R is right hereditary.

Using the above and Theorem 2 we have

Theorem 2'. Let R be a right artinian QF-2* ring. Then the following
conditions are equivalent.

1) Every homomorphic image of an injective module is injective (R is heredi-
tary).

2) Every irredundant sum of indecomposable injective submodules in an in-
Jective modules is injective.

3) For each non-small idempotent e, there exists a right ideal eA such that
eR[eA is a uni-serial module and eR|eB is injective for all eR2eB2eA. The
set {eR/eB},  is the representative set of indecomposable injective modules (cf.

Example 3).

Proof. 2)—3). It is clear from Theorem 2 and the above.
3)—2). Since every homomorphic image of eR/eB is injective, we can prove
the implication by the same argument as in Theorem 2.

We assume that a module M has the lifting property of simple module.
Then for any decomposition M=>"P A, with A, simple, there exists a set of
I

direct summands M, of M such that M,=A4, and M=3 M, is an irredundant
I

sum (cf. Lemma 2).

Theorem 3. Let R be a right (QF-2* and) artinian ring. Then the following
conditions are equivalent.

1) R satisfies (*2).

2) Every injective module has the lifiing property of simple module.

3) i) For each non-small idempotent e there exists a chain of right ideals A,
such that eR|eA; is injective and eA,CeA,C -+ CeA, and each element in
Endy (eR/e]) is induced from some element in Homy(eR/eA;, eR[eA;) for any i> j.

ii) The set of {e,Rle;A;;}:% % is the representative set of indecomposable
injectives.

Proof. 1)—2). Let E be injective and E/EJ=2 P A,; the A, is simple.
We take an element x in E such that Rx=A4,. Then xR is non-small by the
definition. Hence, there exists an indecomposable direct summand E, of E
such that A,=@4(xR)D@x(Es) by (*2). Therefore, E,=A.,.

2)—3). We know from (**) and Lemma 3 that the representative set of

. . k(i)
indecomposable injectives is {e;R[e;B;;}%:5%). We put E(z)=j2=1 De;R/e;B;;,

e;=e and B;;= B,. Then there exists an epimorphism either f,,: eR/eB,—
¢R/eB, or f,;: eR/eB,—eR|eB,, for any pair [ and m by 2) and [5], Corollary to
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Theorem 2. We denote this situation by eR/eB,, >=(resp. <) eR/eB,. Then
the relation > islinear. We take the maximal one among eR/eB;, say eB,(=eA,)
with respect to the relation >>. Let eR/eB, be the second one. Since there
exists an epimorphism f,;, there exists a right ideal 4, such that e4,De4, and
eR[eA,~eR[eB,. Repeating those arguments, we have a chain of right ideals
A, satisfying 1) by [5], Theorem 2.

3)—2). Itis clear from 3) and [5], Theorem 2.

2)—1). It is clear from the definition.

4. Perfect rings with (*)

We shall show, in this section, that a left and right perfect ring satisfying
(*) is right artinian.

Theorem 4. Let R be a perfect and right QF-2* ring. We assume every
indecomposable injective module satisfies (E-I). Further if every injective module
E has the lifting property of simple module, then R is right artinian.

Proof. Let E be an indecomposable injective module, say E=E(S); S
is simple. We shall show that E is >-injective [2]. Put T=31PE.; E.=E
and Q=E(T). It is clear that DXPE, is a direct summand in @Q=Q/QJ. Now

I

We can express Q_:‘IA," EBE‘,EBJE @ Ag; the Ag is simple. Then Q:2 DE,+
gE(Sﬂ) by the assumption and Lemma 2 and E(Sg)=Ag. We shall show
L=¢. Otherwise, there would exist Ag=0. g@S is the socle of T and hence
of Q. Hence, Sg~S and E(Sg)~E. Let SﬂC§ @S for some finite subset
K of I and E,=>PE,. Then Q=E,PF. We denote the projection of §
onto F by . kerKnlE(Sp):)Sp and 7(E(Sg)) ¢ FJ since Q#?@Ea—l—%E(Sy).
It is clear #n(E(Sg)J])CFJ]. Hence, F/F]=C|C]DB,D---, where C=n(E(Sg))

and the B, is simple. Then we have an irredundant sum >} E;’ of indecompo-
sable injective submodules of F such that @(Es )=C/CJ. It is clear as above
that E;'~E. Put F=E; '®L and =, the projection of F onto E;'. Since
C+FJ=E;'+F], mm:E(Ss)—E,’ is an epimorphism. Hence, ;7 |E(Sp) is
isomorphic by the assumption on E. However, ker 77 |E(Sg) D Sg, which is a
contradiction. Thus, E 1s >'-injective. Let V be any injective module

and Z‘, E@S,,,, the socle of V, where S;,~S;s and S;,&S;p if i3=j. Then
V=E (E ZEBS,.,) EEBE(ZEBS,,,) E@ZE(S,O,) by the above. Hence, R is
right artinian by [10], Theorem 4.5 in p. 85.
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Theorem 5. Let R be a left and right perfect ring. If R satisfies (*), R
1s right artinian.

Proof. It is clear from Lemma 1 and Theorems 3 and 4.

Proposition 1. Let R and E be as above. We assume E=3)E(S,) is
I

irredundant. Then there exists a set of epimorphisms ry: E(Ss)—E(S,’) for all
a €1 such that E=33DE(S,’).
I

Proof. We denote the injective ¢;R/e]l(J*) by E(e;, ). We assume E=
ch-' f (e 0)“+,§;')F (e, Dagt+++ ~{—J (123 )F (€1, $1)at ---—}J—(’E)F (€45 $4)a 1s an irredundant

sum of E, where F(e,, j)a~E(e;,j). Let F, be an indecomposable direct sum-
mand of F; ,= J;DF(ej, t)s. F;,is injective by Theorem 2 and Lemma 2 and

F;,=F,®E’. Letx be the projection of F; , onto F,. Then there exists some
F(e;, t) such that n(F(e;, t)s)=F, and so Fy~E(e; p) for p>t. Let F, ot
F\.-=F, ,®L and FI.S1:IZ @DE(Sy). Then E(S,)= E(e,s,) by the above

&

and |I(1,s)|=]J(1,s)| by ﬁemma 2, where |P| means the cardinal of P.
Hence, there is a set of epimorphisms +r': F(e;, $,)s—E(Ss). Let z’: F,, +
F\.-1—L be the projection. Since F , _, is an irredundant sum, z'(F(e,, $;— 1))
is injective by Theorem 1. Let L= >} )EBE(SB'). Then E(S;") is a homo-

IG5 -1

morphic image of z'(F(e, s,—1)) and hence of F(e, s;—1)s. Further
[I(1, s,—1)|=|J(1, s,—1)|. Hence, we obtain a set of epimorphisms s :
F(e,, s,—1)s—E(S,’). Repeating those arguments, we obtain the proposition.

Proposition 2. Let R and E be as above. We assume E is a direct sum of
E(S,) whose proper homomorphic images are not injective. Then every irredun-
dant sum of indecomposable injectives of E is a direct sum.

Proof. Let E=3 E, be an irredundant sum of indecomposable injectives.
We put E(n)=31E,, for a finite subset {at;,r, -, at,}. We show E(n)=

i=1 .
>)PE,, by the induction on n. We assume E(n—l):ZIEBE.,‘. and E(n)=
i=1 i=1

Emn—1)® K. Let = be the projection of E(n) onto K. Then z|E,, is
epimorphic. Since K is injective by Theorem 2, 7z |E,_ isisomorphic by the

assumption. Hence, O=ker z N E, =E(n—1)NE,,. Therefore, E(n)=g@E,,,..
Proposition 3. Let R be as above. Then R is a QF ring if and only if
every irredundant sum 33 E(S,) of injective module is a direct sum.
I

Proof. If R is a QF ring, each ¢R has no proper homomorphic injective
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images, since every injective module is projective. Hence, we obtain “only if”
by Proposition 2. If R is not a QF ring, then there exists a non-small idempo-
tent e such that eR and eR/eA are injective by Theorem 1, where e4 is a proper
ideal of eR. Then E=e¢R@eR/eA has an irredundant sum (eR, 0)+4
{(er, er|rR}, where ér denotes the image of er by the natural epimorphism:
eR—eRjeA. {(er,er)|rER}~e¢R and (eR, 0) N {(er, &r) |[r= R} =(eA4, 0)=0.

We shall give some examples which show that (*1) and (*2) are independent.
It is clear that (*) implies (*1) and (*2).

ExamprLE 2. Let K be a field and C=K @ M; M=K, the trivial extension

_(CC
R =g c).
Put ¢;=e;; (matrix units). Then e,R=Hom¢(Re,, C). Since C is self-injective,
{e.R, &,R[(0, C)} is the complete set of indecomposable injectives. Hence, R

is right QF-2* and QF-3. Furthermore, R satisfies (*2) by Theorem 3 but not
(*1) by 3, ii) in Theorem 2.

and

ExampLE 3. Put

K K K*
R=[0KO0 )
0 0K/.
Then ¢,R/(0, K, K), ¢,R/(0, K, 0) and ¢,R/(0, 0, K) is the complete set of inde-
composable injectives. Hence, R is right QF-2* and satisfies (*1) by Theorem 2.
Since (0, K, 0)U(0, 0, K)=(0, K, K), R does not satisfy (*2) by Theorem 3.

ExampLE 4. Put

K K K K
R — K 0K
- K K

0 K.

Then ¢,R, e,R/e, ], e,R/(0,0, K, K) and ¢,R/(0, K, 0, K) is the complete set of
indecomposable injectives. Hence R 1s right QF-2* and furthermore, every
indecomposable projective is uniform and so R is QF-2. However, R satisfies
neither (*1) nor (*2).

ExampLE 5. Put
K K
K

R =

0
K& earen=0).

0

lahdals
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Then e,R, e,R/e, ], e,R[e, J* and ¢,R/(0, 0, 0, K) is the complete set of indecom-
posable injectives. Hence, R is right QF-2* and satisfies (*1) and (*¥2). How-
ever, (*) is not satisfied. We note R is not QF-3 (cf. Corollary to Theorem 2).

(11
[2]
(3]
[4]
(5]
(6]
(7]
(8]
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