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ON ONE-SIDED QF-2 RINGS I
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We first consider a right artinian ring. Then every projective module P

is a direct sum of indecomposable submodules; P ==Σξ&PΛ. Furthermore for

any simple module A in P/J(P) there exists a direct summand P0 of P such
that (P0+J(P))/J(P)=.4, where J(P) is the Jacobson radical of P. It is clear

that PΦΣ ®Pβ for any proper subset / of /.
j

In this paper we shall study those properties on injectives E with the con-
dition (**) in [3] and [4], e.g. QF-2 algebra [11] (see §1). If E=^E'« and

£ΦΣ E'β for /£/, we say 2 E* be an irredundant sum. We shall give struc-

ture theorems of artinian rings over which every irredundant sum of injective
in E is injective and every simple module in E/J(E) is lifted to an indecomposable
submodule of E. We have studied perfect rings satisfying (*) (see §1) in [4].

We shall show that they satisfy the above properties and they are right artinian
from these facts.

We shall extend those ideas to more general modules in [5] and study the

dual properties on projectives in [6].

1. Preliminaries

Throughout we consider a ring R with identity and every module is a
unitary right Jf?-module. Let M be an Λ-module. We shall denote the Jacob-
son radical and an injective envelope of M by J(M) and E(M), respectively. If
M is a small sumbodule in E(M), M is called a small module [7] and [9] and
otherwise we call M a non-small module [3]. If M contains a non-zero injective

submodule, M is clearly non-small. We consider the converse case, namely

(*) Every non-small module contains a non-zero injective submodule [4].

In [4] we have studied perfect rings with (*). We shall show that such rings

are right artinian in §4. Furthermore, we shall give some weaker conditions
than (*) and show that rings satisfying new conditions give us new classes of

rings.
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Let M be a module and {MJ 7 a set of submodules of M. If
/ /'

for any proper subset /' of /, then we say the sum ^MΛ be irredundant. It is

clear that every direct sum is irredundant.

From now on, we assume R is a left and right perfect ring [1]. Let

be a complete set of mutually orthogonal primitive idempotents with l=
If giR is a small (resp. non-small) module, we call £t a small (resp. non-small)

idempσtent. Then we obtain a partition {#Jί == {e t}ϊU {/, }Γ, where the βj

is non-small and the /} is small [3]. We have the following lemma from [4],

Theorem 2.3.

Lemma 1. If R is a left and right perfect ring with (*), then every inde-

composable ίnjective module is of a form £,/?/£, !(/*), where J=](R), e{ is non-small

andl(Jk)={x£ΞR\xJk=Q}.

In this paper we always consider injective modules which are related to

the above form. We note the injective £,•/?/£,•!(/*) contains a unique maximal

submodule £,//£,!(/*) and every epimorphism of eft/e^}*) onto itself is

isomorphic, since ΈndR(eiR/eil(Jk)) is a homomorphic image of the local ring

e{Re{ and !(/*) is a two-sided ideal. Hence, we quote here a condition in [3] and

[4];

(**) Every indecomposable ana injective module contίans a unique maximal

submodule, i.e. a cyclic hollow module.

Furthermore, we consider a new condition;

(E-I) Every epimorphism of an R-module onto itself is isomorphic (cf. [5]).

If R is a finite dimensional algebra over a field K, then we can consider

the duality. The above condition (**) is dual to

(**)* Every indecomposable and projectίve module contains a unique minimal

submodule.

If R further satisfies (**)* for every left projective module, we call R a

QF-2 ring following Thrall [11]. Hence, in general, we shall call a ring satisfy-

ing (**) a right QF-2* ring in this note. We shall study a right QF-2 ring

(satisfying (**)*) in [6].

From now on, we always assume (**). Then if EΛ is indecomposable

and injective, ](EΛ)=EaJ is a unique maximal submodule and Ea/EaJis simple,

since R is perfect. Let x be any element in EΛ — EaJ, then xR=Ecύ and so

EΛ^eR/eAy where e is a non-small idempotent and A is a right ideal of R.

We denote EΛ by E(5Λ), where SΛ is a simple submodule. Let M be an R-
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module. We denote M/MJ and the natural epimorphism of M onto M/MJ
by M and φM, respectively. If Ml is a submodule of M, φM\Ml = pφm\
p: MJMJ-^M/MJ. If there are no confusions, we denote φM(M1) by M1

(actually M1~MJM1J). If Mx is a direct smmand, φM \ Ml=φM .

Lemma 2. W^ assume an R-module M is equal to a sum of infective sub-
modules {E(Sa)}j. Then ΣE(SΛ) is ίrredundant if and only if

Proof. It is clear that M=^E(SΛ) and the lemma is trivial since MJ is a

small submodule in M [1].

Lemma 3. Let R be a right QF-2* and artinian ring. Then for every

non-small primitive idempotent e there exists a right ideal A such that eR/eA is

injective.

Proof. Let E(eR)='Σ®ei

fRleiΆiy where */ is non-small and the ei'Ai
i = l

is a right ideal. Since eR is non-small and ei

tR\ei

tAi is hollow, π^eR)^
e/R/e/Ai for some /, where πi:E(eR)-^ei

rR/ei'Ai is the projection. Hence,

2. Right artinian rings with (*)

We shall show in §4 that perfect rings with (*) are right artinian. Hence
we shall first add here a characterization of such rings (cf. [4j, Theorem 2.3).

Let R be a right artinian. Then we have a standard decomposition of R:

»=ι y=ι

where {#,,} a set of mutually orthogonal primitive idempotents such that

gijR^gij' R and gijR^ gkj' R if *ΦΛ. As in §1 we denote non-small idem-
P(0

potent by e{j and put £",—ΣXy

Now it is clear that R satisfies (*) if and only if every module M is a direct
sum of an injective submodule and a small submodule. We can restate [4], Theo-

rems 2.3 and 2.4 as follows:

Theorem 1. Let R be right artinian. Then the following conditions are

equivalent.
1) R satisfies (*).
2) There exists n{>0for each non-small idempotent ei=eil such that e{R\et]

ki

is injective for all ft,<&t and ^J?/^/**"1 is small.
3) Rfr(J)Jk is a direct sum of an injective module and a small projectίve
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module for all &>0 as R-modules.

4) R/A is a direct sum of an ίnjective module and a small module for every
right ideal A contained in r(J).

In this case A='ΣXBAi and the A{ is a right ideal in Ef(J) where J=](R)

Proof. Let R=Jl®eiR®^fiR as in §1 and D = r(J). Since the
i = l j=l

is small, fjD=0 by [9], Proposition 4.8. Hence, Z>=Σθe,Z> and DJa=

l)<->2). We assume that e^e and eR is injective and ejq~1ή=0, eJq = Q.
Then ejq~l is a unique minimal submodule in eR. Hence, ejq~l = e\(j).

Similarly, we obtain ejq~t=e\(jt) if eR/eJq~ί+1 is injective. If eR/eJ* is small
and eR/eJs+1 is injective, eDdeJ8 and hence, eD=eJs, since ejs/ejs+1 is unique
minimal. Hence, we have proved l)<->2) by [4], Theorem 2.3.

for some nf by the above. Hence,

\hteiRleJni+1t is injective for &>0 by

[4], Theorem 2.3.

3)->l). We always have DJk=^®eiDJk. Hence, R/DJk=Σί®fjRφ
i~1

Jl@eiRleiDJk. Therefore, the eiRleiDJk is injective for any β>0 by Krull-
t = l

Remak-Schmidt theorem, since e{R is non-small. If eiDJt =0 and eiDJt~1ήpO>

efi is injective and e^D}*'1 is a unique minimal submodule in e{R and eiDJ*~1=

et\(J}. Repeating those arguments as in the proof of [4], Theorem 2.3, there
exist an integer n{ and a unique series of submodules e^(J*) of e{R such that

βiRle&J*) is injective for t<n{ and eiD = ei\(Jni). Therefore, R satisfies (*)
by [4], Theorem 2.3.

l)->4). It is clear from the fact mentioned before the theorem.
4)->l). Since DJk^D for Λ>0, ^.JR/^Z)/* is not small by [9], Proposi-

tion 4.8. Hence, we can use the same method in 3)-»l).
Finally we assume (*) and ei=eil. Let eiD^>eiAί ̂ e^Bf be right ideals. Then

eβi^=eί]
iί for some t{ and eiR\eίEi is injective by [4], Theorem 2.3. If
•ψ

eiAileβi ?& ejAjlβjBjy we can extend -v/r to an isomorphism of eiR/eiBi to
βjR/ejBj, since epR/epBp is indecomposable and injective for p=i,j. Hence
i=j. Since e{jD^eijf D, the set of simple factor modules of composition series
of Eβ coincides with one of eslD. Therefore, A=

EXAMPLE 1. There exists a commutative ring R with R/J artinian, which

satisfies the condition in [4], Theorem 2.3. We quote the example in [7],
p. 378. Let R=Z(p)($Zpoo, where Z(p)=Endz(Zpoo). Then R has a ring structure

as usual. ](R)=pZ(p} ®Zpoo and r(J)= {(0, l/p)} . Furthermore, 0-> {(0, !//>)} -*
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-+R-+pZ(p)(&Zpβo(*sί](R))-*Q is exact. Hence, R is self-injective and R/r(J)
is a small module. However R does not satisfy (*) by [4], Lemma 2.1, since
Q(p) does not contain any cyclic injective modules.

3. Lifting property on injectives

In this section we assume R is a right artinian ring. Let M be an R-
module. If for any simple submodule Aa of M/MJ there exists a direct sum-
mand M« of M such that φ(MΛ)=AΛ, then we say M have the lifting property of
simple module.

Now we shall study injective modules over right QF-2* ring. We define
two weaker conditions than (*).

(*1) Every non-small module which is a homomorphίc image of an injective
module contains a non-zero injective module.

And

(*2) For every non- small module M there exists an indecomposable direct

summand Eλ of E(M) such that E(M)'DM^E1.

We know from (**) that every indecomposable and injective module is
of a form eR/eA, where e is a non-small primitive idempotent and eA is a right
ideal of R.

Theorem 2. Let R be a right QF-2* and artinian ring. Then the follow-

ing conditions are equivalent.

1) R satisfies (*1).

2) Every irredundant sum of direct summand EΛ in an injective module E such

that ^(Σ^)=Σ3θ^(^Λ) is injective.
3) For each non-small idempotent e, there exist right ideals eAlζLeA2C.

C.eAt_^C.eAt such that
i) eAt/eAl is a uni-serial module such that eAi/eAi.1 is the socle of eR/eAi^.

ii) eR/eB is small for all right ideals eB^eAt.
iii) The set of those eRfeA^ is the representative set of indecomposable injectives.
(It is possible that eR contains more than one such increasing series).

Proof. l)->2). Let E be injective and ^Ea an irredundant sum in E
with Ea injective and indecomposable as in 2). Since R is artinian (hence

noetherian) we may show that *Σ^EΛ is injective for every finite subset K of /.

Let {#!, α2, •••>#/>} be a finite subset of / and E(p)=J£Ea.. We shall show

the above fact by inducton on p. We assume E(p—l) is injective and E^=

E(p—\)®K'. Let π:E-*Kr be the projection. Then π(EΛp) is not a small
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submodule in K', since φE(Σ^EΛ)=^®φE(EΛ). Hence, π(EΛp) is injective

by (*1) for EΛp is hollow. Therefore, E(p)=E(p—\)®π(E<Λp) is injective.

2)— >3). We shall show that if eR\eA is injective and eR/eB is non-small

for eBlDeA, then eRjeB is injective for e = e{. Put E = E(eR/eB) and F =

eR/eAφE. Let /: eRfeA-^eRjeB be the natural epimorphism and G =

{#+/(#) I x <Ξ eR/eA} c F. Then G « fcR/&4 and φF(eR/eA +G) = φF(eR/eA) 0

φF(G) since eR/eB is non-small and hence /(#) Φ 0 for some #. Hence,

eRleA+G=eR/eA®f(eRleA) is injective. Therefore, eR/eB=f(eRleA) is in-

jective. From Lemma 3 we have injective eR\eC{ for each e. We may assume
that ^4j is a minima] one among eC{. Let eA2/eA1 be the socle of eR/eA^

If eR/eA2 is non-small, eR/eA2 is injective by the above. Repeating those

arguments, we get a series of right ideals eA1deA2Cl C.eAt such that eR/eAj
is injective and eR/eB is small for all eB^eAt by [4], Lemma 1.1. Hence, we
have proved 2)-»3) by (**).

3)->l). Let M be a non-small module which is a homomorphic image
of injective E. Let E= Σ θ £(£„). Then there exists E(5j (^eR/eAi) whose
image is a non-small submodule M0 of M. Hence, M^eR\eC, eC^eA^
On the other hand, either eC=eAj!3eAi for some 7* or eC^eAt from 3) i).
Hence, eC=eAj by 3) i).

Corollary. Let R be right artinίan. Then R satisfies (*) if and only if R

is a right QF-2* and QF-3 ring [11] satisfying (*1), (see Example 2).

Proof. It is clear from Theorems 1 and 2 and [4], Theorem 1.3.

We have considered special irredundant sums in an injective module in

Theorem 2. If we drop the assumption in 2) of Theorem 2, we have the well

known theorem:

Let R be a right noetherian ring. Then the following conditions are equivalent.

1) R is right hereditary.
2) Every irredundant sum of indecomposable injective submodules in an injective

module is injective.

We shall give a proof for the sake of completeness.
l)->2). It is clear.
2)-^l). Let E be injective and let E19 E2 be injective submodules. We

shall show El+E2 is injective. We have decompositions E~^@EiΛ(i=\y2)
It

where the Eioΰ is indecomposable. Since R is right noetherian, we may show

2#ι*+Σ^2β is injective for finite subsets K{. Hence, since we may assume
*ι *2

that its sum is irredundant, £Ί+£2 is injective. Let A be a submodule of E.
Then we can show by the same argument as in the proof 2) ->3) of Theorem 2
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that E\A is injective. Therefore, R is right hereditary.

Using the above and Theorem 2 we have

Theorem 2'. Let R be a right artίnίan QF-2* ring. Then the following
conditions are equivalent.

1) Every homomorphic image of an injective module is injective (R is heredi-
tary).

2) Every irredundant sum of indecomposable injective submodules in an in-
jective modules is injective.

3) For each non-small idempotent ey there exists a right ideal eA such that
eR/eA is a uni-serial module and eR/eB is injective for all eR^eB^eA. The
set {eR/eB}e B is the representative set of indecomposable injective modules (cf.
Example 3).

Proof. 2)-»3). It is clear from Theorem 2 and the above.
3)-^2). Since every homomorphic image of eRjeB is injective, we can prove

the implication by the same argument as in Theorem 2.

We assume that a module M has the lifting property of simple module.

Then for any decomposition M=Σ Φ^Λ with A<* simple, there exists a set of

direct summands MΛ of M such that MΛ=AΛ and M=^MΛ is an irredundant
/

sum (cf. Lemma 2).

Theorem 3. Let Rbea right (QF-2* and) artinian ring. Then the following

conditions are equivalent.

1) R satisfies (*2).
2) Every injective module has the lifting property of simple module.
3) i) For each non-small idempotent e there exists a chain of right ideals A{

such that eR/eAj is injective and eAλc:eA2<^. — deAt and each element in

ΈndR(eRleJ) is induced from some element in HomR(eRleAh eR/eA^for any i^j.
ii) The set of {eiRleiAij}i

1Lij*iι is the representative set of indecomposable

injectives.

Proof. l)->2). Let E be injective and EIEJ=J^@AΛ\ the A« is simple.
We take an element x in E such that Rx=A<». Then xR is non-small by the
definition. Hence, there exists an indecomposable direct summand EΛ of E

such that AΛ=φE(xR)HφE(EΛ) by (*2). Therefore, EΛ=AΛ.
2)-»3). We know from (**) and Lemma 3 that the representative set of

κCO

indecomposable injectives is {e^eβ^ili ίίi. We put B(ί) = Σ ®eiRleiBn>

e—e and Bi~Bj. Then there exists an epimorphism either flm: eR/eBm-*

eR\eEl orfml: eR/eB^eRleB,, for any pair / and m by 2) and [5], Corollary to
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Theorem 2. We denote this situation by eR/eBm^(ΐesp. *<) eR/eBj. Then

the relation ̂  is linear. We take the maximal one among eR\eB^ say eBl(=eAί)
with respect to the relation ̂ . Let eR/eB2 be the second one. Since there

exists an epimorphism/21, there exists a right ideal A2 such U&ίeA2'DeAl and

eR\eAf&eR\eB2. Repeating those arguments, we have a chain of right ideals

Af satisfying i) by [5], Theorem 2.

3)->2). It is clear from 3) and [5], Theorem 2.

2)-^l). It is clear from the definition.

4. Perfect rings with (*)

We shall show, in this section, that a left and right perfect ring satisfying
(*) is right artinian.

Theorem 4. Let R be a perfect and right QF-2* ring. We assume every
indecomposable injective module satisfies (E-I). Further if every ίnjective module
E has the lifting property of simple module, then R is right artinian.

Proof. Let E be an indecomposable injective module, say E—Έ(S)\ S

is simple. We shall show that E is Σ-injective [2] Put T=Σθ£α»; EΛ=E
and Q=E(T). It is clear that Σθ#« is a direct summand in Q=QJQJ. Now

we can express Q= Σ Θ#ΛΘ Σ θ^4β the Aβ is simple. Then Q = Σ

by the assumption and Lemma 2 and E(Sβ)=Aβ. We shall show

L=φ. Otherwise, there would exist ^4βΦθ. ΣΦS *s the socle °f T and hence

of Q. Hence, Sβ^S and E(Sβ)*&E. Let SβCΣθS for some finite subset
.K

K of / and £*=Σθ#y. Then Q=EK®F. We denote the projection of Q
JC

onto F by TT. ker r | E(Sβ)^Sβ and τr(E(5β))ctFJ since QΦΣ3θ£Λ+ΣE(Sγ).
^ ΎΦβ

It is clear π(E(Sβ)J)c:FJ. Hence, FIFJ=C/CJ®B2® — , where C=zr(E(5β))
and the B{ is simple. Then we have an irredundant sum Σ^V of indecompo-
sable injective submodules of F such that φF(E8ι')=C/CJ. It is clear as above
that ESι

f^E. Put F=ESι'®L and πl the projection of F onto E^'. Since
CJ

ΓFJ=E8ι'-}-FJy TΓjTr: E(5β)->£δι

; is an epimorphism. Hence, TΓ^IE^) is
isomorphic by the assumption on E. However, keΐπ1π\E(Sβ)l}Sβ, which is a
contradiction. Thus, E is ^-'mjective. Let V be any injective module

and Σ ΣjθSίΛ. the socle of F, where Sicύ^Siβ and SiΛ^Sjβ if t'Φy. Then

^=E(ΣΣθSίΛί)=ΣθE(ΣθS|.4./)=ΣθΣE(S. -ί)
 bY the above. Hence, R is

ί-l /i 1 /,' 1 /,'

right artinian by [10], Theorem 4.5 in p. 85.



ONE-SIDED QF-2 RINGS I 429

Theorem 5. Let R be a left and right perfect ring. If R satisfies (*), R
is right artίnian.

Proof. It is clear from Lemma 1 and Theorems 3 and 4.

Proposition 1. Let R and E be as above. We assume E=ΣE(S«) is

irredundant. Then there exists a set of epίmorphίsms ψΛ: E(Sα)->E(SΌ/) for all
such that £=

Proof. We denote the injective 0,vR/0f.l(jΓ') by E(eh f). We assume E=

Σ F(el9 0)rt+ Σ F(e19 !)«+••• + Σ *K *ι)*+ - + Σ *K, *n)« is an irredundant
JCi.o) j α.i) j α.v jc»,*«)
sum of E, where F(eiίj}<A^E(ei)j). Let -F0 be an indecomposable direct sum-

mand of FJtt= Σ F(eίf t)Λ. Fjt is injective by Theorem 2 and Lemma 2 and

Fjtt=FQ(&E'. Let 7Γ be the projection of Fjtt onto F0. Then there exists some

F(ej9t) such that π(F(ejίt)β)=F0 and so F^E(ej3p) for p>Z. Let F l f l+

F =/r φ£, and F, s = Σ ΘE(5V). Then E(Sy)»Efa, sj by the above
1 ' * /α,v

and |/(l,^ι)| = |/(l,^ι)| by Lemma 2, where |P| means the cardinal of P.
Hence, there is a set of epimorphisms ^1 F(elysl)Λ->Έ(SΛ). Let π\ F1 >5ι+

Fi^-i-^L be the projection. Since <FMl_ι is an irredundant sum, π'(F(elί sl— 1)Λ)

is injective by Theorem 1. Let L= Σ ®E(5/). Then E(Sβ') is a homo-

morphic image of π'(F(elf sλ— 1)) and hence of F(̂ , ίj— 1)Λ. Further
17(1, ίj—1)| = U(1? ί ] L_i)|φ Hence, we obtain a set of epimorphisms -v/r/7:

.F !̂, ^i—l)Λ-+Έ(SΛ '). Repeating those arguments, we obtain the proposition.

Proposition 2. Let R and E be as above. We assume E is a direct sum of

Έ(Sa) whose proper homomorphίc images are not injective. Then every irredun-

dant sum of indecomposable injectives of E is a direct sum.

Proof. Let £=Σ ^Λ be an irredundant sum of indecomposable injectives.

We put E(ri)=^E<». for a finite subset {aly a2, ••-,#„}. We show E(n)=

Σ Θ^Λ by the induction on n. We assume E(n— 1)=Σ ®^«, and E(n)=
ί = 1 ' 1=1

E(n— 1)®K. Let π be the projection of E(n) onto K. Then τr|EΛ j | is

epimorphic. Since K is injective by Theorem 2, r | EΛn is isomorphic by the

assumption. Hence, 0=ker π Π EΛn=E(n— 1) Π SΛ||. Therefore, E(n)=^®Ea..

Proposition 3. Let R be as above. Then R is a QF ring if and only if

every irredundant sum Σ E(5Λ) of injective module is a direct sum.

Proof. If R is a QF ring, each e{R has no proper homomorphic injective
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images, since every injective module is projective. Hence, we obtain "only if"
by Proposition 2. If R is not a QF ring, then there exists a non-small idempo-

tent e such that eR and eR/eA are injective by Theorem 1, where eA is a proper

ideal of eR. Then E=eR®eR/eA has an irredundant sum (eR, 0) +

{(ery er\r^R}, where er denotes the image of er by the natural epimorphism:

eR-*eR/eA. {(er, er) \r(ΞR} &eR and (eR, 0) Π {(er, er) \r<=R} =(eA, 0)=f=0.

We shall give some examples which show that (*1) and (*2) are independent.
It is clear that (*) implies (*1) and (*2).

EXAMPLE 2. Let K be a field and C=K($M; M=K, the trivial extension
and

Put ei=eii (matrix units). Then e1R=Homc(Re2y C). Since C is self-injective,

{eft, e^KO, C)} is the complete set of indecomposable injectives. Hence, R
is right QF-2* and QF-3. Furthermore, R satisfies (*2) by Theorem 3 but not

(*1) by 3, ii) in Theorem 2.

EXAMPLE 3. Put

(K K K
R = 0 K 0

\ o o K

Then ^Λ/(0, K, K), ^/(O, K, 0) and ^J?/(0, 0, K) is the complete set of inde-
composable injectives. Hence, R is right QF-2* and satisfies (*1) by Theorem 2.

Since (0, K, 0) U (0, 0, jRΓ)=(0, K, K), R does not satisfy (*2) by Theorem 3.

IK K K K\
K 0 K\

K K\
,0 K

EXAMPLE 4. Put

R =

Then eJR, efi/ej, ^/(O, 0, K, K) and ^/?/(0, ΛΓ, 0, K) is the complete set of
indecomposable injectives. Hence R is right QF-2* and furthermore, every

indecomposable projective is uniform and so R is QF-2. However, R satisfies

neither (*1) nor (*2).

EXAMPLE 5. Put

IK K 0 K\
K K K]

0 K κi
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Then e^R, ejR/eJ, ejtle^2 and e2RI(Q, 0, 0, K) is the complete set of indecom-

posable injectives. Hence, R is right QF-2* and satisfies (*1) and (*2). How-

ever, (*) is not satisfied. We note R is not QF-3 (cf. Corollary to Theorem 2).
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