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R.H. Fox introduced the notion of congruence classes of knots in [3], and
he gave a necessary condition for congruence in terms of Alexander matrices
and polynomials. In this note we will improve his condition and discuss some
of its consequences.

1. Congruence classes of knots

In this note we only consider 1-dimensional tame oriented knots 2 in an
oriented 3-sphere S® Two knots k and k' are said to be equivalent, iff there
is an orientation preserving homeomorphism from (S3, &) onto (.53 '), and each
equivalence class of knots is called a knot type. A knot k is called trivial (or
unknotted) iff there exists a disk D in S* with 0D=k.

DrrFiniTION (Fox [3]). Let #» and ¢ be non-negative integers. The knot
types « and A are said to be congruent modulo n,q, written x=\ (modn, q), iff
there are knots &, &y, &y, -+, k;, integers ¢y, ¢,, **+, ¢;, and trivial knots my, m,, +-, m,
such that

(1) k;-; and m; are disjoint,

(2) k; is obtained from k;_, by 1/cn-surgery along m; (see [9, 10] for
a/b-surgery),

(3) the linking number /k(k;_,, m;)=0 (mod ¢), and

(4) k, represents «, and &, represents A.

DerintTioN. Two knot types « and A are said to be g-congruent modulo
n, written k=X (mod #), iff they satisfy the conditions (1), (2), (4) in the above

and the following condition (3"):
(3,) lk(k,-_l, m,') =q.

We note that these relations are equivalence relations.

Fox [3] pointed out that congruence modulo 0, ¢ is just the knot equiva-
lence, and that any two knot types are congruent modulo 1, ¢, because if a knot
is obtained from another by changing an overpass to underpass, they belong to
the same congruence class modulo 1, ¢ (see Fig. 1).
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First we give a necessary condition for congruence modulo 7, g. This
condition, rather effective if #>>1, uses the Alexander polynomial A.(t) of a
knot type «. An Alexander matrix of « is denoted by A,(t) and (1—¢")
(1—=t)=1+t4224-+--+1""" by a,(?).

Theorem 1. If k=) (modn), then, for properly chosen A(t) and A\(%),
we have )

A(t) = A,(t) mod (1—1t)a,(t),
and hence
Al(t) = 41 A\(2) mod (1—2)o,(27) .

Further, we have similar statements for the elementary ideals of deficiency greater
than 1.

Theorem 2. If k=X (modmn, q), then, for properly chosen A.(t) and A\(t),
we have
1—t) = (1—=8)a, (£, (1—t)o,(£**9),
Al = AA(t)mod{”( ) '( Jau(t77) (. )aa( )}
(l_t)"'n(tilxq)r ) (l_t)o'n(t,*xq) ’
and hence
n(l—t) = (1—=2)o, (19, (1—1)a,(f'*9) ,}
A(f) = +A(t) mod ) .
( ) + A( )mO {(l—t)o_”(tllxq)’ “e, (1—t)0‘,,(t"xq) ,
where 1, +-, 15 are all divisors of n and 1<i,<---<iy<<n. Further, we have
similar statements for the elementary ideals of deficiency greater than 1.

In the above, f(#)=g(t) mod {h(t), hy(t), -+, h;(#)} means that f(¢) and g(t)
are in the same class of the quotient Z<t>/(hy(2), hy(2), -+, h;(2)), where (y(2),
hy(2), -+, hj(t)) is the ideal generated by hy(%), Ay(t), -+, k(t) in Z(2).

We will prove Theorems 1 and 2 in the next section.

Remark. In [6], Kinoshita proved some theorems similar to Theorem 1,
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but in a more special setting.
Corollary. If n or q is even, and k=) (mod n, q), then we have
A(—1) = A(—1) (mod 27) .

Proof of Corollary. When ¢ is even, [o,(#*9)];--, is equal to n. When ¢
is odd, and 7 is even, [os(#**9)];=; is equal to 0. Since each [(1—#)a,(t*9)];=-,
is equal to 2z or 0, Theorem 2 implies Corollary.

Applying Theorems 1 and 2, we can find infinitely many knot types that
are incongruent modulo 7, g.

Theorem 3. Let n be an integer greater than 1 and q a non-negative integer
such that (n,q)#(2,1) nor (2,2). For congruence modulo n, g, there exist in-
finitely many distinct classes.

The proof of Theorem 3 will be given in §3.
For the remaining two cases (7, ¢)=(2, 1) or (2, 2), we show the following.

Theorem 4. For any knot type k, we have

A(t) = 4t -1 mod {2(1—t2), (1—2)oy (D)},
and hence
A(t) = +7 -1 mod {2(1—12), (1—12)ay(2)}.

Proof. It is well-known that the Alexander polynomial A,(¢) of a knot
type is characterized by the conditions (1) A.(¢)=#*A(t™") for some integer s
and (2) A(1)=+11[7,9, 11]. So, we can assume that

At) = e+, ' oot cpt ot T e gt g 0

Deforming A,(t) symmetrically by (1—2)o(#?)=1—t+#—#, we have A ()=
ct+(2c+1)4ct™' mod (1—2)oy(#*). When ¢ is even, ct+(2¢ +1)+ct™'+(¢/2)
X (1=t X (2(1—t))=TF1. When cis odd, ct+(2c4-1)+ct*+((c4+1)/2)(1—27Y)
X(2(1—1))£t' X (1—t4+£2—18)=41%. Therefore, we have A (t)=-1t"-1mod
{2(1—1t), 1—2t)a(t)}. By (1 —2t)ay(t)=(142)X (1 —t)oy(t) —t X 2(1 —¢), the
ideal (2(1—%), (1—12)o5(#?)) is contained in ((2(1—2), (1—%)oy(2)). So we have
A(t)=41-1mod {2(1—t), (1—¢t)oy(t)}. Hence, the proof is complete.

By our experiments, we could not find distinct knot types that are incon-
gruent modulo 2, 1 or 2, 2. Hence, we raise the following conjectures:

Conjecture C: All knots are congruent modulo 2, 1.

ConjecTure B:  All knots are congruent modulo 2, 2.
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ConjecTURE A:  All knots are deformable to a trivial knot by a finite

sequence of operations 7¥’s, which are shown in Fig. 2.

Fig. 2

Note. If Conjecture A is true, then Conjecture B is true. If Conjecture
B is true, then Conjecture C is true.

Conjectures A and B are true for all (at most) 10 crossing knots, all Monte-
sinos knots (which contain all 2-bridge knots and all pretzel knots), many closed
3-braid knots (a,02")**!, and so on. Conjecture C is true for all (at most) 10
crossing knots, all Montesions knots, all torus knots, all closed 3-braid knots,
and so on. (See [12].)

QuesTION. For any Alexander polynomial A(z), does there exist a knot
type « such that the Alexander polynomial of « is A(#), and « is congruent to
a trivial knot type modulo 2, 1 or 2, 2?

2. Proofs of Theorems 1 and 2

To prove Theorem 1, it is sufficient to show the following Lemma.

Lemma. Let n and q be non-negative integers, and k and k' knots. Let
m be a trivial knot disjoint from k such that Ik(k, m)=q. Suppose that k' is
obtained from k by 1|/n-surgery along m. Then, for properly chosen Alexander
matrices Ay(t) and A,/(t) of k and k', we have

Ay(t) = Ap(t) mod (1—1t)a,(29),
and hence
Ayt) = 1 Ap(t) mod (1—2)o,(2°) .

Further, we have similar statements for the elementary ideals of deficiency greater
than 1.

Proof. We prove this Lemma after Fox [3].

Fig. 3 illustrates the neighbourhood of 7 in (S3 ).

We can choose generators x;, &g ***, &y, A, B of the fundamental group
7y(S*—k—m) as shown in Fig. 3, and further we choose other generators
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Xy41, -+ as usual. Then, we have a group presentation of 7,(S*—k—m):

A’ By A= w(xl) Xy **°y xl) ’
X1y Xy ***y Xopy | Xp4i = B—lxt‘B (i = 1) 2’ °t%y l) ’

S TOREID r; (relations corresponding to other crossings)

Hence, we have a group presentation of 7,(S*—k):

A, B, A = w(xy, x5 -+, %), B=1,
Xyy Xy o0ty Koy, | X4 = B ;B =121,
Xot+1y °°* 7;
A4, A = w(xy, x5 +++y x7) s

= | Xy Kpy o0ty Xy | Xpyy = X; =121, |,
Xar41y **° 7

and a group presentation of z,(S*—k’):

A4, B, A = w(xy, x, -+, %), BA"=1,
Xyy X3y ***y Xgpy | X4y = B7'%,B (F=1,2, -1,
Xar41y **° L]
A, A = w(xy, Xy +++, x7)

= | Xy Ay ey Ky | Kpy = A" A7 ((=1,2,-4,]), |.
Xor+15 *°° L#]

We use Fox’s free differential calculus [2]. Since



222 Y. NAKANISHI AND S. SuzZUKI

a4 5, A"[0A) = ag((1+A+ -+ A — A"x (A7 + A2+ A7)
— (1+tq+"'+(tq)“—l)—t((tq)”-1+(tq)”—2+““'[—1)
= (1-2)ou(t"),

we have the Alexander matrices A4,(¢) and Ay(f) of k and k', respectively, as
follows:

1 | * = = | 0 0 - 0] 0
0 1t -1 ;
0 | 1 | —1 |
. l l . |
Alc(t) = ] I | lo} )
. l | I
0 | 1 ] —1
o I ag(r;/oxs)
and
1 | * = *= | 0 0 0] 0
(1=t)a, ()| 2 [—1 I
(1—2)a,(t") | " | -1 |
. I . I . I
A,,l(t) = l . l . l 0
l | |
(1—2)a,(t" | | —1]
o) | ap(0;r/ox;)

From 1—t"=(1—1")0,(t")=0,(t)(1—t)a,(t*), it follows that A,(t)=A: (%)
mod (1—2#)o,(t") and A,(t)=41Ap(t) mod (1—#)o,(¢). Hence, the proof is
complete.

Proof of Theorem 2. For the case lk(k,m)=sq, let d be the greatest com-
mon divisor of s and n. Notice that the collection of integers {0Xsg, 1Xsq,
2Xsq, +++, (n—1)sg} is equal to the collection of integers {0xdq, 1xdq, 2xdg,
e+, (n—1)dg} modulo ng. So, the following two polynomials coincide modulo
1—tM=(1—1"0o,(¢%):

() = 1494250+ ee f3Dse - and
o (t29) = 12994129 ooo | gn=Dda
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Hence (1—t)o,(#*%) is contained in the ideal
(1=2)a(£79), (1—=0)an(t*7), 1—1)a,(£177), -+, (1=t)ou(t)**7),

and the proof is complete.

3. Proof of Theorem 3
We divide the proof of Theorem 3 into three lemmas.

Lemma 1. For congruence modulo 2,0, there exist infinitely many distinct
classes.

Proof. For a non-negative integer nE N, let «, be the (2r+1, 2)-torus
knot. Then the Alexander polynomial A, (£) of «, is

A () =Pr—Pr 20— — g1
The quotient Z<t>/(2(1—t), A, (t)) has an abelian group presentation:

|8 |2(1—8)f = 0, £A, () = 0 (i=-+, —1,0,,12, -+-)]|
2 |(1), (1=2), -+, (1= |2(1~) = 0 (i=1,2, -+, 2n—1)|
gZ®(Z2)Zn—1 .

Therefore, A, (¢) and 4-2"A, /() are in distinct classes of Z<{t>/(2(1—¢)) if n¥n'.
Hence, the congruence classes modulo 2, 0 of «,(nEN,) are mutually distinct.
Hence, the proof is complete.

For a non-negative integer EN,, let A, be the connected sum of # copies
of a trefoil knot. (If it is desired, by a theorem in [8], we can choose a prime
knot A7 whose Alexander matrix is same to that of A,.) Then, the ith elementary
ideal E(t) of A, is ((#—2-+1)**'") for 1<i=n and is (1) for i=n+-1.

From now on, we consider the congruence classes of {A,}. (Of course,
their classes modulo 2, 0 are mutually distinct by the proof of Lemma 1 and
Theorem 2.)

Lemma 2. For congruence modulo 2, q with ¢=3, there exist infinitely many
distinct classes.

Proof. If we show that (#—z¢-+1) and +¢# -1 are in distinct classes of the
quotient Z<t>/(2(1—t), (1—t)oy(t*)=1—2+t*—11*"), then the sequences of the ele-
mentary ideals of {\,} (#€V;) are mutually distinct mod {2(1—), (1—¢)o,(t%)}.
Hence, by Theorem 2, there exist infinitely many distinct classes for congruence
mod 2, ¢ (¢=3). Now we show that (£*—¢+41) and +# -1 are in distinct classes
of the quotient Z{t>/(2(1—1), oy(t")=1-+1"). The quotient Z{£>/(2(1—12), 14+#%)
has an abelian group presentation:
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#1210 =8¢ = 0, (129t = 0 (i=---, —1,0, 1,2, --)]
=|(1), (1—2), -+, 1—22Y |4(1) = 0, 2(1—1#) = 0(i=1, 2, ---, g—1) |
=Z,D(Z,)"".

Since (F—t+ 1)+t 1=F—1)—(t—1)+(# —1)+(1+1) is of order 2,
(#—t+1) and +# -1 are in distinct classes of Z<{t>/(2(1—t), 14-1*). Therefore,
they are in distinct classes of Z<£>/(2(1—%), (1—£)oy(")). Hence, the proof is
complete.

Lemma 3. For congruence modulo n, ¢ with n=3, there exist infinitely many
distinct classes.

Proof. By the definition, =\ (mod 7, q) implies x =X (modz, 1), and
=X (mod 7, g) implies #=\ (mod p, q) if p is a divisor of n. We have, there-
fore, only to verify the lemma for the case (7 is an odd prime integer) or (# is an
even integer greater than or equal to 4), and ¢g=1.

For the case that # is an odd prime integer, we will show that (#—¢+1)%
+# -1 mod {n(1—1¢), (1—#)o,(t)=1—1"t. The quotient Z<ty(n(1—1t),1—1¢")
has an abelian group presentation:

[#|n(1—t)t = 0, (1—t") = O(i="-+-, —1, 0, 1, 2, +++)]
=|(1), 1—2), -, 1= |m(1—F) = 0 (=1, 2, -+, n—1)|
=ZP(Z,)*".

Therefore, (##—t+41)4-¢"-1 = (£—1)—(t—1)4('—1)+(141) is of order
2 or of infinite order. Hence, (##*—t+1) and +# -1 are in distinct classes of
Z& (n(1—1), 1—17).

For the case that # is an even integer greater than or equal to 4, we see
[f—t41],-.,=3%1 (mod 2n). So, it is clear that (#—#+1)=% 4 # -1 mod
{n(1—t), (1—t)o,(2)} (cf. the proof of Corollary). Hence, the proof is complete.

4. Remarks

4.1. 'There is an error in Fox [3]. He confused “‘congruence modulo 7,
¢’ with “g-congruence modulo #” in the sense of this note, and “(and B into
1) ([3], p. 38, the bottom line) should be read as “(and B into 1 or #")”. So,
we should read each phrase ‘“congruence modulo 7,¢” in his paper as “g-con-
gruence modulo 7.

4.2. A proof of a theorem in Kinoshita [5] following the same pattern as
Fox [3] is also in error (mentioned in [6]). Here we give a counter-example
to the theorem in [5].
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l

- e[|
(\/:n\) | \/\\y along m o0 v
9, a trivial knot

We consider the knot 9, and a trivial knot 7 as in Fig. 4. By —1/1-surgery
along m, we obtain a trivial knot. So, we have §(9,)=1 in the sense of [5]. The
2-fold branched covering space =, of 9, has the first integral homology group
H\(Z,)=Z,PZ,, so e,=2 in the sense of [5]. This is a contradiction to the
formula e, <(g—1)-5(k) in [5].

References

[1] J.W. Alexander: Topological invariants of knots and links, Trans. Amer. Math.
Soc. 30 (1928), 275-306.
[2] R.H. Fox: Free differential calculus, 1, Ann. of Math. 57 (1953), 547-560, ibid.,
I1, ibid. 59 (1954), 196-210.
[3] R.H. Fox: Congruence classes of knots, Osaka Math. J. 10 (1958), 3741.
[4] S. Kinoshita: On Wendt’s theorem of knots, Oaska Math. J. 9 (1957), 61-66.
[5] S. Kinoshita: On Wendt’s theorem of knots, 11, Osaka Math. J. 10 (1958), 259—
261.
[6] S. Kinoshita: On the distribution of Alexander polynomials of alternating knots
and links, Proc. Amer. Math. Soc. 79 (1980), 644-648.
[71 J. Levine: A characterization of knot polynomials, Topology 4 (1965), 135-141.
[8] Y. Nakanishi: Prime links, concordance and Alexander invariants, Math. Seminar
Notes Kobe Univ. 8 (1980), 561-568.
[9] D. Rolfsen: A surgical view of Alexander’s polynomial, Geometric Topology
(Proc. Park City, 1974), Lecture Notes in Math. 438, 415-423, Springer, Berlin,
1976.
[10] D. Rolfsen: Knots and links, Math. Lecture Series 7, Publish or Perish Inc.,
Berkeley, 1976.
[11] H. Seifert: Uber das Geschlecht von Knoten, Math. Ann. 110 (1934), 571-592.
[12] S. Suzuki and Y. Nakanishi: A4 proposal of localized link theory, preprint.

Yasutaka Nakanishi
Department of Mathematics,
Kobe University,

Nada-ku, Kobe, 657

Japan

Shin’ichi Suzuki
Department of Mathematics,
School of Education,
Waseda University,
Shinjuku-ku, Tokyo, 160
Japan








