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Introduction

The theory of real numbers, as a basis of mathematical analysis, had
been already completed in the nineteenth century in several ways (cf. [1], [2],
[3]), and now we seem to have nothing to do newly with it. These mathematical
theories have been established as the completion of the system of rational num-
bers, while the intimate relation between the quantity and the number has
been rather neglected.

Here we shall start from the characterization of the system of positive
quantities and derive the system of positive real numbers as the set of auto-
morphisms of the system of positive quantities. Then, the extension of the
system of positive real numbers to the whole system of real numbers can be
easily carried out.

The contents of this note had been already published by the author in
Japanese in a mimeographed copy “Zenkoku Shijo Sugaku Danwakai” (1944).
The author is much obliged to the editors of Osaka Journal of Mathematics
who have allowed this note to be published newly in English.

1. System of positive quantities

A. Axioms of the system of positive quantities. Let Q be a system of
quantities of the same kind with the following properties with respect to the
addition:

(I,) If aand b€, then a+-b&Q (a+b is uniquely determined) .
(I) a+b=b+taifaand beQ.

(L) (a+b)+c=a+(b+c) (a, b, cE0Q).

(I) Ifatc=2b+c(a, b, ccQ), thena=5.

The system of quantities Q is said to be positive, if the following conditions
are fulfilled:

(II,) If a and bQ, then a+-b=+a.

* Emeritus Professor of Osaka University.



2 M. Nacumo

(II,) If a and b=Q and a=b, then there exists c€Q such that either
atc=bora=b+tc.

DEerFINITION. Let Q be a positive system of quantities and let a4, b= Q.
b is said to be larger than a: denoted by b>a (a is said to be smaller than b: a<Cb),
if and only if there exists a’€Q such that b=a+a’'.

Proposition 1.0. If a<<b (a, b€ Q), then there exists a’Q uniquely such
that a’'+-a=>b. In this case we write a’=b—a.

Proposition 1.1. For any given pair of elements a, b= Q, just one of the
following three cases happens

1) a=b, 2)a<d, 3)b<a.

Proposition 1.2. i) Let a<b and b<c (a, b, c€Q), then a<c. ii)
a-+c<b--c holds, if and only if a<<b.

B. Axiom of the continuity of Q. Let Q be a positive system of quantities.
Q is said to be continuous if Q satisfies the following axioms:

(II1,) For any a€Q, there exists a’Q such that a'<a.

(I11,) (A pair of non-empty subsets O-, O+, of Q is called Dedekind’s pair,
if and only if O-UQ* = 0, O-NQO* = ¢ (empty set) and a,=0",
a,= Q™ always implies @;<<a,.) For any Dedekind’s pair Q-, O~
of O, there exists an element c€Q such that ¢,€Q- and ¢,=0+
implies ¢,<c=<a,.

From (III,) we get

Proposition 1.3. Leta, b€ Q and a<<b. Then there eixsts an element cEQ
such that a<<c<b.

From (III)) and (IIL,) we get

Proposition 1.4. Let O, O+ be Dedekind’s pair of Q. Then the element
c€Q in (I11,) is uniquely determined. And c is either the largest element of Q-
or the smallest element of Q+.

We call ¢ the cut element of the Dedekind’s pair O-, O+ and we write
e=(Q°19%).

For any a= Q and any natural number # (r=N), we define na< Q by induc-
tion: la=a and (n+1)a=na-+a.

Proposition 1.5 (Archimedes). Let a and b Q. Then there exists nEN
such that na>>b.
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Proof. Define Q- and Q* by O-={g=Q; nEN, na>q}, Or=
{¢'€Q; "neNmna<q'}, respectively. If Proposition 1.5 was false, then Q-, O+
would be Dedekind’s pair (Q*=@), and c=(Q-|Q*)€0 would lead us to a
contradiction.

2. Linear mapping and automorphism

A. Let Q and Q' be positive systems of quantities satisfying the axiom of
continuity. Let ® be a mapping of Q into Q’, i.e., by ® to every g0 there
corresponds uniquely an element ¢'€Q’: ¢'=®(q) (a function of the variable
element g€ Q).

A mapping ® of Q into Q’ is said to be linear (homomorphism), if and
only if

D(a,+a,) = ®(a,)+D(a,) for any pair a,, 2,0 .

A mapping ® of Q into Q' is said to be 1-1 (one to one) onto Q’, if and
only if to every a’€(Q’, there exists uniquely an a=(Q such that ®(a)=a’. In
this case the inverse mapping ®-! of Q’ into Q is 1-1 onto Q.

Proposition 2.1 (Theorem of inversion). Let ® be a linear mapping of QO
into Q'. Then @ is 1-1 onto Q’, and the inverse mapping ®-* of Q' onto Q is also
linear.

To prove Proposition 2.1 we use the following lemmas.

Lemma 2.1.1. Let ® be a mapping in Proposition 2.1. Then ®(a,)<P(a,)
(ay, a,€0), tf and only if a,<a,.

Lemma 2.1.2. For any a€Q and any nE N, there exists a,EQ such that
na,<a.

(Use mathematical induction with respect to z).

Lemma 2.1.3. For any bEQ’, there exist a, and a,=Q such that
D(a,)<b<D(a,).

Proof of Proposition 2.1. For any fixed a'(€Q’) we define, subsets of

0O, O- and O+ by
Q- = {g€0; P(9)<a’} and Q* = {g€0; P(g)=a'} .

Then, Q- and Q* form Dedekind’s pair of Q.

We put a=(0-|0%) (a€0), and we shall show ®(a)=a’. If it was
®(a)<<a’, then g should be the largest element of O-. But there would exist
a,€Q such that a<<a, and ®(a,)<<a', contradicting to that a is the largest ele-
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ment of Q-. Because, by Lemma 2.1.3 there would exist c€Q such that
P(c)<a'—d(a) (€Q’), hence ®(a+c)<a’ (a,=a+c).

If it was ®(a)>a’, then a should be the smallest element of O+. But, by
Lemma 2.1.3 there exists c€Q such that ®(c)<®P(a)—a’, hence c<a and a’ <P
(a—c) (a;=a—c), contradiction. Thus, we have shown that ® maps Q onto Q’.
By Lemma 2.1.1 we see that @ is a 1-1 mapping of Q onto Q’. We can easily
see that ®-! is linear. Q.E.D.

B. Rational automorphism. Let Q be a positive system of quantities
satisfying the axiom of continuity. A linear mapping of Q onto Q itself is called
an automorphism of Q.

Let a mapping ® of Q onto Q be defined by

D(q) =mg (9€0Q)

with a given m& N. Then ®-!is an automorphism of Q, and by Proposition
2.1 ®-'is also an automorphism of Q. Thus we write

DY (g) =m7q.
For any automorphism @ of Q (or any linear mapping of Q into Q) we have
D(ng) = nP(q) (nEN).
Hence n'®(q) = P(n'q) ("9€Q).
Thus, for any m and nE N,
n~l(mg) = m(n~'q) ("9€Q).
The mapping ® of Q onto Q defined by
D(g) = nY(mg) = m(n"'q) ("¢€Q) (m, nEN)

is also an automorphism of Q. For this automorphism of Q we write
m
g 1= mn7'q) =n"Y(mg) ("9€Q).

An automorphism @ of Q given by ®(g) = :lfq ("q€Q) (m, nEN) is called a

rational automorphism of Q.

Proposition 2.2. Let ® be a linear mapping of Q into Q’.

Then, for any rational automorphism ;1' (of O and Q"),
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my="m v

o("g)="a(g) (4€0).

Proposition 2.3. Let a, b€Q such that a<<b. Then for any cEQ there

exists a rational automorphism of Q, Z’ , Such that a<< %’c<b.

Proof. Let d=b—a (a<<b). Then there exists n& N such that nd>c (by
Proposition 1.5). Hence d>n"'c. Putting cizirc ({EN) we have c¢;=ic, and
ci<ci+l'

There exists jEN (by Proposition 1.5) such that ¢;=jc,>>a. Let j=m be

the smallest natural number with this property.
Then, we get easily

a<c,<bwithc, = :’;c.

Proposition 2.4. Let ®, and P, be automorphisms of Q such that
D,(a)==Dy(a) for some ac Q. Then D,(q)=D,(q) (identically) for all g€ Q.
Proof. Was b€ Q such that @,(b)<®,(b). Then, putting ®,(a)=P,(a)=c,

by Proposition 2.3 there would exist a rational automorphism %1 such that
d)l(b)<:7" c<Dy(b).

Thus, as ®,(b)<< nm =, <g a) and <I>2<nm a)zgl c<Dy(b), we get, by Lemma

2.1.1, b<:l—’E a<b, an absurd conclusion. Similarly the assumption ®,(b)<<®,(d)

would lead us to a contradiction. Consequently, we have ®,(b)=®,b) for
every beQ. Q.E.D.

Proposition 2.5. Let @, and D, be automorphisms of Q such that ®,(a)<<P,(a)
for some ac Q. Then ®,(q)<Py(q) for all g Q. (In this case we write O, <D,
simply).

Proof. If the statement was not true, we could assume the existence of
some bEQ such that ®,(b)>D,b), (If ©(b)=2D,(d) then ®,(q)=,(q) for all

9€Q).-
Put c=®,(b)—D,(b) (€0), then by Proposition 1.5 there exists nE N such
that nc>®,(a) and nb>a. Hence n-'a<<b.

Then, there exists m& N such that g a<b=< "1T+1 a.
Thus,

@,(b) <@, ("‘:1 a> — ”‘;fl ®,(a) <" D(a)-+n"'D\(a)
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< Dy(b)+n"'D,(a)< DPy(b)+c .
This contradicts with the equality ®@,(b)=®,(b)-c. Q.E.D.

Let Pbe the set of all rational automorphism of Q. By Proposition 2.5 in P
is defined order of elements 7, and r,& P such that r,g<<7,q for any g€ Q=r,<7,.
In P addition and multiplication are defined by

r+1,EPo(r+r,)(q) = ri(q)+rq) forall g€Q
1, EPory(rg) =rfrg) forall geQ.
(cf. Propositions 2.2 and 2.4)

In P the addition and multiplication satisfy the wellknown rules of addition and
multiplication of rational numbers.

A pair of subsets P~ and P+ of rational automorphism P are called Dede-
kind’s pair of P, if and only if P- and P* are not empty, P~ UP+=P,
P-NP+*=g(empty) and r,€EP~, r,E P*=>r,<r,.

Proposition 2.6. Let Q be a positive system of quantities satisfying the
axiom of continuity and let ac Q. If P~ and P+ are Dedekind’s pair of P, then
there exists just one c€Q such that ra<c=ra for every ry € P~ and for every
r , P,

Proof. Let O- and QO be subsets of O defined by

0O~ = {g=0Q; q<ra for all re P+},
Ot = {q€0Q; IreP*, ra<q} .

Then Q- and Q+ are Dedekind’s pair of Q.
Put c=(0°10").

First assume c is the largest element of Q-. Then, ¢<ra for all r€ P+,
and c=raforallreP-. (If c<ra for some r,€ P, then as rasQ-, this con-
tradicts to that ¢ is the largest element of O-.)

Second assume ¢ is the smallest element of Q+. Then, c=r@a for some
r,€ P*, and ra<<rqa=c for all r& P-. Further, as {ra;r&P*}CQ*, we have
c<raforall reP™.

The uniqueness of ¢ in Proposition 2.6 follows from Proposition 2.3.

Q.E.D.

C. Theorem of isomorphism. Let Q and Q' be positive systems of quan-
tities satisfying the axiom of continuity.

Proposition 2.7 (Theorem of isomorphism). Let acQ and a’=Q’ be
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given. Then, there exists just one linear mapping (isomorphism) ® of Q onto Q'
such that ®(a)=a’'.

Proof. To define the desired linear mapping @, take an arbitrary g€ Q and
let P, and P, be defined by

P, = {reP; ra<q} and P{;)= {rEP; ra=q} respectively .

Then Py, and P{;, form Dedekind’s pair of rational automorphisms.

Thus, by Proposition 2.6 there exists just one ¢'€Q’ (depending on g)
such that r.a’' <q¢'<r,a’ for every e P, and every r,c P{,.
Hence we define the mapping @ in such a way that ®(q)=¢q’. Clearly we have
O(a)=a’.

Now let ®(q;)=¢’; (i=1, 2). Then we have to show that & is linear:

D(+¢) = ¢4 +9>-

Let ¢3=¢,+¢, and Pi={reP; ra<q;} (=1, 2, 3). Then we get P;=
{r\+r,; neP;y, neP;}. Because, first we easily see {r,+r,; r,€ Py,
r,eP;}CP;. Toshow P;C {r,-+r,; rnePr, r,eP7;}, letr&P;. Then, as
ra<<q,+¢,, putting d=Min{q,+¢,—ra, ¢, ¢} €Q, by Proposition 2.3 there
exist /€ P(i=1, 2) such that ¢,— % d<r/a<gq; (i=1,2). Then,r/=P; and
rl’:{T{r(iz 1, 2), we have

/ri, = /ril /(r1,+72,)a:ri/a<qi-
r'+r, '+,

Now let P{={reP; ra=q:=q,+¢,}. Then P; and P7 are Dedekind’s
pair of rational numbers. And by the definition of ®, putting ®(g;)=g5’, we get

ra<q,+¢,—d<(r/+r/)a<q+g,. Thus, putting r,=

r,€P; and r=r,+r,. Forra=

ra’'<gy<ra’ for every r, Py and every r,& Pj.

Thus, we have to prove ¢;/=¢,"+¢,’.
If it was ¢y'<<q,"+¢,’, there would exist € P such that

q3/<r/al<ql/+q2/ .

By the similar method as the case ra<<q,+g¢, before, there exist /€ P;
(=1, 2) such thatr,/+r,/=7»'. Thusr'eP;={reP; ra<q,}={reP; ra’<q'}
contradicting to g;'<<r'a’.

If it was ¢;/>¢,"+¢,’ there would exist #’& P such that

g'>r'a’>q'+¢." .
And similarly as above there exist r/eP} (i=1, 2) such that r/+r,/=r".

Hence € P{={re P; ra=q,+¢,} contradicting to r'a’<<gqy.
The uniquness of @ is clear, by Proposition 2.4. Q.E.D.
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3. Ring of automorphisms and field of real numbers

A. Semi-ring of automorphisms of Q. Let Q be a positive system of
quantities satisfying the axiom of continuity, and let @ be the set of all automor-
phisms of Q (the set of all linear mappings of O onto Q).

In @ are defined sum and product as follows:

D,+ D, by (P, +D;)(9) = Pi(9)+Pg) forall¢geQ.
D,0D, by (D0 D,)(q) = P(Dy(q)) forall geQ.

Proposition 3.1. For addition (summation) in @ hold the commutative and
associative laws:
D+, = O, + D, (¢1+¢'z)+ D, = <I)1+((I)2—|— (I)a) .
Proposition 3.2. For summation and product in @ hold the distributive and
associative laws
D, o(Dy+ DPg) = Do Dy Do D,
(P + D)o D; = Do Dy+ Dyo Dy,
(¢l°¢2)°®3 = ¢x°(®2°®3) .

Proposition 3.3. For the product in @ holds the commutative law
®,0 D= Dyod,.

Proof. Let a€Q, then we have to show ®,0®,(a)=D,0 P (a).
If it was not so we might assume ®,0®, (a)< D,0®P,(a). Thus, by Pro-

position 2.3 there would exist a rational automorphism r=—:’:— such that

D,0Dy(a)<rDy(a) < D,oD(a) .

As by Proposition 2.2 r® (a)=(ra)>D,0cD,(a), we get by Lemma 2.1.1
ra>®,(a) and hence r>®,. Further, as rb<<D,(b) with b=>,(a), we get r<<D,,
contradicting to the above consequence r>®,.
Similar assumption ®,0®,(a)>®,oP,(a) would give us a contradiction.
Q.E.D.

B. Field of real numbers. Now let us introduce 0 (zero) and negative
elements —¢ (<= P) as follows:
We define 0 as an ideal element such that

¢+0=0+¢p=¢ forall pc®.
Further for every given ¢ =@ we define —¢ by
¢t+(—¢) =(—¢)+¢=0.
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Proposition 3.4. The set R of all elements ¢, 0 and — ¢ with =@ forms a
commutative group with respect to the addition.

In R, an extension of @, we define the product by

1) If ¢, $p,=D the product ¢,0¢, remains the same as in @

2) (—d)oda=dzo(— b1)=—(pro¢) With any ¢,, p,ED
3) (—¢)o(—d2)=e1op, with any ¢, $,ED
4) $o0=00¢=0 with any p =@

Proposition 3.5. The sum and product defined above make R a commutative
field. R is essentially independent of Q (Rq is isomorphic to Ry, only if Q and
Q' are positive systems of quantities with axiom of continuity)

Supplement to Proposition 3.4. Let ¢,€® (i=1, 2). We define the
addition in R as follows.

(1) ¢+ ¢, remains the same as in @
br— 2 if ¢,<¢p
(2) g+ (—do)=(—¢2)+ = {0 if g=¢,
—(do— 1) if p1<¢h,
B) (=d)H(=d)=(=d)F(—d)=—(d1+¢2)
4) (—¢)+0=04(—¢)=—¢ and 04-0=0.

Supplement to Proposition 3.5. Proof. Let a=Q be fixed then the 1-1
correspondence p—p(a)=q (pEDP,, g=0) gives an isomorphism (1-1 linear
mapping) of @, with Q with respect to the addition: @,=0. As OQ=0Q’ by
Proposition 2.7, we see Po=0—=0Q’=®y with respect to the addition (and the
order).

Further regarding @, and @, to make them isomorphic also with respect
to the product, we can conclude that to 1&®, must correspond 1,y @, since
13=14 and 1’3/=14,. Hence to noE@o(nEN) must correspond ny’E Dy
with the same & N. Thus to 7o @, with a rational r&R must correspond
7o €Dy with the same 7.

Now let =@, and assume ¢eE P (rational automorphism). Let P- and
P+ be defined by P-={reP;r<¢} and P+={reP; r>¢}. Then P- and
P+ form Dedekind’s pair and there exists just one ¢’ @, such that

T n=¢'=riqH foreveryr_P- and everyr,€P™*.

By the isomorphism of @, with @4 with respect to the order, (because of addi-
toin) we see that to ¢ must correspond ¢’. Consequently we can regard @,
and @, coincide as systems of addition and product (semi-rings) in abstract
sense.

As R is uniquely derived from @ we see that R, and Ry coincide as fields
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in abstract sense. We call thus the abstract system R the system of real
numbers and @ the system of positive real numbers.

C. Logarithmic function. Let @ be the positive system of real num-
bers.

Proposition 3.6. Let ¥ be defined by T= {p=DP; ¢>1}. Then the set
¥ satisfies the postulates 1,~1,, 11, ,, I11, ,, if we replace the multiplication-symbol
in T by the addition-symbol. Thus we can regard ¥ as a positive system of
qunatities with the axiom of continuity replacing the symbol o in ¥ by the symbol +.

Proposition 3.7. Let ¥ be the same one given in Proposition 3.6. Let b&¥
(b>1), then there exists uniquely a 1-1 correspondence f of ¥ with @[f(yr)=
6, WET, p O] such that f(b)=1 and f(ypovr)=f(y)+Hf(¥).

The mapping f: T—® is called the logarithmic function with the basis b, and
we write

Jtp) = loggr (" EY).

We extend the logarithmic function onto @ (the positive system of real
numbers) as follows

(1) If $>1 then log,¢ remains the same as above.

(2) If $=1 then we define log,¢p=0.

3) If p<1(p =) we define log,p=—log,(¢*).

Proposition 3.8. The logarithmic function on @ satisfies (b>>1)

log,(¢p1op2) = logy(¢py)+-1ogy(eb2),
logyb) =1, log,1 =0.
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