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Introduction

The theory of real numbers, as a basis of mathematical analysis, had

been already completed in the nineteenth century in several ways (cf. [1], [2],
[3]), and now we seem to have nothing to do newly with it. These mathematical
theories have been established as the completion of the system of rational num-
bers, while the intimate relation between the quantity and the number has
been rather neglected.

Here we shall start from the characterization of the system of positive
quantities and derive the system of positive real numbers as the set of auto-
morphisms of the system of positive quantities. Then, the extension of the
system of positive real numbers to the whole system of real numbers can be
easily carried out.

The contents of this note had been already published by the author in
Japanese in a mimeographed copy "Zenkoku Shijo Sugaku Danwakai" (1944).
The author is much obliged to the editors of Osaka Journal of Mathematics
who have allowed this note to be published newly in English.

1. System of positive quantities

A. Axioms of the system of positive quantities. Let Q be a system of
quantities of the same kind with the following properties with respect to the
addition:

(Ij) If a and b^Q, then a+b^Q (a+b is uniquely determined).
(12) a+b = b+a if a and
(13) (a+b)+c = a+(b+c)
(14) If a+c = b+c (α, by c<=Q)y then a = b .

The system of quantities Q is said to be positive, if the following conditions
are fulfilled:

(II,) If a and b(=Q, then a+b*a .

* Emeritus Professor of Osaka University.
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(II2) If a and b^Q and αφδ, then there exists c^Q such that either

a-\-c = b or a = b-\-c .

DEFINITION. Let Q be a positive system of quantities and let a,
b is said to be larger than a: denoted by b>a (a is said to be smaller than b: a<b),
if and only if there exists a' €ΞQ such that b=a-\-a'.

Proposition 1.0. If a<b (a, b^Q), then there exists a'^Q uniquely such
that a'+a=b. In this case we write a'=b—a.

Proposition 1.1. For any given pair of elements a, b&Q, just one of the

following three cases happens

1) a = b, 2) a<b, 3) b<a .

Proposition 1.2. i) Let a<b and b<c (a, b, c^Q), then a<c. ii)
a-\-c<.b-}-c holds, if and only if a<,b.

B. Axiom of the continuity of Q. Let Q be a positive system of quantities.
Q is said to be continuous if Q satisfies the following axioms :

(IIIj) For any a^Q, there exists a'^Q such that a'<a .

(IΠ2) (A pair of non-empty subsets Q~, Q+, of Q is called Dedekind's pair,

if and only if Q~ (J Q+ = Q, Q~ ΓΊ Q+ = 0 (empty set) and a^Q'y
a2^Q+ always implies aλ<a2 .) For any Dedekind's pair Q~, Q+

of Qy there exists an element c€ΞQ such that a^Q~ and

implies a^c^a2.

From (ΠIi) we get

Proposition 1.3. Let a,b^Q anda<b. Then there eixsts an element
such that a<c<b.

From (IIIj) and (III2) we get

Proposition 1.4. Let Q', Q+ be Dedekind's pair of Q. Then the element

c^Q in (IΠ2) is uniquely determined. And c is either the largest element of Q~
or the smallest element of Q+.

We call c the cut element of the Dedekind's pair £)-, Q+ and we write

For any a€ΞQ and any natural number n (wGϊN), we define na€ΞQby induc-
tion: la=a and (n+l)a=na+a.

Proposition 1.5 (Archimedes). Let a and bEϊQ. Then there exists

such that na>b.
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Proof. Define Q- and Q+ by Q- = {q^Q\ ΉnϊΞN, na>q}, Q+ =
{qf e Q vn e Nyna ^q'}, respectively. If Proposition 1 .5 was false, then Q~ , Q+

would be Dedekind's pair (ρ±φ0), and c = (Q~\Q+)^Q would lead us to a

contradiction.

2. Linear mapping and automorphism

A. Let Q and Q' be positive systems of quantities satisfying the axiom of

continuity. Let Φ be a mapping of Q into Q'y i.e., by Φ to every q^Q there

corresponds uniquely an element q' ^Qf : q'=Φ(q) (a function of the variable

element q^Q).
A mapping Φ of Q into Q' is said to be linear (homomorphism), if and

only if

Φ(a1+a2) = Φ(aί)+Φ(a2) for any pair al9 a2<=Q .

A mapping Φ of Q into Q' is said to be 1-1 (one to one) onto Q', if and

only if to every a'^Q', there exists uniquely an a^Q such that Φ(ά)=a'. In
this case the inverse mapping Φ-1 of Q' into Q is 1-1 onto Q.

Proposition 2.1 (Theorem of inversion). Let Φ be a linear mapping of Q

into Q'. Then Φ is 1-1 onto Q', and the inverse mapping Φ~l of Q' onto Q is also
linear.

To prove Proposition 2.1 we use the following lemmas.

Lemma 2.1.1. Let Φ be a mapping in Proposition 2.1. Then Φ(al)<Φ(a2)
(aly a2^Q), if and only if aλ<a2.

Lemma 2.1.2. For any a^Q and any n^N, there exists an^Q such that

nan<.a.

(Use mathematical induction with respect to n).

Lemma 2.1.3. For any b^Q', there exist aλ and a2^Q such that

Φ(a1)<b<Φ(a2).

Proof of Proposition 2.1. For any fixed a'(^Q') we define, subsets of

ρ, Q- and Q+ by

Q- = {?e£; Φ(q)<a'} and Q+ = {q^Q', Φ(q}^a'} .

Then, Q- and Q+ form Dedekind's pair of Q.

We put a=^(Q~\Q+) (a^Q), and we shall show Φ(a)=a'. If it was

Φ(ά)<ar, then a should be the largest element of Q~. But there would exist

a^Q such that a<.a1 and Φ(«1)<α/, contradicting to that a is the largest ele-
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ment of Q~. Because, by Lemma 2.1.3 there would exist c^Q such that

Φ(c)<a'-Φ(a) (e£)'), hence Φ(a+c)<a' (a^a+c).

If it was Φ(a)>ar, then a should be the smallest element of Q+. But, by

Lemma 2.1.3 there exists c^Q such that Φ(c)<Φ(a)— a', hence c<a and α'<Φ

(a— c) (a1=a—c)j contradiction. Thus, we have shown that Φ maps Q onto Qr.

By Lemma 2.1.1 we see that Φ is a 1-1 mapping of Q onto Q'. We can easily

see that Φ"1 is linear. Q.E.D.

B. Rational automorphism. Let Q be a positive system of quantities

satisfying the axiom of continuity. A linear mapping of Q onto Q itself is called

an automorphism of Q.

Let a mapping Φ of Q onto Q be defined by

Φ(q) = mq (q^Q)

with a given m^N. Then Φ"1 is an automorphism of Q, and by Proposition

2.1 φ-1 is also an automorphism of Q. Thus we write

For any automorphism Φ of Q (or any linear mapping of Q into Q) we have

φ(nq) = nΦ(q)

Hence n~lΦ(q) = Φ(n~lq)

Thus, for any m and

The mapping Φ of Q onto Q defined by

Φ(q) = n~\mq) = m(n^q)

is also an automorphism of Q. For this automorphism of Q we write

An automorphism Φ of Q given by Φ(q) = — q (vq^Q) (m, n^N) is called a

rational automorphism of Q.

Proposition 2.2. Let Φ be a linear mapping of Q into Q'.

Then, for any rational automorphism — (of Q and Q'\
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Proposition 2.3. Let a, b^Q such that a<b. Then for any c^Q there

exists a rational automorphism of O, — , such that a< — c<b.
n n

Proof. Let d=b—a (a<b). Then there exists n^N such that nd>c (by

Proposition 1.5). Hence d>n~1c. Putting c~—c (i^M) we have ci=icl and

There exists j^N (by Proposition 1.5) such that c—jc^a. Let j— m be
the smallest natural number with this property.
Then, we get easily

a<cm<.b with cm = — c .m n

Proposition 2.4. Let ΦL and Φ2 be automorphisms of Q such that

φ^a)=Φ2(a) for some a^Q. Then ^ι(q)=Φ2(
(ί) (identically) for all q^Q.

Proof. Was b^Q such that <$!(&)< Φ2(i). Then, putting φl(a)=Φ2(a)=c9

by Proposition 2.3 there would exist a rational automorphism — such that

Thus,asΦ1(ό)<-c=Φ1(-α)and Φ2(- a)=- c<Φ2(b), we get, by Lemma
n \n / \n / n

2.1.1, i<— a<b, an absurd conclusion. Similarly the assumption Φ2(έ)<Φι(i)

would lead us to a contradiction. Consequently, we have Φ1(b)=Φ2(b) for
every b<ΞQ. Q.E.D.

Proposition 2.5. Let Φ1 and Φ2 be automorphisms of Q such that Φι(a)<Φ2(a)

for some a^Q. Then Φι(q)<Φ2(q) for all q^Q- (In this case we write Φj<Φ2

simply).

Proof. If the statement was not true, we could assume the existence of
some b(ΞQ such that Φ1(ό)>Φ2(i), (If Φl(b)=Φ2(b) then Φ1(?)=Φ2(?) for all

Put c=Φl(b)— Φ2(b) (^Q)y then by Proposition 1.5 there exists n^N such
that nc>Φ1(ά) and nb>a. Hence n~la<b.

Then, there exists m^N such that - a<b<> ?Lt! a.n n
Thus,

Φι(i) ^Φι
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<Φ2(b)+n-1Φ1(a)<Φ2(b)+c .

This contradicts with the equality Φ1(b)=Φ2(b)-\-c. Q.E.D.

Let Pbe the set of all rational automorphism of Q. By Proposition 2.5 in P

is defined order of elements rl and r2ePsuch that rlq<r2q for any

In P addition and multiplication are defined by

r1+r2eP«(r1+r2)(ί) - r^+r^q) for all

rrr2^P^r2(rιq) = r^q) for all q e Q .

(cf. Propositions 2.2 and 2.4)

In P the addition and multiplication satisfy the wellknown rules of addition and

multiplication of rational numbers.
A pair of subsets P~ and P+ of rational automorphism P are called Dede-

kind's pair of P, if and only if P~ and P+ are not empty, P~(JP+=P,
p- ΠP+=0 (empty) and r

Proposition 2.6. Let Q be a positive system of quantities satisfying the

axiom of continuity and let a^Q. If P~ and P+ are Dedekίnd's pair of P, then

there exists just one c^Q such that rla^c^r2a for every rλ€ΞP~ and for every

Proof. Let Q~ and Q+ be subsets of Q defined by

ρ- = {q<=Q; q<ra for all r<ΞΞP+},

Then Q- and Q+ are Dedekind's pair of Q.

Put c = (Q~\Q+}.

First assume c is the largest element of Q~. Then, c<ra for all
and c^ra for all r^P~. (If ^<r1«for some r^P", then as r^eQ", this con-

tradicts to that c is the largest element of Q~ .)
Second assume c is the smallest element of Q+. Then, c=r0a for some

, and ra<r0a=c for all reP~. Further, as {ra\ reP+}cQ+, we have
for all r<=P+.

The uniqueness of c in Proposition 2.6 follows from Proposition 2.3.

Q.E.D.

C. Theorem of isomorphism. Let Q and Q' be positive systems of quan-
tities satisfying the axiom of continuity.

Proposition 2.7 (Theorem of isomorphism). Let a^Q and a' ^Q' be
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given. Then, there exists just one linear mapping (isomorphism) Φ of Q onto Q'
such that Φ(a)=a'.

Proof. To define the desired linear mapping Φ, take an arbitrary q^Q and
let P(~9) and P^q) be defined by

, ra<q} and P J} = {reP; ra^q} respectively.

Then P^) and PJ> form Dedekίnd's pair of rational automorphisms.
Thus, by Proposition 2.6 there exists just one q'^Q' (depending on q)

such that rla
f^q'^r2a' for every i^eP^ and every r2eP£} .

Hence we define the mapping Φ in such a way that Φ(q)=q'. Clearly we have
Φ(a)=a'.

Now let Φ(<7,)— <7'ί (ί=l> 2). Then we have to show that Φ is linear:

Let q3=qι+q2 and Pϊ={r<=P; ra<q{} (ί=l, 2, 3). Then we get P^=
r2; 7ι^Pϊ> r2^P2}. Because, first we easily see {fι+r2; rl e Pf,

cPj. To show Pjd fa+r^ r^Pf, r2eP^}, let reP^". Then, as
ra<ql+q2y putting rf= Min^+^2— ΓΛ, ql9 q2} <E;Q, by Proposition 2.3 there

exist r/eP(ί=l, 2) such that ^— -̂ - d<ri

/a<qi (ί=l, 2). Then, r/ePr and

r x

2. Thus, putting r, = -— ί— 7r(ί=l, 2), we have
ri I r2

Γ and r=r1+r2. For ria = -—/ra^ --/(rl

/+r^)a=ri~ ~~

Now let Pί={r<ΞP; rα^ί3=f1+ί2}. τhen P^ and PJ are Dedekind's
pair of rational numbers. And by the definition of Φ, putting Φ(ϊ3)=ί3

/, we get

^r2a
f for every rj^Pj" and every

Thus, we have to prove qz=q\-\-q2
If it was q^<qι/Jrq2, there would exist rxeP such that

By the similar method as the case ra<q1+q2 before, there exist r/
(i=l, 2) such that r1

/+r2

/=r/. Thus r'<^Pϊ= {reP; r0<#3}
contradicting to q3'<r'a'.

If it was ?3

/>ίι/+?2

/ there would exist r'eP such that

q*'>r'a'>ql'+q2' .

And similarly as above there exist r/ePj" (/=!, 2) such that r/+r2

/— rx.
Hence rrePi={reP; rα^^+g2} contradicting to r'a'^q^

The uniquness of Φ is clear, by Proposition 2.4. Q.E.D.
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3. Ring of automorphisms and field of real numbers

A. Semi-ring of automorphisms of Q. Let Q be a positive system of
quantities satisfying the axiom of continuity, and let Φ be the set of all automor-

phisms of Q (the set of all linear mappings of Q onto Q).

In Φ are defined sum and product as follows:

ΦX+Φ2 by (Φ1+Φ2)(q) = Φι(?)+Φ2(?) for all

Φgoφj by (Φ2°Φι)(#) = Φ2(Φι(#)) for all

Proposition 3.1. For addition (summation) in Φ hold the commutative and

associative laws:

ΦJ + Φ2 = Φ2+Φ1, (Φl+Φ2)+Φ3 = Φ! + (Φ2+Φ3) .

Proposition 3.2. For summation and product in Φ hold the distributive and

associative laws

Proposition 3.3. For the product in Φ holds the commutative law

ΦloΦ2=Φ2°Φι.

Proof. Let a^Q, then we have to show Φ1oφ2(α)=φ2oφ1(α).

If it was not so we might assume ΦloΦ2 (#)<Φ2oΦ1(#). Thus, by Pro-

position 2.3 there would exist a rational automorphism r=^- such that

Φ1oφ2(β)<rΦ1(β)<Φ2oφ1(α) .

As by Proposition 2.2 rΦl(ά)=Φl(ra)>Φ1oφ2(a)9 we get by Lemma 2.1.1
ra>Φ2(a) and hence r>Φ2. Further, as rb<Φ2(b) with b=Φ1(ά), we get r<Φ2,
contradicting to the above consequence r>Φ2.

Similar assumption Φ1oφ2(α)>Φ2oφ1(β) would give us a contradiction.

Q.E.D.

B. Field of real numbers. Now let us introduce 0 (zero) and negative
elements — φ (φeΦ) as follows:

We define 0 as an ideal element such that

φ+0 = 0+φ — φ for all

Further for every given φ€Ξ0 we define — φ by
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Proposition 3.4. The set R of all elements φ, 0 and —φ with φ^Φ forms a
commutative group with respect to the addition.

In R, an extension of Φ, we define the product by

1) If φi, φ2€ΞΦ the product φι°φ2 remains the same as in Φ

2) (-φ1)°φ2=φ20(-φι)=-(Φι°φ2) with any φly φ2eΦ
3) (—φι)°(—φ2)=Φι°φ2 with any φly φ2eΦ
4) φoQ—Ooφr=0 with any φeΦ

Proposition 3.5. The sum and product defined above make R a commutative

field. R is essentially independent of Q (RQ is isomorphic to RQ^ only if Q and
Q' are positive systems of quantities with axiom of continuity)

Supplement to Proposition 3.4. Let φ teΦ (i=l, 2). We define the
addition in R as follows.

(1) φι+φ2 remains the same as in Φ

Φl—Φ2 I* Φ2<^Φ1

(2) φ^-φ^-φ^+φ^ 0 ifφι=φ2

— (φ2—Φi) if Φι<φ2

(3) (-Φι)+(-φ2H(-φ2)+(-ΦιH-(Φι+Φ2)
(4) (-φ)+0=0+(-φ)=:-φ and 0+0-0.

Supplement to Proposition 3.5. Proof. Let a^Q be fixed then the 1-1
correspondence φ<-*φ(a) = q (φ€ΞφQ, q€ΞQ) gives an isomorphism (1-1 linear
mapping) of ΦQ with Q with respect to the addition: ΦQ—Q. As Q~Q' by
Proposition 2.7, we see φQ—Q~Q'~φQf with respect to the addition (and the
order).

Further regarding ΦQ and ΦQ/ to make them isomorphic also with respect
to the product, we can conclude that to IQ^ΦQ must correspond 1Q/^ΦQ/, since
1Q — 1Q and l ' 2

Q / = l ' Q / . Hence to nQ^ΦQ(n^N) must correspond nQ'^ΦQr

with the same n^N. Thus to rQ^ΦQ with a rational r^R must correspond
rQt EΞ ΦQ/ with the same r.

Now let φeΦQ and assume φφP (rational automorphism). Let P~ and
P+ be defined by P'={r^P'J r<φ} and P+={r<=P; r>φ}. Then P~ and
P+ form Dedekind's pair and there exists just one φ7eφQ/ such that

^-(Q/j^φ^r+ζQ/) for every r-EΞP~ and every r+€ΞP+ .

By the isomorphism of ΦQ with ΦQ/ with respect to the order, (because of addi-
toin) we see that to φ must correspond φ'. Consequently we can regard ΦQ
and ΦQ/ coincide as systems of addition and product (semi-rings) in abstract
sense.

As R is uniquely derived from Φ we see that RQ and RQr coincide as fields
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in abstract sense. We call thus the abstract system R the system of real

numbers and Φ the system of positive real numbers.

C. Logarithmic function. Let Φ be the positive system of real num-

bers.

Proposition 3.6. Let Ψ be defined by ¥= {φ^Φ; φ>l} Then the set

Ψ satisfies the postulates l^l^ Π1>2, ΠIlt2, if we replace the multiplication-symbol

in Ψ by the addition-symbol. Thus we can regard Ψ as a positive system of

qunatίties with the axiom of continuity replacing the symbol o in Ψ by the symbol + .

Proposition 3.7. Let Ψ be the same one given in Proposition 3.6. Let

(t>l), then there exists uniquely a 1-1 correspondence f of Ψ with

φ, Λ/re?F, φeΞΦ] such thatf(b)=\ έ

The mapping/: Ψ-+Φ is called the logarithmic function with the basis ft, and

we write

We extend the logarithmic function onto Φ (the positive system of real

numbers) as follows

(1) If φ>l then log^φ remains the same as above.

(2) If φ— 1 then we define logέφ=0.

(3) If φ<l(φ<ΞΦ) we define log^φ^— l

Proposition 3.8. The logarithmic function on Φ satisfies (b>l)

ι°φ2) = log^φO+l

=l, log,l = 0.
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