

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

On Knots and Periodic Transformations^

By Shin'ichi KINOSHITA

Introduction

Let T be a homeomorphism of the 2-sphere S^2 onto itself. If T is regular² except at a finite number of points, then it is proved by B.v. Kerékjártó [11] that T is topologically equivalent to a linear transformation of complex numbers. Now let T be a homeomorphism of the 3-sphere $S³$ onto itself. If T is regular except at a finite number of points, then it is known³⁾ that the number of points at which T is not regular is at most two. Furthermore it is also known⁴⁾ that if T is regular except at just two points, then T is topologically equivalent to the dilatation of S^3 . Let T be sense preserving and regular except at just one point. Then whether or not *T* is equivalent to the translation of $S³$ is not proved yet⁵⁾. Now let T be regular at every point of $S³$. In general, in this case, T can be more complicated⁶⁾ and there remain difficult problems⁷).

In this paper we shall be concerned with sense preserving periodic transformations of $S³$ onto itself, which is a special case of regular transformations of S^3 . Furthermore suppose that T is different from the identity and has at least one fixed point. Then it has been shown by P. A. Smith $\lceil 19 \rceil$ that the set F of all fixed points of T is a simple closed curve. It is proved by D. Montgomery and L. Zippin [13] that generally *T* is not equivalent to the rotation of *S³* about *F.* It will naturally be conjectured $^{\mathrm{s}}$ that if T is semilinear, then T is equivalent to the rotation of S^3 . In this case F is, of course, a polygonal simple

¹⁾ A part of this paper was published in [12]. See also the footnote 11).

²⁾ A homeomorphism T of a metric space X onto itself is called regular at $p \in X$, if for each $\varepsilon > 0$ there exists $\delta > 0$ such that if $d(p, x) < \delta$, then $d(T^n(p), T^n(x)) < \varepsilon$ for every integer *n.*

³⁾ See T. Homma and S. Kinoshita [9].

⁴⁾ See T. Homma and S. Kinoshita [8] [9].

⁵⁾ See also H. Terasaka [21].

⁶⁾ See R. H. Bing [3] D. Montgomery and L. Zippin [13].

⁷⁾ See, for instance, [4] Problem 40.

⁸⁾ See D. Montgomery and H. Samelson [14].

closed curve in S³ and D. Montgomery and H. Samelson [14] has proved⁹⁹ that if F is a parallel knot of the type $(b, 2)$ then F is trivial in S^3 provided the period of *T* is two.

Now let *M* be a closed 3-manifold without boundary and with trivial 1-dimensional homology group^{10,11}. If *k* is a polygonal simple closed curve in M, then we can define the *g-fold* cyclic covering space $M_g(k)$ of M , branched along k . Then in §1 it will be proved that the fundamental group of *M* is isomorphic to a factor group of that of $M_{\mathcal{g}}(k)$. Furthermore a fundamental formula of the Alexander polynomial of *k* in *M* (see (6)), which is proved by R. H. Fox [6] for $M = S^3$, will be given.

Now let k_0 be a polygonal simple closed curve in S^3 , whose 2-fold cyclic covering space $M_{2}(k_{0})$ of S^{3} , branched along k_{0} , is homeomorphic to S^3 . Then it will be proved in $\S 2$ that (i) the determinant of the knot k_0 must be equal to the square of an odd number, (ii) the degree of the Alexander polynomial of k_0 is not equal to two and that (iii) almost all knots of the Alexander-Briggs' table¹²⁾ are not equivalent to k_0 , where k_0 is considered as a knot in $M_2(k_0)$. Similarly if k_1 is a polygonal simple closed curve in S^3 , whose 3-fold cyclic covering space $M_3(k_1)$ of S^3 , branched along k_1 , is homeomorphic to S^3 , then it will be proved that (i) the degree of the Alexander polynomial of *k^λ* is not equal to two and that (ii) almost all knots of the Alexander-Briggs' table¹²⁾ are not equivalent to k_1 , where k_1 is considered as a knot in $M_{3}(k_1)$.

If T is a periodic transformation of $S³$ described above, then the orbit space M is a simply connected 3-manifold. Furthermore $S³$ is the p -fold cyclic covering space of M, branched along F, where p is the period of *T.* Therefore, under the assumption that the well known Poincaré conjecture of 3-manifolds is true¹³, the results of $\S 2$ can be naturally applied to the position of F in $S³$. (See Theorem 5 and Theorem 6).

§ 1.

1. In this section M will denote a closed 3-manifold without boundary and with trivial 1-dimensional homology group. Let *k* be an

⁹⁾ See also C. D. Papakyriakopoulos [15] T. Homma [10].

¹⁰⁾ In this paper we shall use only the integral homology group.

¹¹⁾ In $\lceil 12 \rceil$ *M* was supposed to be only a 3-manifold without boundary. Professor R. H. Fox kindly pointed out to me that "the linking number Link (k, x_i) " in [12] is not welldefined for an arbitrary 3-manifold M . Some propositions on knots in M turn out thereby to be erroneous, although it does not affect my main results in $\S 5$ of $\lceil 12 \rceil$.

¹²⁾ See [1] [12].

¹³⁾ Meanwhile, this conjecture turned out to be unnecessary. See R. H. Fox [7].

oriented polygonal simple closed curve in *M* and let *V* be a sufficiently small tubular neighbourhood of k in M . Then the boundary \dot{V} of V is a torus. A *meridian* of *V* is by definiton a simple closed curve on *V* which bounds a 2-cell in V but not on \dot{V} . Let x be an oriented meridian of *V.* For each simple closed curve *y* which does not intersect *k* we can define the *linking number* Link (k, y) of *k* and y^{14} . Then

Link
$$
(k, x) = \pm 1
$$
.

We may always suppose that x is so oriented that

Link
$$
(k, x) = 1
$$
.

It is easy to see that for each integer $p(0)$ x^p is not homotopic to 1.

We shall denote the fundamental group of $M-k$ by $F(M-k)$ or sometimes by $F(k, M)$. Now let $\{x, x_1, x_2, \dots, x_n\}$ be a complete set of generators of $F(M-k)$, where x stands for the element of the fundamental group corresponding to the path *x.* Put

Link
$$
(k, X_i) = L(i)
$$
 $(i = 1, 2, \cdots, n)$

and

$$
x_i = x^{-L(i)}X_i.
$$

Then $\{x, x_1, x_2, \dots, x_n\}$ forms again a complete set of generators of $F(M-k)$. For each i

$$
(1) \t\t\t\t\tLink (k, x_i) = 0.
$$

Let $R_s = 1$ ($s = 1, 2, \cdots, m$) be a complete system of defining relations of $F(M-k)$ with respect to $\{x, x_1, \dots, x_n\}$. Then the symbol

(2)
$$
\{x, x_1, \cdots, x_n : R_1, R_2, \cdots, R_m\}
$$

will be called a *presentation*¹⁵ of $F(M-k)$. It is easy to see that

$$
\{x, x_1, \cdots, x_n : x, R_1, \cdots, R_m\}
$$

is a presentation of $F(M)$. x being equal to unity, this presentation can be transformed to the following one :

$$
(3) \qquad \qquad \{x_1, x_2, \cdots, x_n : \hat{R}_1, \hat{R}_2, \cdots, \hat{R}_m\},
$$

where \hat{R}_s is obtained by deleting x from R_s .

¹⁴⁾ See [17] § 77.

¹⁵⁾ See R. H. Fox [6].

46 S. KlNOSHITA

2. Let $w \in F(k,M)$. Then w is written as a word which consists of at most x, x_1, \dots, x_n . Let $f(w)$ be an integer which is equal to the exponent sum of w , summed over the element x . By (1) it is easy to see that f is a homomorphism of $F(k,M)$ onto the set of all integers. Now put

$$
F_g(k, M) = \{w \in F(k, M) | f(w) = 0 \text{ (mod } g)\},
$$

where *g* is a positive integer. Then $F_g(k, M)$ is a normal subgroup of *F(k,* M). Therefore there exists uniquely the *g-fold cyclic covering space* $\tilde{M}_g(k)^{16}$ *of* $M-k$, whose fundamental group is isomorphic to $F_g(k, M)$. Since *x* is a meridian of *V,* we can also define the *g-fold cyclic covering space* $M_g(k)$ *of* M , *branched along* k^{17} . For each g $M_g(k)$ is a closed 3-manifold without boundary.

 $F(\tilde{M}_{g}(k))$ and $F(M_{g}(k))$ are calculated from $F(k, \, M)$ as follows: Let (2) be a presentation of $F(k,M)$. Put

$$
x_{ij} = x^{j} x_{j} x^{-j} \, . \qquad \begin{pmatrix} i = 1, 2, \cdots, n \\ j = 0, 1, \cdots, g-1 \end{pmatrix}
$$

Since $f(R_s) = 0$ for every s ($s = 1, 2, \dots, m$), $x^t R_s x^{-t}$ ($t = 0, 1, \dots, g-1$) is expressible by a word which consists of at most x_{ij} and x^g . We denote it by notations

 $x^t R_s x^{-t} = \tilde{R}_{st}$.

Then

$$
(4) \qquad \qquad \{x^g, x_{ij} : \tilde{R}_{st}\}\
$$

is a presentation of $F(\tilde{M}_{g}(k))$ and

$$
(5) \qquad \qquad \{x^g, x_{ij}: x^g, \tilde{R}_{st}\}\
$$

is one of $F(M_g(k))$.

Theorem 1. $F(M)$ is isomorphic to a factor group of $F(M_g(k))$.

Proof. Let (3) and (5) be presentations of $F(M)$ and $F(M_g(k))$, respectively. Let G be a group whose presentation is given by

$$
\{y^g, y_i, y_{ij}: y^g, \tilde{R}_{st}(y^g, y_{ij}), y_{ij}y_i^{-1}\}
$$

This presentation can be transformed to the following one :

$$
\{y_i: \hat{R}_s(y_i)\}\ .
$$

¹⁶⁾ See, for instance, [17].

¹⁷⁾ See, for instance, H. Seifert [18].

Therefore *F(M)* is isomorphic to G. On the other hand it is easy to see that *G* is isomorphic to a factor gronp of $F(M_g(k))$. Thus $F(M)$ is isomorphic to a factor group of $F(M_g(k))$, and our proof is complete.

3. Now let (2) be a presentation of $F(M-k)$. Replace the multiplication by the addition and put

$$
jx \pm x_i - jx = \pm x^j x_i \qquad \begin{pmatrix} i = 1, 2, \cdots, n \\ j = 0, \pm 1, \pm 2, \cdots \end{pmatrix}
$$

Furthermore suppose that the addition is commutative. Then for each relation $R_s = 1$ ($s = 1, 2, \cdots, m$) we have a relation $\bar{R}_s = 0$, which is a linear equation of x_i . From these linear equations we can make the *Alexander matrix,* whose (s, i) -th term is the coefficient of x_i in $\bar{R}_s = 0$. If we put $x = 1$ in the Alexander matrix, then we have a matrix which gives the 1-dimensional homology group $H_1(M)$ of M. Since $H_1(M)$ is trivial by our assumption $m \geq n$.

If two oriented knots k_1 and k_2 in M are equivalent to each other, then $F(k_1, M)$ and $F(k_2, M)$ are *directly isomorphic*¹⁸. It was proved by J. W. Alexander [2] that if two *indexed groups*¹⁸⁾ are directly isomorphic to each other, then the elementary factors different from unity of the Alexander matrices and also their products $\Delta(x, k_i, M)$ ($i = 1, 2$) are the same each other. Of course they are determined up to factors $\pm x^p$, where *p* is an integer. $\Delta(x, k, M)$ will be called the *Alexander polynomial of k in M.* Clearly $\Delta(1, k, M) = \pm 1$. It should be remarked that $(x, k, M_g(k))^{19}$ is also defined from (4) replacing x^g by x.

It can be proved that

(6)
$$
\Delta(x, k, M_g(k)) = \prod_{j=0}^{g-1} \Delta({}^g \sqrt{x} \omega_j, k, M)
$$

where $\omega_j = \cos \frac{2\pi j}{\sigma} + i \sin \frac{2\pi j}{\sigma}$. This is known for the case $M = S^{320}$. *g g* But as the proof of the latter depends essentially only on the following equation of determinants:

$$
\begin{vmatrix} a_1 & a_2 & \cdots & a_g \\ x a_2 & a_1 & \cdots & a_{g-1} \\ \vdots & \vdots & \ddots & \vdots \\ x a_g & x a_3 & \cdots & a_1 \end{vmatrix} = \prod_{j=0}^{g-1} f^{\left(\beta \sqrt{x} - \alpha_j\right)},
$$

18) See J. W. Alexander [2J.

20) See R. H. Fox [6].

¹⁹⁾ We use the same symbol to a knot *k* in M and the knot which is the set of all branch points of $M_g(k)$. $\Delta(x, k, M_g(k))$ is the Alexander polynomial of *k* in $M_g(k)$, if $\Delta(1, k, k)$ $M_g(k)$ = ± 1 . See also R. H. Fox [6].

48 S. KINOSHITA

where $f(y) = a_1 + a_2y + \cdots + a_gy^{g-1}$, the proof for the general case is the same as for the case $M = S³$ and is omitted.

As a special case of (6) we have

(7)
$$
\Delta(1, k, M_g(k)) = \prod_{j=0}^{g-1} \Delta(\omega_j, k, M)
$$

 $\Delta(1, k, M_g(k)) \neq 0$ if and only if the 1-dimensional Betti number $p_1(M_g(k)) = 0$. If $p_1(M_g(k)) = 0$, then $|\Delta(1, k, M_g(k))|$ is equal to the product of 1-dimensional torsion numbers. In this case if $|\Delta(1, k, M_g(k))| = 1$, then $M_g(k)$ has no torsion number.

§2.

1. Let k_0 be a simple closed curve in the 3-sphere S^3 and M_2 the 2-fold cyclic covering space of S^3 , branched along k_0 . In No. 1 and 2 we assume that *M²* is homeomorphic to the 3-sphere and the position of k_0 in M_2 will be studied. These results will be used later in §3. In No. 1 we prove only the following

Theorem 2. *The determinant of k⁰ in M² must be equal to the square of an odd number.*

Proof. Let $\Delta(x) = \sum_{r=1}^{2n} a_r x^r$ be the Alexander polynomial of k_0 in S³. Since the determinant d_0 of k_0 in M_2 is the product of torsion numbers of the 1 -dimensional homology group of the 2-fold cyclic covering space of $M₂$, branched along k_o , it follows from (7) that

$$
d_0 = |\Delta(1) \Delta(-1) \Delta(i) \Delta(-i)|.
$$

By our assumptions $|\Delta(1)| = 1$ and $|\Delta(-1)| = 1$. Put

$$
a = a_0 - a_2 + a_4 - \cdots + (-1)^n a_{2n},
$$

\n
$$
b = a_1 - a_3 + a_5 - \cdots + (-1)^{n-1} a_{2n-1}
$$

Suppose first that *n* is even. Then

$$
\Delta(i) = a_0 + a_1 i - a_2 - a_3 i + \cdots - a_{2n-2} - a_{2n-2} i + a_{2n}.
$$

Since $a_r = a_{2n-r}$, $\Delta(i) = a$. Therefore $\Delta(-i) = a$. Then we have $d_0 = a^2$. Now suppose that *n* is odd. Then

$$
\Delta(i) = a_0 + a_1 i - a_2 - a_3 i + \cdots + a_{2n-2} + a_{2n-1} i - a_{2n}.
$$

Since $a_r = a_{2n-r}$, we have

$$
\Delta(i) = bi + a_n(i)^n.
$$

Therefore

$$
\Delta(-i) = b(-i) + a_n(-i)^n = -(bi + a_n(i)^n).
$$

Thus we have

$$
d_0 = -(bi + a_n(i)^n)^2 = (b \pm a_n)^2
$$

Since the determinant of a knot is always an odd number, our proof is complete.

2. Now let $\Delta(x)$ be the Alexander polynomial of k_0 in S^3 and $\Delta_2(x)$ that of k_0 in M_2 . Then by (6)

(8)
$$
\Delta_2(x) = \Delta(\sqrt{x}) \Delta(-\sqrt{x}).
$$

Therefore the degree of $\Delta(x)$ is equal to that of $\Delta_{2}(x)$.

Suppose first that the degree of $\Delta(x)$ is 2. Put

$$
\Delta(x) = ax^2 + bx + a,
$$

where $a+0$ and we may assume that $2a+b=1$. Then by (8)

$$
\Delta_z(x) = a^2x^2 + (2a^2 - b^2)x + a^2.
$$

Furthermore $4a^2-b^2=\pm 1$, which means that $2a-b=\pm 1$. From this it follows that $2a=1$ or $2a=0$. Since $a\neq 0$ and a is an integer, this is a contradiction. Thus we have proved that *the degree of* $\Delta_2(x)$ *is not equal to* 2.

Now suppose that the degree of $\Delta_2(x)$ is 4. Put

$$
\Delta(x) = ax^4 + bx^3 + cx^2 + bx + a,
$$

where $a+0$ and we may assume that $2a+2b+c=1$. Then by (8)

$$
\Delta_2(x) = a^2x^4 + (2ac - b^2)x^3 + (2a^2 - 2b^2 + c^2)x^2
$$

+
$$
(2ac - b^2)x + a^2
$$
.

Furthermore $4a^2 + 4ac + c^2 - 4b^2 = \pm 1$, which means that $2a - 2b + c = \pm 1$. From this it follows that $4b=2$ or $4b=0$. Since *b* is an integer, $4b=2$ is a contradiction. Therefore $b=0$ and $c=1-2a$. Thus we have proved that if the degree of $\Delta_2(x)$ is 4, then $\Delta_2(x)$ must be limited to the following form :

$$
a^2x^4-2a(2a-1)x^3+(6a^2-4a+1)x^2-\cdots.
$$

By the same way it can be seen easily that if the degrees of $\Delta_{\alpha}(x)$

50 S. KlNOSHITA

are 6 and 8, then $\Delta_2(x)$ must be limited to the following forms, respectively :

$$
a^{2}x^{6} - (b^{2} + 2a^{2})x^{5} + (4b^{2} - a^{2} - 2b) x^{4}
$$

\n
$$
- (6b^{2} - 4a^{2} - 4b + 1) x^{3} + \cdots ,
$$

\n
$$
a^{2}x^{8} - (b^{2} - 2ac) x^{7} + (c^{2} + 2b^{2} - 4a^{2} - 4ac + 2a) x^{6}
$$

\n
$$
- (4c^{2} - b^{2} + 2ac - 2c) x^{5}
$$

\n
$$
+ (6c^{2} - 4b^{2} + 6a^{2} + 8ac - 4c - 4a + 1) x^{4} - \cdots
$$

From these we have the following

Theorem 3. *All knots of the Alexander -Briggs' table, except for the* $cases \space 8_{\text{s}} \space and \space 8_{\text{20}} \space, \space are \space not \space equivalent \space to \space k_{\text{o}} \space in \space M_{\text{2}} \text{.}$

3. Now let k_1 be a simple closed curve in S^3 and M_3 the 3-fold cyclic covering space of S^3 , branched along k_1 . In No. 3 we assume that $M₃$ is homeomorphic to the 3-sphere and the position of $k₁$ in $M₃$ will be studied.

Let $\Delta(x)$ be the Alexander polynomial of k_1 in S^3 and $\Delta_3(x)$ that of k_1 in M_3 . Then by (6)

(9)
$$
\Delta_{3}(x) = \Delta({}^{3}\sqrt{x}) \Delta(\omega_{1}^{3}\sqrt{x}) \Delta(\omega_{2}^{3}\sqrt{x}),
$$

here $\alpha = \frac{-1+\sqrt{3}i}{\sqrt{3}}$ and $\alpha = \frac{-1-\sqrt{3}i}{\sqrt{3}}$ (9) $\Delta_3(x) = \Delta(^3\sqrt{x}) \Delta(\omega_1^3\sqrt{x}) \Delta($
where $\omega_1 = \frac{-1 + \sqrt{3}i}{2}$ and $\omega_2 = \frac{-1 - \sqrt{3}i}{2}$.
Suppose first that the degree of $\Delta(x)$ is 2

Suppose first that the degree of *Δ(χ)* is 2. Put

$$
\Delta(x) = ax^2 + bx + a,
$$

where $a \neq 0$ and we may assume that $2a + b = 1$. Then by (9)

$$
\Delta_{3}(x) = a^{3}x^{2} + (b^{3} - 3a^{2}b) x + a^{3}.
$$

Furthermore $2a^3 - 3a^2b + b^3 = \pm 1$, which means that $a - b = \pm 1$. From this is follows that $3a = 2$ or $3a = 0$. Since $a \neq 0$ and *a* is an integer, this is a contradiction. Thus we have proved that the degree of $\Delta_{\alpha}(x)$ is *not equal to 2.*

By the same way as that of No. 2 we have the following.

Theorem 4. *All knots of the Alexander -Briggs' table, except for the cases* $5₁$, $7₁$, $8₁₀$ and $9₄₇$, are not equivalent to $k₁$ in $M₃$.

§3.

Now let *T* be a sense preserving (of course semilinear) periodic transformation of S^s onto itself. Furthermore let T be different from the

identity and have at least one fixed point. Then the set F of all fixed points of T is a simple closed curve²¹. Suppose that p is the minimal number of the set of all positive period of *T.* It is easy to see that *T* is primitive²². T acts locally as a rotation about F^{23} . Then, if we identify the points

$$
x, T(x), \cdots, T^{p-1}(x)
$$

in S^3 , we have an orientable 3-manifold M. It is easy to see that M is simply connected. Since T acts locally as a rotation about F in S^3 , we can see that $S³$ is the p -fold cyclic covering space of M, branched along F.

Now we assume that the Poincaré conjecture is true¹³. Then M is a 3-sphere.

First we consider the case $p=2$. Since S^3 is the 2-fold cyclic covering space of M, branched along F, we can apply the results of $\S 2$ to the position of F in S^3 . Therefore we have the following

Theorem 5. *Let T be a periodic transformation described above. Furthermore suppose that the period of T is 2. Then, under the assumption that the Poincare conjecture is true^l ^y we have that*

- (i) *the determinant of F must be equal to the square of an odd number,*
- (ii) *the degree of the Alexander polynomial of F is not equal to* 2 *and that*
- (iii) all knots of the Alexander-Briggs' table, except for the cases $8₉$ and 8_{20} *, are not equivalent to F.*

Now we consider the case $p=3$. Since S^3 is the 3-fold cyclic covering space of M , branched along F , we have the following

Theorem 6. *Let T be a periodic transformation described above. Furthermore suppose that the period of T is* 3. *Then, under the assumption that the Poincare conjecture is true¹³\ we have that*

- (i) *the degree of the Alexander polynomial of F is not equal to* 2 *and that*
- (ii) all knots of the Alexander-Briggs' table, except for the cases $5₁$, $7₁$, $8₁₀$ and $9₄₇$, are not equivalent to F.

(Received February 19, 1958)

²¹⁾ See P. A. Smith [17].

²²⁾ See P. A. Smith [18].

²³⁾ See D. Montgomery and H. Samelson [12].

52 S. KINOSHITA

References

- [1] J. W. Alexander and G. B. Briggs: On types of knotted curve, Ann. Math. 28 (1927), 562-586.
- [2] J. W. Alexander: Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928), 275-306.
- [3] R. H. Bing: A homeomorphism between the 3-sphere and the sum of two horned sphere, Ann. Math. 56 (1952), 354-362.
- [4] S. Eilenberg: On the problems of topology, Ann. Math. 50 (1949), 247-260.
- [5] R. H. Fox: Free differential calculus II, Ann. Math. 59 (1954), 196-210.
- [6] R. H. Fox: Free differential calculus III, Ann. Math. 64 (1956), 407-419.
- [7] R. H. Fox: On knots whose points are fixed under a periodic transformation of the 3-sphere, Osaka Math. J. 10 (1958).
- [8] T. Homma and S. Kinoshita: On a topological characterization of the dilatation in E³ , Osaka Math. J. 6 (1954), 135-144.
- [9] T. Homma and S. Kinoshita: On homeomorphisms which are regular except for a finite number of points, Osaka Math. J. 7 (1955), 29-38.
- [10] T. Homma: On Dehn's lemma for S^3 , Yokohama Math. J. 5 (1957), 223-244.
- [11] B. v. Kerekjartό : Topologische Charakterisierung der linearen Abbildungen, Acta Litt. ac. Sci. Szeged 6 (1934), 235-262.
- [12] S. Kinoshita : Notes on knots and periodic transformations, Proc. Japan Acad. 33 (1957), 358-361.
- [13] D. Montgomery and L. Zippin: Examples of transformation groups, Proc. Amer. Math. Soc. 5 (1954), 460-465.
- [14] D. Montgomery and H. Samelson: A theorem on fixed points of involutions in S³ , Can. J. Math. 7 (1955), 208-220.
- [15] C. D. Papakyriakopoulos: On Dehn's lemma and the asphericity of knots, Ann. Math. 66 (1957), 1-26.
- [16] K. Reidemeister: Knotentheorie, Berlin (1932).
- [17] H. Seifert and W. Threlfall: Lehrbuch der Topologie, Leipzig (1935).
- [18] H. Seifert: Ueber das Geschlecht von Knoten, Math. Ann. 110 (1935), 571- 592.
- [19] P. A. Smith: Transformations of finite period II, Ann. Math. 40 (1939), 497-514.
- [20] P. A. Smith: Fixed points of periodic transformations, Appendix B in Lefschetz, Algebraic topology (1942).
- [21] H. Terasaka: On quasi-translations in Eⁿ, Proc. Japan Acad. 30 (1954), 80-84.