

Title	On knots and periodic transformations
Author(s)	Kinoshita, Shin'ichi
Citation	Osaka Mathematical Journal. 1958, 10(1), p. 43- 52
Version Type	VoR
URL	https://doi.org/10.18910/8092
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

On Knots and Periodic Transformations¹⁾

By Shin'ichi KINOSHITA

Introduction

Let T be a homeomorphism of the 2-sphere S^2 onto itself. If T is regular² except at a finite number of points, then it is proved by B. v. Kerékjártó [11] that T is topologically equivalent to a linear transformation of complex numbers. Now let T be a homeomorphism of the 3-sphere S^3 onto itself. If T is regular except at a finite number of points, then it is known³ that the number of points at which T is not regular is at most two. Furthermore it is also known⁴ that if T is regular except at just two points, then T is topologically equivalent to the dilatation of S^3 . Let T be sense preserving and regular except at just one point. Then whether or not T is equivalent to the translation of S^3 is not proved yet⁵. Now let T be regular at every point of S^3 . In general, in this case, T can be more complicated⁶ and there remain difficult problems⁷.

In this paper we shall be concerned with sense preserving periodic transformations of S^3 onto itself, which is a special case of regular transformations of S^3 . Furthermore suppose that T is different from the identity and has at least one fixed point. Then it has been shown by P. A. Smith [19] that the set F of all fixed points of T is a simple closed curve. It is proved by D. Montgomery and L. Zippin [13] that generally T is not equivalent to the rotation of S^3 about F. It will naturally be conjectured⁸⁾ that if T is semilinear, then T is equivalent to the rotation of S^3 .

¹⁾ A part of this paper was published in [12]. See also the footnote 11).

²⁾ A homeomorphism T of a metric space X onto itself is called regular at $p \in X$, if for each $\varepsilon > 0$ there exists $\delta > 0$ such that if $d(p, x) < \delta$, then $d(T^n(p), T^n(x)) < \varepsilon$ for every integer n.

³⁾ See T. Homma and S. Kinoshita [9].

⁴⁾ See T. Homma and S. Kinoshita [8] [9].

⁵⁾ See also H. Terasaka [21].

⁶⁾ See R. H. Bing [3] D. Montgomery and L. Zippin [13].

⁷⁾ See, for instance, [4] Problem 40.

⁸⁾ See D. Montgomery and H. Samelson [14].

closed curve in S^3 and D. Montgomery and H. Samelson [14] has proved⁹ that if F is a parallel knot of the type (p, 2) then F is trivial in S^3 provided the period of T is two.

Now let M be a closed 3-manifold without boundary and with trivial 1-dimensional homology group^{10,11)}. If k is a polygonal simple closed curve in M, then we can define the g-fold cyclic covering space $M_g(k)$ of M, branched along k. Then in §1 it will be proved that the fundamental group of M is isomorphic to a factor group of that of $M_g(k)$. Furthermore a fundamental formula of the Alexander polynomial of k in M (see (6)), which is proved by R. H. Fox [6] for $M=S^3$, will be given.

Now let k_0 be a polygonal simple closed curve in S^3 , whose 2-fold cyclic covering space $M_2(k_0)$ of S^3 , branched along k_0 , is homeomorphic to S^3 . Then it will be proved in §2 that (i) the determinant of the knot k_0 must be equal to the square of an odd number, (ii) the degree of the Alexander polynomial of k_0 is not equal to two and that (iii) almost all knots of the Alexander-Briggs' table¹² are not equivalent to k_0 , where k_0 is considered as a knot in $M_2(k_0)$. Similarly if k_1 is a polygonal simple closed curve in S^3 , whose 3-fold cyclic covering space $M_3(k_1)$ of S^3 , branched along k_1 , is homeomorphic to S^3 , then it will be proved that (i) the degree of the Alexander polynomial of k_1 is not equal to two and that (ii) almost all knots of the Alexander-Briggs' table¹² are not equivalent to k_1 , where k_1 is considered as a knot in $M_3(k_1)$.

If T is a periodic transformation of S^3 described above, then the orbit space M is a simply connected 3-manifold. Furthermore S^3 is the p-fold cyclic covering space of M, branched along F, where p is the period of T. Therefore, under the assumption that the well known Poincaré conjecture of 3-manifolds is true¹³, the results of §2 can be naturally applied to the position of F in S^3 . (See Theorem 5 and Theorem 6).

§ 1.

1. In this section M will denote a closed 3-manifold without boundary and with trivial 1-dimensional homology group. Let k be an

⁹⁾ See also C. D. Papakyriakopoulos [15] T. Homma [10].

¹⁰⁾ In this paper we shall use only the integral homology group.

¹¹⁾ In [12] M was supposed to be only a 3-manifold without boundary. Professor R. H. Fox kindly pointed out to me that "the linking number Link (k, x_i) " in [12] is not well-defined for an arbitrary 3-manifold M. Some propositions on knots in M turn out thereby to be erroneous, although it does not affect my main results in §5 of [12].

¹²⁾ See [1] [12].

¹³⁾ Meanwhile, this conjecture turned out to be unnecessary. See R. H. Fox [7].

oriented polygonal simple closed curve in M and let V be a sufficiently small tubular neighbourhood of k in M. Then the boundary \dot{V} of V is a torus. A *meridian* of V is by definiton a simple closed curve on \dot{V} which bounds a 2-cell in V but not on \dot{V} . Let x be an oriented meridian of V. For each simple closed curve y which does not intersect k we can define the *linking number* Link (k, y) of k and $y^{(4)}$. Then

Link
$$(k, x) = \pm 1$$
.

We may always suppose that x is so oriented that

Link
$$(k, x) = 1$$
.

It is easy to see that for each integer $p(\pm 0) x^p$ is not homotopic to 1.

We shall denote the fundamental group of M-k by F(M-k) or sometimes by F(k, M). Now let $\{x, x_1, x_2, \dots, x_n\}$ be a complete set of generators of F(M-k), where x stands for the element of the fundamental group corresponding to the path x. Put

Link
$$(k, X_i) = L(i)$$
 $(i = 1, 2, \dots, n)$

and

$$x_i = x^{-L(i)} X_i \, .$$

Then $\{x, x_1, x_2, \dots, x_n\}$ forms again a complete set of generators of F(M-k). For each i

(1)
$$\operatorname{Link}(k, x_i) = 0.$$

Let $R_s=1$ $(s=1, 2, \dots, m)$ be a complete system of defining relations of F(M-k) with respect to $\{x, x_1, \dots, x_n\}$. Then the symbol

(2)
$$\{x, x_1, \dots, x_n : R_1, R_2, \dots, R_m\}$$

will be called a *presentation*¹⁵⁾ of F(M-k). It is easy to see that

$$\{x, x_1, \dots, x_n : x, R_1, \dots, R_m\}$$

is a presentation of F(M). x being equal to unity, this presentation can be transformed to the following one:

(3)
$$\{x_1, x_2, \cdots, x_n : \hat{R}_1, \hat{R}_2, \cdots, \hat{R}_m\},\$$

where \hat{R}_s is obtained by deleting x from R_s .

¹⁴⁾ See [17] § 77.

¹⁵⁾ See R. H. Fox [6].

2. Let $w \in F(k,M)$. Then w is written as a word which consists of at most x, x_1, \dots, x_n . Let f(w) be an integer which is equal to the exponent sum of w, summed over the element x. By (1) it is easy to see that f is a homomorphism of F(k,M) onto the set of all integers. Now put

$$F_g(k, M) = \{ w \in F(k, M) \mid f(w) = 0 \pmod{g} \},\$$

where g is a positive integer. Then $F_g(k, M)$ is a normal subgroup of F(k, M). Therefore there exists uniquely the g-fold cyclic covering space $\tilde{M}_g(k)^{16}$ of M-k, whose fundamental group is isomorphic to $F_g(k, M)$. Since x is a meridian of V, we can also define the g-fold cyclic covering space $M_g(k)$ of M, branched along k^{17} . For each g $M_g(k)$ is a closed 3-manifold without boundary.

 $F(\tilde{M}_g(k))$ and $F(M_g(k))$ are calculated from F(k, M) as follows: Let (2) be a presentation of F(k, M). Put

$$x_{ij} = x^j x_j x^{-j}$$
. $\begin{pmatrix} i = 1, 2, \cdots, n \\ j = 0, 1, \cdots, g - 1 \end{pmatrix}$

Since $f(R_s) = 0$ for every s (s=1, 2, ..., m), $x^t R_s x^{-t}$ (t=0, 1, ..., g-1) is expressible by a word which consists of at most x_{ij} and x^g . We denote it by notations

 $x^t R_s x^{-t} = \tilde{R}_{st}$.

Then

$$(4) \qquad \{x^g, x_{ij}: R_{st}\}$$

is a presentation of $F(M_g(k))$ and

(5)
$$\{x^{g}, x_{i_{j}}: x^{g}, \hat{R}_{st}\}$$

is one of $F(M_g(k))$.

Theorem 1. F(M) is isomorphic to a factor group of $F(M_{g}(k))$.

Proof. Let (3) and (5) be presentations of F(M) and $F(M_g(k))$, respectively. Let G be a group whose presentation is given by

$$\{y^{g}, y_{i}, y_{ij}; y^{g}, R_{st}(y^{g}, y_{ij}), y_{ij}y_{i}^{-1}\}$$

This presentation can be transformed to the following one:

$$\{y_i: \hat{R}_s(y_i)\}$$
.

46

¹⁶⁾ See, for instance, [17].

¹⁷⁾ See, for instance, H. Seifert [18].

Therefore F(M) is isomorphic to G. On the other hand it is easy to see that G is isomorphic to a factor group of $F(M_g(k))$. Thus F(M) is isomorphic to a factor group of $F(M_g(k))$, and our proof is complete.

3. Now let (2) be a presentation of F(M-k). Replace the multiplication by the addition and put

$$jx \pm x_i - jx = \pm x^j x_i$$
. $\begin{pmatrix} i = 1, 2, \dots, n \\ j = 0, \pm 1, \pm 2, \dots \end{pmatrix}$

Furthermore suppose that the addition is commutative. Then for each relation $R_s = 1$ (s = 1, 2, ..., m) we have a relation $\overline{R}_s = 0$, which is a linear equation of x_i . From these linear equations we can make the *Alexander matrix*, whose (s, i)-th term is the coefficient of x_i in $\overline{R}_s = 0$. If we put x = 1 in the Alexander matrix, then we have a matrix which gives the 1-dimensional homology group $H_1(M)$ of M. Since $H_1(M)$ is trivial by our assumption $m \ge n$.

If two oriented knots k_1 and k_2 in M are equivalent to each other, then $F(k_1, M)$ and $F(k_2, M)$ are *directly isomorphic*¹⁸⁾. It was proved by J. W. Alexander [2] that if two *indexed groups*¹⁸⁾ are directly isomorphic to each other, then the elementary factors different from unity of the Alexander matrices and also their products $\Delta(x, k_i, M)$ (i=1, 2) are the same each other. Of course they are determined up to factors $\pm x^p$, where p is an integer. $\Delta(x, k, M)$ will be called the *Alexander polynomial* of k in M. Clearly $\Delta(1, k, M) = \pm 1$. It should be remarked that $\Delta(x, k, M_g(k))^{19}$ is also defined from (4) replacing x^g by x.

It can be proved that

(6)
$$\Delta(x, k, M_g(k)) = \prod_{j=0}^{q-1} \Delta({}^g \sqrt{x} \omega_j, k, M)$$

where $\omega_j = \cos \frac{2\pi j}{g} + i \sin \frac{2\pi j}{g}$. This is known for the case $M = S^{3} \sum_{j=0}^{20}$. But as the proof of the latter depends essentially only on the following equation of determinants:

$$\begin{vmatrix} a_1 & a_2 & \cdots & a_g \\ xa_2 & a_1 & \cdots & a_{g-1} \\ \dots & \dots & \dots \\ xa_g & xa_3 & \cdots & a_1 \end{vmatrix} = \prod_{j=0}^{g-1} f({}^g \sqrt{x} \, \omega_j) ,$$

18) See J. W. Alexander [2].

20) See R. H. Fox [6].

¹⁹⁾ We use the same symbol to a knot k in M and the knot which is the set of all branch points of $M_g(k)$. $\Delta(x, k, M_g(k))$ is the Alexander polynomial of k in $M_g(k)$, if $\Delta(1, k, M_g(k)) = \pm 1$. See also R. H. Fox [6].

where $f(y) = a_1 + a_2 y + \dots + a_g y^{g-1}$, the proof for the general case is the same as for the case $M = S^3$ and is omitted.

As a special case of (6) we have

(7)
$$\Delta(1, k, M_g(k)) = \prod_{j=0}^{g-1} \Delta(\omega_j, k, M)$$

 $\Delta(1, k, M_g(k)) \neq 0$ if and only if the 1-dimensional Betti number $p_1(M_g(k)) = 0$. If $p_1(M_g(k)) = 0$, then $|\Delta(1, k, M_g(k))|$ is equal to the product of 1-dimensional torsion numbers. In this case if $|\Delta(1, k, M_g(k))| = 1$, then $M_g(k)$ has no torsion number.

§ 2.

1. Let k_0 be a simple closed curve in the 3-sphere S^3 and M_2 the 2-fold cyclic covering space of S^3 , branched along k_0 . In No. 1 and 2 we assume that M_2 is homeomorphic to the 3-sphere and the position of k_0 in M_2 will be studied. These results will be used later in §3. In No. 1 we prove only the following

Theorem 2. The determinant of k_0 in M_2 must be equal to the square of an odd number.

Proof. Let $\Delta(x) = \sum_{r=1}^{2n} a_r x^r$ be the Alexander polynomial of k_0 in S^3 . Since the determinant d_0 of k_0 in M_2 is the product of torsion numbers of the 1-dimensional homology group of the 2-fold cyclic covering space of M_2 , branched along k_0 , it follows from (7) that

$$d_0 = |\Delta(1) \Delta(-1) \Delta(i) \Delta(-i)|.$$

By our assumptions $|\Delta(1)| = 1$ and $|\Delta(-1)| = 1$. Put

$$a = a_0 - a_2 + a_4 - \dots + (-1)^n a_{2n},$$

$$b = a_1 - a_3 + a_5 - \dots + (-1)^{n-1} a_{2n-1}$$

Suppose first that n is even. Then

$$\Delta(i) = a_0 + a_1 i - a_2 - a_3 i + \cdots - a_{2n-2} - a_{2n-2} i + a_{2n}.$$

Since $a_r = a_{2n-r}$, $\Delta(i) = a$. Therefore $\Delta(-i) = a$. Then we have $d_0 = a^2$. Now suppose that *n* is odd. Then

$$\Delta(i) = a_0 + a_1 i - a_2 - a_3 i + \cdots + a_{2n-2} + a_{2n-1} i - a_{2n}.$$

Since $a_r = a_{2n-r}$, we have

$$\Delta(i) = bi + a_n(i)^n \, .$$

48

Therefore

$$\Delta(-i) = b(-i) + a_n(-i)^n = -(bi + a_n(i)^n) .$$

Thus we have

$$d_0 = -(bi + a_n(i)^n)^2 = (b \pm a_n)^2$$

Since the determinant of a knot is always an odd number, our proof is complete.

2. Now let $\Delta(x)$ be the Alexander polynomial of k_0 in S^3 and $\Delta_2(x)$ that of k_0 in M_2 . Then by (6)

(8)
$$\Delta_2(x) = \Delta(\sqrt{x}) \Delta(-\sqrt{x}).$$

Therefore the degree of $\Delta(x)$ is equal to that of $\Delta_2(x)$.

Suppose first that the degree of $\Delta(x)$ is 2. Put

$$\Delta(x) = ax^2 + bx + a ,$$

where $a \neq 0$ and we may assume that 2a + b = 1. Then by (8)

$$\Delta_{2}(x) = a^{2}x^{2} + (2a^{2} - b^{2}) x + a^{2}.$$

Furthermore $4a^2-b^2=\pm 1$, which means that $2a-b=\pm 1$. From this it follows that 2a=1 or 2a=0. Since $a \pm 0$ and a is an integer, this is a contradiction. Thus we have proved that the degree of $\Delta_2(x)$ is not equal to 2.

Now suppose that the degree of $\Delta_2(x)$ is 4. Put

$$\Delta(x) = ax^4 + bx^3 + cx^2 + bx + a,$$

where $a \neq 0$ and we may assume that 2a+2b+c=1. Then by (8)

$$\Delta_2(x) = a^2 x^4 + (2ac - b^2) x^3 + (2a^2 - 2b^2 + c^2) x^2 + (2ac - b^2) x + a^2.$$

Furthermore $4a^2 + 4ac + c^2 - 4b^2 = \pm 1$, which means that $2a - 2b + c = \pm 1$. From this it follows that 4b = 2 or 4b = 0. Since b is an integer, 4b = 2 is a contradiction. Therefore b = 0 and c = 1 - 2a. Thus we have proved that if the degree of $\Delta_2(x)$ is 4, then $\Delta_2(x)$ must be limited to the following form:

$$a^{2}x^{4}-2a(2a-1)x^{3}+(6a^{2}-4a+1)x^{2}-\cdots$$

By the same way it can be seen easily that if the degrees of $\Delta_2(x)$

are 6 and 8, then $\Delta_2(x)$ must be limited to the following forms, respectively:

$$a^{2}x^{6} - (b^{2} + 2a^{2})x^{5} + (4b^{2} - a^{2} - 2b) x^{4}$$

- (6b^{2} - 4a^{2} - 4b + 1) x^{3} + ...,
$$a^{2}x^{8} - (b^{2} - 2ac) x^{7} + (c^{2} + 2b^{2} - 4a^{2} - 4ac + 2a) x^{6}$$

- (4c^{2} - b^{2} + 2ac - 2c) x^{5}
+ (6c^{2} - 4b^{2} + 6a^{2} + 8ac - 4c - 4a + 1) x^{4} - ...

From these we have the following

Theorem 3. All knots of the Alexander-Briggs' table, except for the cases 8_9 and 8_{20} , are not equivalent to k_0 in M_2 .

3. Now let k_1 be a simple closed curve in S^3 and M_3 the 3-fold cyclic covering space of S^3 , branched along k_1 . In No. 3 we assume that M_3 is homeomorphic to the 3-sphere and the position of k_1 in M_3 will be studied.

Let $\Delta(x)$ be the Alexander polynomial of k_1 in S^3 and $\Delta_3(x)$ that of k_1 in M_3 . Then by (6)

(9)
$$\Delta_{3}(x) = \Delta(\sqrt[3]{x}) \Delta(\omega_{1}\sqrt[3]{x}) \Delta(\omega_{2}\sqrt[3]{x}),$$

where $\omega_1 = \frac{-1 + \sqrt{3}i}{2}$ and $\omega_2 = \frac{-1 - \sqrt{3}i}{2}$.

Suppose first that the degree of $\Delta(x)$ is 2. Put

$$\Delta(x) = ax^2 + bx + a ,$$

where $a \neq 0$ and we may assume that 2a + b = 1. Then by (9)

$$\Delta_{3}(x) = a^{3}x^{2} + (b^{3} - 3a^{2}b) x + a^{3}.$$

Furthermore $2a^3-3a^2b+b^3=\pm 1$, which means that $a-b=\pm 1$. From this is follows that 3a=2 or 3a=0. Since $a\pm 0$ and a is an integer, this is a contradiction. Thus we have proved that the degree of $\Delta_3(x)$ is not equal to 2.

By the same way as that of No. 2 we have the following.

Theorem 4. All knots of the Alexander-Briggs' table, except for the cases 5_1 , 7_1 , 8_{10} and 9_{47} , are not equivalent to k_1 in M_3 .

§ 3.

Now let T be a sense preserving (of course semilinear) periodic transformation of S^3 onto itself. Furthermore let T be different from the

50

identity and have at least one fixed point. Then the set F of all fixed points of T is a simple closed curve²¹. Suppose that p is the minimal number of the set of all positive period of T. It is easy to see that T is primitive²². T acts locally as a rotation about F^{23} . Then, if we identify the points

$$x, T(x), \cdots, T^{p-1}(x)$$

in S^3 , we have an orientable 3-manifold M. It is easy to see that M is simply connected. Since T acts locally as a rotation about F in S^3 , we can see that S^3 is the *p*-fold cyclic covering space of M, branched along F.

Now we assume that the Poincaré conjecture is true¹³⁾. Then M is a 3-sphere.

First we consider the case p=2. Since S^3 is the 2-fold cyclic covering space of M, branched along F, we can apply the results of §2 to the position of F in S^3 . Therefore we have the following

Theorem 5. Let T be a periodic transformation described above. Furthermore suppose that the period of T is 2. Then, under the assumption that the Poincaré conjecture is true¹³, we have that

- (i) the determinant of F must be equal to the square of an odd number,
- (ii) the degree of the Alexander polynomial of F is not equal to 2 and that
- (iii) all knots of the Alexander-Briggs' table, except for the cases 8_9 and 8_{20} , are not equivalent to F.

Now we consider the case p=3. Since S³ is the 3-fold cyclic covering space of M, branched along F, we have the following

Theorem 6. Let T be a periodic transformation described above. Furthermore suppose that the period of T is 3. Then, under the assumption that the Poincaré conjecture is true¹³, we have that

- (i) the degree of the Alexander polynomial of F is not equal to 2 and that
- (ii) all knots of the Alexander-Briggs' table, except for the cases 5_1 , 7_1 , 8_{10} and 9_{47} , are not equivalent to F.

(Received February 19, 1958)

²¹⁾ See P. A. Smith [17].

²²⁾ See P. A. Smith [18].

²³⁾ See D. Montgomery and H. Samelson [12].

References

- J. W. Alexander and G. B. Briggs: On types of knotted curve, Ann. Math. 28 (1927), 562–586.
- J. W. Alexander: Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928), 275–306.
- [3] R. H. Bing: A homeomorphism between the 3-sphere and the sum of two horned sphere, Ann. Math. 56 (1952), 354-362.
- [4] S. Eilenberg: On the problems of topology, Ann. Math. 50 (1949), 247-260.
- [5] R. H. Fox: Free differential calculus II, Ann. Math. 59 (1954), 196-210.
- [6] R. H. Fox: Free differential calculus III, Ann. Math. 64 (1956), 407-419.
- [7] R. H. Fox: On knots whose points are fixed under a periodic transformation of the 3-sphere, Osaka Math. J. 10 (1958).
- [8] T. Homma and S. Kinoshita: On a topological characterization of the dilatation in E³, Osaka Math. J. 6 (1954), 135-144.
- [9] T. Homma and S. Kinoshita: On homeomorphisms which are regular except for a finite number of points, Osaka Math. J. 7 (1955), 29-38.
- [10] T. Homma: On Dehn's lemma for S³, Yokohama Math. J. 5 (1957), 223-244.
- [11] B. v. Kerékjártó: Topologische Charakterisierung der linearen Abbildungen, Acta Litt. ac. Sci. Szeged 6 (1934), 235–262.
- [12] S. Kinoshita: Notes on knots and periodic transformations, Proc. Japan Acad. 33 (1957), 358-361.
- [13] D. Montgomery and L. Zippin: Examples of transformation groups, Proc. Amer. Math. Soc. 5 (1954), 460-465.
- [14] D. Montgomery and H. Samelson: A theorem on fixed points of involutions in S³, Can. J. Math. 7 (1955), 208-220.
- [15] C. D. Papakyriakopoulos: On Dehn's lemma and the asphericity of knots, Ann. Math. 66 (1957), 1-26.
- [16] K. Reidemeister: Knotentheorie, Berlin (1932).
- [17] H. Seifert and W. Threlfall: Lehrbuch der Topologie, Leipzig (1935).
- [18] H. Seifert: Ueber das Geschlecht von Knoten, Math. Ann. 110 (1935), 571– 592.
- [19] P. A. Smith: Transformations of finite period II, Ann. Math. 40 (1939), 497-514.
- [20] P. A. Smith: Fixed points of periodic transformations, Appendix B in Lefschetz, Algebraic topology (1942).
- [21] H. Terasaka: On quasi-translations in Eⁿ, Proc. Japan Acad. 30 (1954), 80-84.