
Title Propagation of singularities for a hyperbolic
system with double characteristics

Author(s) Ichinose, Wataru

Citation Osaka Journal of Mathematics. 1982, 19(1), p.
171-187

Version Type VoR

URL https://doi.org/10.18910/8100

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Ichinose, W.
Osaka J. Math.
19 (1982), 171-187

PROPAGATION OF SINGULARITIES FOR A
HYPERBOLIC SYSTEM W I T H DOUBLE

CHARACTERISTICS

WATARU ICHINOSE

(Received April 22, 1980)

0. Introduction

Consider the Cauchy problem for a hyperbolic operator

(0.1) L = Dt+(^ °)(*, X, Dx) + (^ hfy, X, Dx) on [0, T]xR\

where Dt denotes — \/--T3<> functions λ, (ί, x, ξ) are real valued and belong
to 5~([0, T]; S1) and bjk{t, x, ξ) belong to J3~([0, T]; 5°). Throughout this
paper we assume that

(0.2) {τ+λ;, {τ+λy, T+λ,}}^ x, ξ) = 0 on [0, T]xR% ,

(i,j,k =1,2)

where for /, g e C\R]^|) {/, g}(t, x; T, ξ) denotes the Poisson bracket:
φrβ,g-d,β,g+Vίf'Vxg-Vxf>Vig){t, x; r, ξ).

Recently, using Fourier integral operators with multi-phase functions,
Kumano-go -Taniguchi-Tozaki in [10] and Kumano-go -Taniguchi in [11]
constructed the fundamental solution for a hyperbolic system with diagonal
principal part (Theorem 3.1 in [11]). In these papers the propagation of sin-
gularities of solutions was investigated by using an infinite number of phase
functions (Theorem 3.4 in [11] or Theorem 3.1 in the present paper).

In the present paper we prove that the propagation of singularities can be
described by means of five phase functions φu φ2y Φi#φ2> <ί>2#Φi and φi#φ2#Φi,
when the assumption (0.2) is satisfied (Theorem 3.2). We note that the
characteristic roots satisfying (0.2) are not necessarily involutive. For examples,
\x=-tξ and \2=tξ for n=ί satisfy (0.2), but

{τ+λ l f τ+λ2}(=2£)Φ0 (H=0).

Other examples will be given in Section 2.
The propagation of singularities of solutions has been investigated by
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many authors [1], [2], [3], [4], [6], [8], [12], [13], [14], [15], [16], [17], [18], [19]
etc.. In particular, in [2], [6], [14], [15], [16], [17], [19] operators with involu-
tive characteristics are treated. Alinhac in [1] and Taniguchi-Tozaki in [18]
give the precise descriptions for singularities of solutions for operators on R\
with principal part 9?—£2/9* (/ is a positive integer) which are not involutive.

In Section 1 we exhibit main results on the theory of Fourier integral
operators in [10] and [11] needed later. In Section 2 under the assumption
(0.2) we contract the multi-product Φjl9...tjv+1(t0, •• 9tv+1; x, ξ) (jk=ly2) of

phase functions φjk(t, s; x, ξ) (/*=1, 2) (see (1.11)), which are the solutions of
the eiconal equations for τ-\-\Jk(t, x> ξ) (see (1.10)) (Theorem 2.4). In Section
3 we prove the main theorem (Theorem 3.2).

The author would like to express his sincere gratitude to Professor H.
Kumano-go for his advice and encouragements.

1. Fourier integral operators

For a multi-index a={aXy •••,#») of non-negative integers α ; and points
x=[xly •• }xn)^Rn, y=(yly « ,j;n)ei?n we use the usual notation:

\a\= «,+ •••+«., dt = 9?j - aj;, dXj = J L ,

m = m\ - «;, DXj = - v / = T 9 v V,= (9,ιf » , 8,.),
<*> = (1+ I*!1)*, x y = Xiyi+...+χnya.

For f(x)=(fu •»,/,) ( / ^ ε C 1 ^ ) ) we denote

Let si on Rn denote the Schwartz space of rapidly decreasing functions and
let si' denote the dual space of s&. For u^sόx the Fourier transform ύ(ξ)—
F[u](ξ) is defined by

and then, for ύ(ξ)^sόξ the inverse Fourier transform F[u](x) is defined by

F[ύ](x) = J eixM(ζ)dξy dξ = (2π)-»dξ.

For real ί we define the Sobolev space Hs as the completion of si in the norm

DEFINITION 1.1. We say that a C°°-function ρ(x, ξ) in R2n=Rn

x x Rn

ξ belongs
to the class Sm (—oo<^<oo), when
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(l l)

where plt](x,ξ)=dΊmp(x,ξ).
The class Sm makes a Frechet space with semi-norms

I pI ί"> = max sup {| p$(χ, ξ) | /<£>«-'-'} (/ = 0, 1, 2, •••).

We set S~"= Γ) S" and 5 ~ = U Sm.

The pseudo-differential operator p(X, Dx)^Sm with symbol p(x,ξ)^Sm is
defined by

(1.2) p(X, Dx)u = 0 s-Jj^/^'^O*, ξ)u(x')dx'dξ

= lim (( Jt'-Λ tXίεx', €ξ)p(x, ξ)u(x')dx'dξ ,

where X(Λ?, f)e^(Λ 2 Λ) such that %(0, 0 ) = l (cf. [7]).
Now we state definitions and theorems in Kumano-go-Taniguchi-Tozaki

[10] and Kumano-go-Taniguchi [11] without proofs (see also [5]).

DEFINITION 1.2. If 0 ^ τ < l , we denote by £P(τ) the set of real valued
C°°-functions φ(x, ξ) in R2n such that/(.r, ξ)=φ(x, ξ)—x-ξ belongs to S1 and

(1.3) Σ ™

REMARK 1.1. In [10] £P(τ) denoted the class of C2-functions. The above
definition is due to [11].

We define the Fourier integral operator pφ(X, Dx) with symbol p(x,
and phase function φ(x, ξ)^9?(τ) by

(1.4) pφ(X, Dx)u(x) = f /«*#p(x, ξ)ύ(ξ)dξ ,

DEFINITION 1.3. Let φj^S>(τj), j= 1, •••, v+l, •••, ?„ = j[]τ ;.<;τ0 for a

sufficiently small fixed τ 0 with 0 < τ 0 ^ l / 8 . We define the multi-product

Φv+i(«, f)=(ΦJ—#Φv+i)(*, ξ) of phase functions φj(x, ξ) (j=ί, - , v+\) by

(1.5) Φv+1(*°, Γ+1) = Σ (Φ. ̂ Γ 1 , Bv'

where {X ,̂ Bv}y-i(*°» ?v+1) is defined as the solution of the equation

f *' = V ίφ i(*'-1,f'),
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Proposition 1.4 (Theorem 1.8 and Theorem 1.9 in [10]). Let φ ; <

y = l , •••> ^+1> '"y ^OO^T"O= 1/8. Then, Φv+ι(x, ξ) of (1.5) w

belongs to ^ ( ^ v + i ) , ^v+i = τ"iH hτv+i> wώλ α constant co>O independent of v

and τ 0 . We also get

α Q\ f 11 j U, . /

,Oj φl?fΦ2frΦ3 I = : : v

Consider a hyperbolic equation

(1.9) (A+λ(ί, X Z),))« - 0 on [0, Γ]

(λ(ί, Λ?, ?)e5°°([0, Γ]; 51), real valued).

Let φ=φ(t, s)=φ(t, s; x> ξ) be the solution of the eiconal equation

( 1 1 0 ) Γ dtΦ+Mt, x, V,φ) = 0 on [0, T],

Then, we have

Proposition 1.5 (Theorem 3.1 in [9]). For a small To (0<T0^T) we

get φ(t, s)^S>(c(t—s)) (0^s^t^TQ) with a constant c>Q.

We fix such a To in what follows. Take λ, C/=l, ##, ^ + 1 , —) as λ of

(1.9) such that {λy},~i is bounded in B°°([0, T]; S1) and let φ y be the solutions

of (1.10) corresponding to λ y. We define Φ = Φ1Λ...,v+i(*o> •••, ίv+Γι °̂> fv+1)

( i . i i ) Φ(t0, - , ίv+1) = <M*0) o # - #Φv+i(<v, /v+i),

and define {Xί, Bί}y=i(ί0, •••, ίv+1; Λ;0, | V + 1 ) as the solution of

(112)
{& Vφ(tj, tJ+1; x>,

where T 0 > 0 is a constant independent of v in Proposition 1.4 and Proposition

1.5. Then, we have

Proposition 1.6 (Theorem 2.3 in [10]). Φ(ί0, •••, ίv+1) of (1.11) satisfies

P. Qtφ = Xj{tjy χjv9 3l)-\H1(tj, XL Bί)

(j = 0,.-, v+ί, λo-λv+ 2 = 0, XI = x°, H!=V,oΦ ,

2°. i/" tj=tj+ι for some j 3 we have
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3°. If \j=\j+1 for some j> we have

Now let (q,p)(t,siy,v)=((q1,-',qn),{p1,-,pa))(t,s;y,v) (O^s^
be the bicharacteristic strip for (1.9), that is, (q, p) (t, s) is the solution of

= -v,λ(<, ί, ί ) , (g, />) I /-. = (y, v) •
( U 3 )

at

Then, we can solve (1.13) in full interval s^t^T by the Gronwall inequality,
since I V*λ(f, ?,/>) | ^C^ and |V,λ(*> ?, ί ) | ^C^py (0£t^T) for a constant

). We state propositions on the bicharacteristic strips.

Lemma 1.7. Lέtf φ(#, ̂ ^ ^ ( T ) . Tfew, /or any yy η<=R2n (resp. (x, ξ))
there exists a point (x, ξ)G:R2n (resp. (y> η)) such that

(1.14) y = Vfiφ(*, 77), ξ = Vxφ(x, rj) .

Proof. Set F(x)=F(x; y, v)=—VtΦ(x, ^7)+^+^. We have

\
Jo

where / is a unit matrix and for a matrix A~(aij\ _M, •••, n) the norm

is defined by { Σ l ^ l2}172- Then, we can apply the fixed point theorem, and

x=x(y} η) satisfying y=Vξφ(x, η) is determined as the fixed point. Then,
ξ(y, η) is determined by Vxφ(x(y, v), η).

Similarly, (y(x> ξ), η(x, ξ)) is determined. Q.E.D.

Lemma 1.8. Let (q,p) (t,s;y,v) (O^s^t^T) be the bicharacteristic strip
defined by (1.13) and φ(t,s;x,ξ) (0^s^t^T0) be the solution of the eiconal
equation (1.10). Then, it follows that

(1.15) y = Vfiφ(ί, s; q(t, s), 77), p(t, s) = V,φ(ί, s; q(ty s)9 η)

Proof. By Lemma 1.7 we can define (q\ p') (ί, s; y, rj) (0^s^t^T0) by

(1.16) y = Vtφ(f, s; q\t, s), rj), p\t, s) = V,φ(ί, s; q\t, s), v).
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Differentiate both sides of (1.16) in t, respectively. Then, using (1.10) we get

at

Since q'(s, s)=y and p'(s,s)=η from (1.16), we can see that q'(t,s) = q(t,s)
andp\t, s)=p(t, s) (0^s^t^T0). Q.E.D.

Take Xj (j=ly •• , i > + l ) as λ of (1.9) and define Φ = Φ l t . . . f V + 1 ( ί 0 , •••, ίv+1",
x, ξ) (0^t^+1^ ~^t0^T0^T) by (1.11) corresponding to {\j})t\. For a
set {t'θ9 —,ίί+ 1}c[0, To] such that *o^*ί^ ^ + i (resp. f ί ^ f ί ^ ^fί+i) we
define a trajectory (δ,P)(σ)=((?if...fv+i, Pi,...,v+i)(σ; t'o, — ,tl+1;y, η) in * ^ σ ^
tζ+ι (resp. ^o^cr^^v+i) as follows: (Q, P)(<τ) are continuous functions on [tί+u to]
(resp. [ίί, tί+1]) such that (g, P)(ίv/

+i)=(>', v) and for σ e ( ί ί , ίLi) (resp. σ<Ξ
(«-i, «)) (Q, P)(σ) satisfy

(1.17) f ^
dσ dσ

T h e n , we obtain

Proposition 1.9. Let T^T0^t0^ ~^ίv+1 ^ 0 . Using Lemma 1.7, for any
point (y} η) take a point x satisfying

(1.18) y = VέΦi,...,v+i(^ —, 'v+Γ, ̂  ^)

(1.19) (δi,.,v+i, Λ.....v+i)fe; t0, - , ίv+1; j , 97)

= (Xί, Bί)Λ, - , ίv+i; x, v) (* = 0, - , ^ + 1 ) ,

{-yί,Bί}y-i is the solution of (1.12) corresponding to Φ = Φ l f . . . f V

X ; = ΛT Hv° == V Φ i v + i ( ί 0 " ίv+i5 Λ» ^) >
(1.20)

Proof. Relation (1.7) in Proposition 1.4 shows that

— ,ίv+Γ, Xy η) = Vxφi'

Together with (1.12) and (1.18) we get

(1-21) , β , . x ,_, w 4
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Now when k=v+l, (1.19) is valid. From the definition of {Q, P)(σ)=

(£?i, ,*+i, -Pi. ,v+i)(σ) and by Lemma 1.8 we have

, η) .

Compare the above relation with X\ and Bϊ of (1.21). Setting Xl+1 =y, &l+1=
we get by Lemma 1.7

In a similar way we can prove (1.19), inductively. Q.E.D.

2. Contraction of multi-phase functions

Let \j(t, x, ξ)ξΞB°°([Oy T]\ S1) C/=l» 2 ) a n d b e r e a l valued functions.
Throughout this section we assume that

(*) {τ+λ, , {τ+\j, τ+λA}}(ί, Λ, f) = 0 on [0,

where f o r / ^ e C 1 ^ ? ^ ^ ) {/,^}(ί, Λ; T, f) denotes the Poisson bracket

(2.1) {/, g}(t, x; T, ζ) = (dτfdtg-dtfdτg+Vtf-Vxg-Vxf.Vtg)(t, x; r,

Let φ ; (ί, ί; x, I) (y=l, 2, O^s^ t ̂ To) be the solutions of the eiconal
equation (1.10) corresponding to λ, and define φ = Φyif...^v+i(f0, •••, ί v + 1 )e
^ ( ί o - ί v + i ) ) (O^ίv+i^ ^ ί o ^ ^ o , J > l , 2) by Φ-φy^o, Ott-#φyv+1(ίv,ίv+i),
where £0>0 a n d 7Ό>0 a r e constants independent of v (see Proposition 1.4 and
Proposition 1.5). We fix such a Γo in what follows. It is easy to see that

Lemma 2.1. Let H(t, x, ξ) e C\R2n+1) and (qy p)(t) = (q,p)(t, s; y, η)
(0^s<t^T0) be the bicharactertstic strip defined by (1.13) for τ+λ(ί , xy ξ) of
(1.9). Then, we have

(2.2) j-σH{σ,q(σ),p{σ))= -{H,r+X}{σ,q{σ),p{σ))

Lemma 2.2. For J=(j\, •• ,j\+i) 0 * = l , 2) αwrf α ίeί {ί0, •• ,ίv+i} ( ϊ 1 ^
ί0^ - ^ίv+ i^0) &ί (Q, P)(σ) = (Q)l...,j^1, Pju~..J,J(σ; t0, -, tv+1;y, η) be the
solution of (1.17) corresponding to {λ J Π ί Set

(2.3) v{σ) = (Xt-\ι)(<r, Q(τ), P(σ)) (t,

re, we get

(2.4) -f o(σ) = {τ+λ!, τ+λ2}(σ, Q(σ),
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Proof. For σ E ( ί h tk^) it follows from Lemma 2.1 that

— v(σ) = — {λ2,aσ

Then, we get (2.4) in both cases jk=ί and 2. Q.E.D.

L e m m a 2.3. Assume that the assumption (*) /zo/ά. Then, for v{σ) defined

by (2.3) we get

(2.5) ϋ( σ )

where a= { τ + λ 1 ? τ+λ 2 }(f v + i , J>, v) and δ=(λ 2 —λi)(ί v +i, y, η)—atv+1.

Proof. We can see from Lemma 2.2 that v(σ) belongs to C1([tv+1, ί0]).

From (2.4) and Lemma 2.1 it follows that

f2v(σ) {{τ+λi, τ+λ2}, τ+\jk} = 0
aσ

Hence, we get (2.5). Q.E.D.

REMARK 2.1. If the assumption (*) is satisfied, v(σ) defined by (2.3) de-

pends only on σ, tv+ly y and ηy and is independent of the choice of J=(ji> *">

(v=l, 2 •••) and {ί0> •••, ί v }.

Theorem 2.4. Assume that the assumption (*) λoάfr. For {ί, ^, t2, s}

^^ define functions (ψly ψ2) (t, tu t2, s) by

(2.6)

2+
t—ίχ + *2 — ^

_, obtain

(2.7) Φ l . 2 , l ( ί , Ψ l , Ψ 2 , SI X, ξ) = &2,l,2(t, t u t2, S',X,ξ).

Proof. We shall determine ψj(t, tly t2y ή ( j = l , 2) of (2.6) as the func-

tions satisfying (2.7). From Proposition 1.6 we get Φ2,if2(*, tly t2y s; x, ξ) as the

solution of

1 Φ2,if2l *=*! = φi,2^i, t2, s; xy ξ).

So, we have only to determine ψj (/ = 1, 2) depending only on ί, tly t2 and

such that for Φ w ( ί , ^, ί2, s)=Φw(t, tly t2y s; xy ξ)
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( 2 . 8 ) I t 1'2f l ' 2 l f 2 f l

holds.
Suppose that for ψj ( ;=1, 2) (2.7) holds. Set Δ=(ί, ψx, ψ2, j ; Λ?, ξ) and

ΛJr^dtψj ( — 1 , 2). Then, from (2.8) and Proposition 1.6 we have

(2.9) 0 = (8/Φ1Λ1)(Δ)+(8/lΦ1>2fl)(Δ)ψί+

(9ί2Φi,2,i)(A)iH + λ2(^ χy VxΦif2fi(Δ))

= ( λ 2 - λ i ) ( f , * , V , Φ w ( Δ ) ) -

where {X2, B2}, ii(<0> Ί> ̂  ^ *> I) is the solution of

(Λ = 1, 2, *° = *, f8 = f, Ji = 1, >2 = 2, y3 = 1)

Take a point j ; such that

y = VfiΦi f2 fi(Δ) = V έ Φi, 2 , i(^ Ψ i, ^2 , *; Λ, f ) .

Let (ρ, P)(σ)=(ρi f 2 fi, Λ,2,i)(σ ; t3 ψu ψ2, s y, ξ) be the solution of (1.17) and set

v{σ) = (λ2-λ!)(σ, ρ(σ), P(σ)) .

Then, by Proposition 1.9 we can write (2.9) in the form

(2.9)' 0 = ϋ(ί)-KΨi)Ψί+^(Ψ2)ψ2

Take account of the assumption (*). Since from Lemma 2.3 ̂ (σ) has the
form aσ-\-by we get

(2.9)" 0 =

Now we take ψj such that -ψ y satisfy

(2.10) Ψί—Ψ 5 = l , ΨiΨί

If -ψ i I ί = ί i = f 2 and ψ 2 | / = ί i = ί , the second equality of (2.8) is also satisfied by
Proposition 1.6. Hence, we obtain

(2.11) Ψ1-Ψ2 = t-tx+t2-s , ψl-ψl = ί-f

Solving (2.11), we get the functions of (2.6) satisfying (2.7). Q.E.D.

n n

REMARK 2.2. For real constants α ; and bj λ i = — Σ Λi?ί a n d λ2=^—2ί Σ όf f f

on i?J^ satisfy the assumption (*). Then, we have
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w f c tl3 t2> s; *, f) = Σj Wi(t-t1+t2-s)+bi(t2

1-t2

2)}ξi+X'ξ ,

2.1.2& tu t2} s; x, ζ) = ±±
From these multi-phase functions we see that ψj (7=1, 2) of (2.6) are uniquely
determined functions which satisfy (2.7) for any a} and &y.

REMARK 2.3. Set Δ 2 = {(^, f2); 0 ^ j < f 2 < * i < * ^ To}. Consider the mapp-
ing M: Δ2B(^i, t2)^>(ψij ψ2) with (t, s) as a parameter. It is clear that the
image of the mapping M is included in Δ2. Since from (2.11)

tι-t2 = f- ΨΊ+Ψ2-*, ί?-ί i = ί 2 - ψ i + ^ | - ί 2 ,

M2=I (identity map) holds. This implies that the mapping M: Δ2->Δ2 is one
to one and onto. Make the change of variables with (t, s) as a parameter

t[ - ψ x ( ί , tu t2> s), t'2 =

Then, we get

Γ Γ'exp {iΦ2χ2{t, tu t2> s; x, ξ)}dt2dtλ
Js Js

= [ Pexp {iΦ1A1(ί,, t'u tί, s; x, ξ)} f )~g dt'2dt[.

We note that the functions ψly ψ2 and (̂ 1— )̂/(̂ —^1+^2— )̂ have singular points
(ΐi=t, ΐ2=s). So it seems that it is not easy to construct the fundamental solu-
tion by using Fourier integral operators with a finite number of phase functions,
if we only follow the method in [10], [11], [15] and [17].

Let (0ylt...fyv+1, Pj^.h^Xo ; tOi •••, tv+1;y, η) be the solution of (1.17) corres-
ponding to {λyjϊii a n d a set {ί0, - , tv+1) C[0, To].

Corollary 2.5. Assume that (*) holds. Then, for any v (2^2), {jly ---yjv+i}
(Jk=h 2,jhΦjk+1) and {t0, -.,ίv+1} (T0^t0> ~>t,+1^0) we get

79 Λy\ Φii.-.iv+ife •"> *v+Γι ̂ > ?)

= Φ i A i ( ^ ^ ^ ί v + i ; Λ , f ) ,

/or ίowe ^ (7=1, 2, ίo>^ί>^2>ίv+i) independent of x and ξ. By using the same
tj (j= 1, 2) we also get

fry 4^x (Qh.".h+i> ^i.-./v+i)(V> 0̂> ' " j ^V+l 5 J* ^)

= (£?i.2.i, Λ A i ) ( V > ^ « , t'2} ίv+1; y, 97)

/or any point (y,



PROPAGATION OF SINGULARITIES FOR A HYPERBOLIC SYSTEM 181

Proof. We can get (2.12) by Proposition 1.6 and Theorem 2.4, inductively.
Then, we obtain (2.13) by using (2.12) and Proposition 1.9. Q.E.D.

REMARK 2.4. For λ, (ί, x, ξ) (/=1, 2) in Remark 2.2 we have

(2.14)
ι,2\t> h> s) — Xi

2.l(t, h, S) = Σ

Comparing (2.14) with Φi>2,i
 a n d ^2,1,2 i n Remark 2.2, we can see that we can

gererally contract Φi>2,i(*> *i> h> ή and Φ 2 Λ 2 (t, tu t2i s) (t>t1>t2>s) no more.
Furthermore, from Proposition 1.9 we can also see that we can generally contract
(Qi,2,i> P\,2tι){t, tl9 t2, s) and (£>2,i,2> ^2,1,2)^, tu t2, ή(t>^>tz>s) no more.

EXAMPLES. .We give examples of Xk {t, x, ξ) (k=\y2) satisfying (*) on

[0, T]χR6

x ξ except \k in Remark 2.2 below. They are not involutive, since

{τ+λi, τ+X2}(^ xi ζ) doe snot identically vanish on a set {(t, x, ξ); X^t, x, ξ)=

\2{t,x,ξ)}.

2. λχ(ί, *, 5 ) = ^ , X2(ί, *, I) = tξ2.

3. λ!(ί, Λ, ξ)=x£ι+ξ3β \2(t, x, ξ)=-x£i+ξ2

3. Propagation of singularities

Consider a hyperbolic system with diagonal principal part

on [0, T] X Λ" (λ/ί, x, ξ) efi~([0, Γ] S 1 ),

real valued, δ,4(ί, *, f)eJ5~([0, T]; 5°)).

We assume that for a constant ΛΓ > 0 we have

(3.2) λ,(ί, x, δf) = δλ, (ί, *, f) (I ξ\ ^M, 8^ 1).

We also assume that (*) of Section 2 holds.
We study the Cauchy problem

(LU(t,x) = 0 on[0,T],
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where I7(ί, *)='(u,(ί, *),«,(«,*)) and G{x)=t(g1(x),g4x))(gi(x)f=H_. =
σ

Let φj(t, s; x> ξ) (O^s^t^Tof^T) be the solutions of the eiconal equations
(1.10) corresponding to λ ; and define Φ ^ Φ ^ ...Λ + i(ί0, ..., fv+1) (jk= 1, 2) by
Φ=Φφo, hW-Ui^, fv+1) (see (1.11)).

If we apply Theorem 3.1 in Kumano-go-Taniguchi [11] to L of (3.1), then,
for a small T0(0< T0^T) we can get the fundamental solution E(ty s) (O^stί
t^T0) of L (i.e. LE(t, s)=0 on [0, Γo] and E(sy s)=I (unit matrix)), which is
represented by means of Fourier integral operators with multi-phase functions
Φj t...tyv+1 (^=0, 1, •••). We fix such a To in what follows. We will apply the
theory in [11] for the propagation of singularities of solutions (Theorem 3.4
in [11]) to the Cauchy problem (3.3).

For λyχ, •••, λyv+1, {y, η) and a fixed 0^££<l we define an ^-station chain
{ti, —, v̂} as the point ί > ί x > ••• > ί v > 0 such that for k=l, •••, v

(3.4) I \jk(tk, tf, ξk)-χh+i(tk, x\ ξk) I £

at (Λ*, ξk) = (Qjir.th+1, Pjιr.,jv+ι)(tk; t, *!,..., ίv, 0; y, ^ ) ,

where (0ylf...fyv+1, Pjir .h+i) (°"» *<>> —, v̂, 0; j , 77) is the solution of (1.17) corres-
ponding to {λyj ϊ ί i and {t0, •••, fv+1} (fo=^, ί v +i=0). Define the ^-station set
Λε jlt... j\+1(t; y, η) by the set of all ^-station chains {tly •••, ίv}

We set WF(G)=\jWF(gj) for the wave front set WF(gj) of ^ . For

J=(ji> ~'>h+i) we set J" 1

Af(ί; y , 77) {(Qy1.....y1>+1, Pju-^+1){t; t, tu - , ίv, 0; y, 77);

and set

Γ M - {δΛf(ί;y, 77); (y, v)(ΞWFs(G)y J=(

(3.6) y4 = 1, 2, z; = 0, 1, -.., δ>0,

(WF2(G) = {(y, 77); dis {(y, 1771 -hi), WF(G)} ^£}),

for a large constant M 0 > 0 depending on M of (3.2). Then, Theorem 3.4 in
[11] says without the assumption (*)

Theorem 3.1. f) Tt g w c/o^J and for the solution U(t, x) of the Cauchy
o<ε<i

problem (3.3) Z

(3.7) WF(U(t))a o ^

If we add the assumption (*), then, setting

(3.8) Γί>0 = {δΛ^(ί; y, v); (y, V)(ΞWF(G), δ > 0 ,

M ^Mo, J= (1),(2), (1, 2), (2, 1), (1, 2, 1)} ,



PROPAGATION OF SINGULARITIES FOR A HYPERBOLIC SYSTEM 183

we get the main theorem.

Theorem 3.2. Assume that the assumption (*) holds. Then, for the solu-

tion U{t, x) of the Cauchy problem (3.3) we get

(3.9) WF(U(t))artt0

Proof. By Theorem 3.1 we have only to prove that

(3.10) Π r M = r / i 0 .
o<ε<i

It is easy to see that f] Tt9'DΪί

t0. So, we prove that
o<ε<i

f]
o<ε<i

n r,.to<ε<i

We fix 0<t^ To and take a point (a0, £°)<Ξ {] Tt 8 and fix it. If we take
o<ε<i '

sufficiently large, then, setting ξk=Pjy+l9».9jι(tk; 0, tv, ••, ίo; *°, £°) ( Λ = l , ...,

1, ί v + 1 = 0 ) , we have

(3.11) C " 1 ^ ! ^

Here, the positive constant C is independent of the choice of J=(jly •• ,/ v+i) and

a set {/0, —,«v}c[0, t]. Since (Λ;0, f°) belongs to f) Γ ί ε, for any 6 β ,=2-" 1

o<ε<i

there exist J?m = (jT, -,j?m+i) 0 " ? = L 2 - jk^j^x), (ym, Vm)^WF,m(G) and

{ίf, •••, O e Λ ^ j i« +1(ym, vm) s u ς h that

(3.12) (A a = (ρ>-,....y-i+I, Pyr.....c.+i)C; t, a, •••> «L, o ; j
M , ^ M ) .

We consider (#°, f°) deviding into two cases as follows.

I) The case where we can take a subsequence l={niμ}μZi and a point

σi (O^σi^ί) such that ί{-»σi and ί ί ^ σ i as /->oo.

II) The other case.

I). We show that (x°> ξ°) belongs to Γ/f0, when 0 < σ i < ί . In the other

case O Ί ^ O or ί we can also prove this by the similar way. By the assumption

I) we can also take a subsequence 7={/μ}>=i of /={mμ}μΞi such that

(iϊ,/V0 = (U), 0,2), (2,1) or (2, 2).

We may assume t h a t y ? = l and y? γ + 1 =2, since we can prove similarly in the

other cases. Now, take a point (y°, η°) (\η°\ ^ C " 1 , see (3.11)) such that

(3.13) (f, η°) = (ρ2,i, P2.i)(0; 0, σ i , t; χ\ ξ°).

We note that

(3.13)' (A f ) = (O1>2, P1>2)(ί; t, σly 0; / , η°).
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Then, it is easy to see that

(3.14) f = x°+^ V ^ σ , ρ2f l(σ; 0, σu t; x\ f ) , P2#1(σ; 0, σ» t; x°, ξ°))dcτ

τ, Q2Λ(σ; 0, σu t; x\ ξ\ P2>1(σ; 0, σ» t; x\ g°))Λr.

Using the assumption of this case, for any small δ>0 there exists N such that
for any J^N we have

(3.15) W, ^ γ } c | > 1 - S , σ 1 + S ] .

Since for any yΊ we have the similar equality to (3.14), we get

for a constant C^O independent of δ and γ. By the similar way we get

Consequently, we can see that (yy

9 ?7Y)-^(^0, 9°) as γ->cx> and

(3.16) (/,^°)

Next, since {tf, •",ίΫ}GΛg?(ij.,., j + i ( / , T;7), it follows from (3.11) and (3.12)
that ' 'V<Y

I(λp-λOW, &(<r; flf, ί; °̂, n Λ(flf flf, ί ^0, y

for a constant C of (3.11). Here, noting thatyϊ=l and jlf+ι=29 we used

= (Qu P0(/ϊ; flf, ί; *°, f0).

When γ-ί oo, we get from (3.13)

0 = (λ2-λ1)(σ1, Q1(σ1; σ» t; x°, f°), Pfa; σ1( ί; x°,

= (λj-λOίσi, ρ i > 2( σ i; ί, σlf 0; jί0, ^°), P^σ,', t, σ» 0; j°, if)).

Together with (3.13)' and (3.16) this implies that

II). We can take a subsequence /={fKμ.}μ,~i and points
σ ̂ ί ) such that ί{-»σi and ίί/-*σ2 as /->oo. We set

(3 17) ί ) ( θ " ' Z ) = ( λ 2 ~ λ l ) ( σ ; ^ί.-.>ί 1 +i( f f ; f ' t[> •"' 0 ; ^ ' ' ' )
Pil-.il +1(o ; ί, ίί, - , 0; y , ,') (O^
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For large / we have

tι-tι >—

and then, noting that {t{9 •••, t[^ eΛ g / ^ f . . . j ^ + 1 ( j / , vl)> w e have by (3.11)

Kfί OI, K^ iil^cε,.

Consequently, since v(σ; /) of (3.17) has the form

(3.18) υ(σ;l) = aσ+b

from Lemma 2.3 in Section 2, it follows that

(3.19) K<r;/

Now, by Corollary 2.5 there exist some Vu V2 (t>V2>V2>§) such that

(3.20) (A ξa) = (Qw, PIA1)(<; t, Ά, n, 0; yι, v')

Then, we note that

(3.20)' (/ , , ') = (Qw, P 1 A 1 )(0; 0, V2, Ί[, t; x", ξΰ).

We set

( ' ' Pw(<r;t,t'un,0;y',v')).

Since ^i(σ; /) = v(σ\ 1) by Lemma 2.3 and Remark 2.1, from (3.19) we obtain

(3.22) \Vι{σ.i)\^^C_ειT(ί.

Next, let σt ( ι = l , 2, σ^σ^) be the accumulating points of sets {?i}/-i,
respectively and take some subsequence {Ύ — lμ)^ such that ί ϊ-^σ! and
Ά->σ2 as γ->oo. Then, it follows from (3.20)' that there exists (y°y η°) such
that

(/, vη -> (y\ η°) = (ρ 1 A 1 , P1A1)(0; o, σ2, ̂  /; ̂  a

as 7->oo, and

(3.23) (f, η°)(ΞWF(G).

We note that

(3.24) (*°, f ) = ( f t A I , P I A 1 )(ί ; t, iru <τ2, 0; / , v°) •
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By using (3.22) we obtain

(λi-λ2)(σ, ftΛi(σ; /, σu σ2, 0; y\ y°), PiAi(σ; t, σly σ2, 0; f, y0))

^ l i m ^ σ ; γ)

= 0 ( 0 ^

This implies with (3.23) and (3.24) that

which means (3.9) together with the result of I). Q.E.D.
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