

Title	Propagation of singularities for a hyperbolic system with double characteristics
Author(s)	Ichinose, Wataru
Citation	Osaka Journal of Mathematics. 1982, 19(1), p. 171–187
Version Type	VoR
URL	https://doi.org/10.18910/8100
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Ichinose, W. Osaka J. Math. 19 (1982), 171-187

PROPAGATION OF SINGULARITIES FOR A HYPERBOLIC SYSTEM WITH DOUBLE CHARACTERISTICS

WATARU ICHINOSE

(Received April 22, 1980)

0. Introduction

Consider the Cauchy problem for a hyperbolic operator

$$(0.1) \quad L = D_t + \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} (t, X, D_s) + \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} (t, X, D_s) \quad \text{on } [0, T] \times R^*,$$

where D_t denotes $-\sqrt{-1}\partial_t$, functions $\lambda_i(t, x, \xi)$ are real valued and belong to $B^{\infty}([0, T]; S^1)$ and $b_{jk}(t, x, \xi)$ belong to $B^{\infty}([0, T]; S^0)$. Throughout this paper we assume that

(0.2)
$$\{\tau + \lambda_i, \{\tau + \lambda_j, \tau + \lambda_k\}\}(t, x, \xi) = 0$$
 on $[0, T] \times R_{x,\xi}^{2n}$,
 $(i, j, k = 1, 2)$

where for $f, g \in C^1(R^{2(n+1)}_{t,x,\tau,\xi})$ $\{f, g\}(t, x; \tau, \xi)$ denotes the Poisson bracket: $(\partial_{\tau}f\partial_t g - \partial_t f\partial_{\tau}g + \nabla_{\xi}f \cdot \nabla_x g - \nabla_x f \cdot \nabla_{\xi}g)(t, x; \tau, \xi).$

Recently, using Fourier integral operators with multi-phase functions, Kumano-go -Taniguchi-Tozaki in [10] and Kumano-go -Taniguchi in [11] constructed the fundamental solution for a hyperbolic system with diagonal principal part (Theorem 3.1 in [11]). In these papers the propagation of singularities of solutions was investigated by using an infinite number of phase functions (Theorem 3.4 in [11] or Theorem 3.1 in the present paper).

In the present paper we prove that the propagation of singularities can be described by means of five phase functions ϕ_1 , ϕ_2 , $\phi_1 \# \phi_2$, $\phi_2 \# \phi_1$ and $\phi_1 \# \phi_2 \# \phi_1$, when the assumption (0.2) is satisfied (Theorem 3.2). We note that the characteristic roots satisfying (0.2) are not necessarily involutive. For examples, $\lambda_1 = -t\xi$ and $\lambda_2 = t\xi$ for n=1 satisfy (0.2), but

$$\{\tau + \lambda_1, \tau + \lambda_2\}(=2\xi) \neq 0$$
 $(\xi \neq 0)$.

Other examples will be given in Section 2.

The propagation of singularities of solutions has been investigated by

many authors [1], [2], [3], [4], [6], [8], [12], [13], [14], [15], [16], [17], [18], [19] etc.. In particular, in [2], [6], [14], [15], [16], [17], [19] operators with involutive characteristics are treated. Alinhac in [1] and Taniguchi-Tozaki in [18] give the precise descriptions for singularities of solutions for operators on R_x^1 with principal part $\partial_t^2 - t^{2l} \partial_x^2$ (*l* is a positive integer) which are not involutive.

In Section 1 we exhibit main results on the theory of Fourier integral operators in [10] and [11] needed later. In Section 2 under the assumption (0.2) we contract the multi-product $\Phi_{j_1,\dots,j_{\nu+1}}(t_0,\dots,t_{\nu+1};x,\xi)$ $(j_k=1,2)$ of phase functions $\phi_{j_k}(t,s;x,\xi)$ $(j_k=1,2)$ (see (1.11)), which are the solutions of the eiconal equations for $\tau+\lambda_{j_k}(t,x,\xi)$ (see (1.10)) (Theorem 2.4). In Section 3 we prove the main theorem (Theorem 3.2).

The author would like to express his sincere gratitude to Professor H. Kumano-go for his advice and encouragements.

1. Fourier integral operators

For a multi-index $\alpha = (\alpha_1, \dots, \alpha_n)$ of non-negative integers α_j and points $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, $y = (y_1, \dots, y_n) \in \mathbb{R}^n$ we use the usual notation:

$$\begin{aligned} |\alpha| &= \alpha_1 + \dots + \alpha_n, \, \partial_x^{\alpha} = \partial_{x_1}^{\alpha_1} \dots \partial_{x_n}^{\alpha_n}, \, \partial_{x_j} = \frac{\partial}{\partial x_j}, \\ D_x^{\alpha} &= D_{x_1}^{\alpha_1} \dots D_{x_n}^{\alpha_n}, \, D_{x_j} = -\sqrt{-1} \partial_{x_j}, \, \nabla_x = (\partial_{x_1}, \dots, \partial_{x_n}), \\ \langle x \rangle &= (1 + |x|^2)^{1/2}, \, x \cdot y = x_1 y_1 + \dots + x_n y_n. \end{aligned}$$

For $f(x) = (f_1, \dots, f_n) (f_j(x) \in C^1(\mathbb{R}^n))$ we denote

$$\partial_x f = \nabla_x f = (\partial_{x_k} f_j; \stackrel{j \downarrow}{k \to} 1, \cdots, n).$$

Let \mathscr{S} on \mathbb{R}^n denote the Schwartz space of rapidly decreasing functions and let \mathscr{S}' denote the dual space of \mathscr{S} . For $u \in \mathscr{S}_x$ the Fourier transform $\hat{u}(\xi) = F[u](\xi)$ is defined by

$$F[u](\xi) = \int e^{-ix\cdot\xi} u(x) dx ,$$

and then, for $\hat{u}(\xi) \in \mathscr{A}_{\xi}$ the inverse Fourier transform $F[\hat{u}](x)$ is defined by

$$\overline{F}[\hat{u}](x) = \int e^{ix\cdot\xi} \hat{u}(\xi) d\xi, \ d\xi = (2\pi)^{-n} d\xi$$

For real *s* we define the Sobolev space H_s as the completion of \mathscr{S} in the norm $||u||_s = \{ \int \langle \xi \rangle^{2s} |\hat{u}(\xi)|^2 d\xi \}^{1/2}.$

DEFINITION 1.1. We say that a C^{∞} -function $p(x, \xi)$ in $R^{2n} = R_x^n \times R_{\xi}^n$ belongs to the class S^m $(-\infty < m < \infty)$, when

,

(1.1)
$$|p^{(\alpha)}_{(\beta)}(x,\xi)| \leq C_{\alpha,\beta} \langle \xi \rangle^{m-|\alpha|}$$

where $p_{(\beta)}^{(\alpha)}(x, \xi) = \partial_{\xi}^{\alpha} D_{x}^{\beta} p(x, \xi).$

The class S^m makes a Fréchet space with semi-norms

$$|p|_{l}^{(m)} = \max_{|\alpha+\beta| \leq l} \sup_{x,\xi} \left\{ |p_{\beta}^{(\alpha)}(x,\xi)| / \langle \xi \rangle^{m-|\alpha|} \right\} \qquad (l=0, 1, 2, \cdots).$$

We set $S^{-\infty} = \bigcap_{-\infty < m < \infty} S^m$ and $S^{\infty} = \bigcup_{-\infty < m < \infty} S^m$. The pseudo differential operator $\phi(X, D) \in$

The pseudo-differential operator $p(X, D_x) \in S^m$ with symbol $p(x, \xi) \in S^m$ is defined by

(1.2)
$$p(X, D_x)u = 0_s - \iint_{\mathbb{R}^{2n}} e^{i(x-x')\cdot\xi} p(x, \xi)u(x')dx'd\xi$$
$$= \lim_{\varepsilon \to 0} \iint_{\mathbb{R}^{2n}} e^{i(x-x')\cdot\xi} \chi(\varepsilon x', \varepsilon \xi) p(x, \xi)u(x')dx'd\xi ,$$

where $\chi(x, \xi) \in \mathcal{A}(\mathbb{R}^{2n})$ such that $\chi(0, 0) = 1$ (c.f. [7]).

Now we state definitions and theorems in Kumano-go-Taniguchi-Tozaki [10] and Kumano-go-Taniguchi [11] without proofs (see also [5]).

DEFINITION 1.2. If $0 \le \tau < 1$, we denote by $\mathcal{P}(\tau)$ the set of real valued C^{∞} -functions $\phi(x, \xi)$ in \mathbb{R}^{2n} such that $J(x, \xi) = \phi(x, \xi) - x \cdot \xi$ belongs to S^1 and

(1.3)
$$\sum_{|\boldsymbol{\alpha}+\boldsymbol{\beta}|\leq 2} \sup_{\boldsymbol{x},\boldsymbol{\xi}} \left\{ |J_{(\boldsymbol{\beta})}^{(\boldsymbol{\alpha})}(\boldsymbol{x},\boldsymbol{\xi})/\langle\boldsymbol{\xi}\rangle^{1-|\boldsymbol{\alpha}|} | \right\} \leq \tau.$$

REMARK 1.1. In [10] $\mathcal{P}(\tau)$ denoted the class of C^2 -functions. The above definition is due to [11].

We define the Fourier integral operator $p_{\phi}(X, D_x)$ with symbol $p(x, \xi) \in S^m$ and phase function $\phi(x, \xi) \in \mathcal{P}(\tau)$ by

(1.4)
$$p_{\phi}(X, D_x)u(x) = \int_{\mathbb{R}^n} e^{i\phi(x,\xi)} p(x, \xi) \hat{u}(\xi) d\xi, \quad u \in \mathcal{S}.$$

DEFINITION 1.3. Let $\phi_j \in \mathcal{P}(\tau_j)$, $j = 1, \dots, \nu+1, \dots, \overline{\tau}_{\infty} \equiv \sum_{j=1}^{\infty} \tau_j \leq \tau_0$ for a sufficiently small fixed τ_0 with $0 < \tau_0 \leq 1/8$. We define the multi-product $\Phi_{\nu+1}(x, \xi) = (\phi_1 \sharp \cdots \sharp \phi_{\nu+1})(x, \xi)$ of phase functions $\phi_j(x, \xi)$ $(j=1, \dots, \nu+1)$ by

(1.5)
$$\Phi_{\nu+1}(x^{0},\xi^{\nu+1}) = \sum_{j=1}^{\nu} (\phi_{j}(X_{\nu}^{j-1},\Xi_{\nu}^{j}) - X_{\nu}^{j} \cdot \Xi_{\nu}^{j}) + \phi_{\nu+1}(X_{\nu}^{\nu},\xi^{\nu+1})$$
$$(X_{\nu}^{0} = x^{0}),$$

where $\{X_{\nu}^{j}, \Xi_{\nu}^{j}\}_{j=1}^{\nu}(x^{0}, \xi^{\nu+1})$ is defined as the solution of the equation

(1.6)
$$\begin{cases} x^{j} = \nabla_{\xi} \phi_{j}(x^{j-1}, \xi^{j}), \\ \xi^{j} = \nabla_{x} \phi_{j+1}(x^{j}, \xi^{j+1}), \quad j = 1, \dots, \nu. \end{cases}$$

Proposition 1.4 (Theorem 1.8 and Theorem 1.9 in [10]). Let $\phi_j \in \mathcal{P}(\tau_j)$, $j=1, \dots, \nu+1, \dots, \overline{\tau}_{\infty} \leq \tau_0 \leq 1/8$. Then, $\Phi_{\nu+1}(x, \xi)$ of (1.5) is well defined and belongs to $\mathcal{P}(c_0\overline{\tau}_{\nu+1}), \overline{\tau}_{\nu+1} = \tau_1 + \dots + \tau_{\nu+1}$, with a constant $c_0 > 0$ independent of ν and τ_0 . We also get

(1.7)
$$\begin{cases} \nabla_x \Phi_{\nu+1}(x^0, \xi^{\nu+1}) = \nabla_x \phi_1(x^0, \Xi^{\nu}(x^0, \xi^{\nu+1})), \\ \nabla_{\xi} \Phi_{\nu+1}(x^0, \xi^{\nu+1}) = \nabla_{\xi} \phi_{\nu+1}(X^{\nu}(x^0, \xi^{\nu+1}), \xi^{\nu+1}), \end{cases}$$

(1.8)
$$\phi_1 \# \phi_2 \# \phi_3 = (\phi_1 \# \phi_2) \# \phi_3 = (\phi_1 \# \phi_2 \# \phi_3).$$

Consider a hyperbolic equation

(1.9)
$$(D_t + \lambda(t, X, D_x))u = 0$$
 on $[0, T]$
 $(\lambda(t, x, \xi) \in B^{\infty}([0, T]; S^1)$, real valued).

Let $\phi = \phi(t, s) = \phi(t, s; x, \xi)$ be the solution of the eiconal equation

(1.10)
$$\begin{cases} \partial_t \phi + \lambda(t, x, \nabla_x \phi) = 0 \quad \text{on } [0, T], \\ \phi|_{t=s} = x \cdot \xi. \end{cases}$$

Then, we have

Proposition 1.5 (Theorem 3.1 in [9]). For a small T_0 $(0 < T_0 \le T)$ we get $\phi(t, s) \in \mathcal{P}(c(t-s))$ $(0 \le s \le t \le T_0)$ with a constant c > 0.

We fix such a T_0 in what follows. Take λ_j $(j=1, \dots, \nu+1, \dots)$ as λ of (1.9) such that $\{\lambda_j\}_{j=1}^{\infty}$ is bounded in $B^{\infty}([0, T]; S^1)$ and let ϕ_j be the solutions of (1.10) corresponding to λ_j . We define $\Phi = \Phi_{1,2,\dots,\nu+1}(t_0, \dots, t_{\nu+1}; x^0, \xi^{\nu+1})$ $(0 \leq t_{\nu+1} \leq \dots \leq t_0 \leq T_0 \leq T)$ by

(1.11)
$$\Phi(t_0, \dots, t_{\nu+1}) = \phi_1(t_0, t_1) \# \dots \# \phi_{\nu+1}(t_{\nu}, t_{\nu+1}),$$

and define $\{X_{\nu}^{j}, \Xi_{\nu}^{j}\}_{j=1}^{\nu}(t_{0}, \dots, t_{\nu+1}; x^{0}, \xi^{\nu+1})$ as the solution of

(1.12)
$$\begin{cases} x^{j} = \nabla_{\xi} \phi_{j}(t_{j-1}, t_{j}; x^{j-1}, \xi^{j}), \\ \xi^{j} = \nabla_{x} \phi_{j+1}(t_{j}, t_{j+1}; x^{j}, \xi^{j+1}), \quad j = 1, \dots, \nu, \end{cases}$$

where $T_0 > 0$ is a constant independent of ν in Proposition 1.4 and Proposition 1.5. Then, we have

Proposition 1.6 (Theorem 2.3 in [10]). $\Phi(t_0, \dots, t_{\nu+1})$ of (1.11) satisfies

10.
$$\begin{aligned} \partial_{t_{j}} \Phi &= \lambda_{j}(t_{j}, X_{\nu}^{j}, \Xi_{\nu}^{j}) - \lambda_{j+1}(t_{j}, X_{\nu}^{j}, \Xi_{\nu}^{j}) \\ (j &= 0, \cdots, \nu + 1, \ \lambda_{0} = \lambda_{\nu+2} = 0, \ X_{\nu}^{0} = x^{0}, \ \Xi_{\nu}^{0} = \nabla_{x^{0}} \Phi, \\ X_{\nu}^{\nu+1} &= \nabla_{\xi^{\nu+1}} \Phi, \ \Xi_{\nu}^{\nu+1} = \xi^{\nu+1}). \end{aligned}$$

2°. If $t_j = t_{j+1}$ for some j, we have

$$\begin{split} \Phi_{1,2,\cdots,\nu+1}(t_0,\cdots,t_j,t_{j+1},\cdots,t_{\nu+1}) \\ &= \Phi_{1,2,\cdots,j,j+2,\cdots,\nu+1}(t_0,\cdots,t_j,t_{j+2},\cdots,t_{\nu+1}) \,. \end{split}$$

3°. If $\lambda_j = \lambda_{j+1}$ for some j, we have

$$\Phi_{1,2,\cdots,\nu+1}(t_0,\cdots,t_{\nu+1}) = \Phi_{1,2,\cdots,j-1,j+1,\cdots,\nu+1}(t_0,\cdots,t_{j-1},t_{j+1},\cdots,t_{\nu+1}).$$

Now let $(q, p)(t, s; y, \eta) = ((q_1, \dots, q_n), (p_1, \dots, p_n))(t, s; y, \eta) \ (0 \le s \le t \le T)$ be the bicharacteristic strip for (1.9), that is, (q, p)(t, s) is the solution of

(1.13)
$$\begin{cases} \frac{dq}{dt} = \nabla_{\xi} \lambda(t, q, p), \\ \frac{dp}{dt} = -\nabla_{x} \lambda(t, q, p), \quad (q, p)|_{t=s} = (y, \eta). \end{cases}$$

Then, we can solve (1.13) in full interval $s \le t \le T$ by the Gronwall inequality, since $|\nabla_{\xi}\lambda(t, q, p)| \le C_1$ and $|\nabla_x\lambda(t, q, p)| \le C_1 \le p > (0 \le t \le T)$ for a constant $C_1 > 0$. We state propositions on the bicharacteristic strips.

Lemma 1.7. Let $\phi(x, \xi) \in \mathcal{P}(\tau)$. Then, for any $y, \eta \in \mathbb{R}^{2n}$ (resp. (x, ξ)) there exists a point $(x, \xi) \in \mathbb{R}^{2n}$ (resp. (y, η)) such that

(1.14)
$$y = \nabla_{\xi} \phi(x, \eta), \, \xi = \nabla_x \phi(x, \eta) \, .$$

Proof. Set
$$F(x) = F(x; y, \eta) = -\nabla_{\xi} \phi(x, \eta) + x + y$$
. We have

$$|F(x') - F(x)| \leq \int_{0}^{1} ||\nabla_{x} \nabla_{\xi} \phi(x + \theta(x' - x), \eta) - I|| d\theta |x' - x| \leq \tau |x' - x|,$$

where *I* is a unit matrix and for a matrix $A = (a_{ij}; \frac{i \downarrow}{j \rightarrow} 1, \dots, n)$ the norm ||A|| is defined by $\{\sum_{i,j} |a_{ij}|^2\}^{1/2}$. Then, we can apply the fixed point theorem, and $x = x(y, \eta)$ satisfying $y = \nabla_{\xi} \phi(x, \eta)$ is determined as the fixed point. Then, $\xi(y, \eta)$ is determined by $\nabla_x \phi(x(y, \eta), \eta)$.

Similarly, $(y(x, \xi), \eta(x, \xi))$ is determined. Q.E.D.

Lemma 1.8. Let (q, p) $(t, s; y, \eta)$ $(0 \le s \le t \le T)$ be the bicharacteristic strip defined by (1.13) and $\phi(t, s; x, \xi)$ $(0 \le s \le t \le T_0)$ be the solution of the eiconal equation (1.10). Then, it follows that

(1.15)
$$y = \nabla_{\xi} \phi(t, s; q(t, s), \eta), \quad p(t, s) = \nabla_{x} \phi(t, s; q(t, s), \eta)$$
$$(0 \leq s \leq t \leq T_{0}).$$

Proof. By Lemma 1.7 we can define $(q', p')(t, s; y, \eta) (0 \le s \le t \le T_0)$ by (1.16) $y = \nabla_{\xi} \phi(t, s; q'(t, s), \eta), p'(t, s) = \nabla_x \phi(t, s; q'(t, s), \eta).$

Differentiate both sides of (1.16) in t, respectively. Then, using (1.10) we get

$$\begin{cases} \frac{dq'}{dt}(t,s) = \nabla_{\xi}\lambda(t,q'(t,s),p'(t,s)), \\ \frac{dp'}{dt}(t,s) = -\nabla_{x}\lambda(t,q'(t,s),p'(t,s)). \end{cases}$$

Since q'(s, s) = y and $p'(s, s) = \eta$ from (1.16), we can see that q'(t, s) = q(t, s)and p'(t, s) = p(t, s) $(0 \le s \le t \le T_0)$. Q.E.D.

Take λ_j $(j=1, \dots, \nu+1)$ as λ of (1.9) and define $\Phi = \Phi_{1,\dots,\nu+1}(t_0, \dots, t_{\nu+1}; x, \xi)$ $(0 \le t_{\nu+1} \le \dots \le t_0 \le T_0 \le T)$ by (1.11) corresponding to $\{\lambda_j\}_{j=1}^{\nu+1}$. For a set $\{t'_0, \dots, t'_{\nu+1}\} \subset [0, T_0]$ such that $t'_0 \ge t'_1 \ge \dots \ge t'_{\nu+1}$ (resp. $t'_0 \le t'_1 \le \dots \le t'_{\nu+1}$) we define a trajectory $(Q, P)(\sigma) = (Q_{1,\dots,\nu+1}, P_{1,\dots,\nu+1})(\sigma; t'_0, \dots, t'_{\nu+1}; y, \eta)$ in $t'_0 \ge \sigma \ge t'_{\nu+1}$ (resp. $t'_0 \le \sigma \le t'_{\nu+1}$) as follows: $(Q, P)(\sigma)$ are continuous functions on $[t'_{\nu+1}, t'_0]$ (resp. $[t'_0, t'_{\nu+1}]$) such that $(Q, P)(t'_{\nu+1}) = (y, \eta)$ and for $\sigma \in (t'_k, t'_{k-1})$ (resp. $\sigma \in (t'_{k-1}, t'_k)$) $(Q, P)(\sigma)$ satisfy

(1.17)
$$\frac{dQ}{d\sigma} = \nabla_{\xi} \lambda_k(\sigma, Q, P), \quad \frac{dP}{d\sigma} = -\nabla_x \lambda_k(\sigma, Q, P).$$

Then, we obtain

Proposition 1.9. Let $T \ge T_0 \ge t_0 \ge \cdots \ge t_{\nu+1} \ge 0$. Using Lemma 1.7, for any point (y, η) take a point x satisfying

(1.18)
$$y = \nabla_{\xi} \Phi_{1,\dots,\nu+1}(t_0,\dots,t_{\nu+1};x,\eta).$$

Then, we have

(1.19)
$$(Q_{1,\dots,\nu+1}, P_{1,\dots,\nu+1})(t_k; t_0,\dots,t_{\nu+1}; y, \eta) \\ = (X_{\nu}^k, \Xi_{\nu}^k)(t_0,\dots,t_{\nu+1}; x, \eta) \qquad (k = 0,\dots,\nu+1),$$

where $\{X_{\nu}^{j},\Xi_{\nu}^{j}\}_{j=1}^{\nu}$ is the solution of (1.12) corresponding to $\Phi=\Phi_{1,\dots,\nu+1}$ and

(1.20)
$$\begin{cases} X_{\nu}^{0} = x, \ \Xi_{\nu}^{0} = \nabla_{x} \Phi_{1, \cdots, \nu+1}(t_{0}, \cdots, t_{\nu+1}; x, \eta), \\ X_{\nu}^{\nu+1} = y, \ \Xi_{\nu}^{\nu+1} = \eta. \end{cases}$$

Proof. Relation (1.7) in Proposition 1.4 shows that

$$\left(egin{array}{l}
abla_{f k} \Phi(t_0,\,\cdots,\,t_{
u+1};\,x,\,\eta) =
abla_{f k} \phi_{
u+1}(t_
u,\,t_{
u+1};\,X^
u,\,\eta)\,, \
abla_{f x} \Phi(t_0,\,\cdots,\,t_{
u+1};\,x,\,\eta) =
abla_{f x} \phi_1(t_0,\,t_1;\,x,\,\Xi^1_
u)\,. \end{array}
ight.$$

Together with (1.12) and (1.18) we get

(1.21)
$$\begin{cases} X_{\nu}^{k} = \nabla_{\xi} \phi_{k}(t_{k-1}, t_{k}; X_{\nu}^{k-1}, \Xi_{\nu}^{k}), \\ \Xi_{\nu}^{k-1} = \nabla_{x} \phi_{k}(t_{k-1}, t_{k}; X_{\nu}^{k-1}, \Xi_{\nu}^{k}), \qquad k = 1, \dots, \nu+1. \end{cases}$$

Now when $k=\nu+1$, (1.19) is valid. From the definition of $(Q, P)(\sigma)=(Q_{1,\dots,\nu+1}, P_{1,\dots,\nu+1})(\sigma)$ and by Lemma 1.8 we have

$$\begin{cases} y = \nabla_{\xi} \phi_{\nu+1}(t_{\nu}, t_{\nu+1}; Q(t_{\nu}), \eta), \\ P(t_{\nu}) = \nabla_{x} \phi_{\nu+1}(t_{\nu}, t_{\nu+1}; Q(t_{\nu}), \eta). \end{cases}$$

Compare the above relation with X^{ν}_{ν} and Ξ^{ν}_{ν} of (1.21). Setting $X^{\nu+1}_{\nu} = y$, $\Xi^{\nu+1}_{\nu} = \eta$, we get by Lemma 1.7

$$Q(t_{\nu}) = X^{\nu}_{\nu}, \quad P(t_{\nu}) = \Xi^{\nu}_{\nu}.$$

In a similar way we can prove (1.19), inductively. Q.E.D.

2. Contraction of multi-phase functions

Let $\lambda_j(t, x, \xi) \in B^{\infty}([0, T]; S^1)$ (j=1, 2) and be real valued functions. Throughout this section we assume that

$$\begin{array}{ll} (*) & \{\tau + \lambda_i, \ \{\tau + \lambda_j, \ \tau + \lambda_k\}\}(t, \ x, \ \xi) = 0 & \text{ on } [0, \ T] \times R^{2n}_{x, \xi} \\ & (i, \ j, \ k = 1, \ 2) \ , \end{array}$$

where for $f, g \in C^1(\mathbb{R}^{2(n+1)}_{t,x,\tau,\xi})$ $\{f, g\}(t, x; \tau, \xi)$ denotes the Poisson bracket

(2.1)
$$\{f,g\}(t,x;\tau,\xi) = (\partial_{\tau}f\partial_{t}g - \partial_{t}f\partial_{\tau}g + \nabla_{\xi}f \cdot \nabla_{x}g - \nabla_{x}f \cdot \nabla_{\xi}g)(t,x;\tau,\xi).$$

Let $\phi_j(t, s; x, \xi)$ $(j=1, 2, 0 \le s \le t \le T_0)$ be the solutions of the eiconal equation (1.10) corresponding to λ_j and define $\Phi = \Phi_{j_1, \cdots, j_{\nu+1}}(t_0, \cdots, t_{\nu+1}) \in$ $\mathcal{P}(c_0(t_0 - t_{\nu+1}))$ $(0 \le t_{\nu+1} \le \cdots \le t_0 \le T_0, j_k = 1, 2)$ by $\Phi = \phi_{j_1}(t_0, t_1) \# \cdots \# \phi_{j_{\nu+1}}(t_{\nu}, t_{\nu+1})$, where $c_0 > 0$ and $T_0 > 0$ are constants independent of ν (see Proposition 1.4 and Proposition 1.5). We fix such a T_0 in what follows. It is easy to see that

Lemma 2.1. Let $H(t, x, \xi) \in C^1(\mathbb{R}^{2n+1})$ and $(q, p)(t) = (q, p)(t, s; y, \eta)$ $(0 \leq s \leq t \leq T_0)$ be the bicharacteristic strip defined by (1.13) for $\tau + \lambda(t, x, \xi)$ of (1.9). Then, we have

(2.2)
$$\frac{d}{d\sigma}H(\sigma, q(\sigma), p(\sigma)) = -\{H, \tau + \lambda\}(\sigma, q(\sigma), p(\sigma)) \quad (s \leq \sigma \leq T_0).$$

Lemma 2.2. For $J = (j_1, \dots, j_{\nu+1})$ $(j_k = 1, 2)$ and a set $\{t_0, \dots, t_{\nu+1}\}$ $(T \ge t_0 \ge \dots \ge t_{\nu+1} \ge 0)$ let $(Q, P)(\sigma) = (Q_{j_1, \dots, j_{\nu+1}}, P_{j_1, \dots, j_{\nu+1}})(\sigma; t_0, \dots, t_{\nu+1}; y, \eta)$ be the solution of (1.17) corresponding to $\{\lambda_{j_k}\}_{k=1}^{\nu+1}$. Set

(2.3)
$$v(\sigma) = (\lambda_2 - \lambda_1)(\sigma, Q(\sigma), P(\sigma)) \quad (t_{\nu+1} \leq \sigma \leq t_0).$$

Then, we get

(2.4)
$$\frac{d}{d\sigma}v(\sigma) = \{\tau + \lambda_1, \tau + \lambda_2\}(\sigma, Q(\sigma), P(\sigma)) \quad (t_{\nu+1} \leq \sigma \leq t_0).$$

Proof. For $\sigma \in (t_k, t_{k-1})$ it follows from Lemma 2.1 that

$$egin{aligned} &rac{d}{d\sigma}v(\sigma)=-\{\lambda_2,\, au+\lambda_{j_k}\}+\{\lambda_1,\, au+\lambda_{j_k}\}\ &=-\{ au+\lambda_2,\, au+\lambda_{j_k}\}+\{ au+\lambda_1,\, au+\lambda_{j_k}\}\ . \end{aligned}$$

Q.E.D.

Q.E.D.

Then, we get (2.4) in both cases $j_k=1$ and 2.

Lemma 2.3. Assume that the assumption (*) holds. Then, for $v(\sigma)$ defined by (2.3) we get

(2.5)
$$v(\sigma) = a\sigma + b \qquad (t_{\nu+1} \leq \sigma \leq t_0),$$

where $a = \{\tau + \lambda_1, \tau + \lambda_2\}(t_{\nu+1}, y, \eta)$ and $b = (\lambda_2 - \lambda_1)(t_{\nu+1}, y, \eta) - at_{\nu+1}$.

Proof. We can see from Lemma 2.2 that $v(\sigma)$ belongs to $C^1([t_{\nu+1}, t_0])$. From (2.4) and Lemma 2.1 it follows that

$$rac{d^2}{d\sigma^2} v(\sigma) = -\left\{\{ au{+}\lambda_1,\, au{+}\lambda_2\},\, au{+}\lambda_{j_k}\} = 0 \qquad (t_k{<}\sigma{<}t_{k{-}1})\,.$$

Hence, we get (2.5).

REMARK 2.1. If the assumption (*) is satisfied, $v(\sigma)$ defined by (2.3) depends only on σ , $t_{\nu+1}$, y and η , and is independent of the choice of $J=(j_1, \dots, j_{\nu+1})$ ($\nu=1, 2, \dots$) and $\{t_0, \dots, t_\nu\}$.

Theorem 2.4. Assume that the assumption (*) holds. For $\{t, t_1, t_2, s\}$ $(0 \leq s < t_2 < t_1 < t \leq T_0)$ we define functions (ψ_1, ψ_2) (t, t_1, t_2, s) by

(2.6)
$$\begin{cases} \psi_1(t, t_1, t_2, s) = t - \frac{(t_1 - t_2)(t_2 - s)}{t - t_1 + t_2 - s}, \\ \psi_2(t, t_1, t_2, s) = t_1 - t_2 + s - \frac{(t_1 - t_2)(t_2 - s)}{t - t_1 + t_2 - s} \end{cases}$$

Then, we obtain

$$(2.7) \qquad \Phi_{1,2,1}(t, \psi_1, \psi_2, s; x, \xi) = \Phi_{2,1,2}(t, t_1, t_2, s; x, \xi).$$

Proof. We shall determine $\psi_j(t, t_1, t_2, s)$ (j=1, 2) of (2.6) as the functions satisfying (2.7). From Proposition 1.6 we get $\Phi_{2,1,2}(t, t_1, t_2, s; x, \xi)$ as the solution of

$$\begin{cases} \partial_t \Phi_{2,1,2} + \lambda_2(t, x, \nabla_x \Phi_{2,1,2}) = 0, \\ \Phi_{2,1,2}|_{t=t_1} = \Phi_{1,2}(t_1, t_2, s; x, \xi). \end{cases}$$

So, we have only to determine ψ_j (j=1, 2) depending only on t, t_1, t_2 and s such that for $\Phi_{1,2,1}(t, t_1, t_2, s) = \Phi_{1,2,1}(t, t_1, t_2, s; x, \xi)$

(2.8)
$$\begin{cases} \partial_t(\Phi_{1,2,1}(t,\,\psi_1,\,\psi_2,\,s)) + \lambda_2(t,\,x,\,\nabla_x \Phi_{1,2,1}(t,\,\psi_1,\,\psi_2,\,s)) = 0, \\ \Phi_{1,2,1}(t,\,\psi_1,\,\psi_2,\,s)|_{t=t_1} = \Phi_{1,2}(t_1,\,t_2,\,s;\,x,\,\xi) \end{cases}$$

holds.

Suppose that for ψ_j (j=1, 2) (2.7) holds. Set $\Delta = (t, \psi_1, \psi_2, s; x, \xi)$ and $\psi'_j = \partial_t \psi_j$ (j=1, 2). Then, from (2.8) and Proposition 1.6 we have

$$\begin{array}{ll} (2.9) \quad 0 = (\partial_t \Phi_{1,2,1})(\Delta) + (\partial_{t_1} \Phi_{1,2,1})(\Delta)\psi_1' + \\ & (\partial_{t_2} \Phi_{1,2,1})(\Delta)\psi_2' + \lambda_2(t,\,x,\,\nabla_x \Phi_{1,2,1}(\Delta)) \\ = (\lambda_2 - \lambda_1)(t,\,x,\,\nabla_x \Phi_{1,2,1}(\Delta)) - \\ & (\lambda_2 - \lambda_1)(\psi_1,\,X_2^1(\Delta),\,\Xi_2^1(\Delta))\psi_1' + (\lambda_2 - \lambda_1)(\psi_2,\,X_2^2(\Delta),\,\Xi_2^2(\Delta))\psi_2'\,, \end{array}$$

where $\{X_{2}^{i}, \Xi_{2}^{i}\}_{i=1}^{2}(t_{0}, t_{1}, t_{2}, t_{3}; x, \xi)$ is the solution of

$$egin{aligned} &x^k =
abla_{\xi} \phi_{j_k}(t_{k-1},\,t_k;\,x^{k-1},\,\xi^k),\,\xi^k =
abla_x \phi_{j_{k+1}}(t_k,\,t_{k+1};\,x^k,\,\xi^{k+1})\ &(k=1,\,2,\,x^0=x,\,\,\xi^3=\xi,\,j_1=1,\,j_2=2,\,j_3=1)\,. \end{aligned}$$

Take a point y such that

$$y = \nabla_{\xi} \Phi_{1,2,1}(\Delta) = \nabla_{\xi} \Phi_{1,2,1}(t, \psi_1, \psi_2, s; x, \xi).$$

Let $(Q, P)(\sigma) = (Q_{1,2,1}, P_{1,2,1})(\sigma; t, \psi_1, \psi_2, s; y, \xi)$ be the solution of (1.17) and set

$$v(\sigma) = (\lambda_2 - \lambda_1)(\sigma, Q(\sigma), P(\sigma))$$
.

Then, by Proposition 1.9 we can write (2.9) in the form

(2.9)'
$$0 = v(t) - v(\psi_1)\psi'_1 + v(\psi_2)\psi'_2.$$

Take account of the assumption (*). Since from Lemma 2.3 $v(\sigma)$ has the form $a\sigma+b$, we get

(2.9)"
$$0 = (at+b) - (a\psi_1 + b)\psi_1' + (a\psi_2 + b)\psi_2'$$
$$= -a(\psi_1\psi_1' - \psi_2\psi_2' - t) - b(\psi_1' - \psi_2' - 1)$$

Now we take ψ_i such that ψ_i satisfy

(2.10)
$$\psi_1' - \psi_2' = 1$$
, $\psi_1 \psi_1' - \psi_2 \psi_2' = t$.

If $\psi_1|_{t=t_1} = t_2$ and $\psi_2|_{t=t_1} = s$, the second equality of (2.8) is also satisfied by Proposition 1.6. Hence, we obtain

(2.11)
$$\psi_1 - \psi_2 = t - t_1 + t_2 - s$$
, $\psi_1^2 - \psi_2^2 = t^2 - t_1^2 + t_2^2 - s^2$.

Solving (2.11), we get the functions of (2.6) satisfying (2.7). Q.E.D.

REMARK 2.2. For real constants a_j and b_j $\lambda_1 = -\sum_{i=1}^n a_i \xi_i$ and $\lambda_2 = -2t \sum_{i=1}^n b_i \xi_i$ on $R_{x,\xi}^{2n}$ satisfy the assumption (*). Then, we have

$$\begin{cases} \Phi_{1,2,1}(t, t_1, t_2, s; x, \xi) = \sum_{i=1}^n \{a_i(t-t_1+t_2-s)+b_i(t_1^2-t_2^2)\}\xi_i+x\cdot\xi, \\ \Phi_{2,1,2}(t, t_1, t_2, s; x, \xi) = \sum_{i=1}^n \{a_i(t_1-t_2)+b_i(t^2-t_1^2+t_2^2-s^2)\}\xi_i+x\cdot\xi. \end{cases}$$

From these multi-phase functions we see that ψ_j (j=1, 2) of (2.6) are uniquely determined functions which satisfy (2.7) for any a_j and b_j .

REMARK 2.3. Set $\Delta_2 = \{(t_1, t_2); 0 \leq s < t_2 < t_1 < t \leq T_0\}$. Consider the mapping $M: \Delta_2 \supseteq (t_1, t_2) \rightarrow (\psi_1, \psi_2)$ with (t, s) as a parameter. It is clear that the image of the mapping M is included in Δ_2 . Since from (2.11)

$$t_1-t_2 = t-\psi_1+\psi_2-s, t_1^2-t_2^2 = t^2-\psi_1^2+\psi_2^2-s^2$$
,

 $M^2 = I$ (identity map) holds. This implies that the mapping $M: \Delta_2 \rightarrow \Delta_2$ is one to one and onto. Make the change of variables with (t, s) as a parameter

$$t'_1 = \psi_1(t, t_1, t_2, s), \quad t'_2 = \psi_2(t, t_1, t_2, s).$$

Then, we get

$$\int_{s}^{t} \int_{s}^{t_{1}} \exp \left\{ i \Phi_{2,1,2}(t, t_{1}, t_{2}, s; x, \xi) \right\} dt_{2} dt_{1}$$

= $\int_{s}^{t} \int_{s}^{t_{1}'} \exp \left\{ i \Phi_{1,2,1}(t_{1}, t_{1}', t_{2}', s; x, \xi) \right\} \frac{t_{1}' - t_{2}'}{t - t_{1}' + t_{2}' - s} dt_{2}' dt_{1}'.$

We note that the functions ψ_1 , ψ_2 and $(t_1-t_2)/(t-t_1+t_2-s)$ have singular points $(t_1=t, t_2=s)$. So it seems that it is not easy to construct the fundamental solution by using Fourier integral operators with a finite number of phase functions, if we only follow the method in [10], [11], [15] and [17].

Let $(Q_{j_1,\dots,j_{\nu+1}}, P_{j_1,\dots,j_{\nu+1}})(\sigma; t_0, \dots, t_{\nu+1}; y, \eta)$ be the solution of (1.17) corresponding to $\{\lambda_{j_k}\}_{k=1}^{\nu+1}$ and a set $\{t_0, \dots, t_{\nu+1}\} \subset [0, T_0]$.

Corollary 2.5. Assume that (*) holds. Then, for any $\nu (\geq 2)$, $\{j_1, \dots, j_{\nu+1}\}$ $(j_k=1, 2, j_k \neq j_{k+1})$ and $\{t_0, \dots, t_{\nu+1}\}$ $(T_0 \geq t_0 > \dots > t_{\nu+1} \geq 0)$ we get

(2.12)
$$\Phi_{j_1,\cdots,j_{\nu+1}}(t_0,\cdots,t_{\nu+1};x,\xi) \\ = \Phi_{1,2,1}(t_0,t_1',t_2',t_{\nu+1};x,\xi),$$

for some t'_j $(j=1, 2, t_0 > t'_1 > t'_2 > t_{\nu+1})$ independent of x and ξ . By using the same t'_j (j=1, 2) we also get

(2.13)
$$(Q_{i_1,\cdots,i_{\nu+1}}, P_{i_1,\cdots,i_{\nu+1}})(t_0; t_0, \cdots, t_{\nu+1}; y, \eta) \\ = (Q_{1,2,1}, P_{1,2,1})(t_0; t_0, t_1', t_2', t_{\nu+1}; y, \eta)$$

for any point $(y, \eta) \in \mathbb{R}^{2n}$.

Proof. We can get (2.12) by Proposition 1.6 and Theorem 2.4, inductively. Then, we obtain (2.13) by using (2.12) and Proposition 1.9. Q.E.D.

REMARK 2.4. For $\lambda_j(t, x, \xi)$ (j=1, 2) in Remark 2.2 we have

(2.14)
$$\begin{cases} \phi_{1}(t, s) = \sum_{i=1}^{n} a_{i}(t-s)\xi_{i} + x \cdot \xi, \\ \phi_{2}(t, s) = \sum_{i=1}^{n} b_{i}(t^{2}-s^{2})\xi_{i} + x \cdot \xi, \\ \Phi_{1,2}(t, t_{1}, s) = \sum_{i=1}^{n} \{a_{i}(t-t_{1}) + b_{i}(t^{2}_{1}-s^{2})\}\xi_{i} + x \cdot \xi, \\ \Phi_{2,1}(t, t_{1}, s) = \sum_{i=1}^{n} \{a_{i}(t_{1}-s) + b_{i}(t^{2}-t^{2}_{1})\}\xi_{i} + x \cdot \xi. \end{cases}$$

Comparing (2.14) with $\Phi_{1,2,1}$ and $\Phi_{2,1,2}$ in Remark 2.2, we can see that we can gererally contract $\Phi_{1,2,1}(t, t_1, t_2, s)$ and $\Phi_{2,1,2}(t, t_1, t_2, s)$ $(t>t_1>t_2>s)$ no more. Furthermore, from Proposition 1.9 we can also see that we can generally contract $(Q_{1,2,1}, P_{1,2,1})(t, t_1, t_2, s)$ and $(Q_{2,1,2}, P_{2,1,2})(t, t_1, t_2, s)(t>t_1>t_2>s)$ no more.

EXAMPLES. We give examples of λ_k (t, x, ξ) (k=1, 2) satisfying (*) on $[0, T] \times R_{x,\xi}^6$ except λ_k in Remark 2.2 below. They are not involutive, since $\{\tau+\lambda_1, \tau+\lambda_2\}(t, x, \xi)$ doe snot identically vanish on a set $\{(t, x, \xi); \lambda_1(t, x, \xi) = \lambda_2(t, x, \xi)\}$.

1. $\lambda_1(t, x, \xi) = \xi_1, \lambda_2(t, x, \xi) = x_1\xi_2 + \xi_3.$

2.
$$\lambda_1(t, x, \xi) = x_1\xi_1, \lambda_2(t, x, \xi) = t\xi_2$$

3. $\lambda_1(t, x, \xi) = x_2\xi_1 + \xi_3, \lambda_2(t, x, \xi) = -x_3\xi_1 + \xi_2.$

3. Propagation of singularities

Consider a hyperbolic system with diagonal principal part

(3.1)
$$L = D_t + \binom{\lambda_1 \ 0}{0 \ \lambda_2}(t, X, D_x) + \binom{b_{11} \ b_{12}}{b_{21} \ b_{22}}(t, X, D_x)$$
$$\text{on } [0, T] \times R^n \quad (\lambda_j(t, x, \xi) \in B^{\infty}([0, T]; S^1), \text{real valued, } b_{jk}(t, x, \xi) \in B^{\infty}([0, T]; S^0)).$$

We assume that for a constant M > 0 we have

(3.2)
$$\lambda_j(t, x, \delta\xi) = \delta\lambda_j(t, x, \xi) \quad (|\xi| \ge M, \delta \ge 1).$$

We also assume that (*) of Section 2 holds.

We study the Cauchy problem

(3.3)
$$\begin{cases} LU(t, x) = 0 & \text{on } [0, T], \\ U|_{t=0} = G(x), \end{cases}$$

where $U(t, x) = {}^{t}(u_1(t, x), u_2(t, x))$ and $G(x) = {}^{t}(g_1(x), g_2(x))(g_k(x) \in H_{-\infty} = \bigcup_{\sigma} H_{\sigma})$. Let $\phi_j(t, s; x, \xi)$ $(0 \leq s \leq t \leq T_0 \leq T)$ be the solutions of the eiconal equations (1.10) corresponding to λ_j and define $\Phi = \Phi_{j_1, \cdots, j_{\nu+1}}(t_0, \cdots, t_{\nu+1})$ $(j_k = 1, 2)$ by $\Phi = \phi_{j_1}(t_0, t_1) \# \cdots \# \phi_{j_{\nu+1}}(t_{\nu}, t_{\nu+1})$ (see (1.11)).

If we apply Theorem 3.1 in Kumano-go-Taniguchi [11] to L of (3.1), then, for a small T_0 ($0 < T_0 \le T$) we can get the fundamental solution E(t, s) ($0 \le s \le t \le T_0$) of L (i.e. LE(t, s)=0 on $[0, T_0]$ and E(s, s)=I (unit matrix)), which is represented by means of Fourier integral operators with multi-phase functions $\Phi_{j_1,\cdots,j_{\nu+1}}$ ($\nu=0, 1, \cdots$). We fix such a T_0 in what follows. We will apply the theory in [11] for the propagation of singularities of solutions (Theorem 3.4 in [11]) to the Cauchy problem (3.3).

For $\lambda_{j_1}, \dots, \lambda_{j_{\nu+1}}, (y, \eta)$ and a fixed $0 \leq \varepsilon < 1$ we define an ε -station chain $\{t_1, \dots, t_{\nu}\}$ as the point $t > t_1 > \dots > t_{\nu} > 0$ such that for $k=1, \dots, \nu$

(3.4)
$$\begin{aligned} |\lambda_{j_{k}}(t_{k}, x^{k}, \xi^{k}) - \lambda_{j_{k+1}}(t_{k}, x^{k}, \xi^{k})| &\leq \varepsilon \langle \xi^{k} \rangle \\ \text{at } (x^{k}, \xi^{k}) &= (Q_{j_{1}, \cdots, j_{\nu+1}}, P_{j_{1}, \cdots, j_{\nu+1}})(t_{k}; t, t_{1}, \cdots, t_{\nu}, 0; y, \eta), \end{aligned}$$

where $(Q_{j_1,\cdots,j_{\nu+1}}, P_{j_1,\cdots,j_{\nu+1}})(\sigma; t_0, \cdots, t_{\nu}, 0; y, \eta)$ is the solution of (1.17) corresponding to $\{\lambda_{j_k}\}_{k=1}^{\nu+1}$ and $\{t_0, \cdots, t_{\nu+1}\}$ $(t_0=t, t_{\nu+1}=0)$. Define the \mathcal{E} -station set $\Lambda_{\varepsilon,j_1,\cdots,j_{\nu+1}}(t; y, \eta)$ by the set of all \mathcal{E} -station chains $\{t_1, \cdots, t_{\nu}\}$.

We set $WF(G) = \bigcup_{j=1}^{2} WF(g_j)$ for the wave front set $WF(g_j)$ of g_j . For $J=(j_1, \dots, j_{\nu+1})$ we set

(3.5)
$$\Lambda_{\varepsilon}^{J}(t; y, \eta) = \{ (Q_{j_{1}, \cdots, j_{\nu+1}}, P_{j_{1}, \cdots, j_{\nu+1}})(t; t, t_{1}, \cdots, t_{\nu}, 0; y, \eta); \\ \{t_{1}, \cdots, t_{\nu}\} \in \Lambda_{\varepsilon, j_{1}, \cdots, j_{\nu+1}}(t; y, \eta) \},$$

and set

(3.6)

$$\Gamma_{t,\mathfrak{e}} = \{\delta\Lambda_{\mathfrak{e}}^{J}(t; y, \eta); (y, \eta) \in WF_{\mathfrak{e}}(G), \ J = (j_{1}, \dots, j_{\nu+1}),$$

$$j_{k} = 1, 2, \ \nu = 0, 1, \dots, \delta > 0, \ |\eta| \ge M_{0}\}$$

$$(WF_{\mathfrak{e}}(G) = \{(y, \eta); \operatorname{dis}\{(y, |\eta|^{-1}\eta), WF(G)\} \le \varepsilon\}),$$

for a large constant $M_0 > 0$ depending on M of (3.2). Then, Theorem 3.4 in [11] says without the assumption (*)

Theorem 3.1. $\bigcap_{0 < \mathfrak{e} < 1} \Gamma_{t,\mathfrak{e}}$ is closed and for the solution U(t, x) of the Cauchy problem (3.3) we have

(3.7)
$$WF(U(t)) \subset \bigcap_{0 < \mathfrak{e} < 1} \Gamma_{t,\mathfrak{e}} \qquad (0 \le t \le T_0) \,.$$

If we add the assumption (*), then, setting

(3.8)
$$\tilde{\Gamma}_{t,0} = \{ \delta \Lambda_{\delta}^{J}(t; y, \eta); (y, \eta) \in WF(G), \ \delta > 0, \\ |\eta| \ge M_{0}, \ J = (1), (2), (1, 2), (2, 1), (1, 2, 1) \},$$

we get the main theorem.

Theorem 3.2. Assume that the assumption (*) holds. Then, for the solution U(t, x) of the Cauchy problem (3.3) we get

$$WF(U(t)) \subset \widetilde{\Gamma}_{t,0} \qquad (0 \leq t \leq T_0) .$$

Proof. By Theorem 3.1 we have only to prove that

$$(3.10) \qquad \qquad \bigcap_{0 < \mathfrak{e} < 1} \Gamma_{t,\mathfrak{e}} = \widetilde{\Gamma}_{t,\mathfrak{o}}$$

It is easy to see that $\bigcap_{0 < \ell < 1} \Gamma_{t,\ell} \supset \widetilde{\Gamma}_{t,0}$. So, we prove that

$$\bigcap_{0<\mathfrak{e}<1}\Gamma_{t,\mathfrak{e}}\subset\widetilde{\Gamma}_{t,0}.$$

We fix $0 < t \le T_0$ and take a point $(x^0, \xi^0) \in \bigcap_{0 < \ell < 1} \Gamma_{t,\ell}$ and fix it. If we take $|\xi^0|$ sufficiently large, then, setting $\xi^k = P_{j_{\nu+1},\cdots,j_1}(t_k; 0, t_{\nu}, \cdots, t_0; x^0, \xi^0)$ $(k=1, \cdots, \nu+1, t_{\nu+1}=0)$, we have

(3.11)
$$C^{-1} \leq |\xi^k| \leq C \quad (k = 0, \dots, \nu+1).$$

Here, the positive constant C is independent of the choice of $J = (j_1, \dots, j_{\nu+1})$ and a set $\{t_0, \dots, t_\nu\} \subset [0, t]$. Since (x^0, ξ^0) belongs to $\bigcap_{0 < \mathfrak{e} < 1} \Gamma_{t,\mathfrak{e}}$, for any $\mathcal{E}_m = 2^{-m}$ there exist $J^m_{\nu_m} = (j^m_1, \dots, j^m_{\nu_m+1})$ $(j^m_k = 1, 2, j^m_k \neq j^m_{k+1})$, $(y^m, \eta^m) \in WF_{\mathfrak{e}_m}(G)$ and $\{t^m_1, \dots, t^m_{\nu_m}\} \in \Lambda_{\mathfrak{e}_m, j^m_1, \dots, j^m_{\nu_m+1}}(y^m, \eta^m)$ such that

$$(3.12) (x^0, \xi^0) = (Q_{j_1^m, \cdots, j_{\nu_m+1}^m}, P_{j_1^m, \cdots, j_{\nu_m+1}^m})(t; t, t_1^m, \cdots, t_{\nu_m}^m, 0; y^m, \eta^m).$$

We consider (x^0, ξ^0) deviding into two cases as follows.

I) The case where we can take a subsequence $l = \{m_{\mu}\}_{\mu=1}^{\infty}$ and a point $\sigma_1 (0 \leq \sigma_1 \leq t)$ such that $t_1^l \rightarrow \sigma_1$ and $t_{\nu_l}^l \rightarrow \sigma_1$ as $l \rightarrow \infty$.

II) The other case.

I). We show that (x^0, ξ^0) belongs to $\tilde{\Gamma}_{t,0}$, when $0 < \sigma_1 < t$. In the other case $\sigma_1 = 0$ or t we can also prove this by the similar way. By the assumption I) we can also take a subsequence $\gamma = \{l_{\mu}\}_{\mu=1}^{\infty}$ of $l = \{m_{\mu}\}_{\mu=1}^{\infty}$ such that

$$(j_{1}^{\gamma}, j_{\nu_{\gamma+1}}^{\gamma}) = (1, 1), (1, 2), (2, 1) \text{ or } (2, 2).$$

We may assume that $j_1^{\gamma}=1$ and $j_{\nu_{\gamma+1}}^{\gamma}=2$, since we can prove similarly in the other cases. Now, take a point $(\bar{y}^0, \bar{\eta}^0)$ $(|\bar{\eta}^0| \ge C^{-1}$, see (3.11)) such that

$$(3.13) \qquad (\bar{y}^0, \bar{\eta}^0) = (Q_{2,1}, P_{2,1})(0; 0, \sigma_1, t; x^0, \xi^0).$$

We note that

$$(3.13)' \qquad (x^0, \xi^0) = (Q_{1,2}, P_{1,2})(t; t, \sigma_1, 0; \bar{y}^0, \bar{\eta}^0).$$

Then, it is easy to see that

$$(3.14) \quad \bar{y}^{0} = x^{0} + \int_{t}^{\sigma_{1}} \nabla_{\xi} \lambda_{1}(\sigma, Q_{2,1}(\sigma; 0, \sigma_{1}, t; x^{0}, \xi^{0}), P_{2,1}(\sigma; 0, \sigma_{1}, t; x^{0}, \xi^{0})) d\sigma \\ + \int_{\sigma_{1}}^{0} \nabla_{\xi} \lambda_{2}(\sigma, Q_{2,1}(\sigma; 0, \sigma_{1}, t; x^{0}, \xi^{0}), P_{2,1}(\sigma; 0, \sigma_{1}, t; x^{0}, \xi^{0})) d\sigma.$$

Using the assumption of this case, for any small $\delta > 0$ there exists N such that for any $\gamma \ge N$ we have

(3.15)
$$\{t_1^{\gamma}, \cdots, t_{\nu_{\gamma}}^{\gamma}\} \subset [\sigma_1 - \delta, \sigma_1 + \delta].$$

Since for any y^{γ} we have the similar equality to (3.14), we get

$$|\bar{y}^0 - y^{\gamma}| \leq C_1 \delta$$
 $(\gamma \geq N)$

for a constant $C_1 > 0$ independent of δ and γ . By the similar way we get $|\overline{\eta}^0 - \eta^{\gamma}| \leq C_1 \delta$ $(\gamma \geq N)$.

Consequently, we can see that $(y^{\gamma}, \eta^{\gamma}) \rightarrow (\bar{y}^0, \bar{\eta}^0)$ as $\gamma \rightarrow \infty$ and

$$(3.16) \qquad (\bar{y}^0, \, \bar{\eta}^0) \in WF(G) \,.$$

Next, since $\{t_1^{\gamma}, \dots, t_{\nu_{\gamma}}^{\gamma}\} \in \Lambda_{\epsilon_{\gamma}, j_1^{\gamma}, \dots, j_{\nu_{\gamma}+1}^{\gamma}}(y^{\gamma}, \eta^{\gamma})$, it follows from (3.11) and (3.12) that

 $|(\lambda_2 - \lambda_1)(t_1^{\prime}, Q_1(t_1^{\prime}; t_1^{\prime}, t; x^0, \xi^0), P_1(t_1^{\prime}; t_1^{\prime}, t; x^0, \xi^0))| \leq C \varepsilon_{\gamma}$

for a constant C of (3.11). Here, noting that $j_1^{\gamma}=1$ and $j_{\nu_{\gamma+1}}^{\gamma}=2$, we used

$$\begin{aligned} &(Q_{j_1^{\gamma},\cdots,j_{\nu_{\gamma+1}}^{\gamma}},P_{j_{1}^{\gamma},\cdots,j_{\nu_{\gamma+1}}^{\gamma}})(t_1^{\gamma};\,t,\,t_1^{\gamma},\cdots,t_{\nu_{\gamma}}^{\gamma},\,0;\,y^{\gamma},\,\eta^{\gamma}) \\ &=(Q_1,\,P_1)(t_1^{\gamma};\,t_1^{\gamma},\,t;\,x^0,\,\xi^0)\,. \end{aligned}$$

When $\gamma \rightarrow \infty$, we get from (3.13)

$$\begin{aligned} 0 &= (\lambda_2 - \lambda_1)(\sigma_1, \, Q_1(\sigma_1; \, \sigma_1, \, t; \, x^0, \, \xi^0), \, P_1(\sigma_1; \, \sigma_1, \, t; \, x^0, \, \xi^0)) \\ &= (\lambda_2 - \lambda_1)(\sigma_1, \, Q_{1,2}(\sigma_1; \, t, \, \sigma_1, \, 0; \, \bar{y}^0, \, \bar{\eta}^0), \, P_{1,2}(\sigma_1; \, t, \, \sigma_1, \, 0; \, \bar{y}^0, \, \bar{\eta}^0) \,) \,. \end{aligned}$$

Together with (3.13)' and (3.16) this implies that

$$(x^0, \xi^0) \in \{\Lambda_0^{(1,2)}(t; y, \eta); (y, \eta) \in WF(G)\}$$
$$\subset \widetilde{\Gamma}_{t,0}.$$

II). We can take a subsequence $l = \{m_{\mu}\}_{\mu=1}^{\infty}$ and points σ_1, σ_2 $(0 \le \sigma_2 < \sigma_1 \le t)$ such that $t_1^l \to \sigma_1$ and $t_{\nu_l}^l \to \sigma_2$ as $l \to \infty$. We set

(3.17)
$$v(\sigma; l) = (\lambda_2 - \lambda_1)(\sigma; Q_{j_1^l, \cdots, j_{\nu_l+1}^l}(\sigma; t, t_1^l, \cdots, 0; y^l, \eta^l), P_{j_1^l, \cdots, j_{\nu_l+1}^l}(\sigma; t, t_1^l, \cdots, 0; y^l, \eta^l) \quad (0 \le \sigma \le t).$$

For large *l* we have

$$t_1^l - t_{\nu_l}^l \ge \frac{1}{2} (\sigma_1 - \sigma_2) > 0$$
,

and then, noting that $\{t_1^l, \dots, t_{\nu_l}^l\} \in \Lambda_{\varepsilon_l, j_1^l, \dots, j_{\nu_l+1}^l}(y^l, \eta^l)$, we have by (3.11) $|v(t_1^l; l)|, |v(t_{\nu_l}^l; l)| \leq C\varepsilon_l$.

Consequently, since $v(\sigma; l)$ of (3.17) has the form

$$(3.18) v(\sigma; l) = a\sigma + b (0 \le \sigma \le t)$$

from Lemma 2.3 in Section 2, it follows that

(3.19)
$$|v(\sigma; l)| \leq 2C\varepsilon_l T_0(t_1^l - t_{\nu_l}^l)$$
$$\leq 4C\varepsilon_l T_0(\sigma_1 - \sigma_2) \qquad (0 \leq \sigma \leq t) .$$

Now, by Corollary 2.5 there exist some \overline{t}_1^l , \overline{t}_2^l $(t > \overline{t}_2^l > \overline{t}_2^l > 0)$ such that

(3.20)
$$(x^0, \xi^0) = (Q_{1,2,1}, P_{1,2,1})(t; t, \overline{t}_1^l, \overline{t}_2^l, 0; y^l, \eta^l) .$$

Then, we note that

$$(3.20)' \qquad (y', \eta') = (Q_{1,2,1}, P_{1,2,1})(0; 0, \overline{t}'_2, \overline{t}'_1, t; x^0, \xi^0).$$

We set

(3.21)
$$v_{1}(\sigma; l) = (\lambda_{2} - \lambda_{1})(\sigma; Q_{1,2,1}(\sigma; t, \bar{t}_{1}^{l}, \bar{t}_{2}^{l}, 0; y^{l}, \eta^{l}), P_{1,2,1}(\sigma; t, \bar{t}_{1}^{l}, \bar{t}_{2}^{l}, 0; y^{l}, \eta^{l})).$$

Since $v_1(\sigma; l) = v(\sigma; l)$ by Lemma 2.3 and Remark 2.1, from (3.19) we obtain

$$(3.22) |v_1(\sigma; l)| \leq \frac{4C}{\sigma_1 - \sigma_2} \varepsilon_l T_0.$$

Next, let $\bar{\sigma}_i$ $(i=1, 2, \bar{\sigma}_1 \geq \bar{\sigma}_2)$ be the accumulating points of sets $\{\bar{t}_i^{\prime}\}_{i=1}^{\infty}$, respectively and take some subsequence $\{\gamma = l_{\mu}\}_{\mu=1}^{\infty}$ such that $\bar{t}_1^{\gamma} \rightarrow \bar{\sigma}_1$ and $\bar{t}_2^{\gamma} \rightarrow \bar{\sigma}_2$ as $\gamma \rightarrow \infty$. Then, it follows from (3.20)' that there exists $(\bar{y}^0, \bar{\eta}^0)$ such that

$$(y^{\gamma}, \eta^{\gamma}) \rightarrow (\bar{y}^{0}, \bar{\eta}^{0}) = (Q_{1,2,1}, P_{1,2,1})(0; 0, \bar{\sigma}_{2}, \bar{\sigma}_{1}, t; x^{0}, \xi^{0})$$

as $\gamma \rightarrow \infty$, and

$$(3.23) \qquad (\bar{y}^0, \bar{\eta}^0) \in WF(G) .$$

We note that

(3.24)
$$(x^0, \xi^0) = (Q_{1,2,1}, P_{1,2,1})(t; t, \bar{\sigma}_1, \bar{\sigma}_2, 0; \bar{y}^0, \bar{\eta}^0) .$$

By using (3.22) we obtain

$$egin{aligned} & (\lambda_1 - \lambda_2)(\sigma, \, Q_{1,2,1}(\sigma; \, t, \, ar{\sigma}_1, \, ar{\sigma}_2, \, 0; \, ar{y}^0, \, ar{\eta}^0), \, P_{1,2,1}(\sigma; \, t, \, ar{\sigma}_1, \, ar{\sigma}_2, \, 0; \, ar{y}^0, \, ar{\eta}^0)) \ & = & \lim_{\gamma
eq \infty} v_1(\sigma; \, \gamma) \ & = & 0 & (0 \leq \sigma \leq t) \,. \end{aligned}$$

This implies with (3.23) and (3.24) that

 $(x^0, \xi^0) \in \widetilde{\Gamma}_{t,0}$

which means (3.9) together with the result of I).

Q.E.D.

References

- [1] S. Alinhac: Branching of singularities for a class of hyperbolic operators, Indiana Univ. Math. J. 27 (1978), 1027–1037.
- [2] S. Alinhac: A class of hyperbolic operators with double involutive characteristics of Fuchsian type, Comm. Partial Differential Equations 3 (1978), 877–905.
- [3] J. Chazarain: Opérateurs hyperboliques à caractéristiques de multiplicité constante, Ann. Inst. Fourier 24 (1) (1974), 173-202.
- [4] J. Chazarain: Propagation des singularités pour une classe d'opérateurs à caractéristiques multiples et résoluté locale, Ann. Inst. Fourier 24 (1) (1974), 203-223.
- [5] A.K. Gautesen and D. Ludwig: Tangential characteristics and coupling of waves, J. Math. Anal. Appl. 38 (1972), 430-466.
- [6] M. Hata: On the Cauchy problem for hyperbolic operators with characteristic roots of variable multiplicity, Master thesis, Osaka Univ., (1977).
- [7] H. Kumano-go: Pseudo-differential operators, Iwanami Shoten, Tokyo, 1974 (in Japanese).
- [8] H. Kumano-go: Factorizations and fundamental solutions for differential operators of elliptic-hyperbolic type, Proc. Japan Acad. 52 (1976), 480–483.
- [9] H. Kumano-go: A calculus of Fourier integral operators on \mathbb{R}^n and the fundamental solution for an operator of hyperbolic type, Comm. Partial Differential Equations 1 (1976), 1-44.
- [10] H. Kumano-go, K. Taniguchi and Y. Tozaki: Multi-products of phase functions for Fourier integral operators with an application, Comm. Partial Differential Equations 3 (1978), 349-380.
- [11] H. Kumano-go and K. Taniguchi: Fourier integral operators of multi-phase and the fundamental solution for a hyperbolic system, Funkcial. Ekvac. 22 (1979), 161-196.
- P.D. Lax: Asymptotic solutions of oscillatory initial value problem, Duke Math. J. 24 (1957), 627-646.
- [13] D. Ludwig: Exact and asymptotic solutions of the Cauchy problem, Comm. Pure Appl. Math. 13 (1960), 473-508.
- [14] D. Ludwig and B. Granoff: Propagation of singularities along characteristics with nonuniform multiplicity, J. Math. Anal. Appl. 21 (1968), 556-574.

- [15] Y. Morimoto: Fundamental solution for a hyperbolic equation with involutive characteristics of variable multiplicity, Comm. Partial Differential Equations 4 (1979), 609–643.
- [16] J.C. Nosmas: Parametrix du problèm de Cauchy pour une classe de systèmes hyperboliques symétrisables à caractérisitques involutives de multiplicité variable, C.R. Acad. Sci. Paris Sér. A 288 (1979), 129–132.
- [17] K. Taniguchi: Multi-products of Fourier integral operators and the fundamental solution for a hyperbolic system with involutive characteristics, to appear.
- [18] K. Taniguchi and Y. Tozaki: A hyperbolic equation with double characteristics which has a solution with branching singularities, Math. Japonica 25 (1980), 279-300.
- [19] G.A. Uhlmann: Pseudo-differential operators with involutive characteristics, Comm. Partial Differential Equations 2 (1977), 713–779.

Department of Mathematics Shimane University Matsue 690 Japan