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0. Introduction

The object of the present paper is to study some examples of the operators
of the form

(1) P = D2

x+a(x)D*y+b(x)Dy,

Λ Λ

on R2 where Dx=—i - , D — — i - , a(x) and b(x) are functions satisfying:
Qx dy

(2) (i) α(*),δ

(ϋ) a(x)>0 for *ΦO, 9χθ)=8^(0)=0 for any a.

We consider here C^-hypoellipticity of the operator P on x=0. In general
it is hypoelliptic if b(x) is small compared with a(x)9 and conversely, not hypo-
elliptic if b(x) is big. Such conditions for the hypoellipticity were investigated
in the previous paper [5], But the examples considered here cannot be explain-
ed by the method of [5] (we cannot regard b(x) small nor big in what follows).
They are analogous to the one which A. Menikoff considered in [6], i.e., the
finitely degenerate case where a(x)=x2k and b(x)=bxk~l. We prove the fol-
lowing theorems.

Theorem 1. Let a(x)=\x\ "4 exp(— 2\x\ -1) and b(x)=b \x\ ~4 exp

(— 1*1 "*) with b bang a complex constant. Then the operator P is hypoelliptic if
and only if b is not odd integer.

Theorem 2. Let a(x)=\x\~*exp(— 2\x\~l) and A(#)=£-sgn#- 1#|~4

exρ(— I x I -1) with b being a complex constant. Then the operator P is hypoelliptic.

REMARK 1: By the similar argument of the proof of theorem 1 in T.
Morioka [8], we can conclude that P is micro-hypoelliptic when P is hypoelliptic.

The hypoellipticity of P is closely connected to the branching of singulari-

ties of solutions for the weakly hyperbolic operator Q=— Dl-\-a(x)D2

y+b(x)Dy.
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G.R. Aleksandryan [1] dealt with the one for Q which corresponds the cases
in Theorem 1 and Theorem 2. In Section 1, we shall prove the non-hypoel-
lipticity part of Theorem 1, by using the observation of Aleksandryan. Section
2 is devoted to the proof of hypoellipticity parts of Theorem 1 and Theorem
2. We shall show them by constructing the parametrix of P explicitly.

The author is grateful to Professor K. Kajitani for introducing him the
article [1] of Aleksandryan.

1. Proof of non-hypoellipticity

In this section we prove that P is not hypoelliptic if a(x) and b(x) are those
in Theorem 1, and b satisfies b=2n-\-l for some n€ΞZ. Also we shall explain
the reason why Theorem 2 is free from such a condition. Here we adopt the
notations from Aleksandryan [1].

At first, let us set Λ(#)=exp(— \x\ ~l) and μ(x)=K'(x)
(=sgn x I x I ~2 exρ(— | x \ ~1)). Then the partial Fourier transform of the equa-
tion Pu=Q with respect to y can be written in the following form:

(3) - ύ t g + ύ * W + b j * = 0 .
V Λ(#) /

Furthermore making a change in such a way that ώ(x, η)= xw(τ), τ=Λ(x)η,
it becomes

(4) _Wττ_^+(ι +1)̂  = 0.
T V T '

Set now z=2τ and f(z)=ez/2w(— j. Then (4) turns into Rummer's equation

(5) */'W(l-*)/W-«/W = 0 ,

where a= . Hence we have the following

^

Proposition 1. (i) Suppose ??>0. Then there exist solutions ύ^x, -η) and
ώ2(x> y) °f (3) which have the following expressions :

η) for x>0 ,

and

ύ2(Xί -η) == — χe-W Ψ(a, 1 2h(x)η) for x<0 ,

where Ψ(a, 1 z) is a solution of (5) for #>0 defined in A. Erdelyi et al [2,
page 255-256].

(ii) Suppose η<0. Then there exist solutions ύ^x, η) and U2(χy 97) of (3)
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which have the following expressions :

?) for

and

?) /or

REMARK 2: It holds that ύ^x, τj)=ύ1(—χί η] for #<0. Generally, it does

not hold that ^(Λ?, 97)= — ώ2(#, 97) (they are linearly independent in generic case),

because Ψ(a> γ; #) is many- valued holomorphic function of % and its principal

branch can be at most defined in the plane cut along negative real axis (see page

257 of [2]).

REMARK 3 : Since Ψ(α, γ z)= O(#~*) as positive number z tends to infini-

ty (see [2, page 278]), ώfa, 07) is uniformly bounded for (log 2 1 77 1)"1^*^! and
also ύ2(x, -η) is uniformly bounded for — 1 <x< —(log 2 1 -η \ )"*.

Proof, (i) We can see the result concerning ύλ(x9 rj) since z=
for Λ?>0 rnd ?7>0 (recall that ψ(α, 1; jar) satisfies (5) for 5r>0). In order to

obtain the result concerning U2(x, 97), we make the change of variable %=— x

in the equation (3) (notice that #>0 for #<0). Then (3) becomes the same

equation with respect to the variable % since Λ(#)=Λ(#) and μ(%)2=μ(x)2. Thus
we can see that there is a solution of (3) which have the expression: Λ2(x, 97)=

χe-W ψ(a> 1 2Λ(£)ϊ7) for X>0. This implies the result.

(ii) To obtain the result concerning ^(#,17), we set z~— 2τ and /(*)=

ez/2w(— — j in the equation (4) (notice that 5:=— 2A(^>0 for Λ;>0, ι?<0).

Then (4) becomes

(5') */"(*)+(l-*)/'(*)-(l-α)/(*) = 0 ,

and this implies the result. The argument to obtain the one concerning U2(χ9 γj)
is also similar..

Next we investigate the Wronskian of ̂  and ώ2, namely,

W(η) = ̂ (0, 7)Λί(0, 9)-Λί(0, ,)̂ 0, ,) .

We can compute the value of W(ΎJ) which is essential to the proof of Theorem 1.

Proposition 2. (i) For η >0, it holds that

o
(6)

where Γ(α) is Euler's Gamma function and ψ(ά)=T'(ά

(ii) For 97 <0, it holds that



774 T. HOSHIRO

Proof. Here we prove the case (i). The argument for the proof of (ii) is
completely parallel if a and η are respectively replaced by 1— a and —η.

At first, let us recall that Ψ(#, n+\\z) (n=Q, 1, •••) has the following as-
ymptotic behavior as jsrjO (see page 261 of [2]):

(8) Ψ(α, n+ 1 *) = _i=i)!̂ _{φ(α, n+ 1 *) log *
n\ ι(oc — n)

+Σ

(n-l)! !fl (g-n), . «*-
Γ(g) ^o (i_n)r r! '

where (a)r=a(a+l)' (a+r— 1) and

φ(«, y;*) = '••(7)r r

Hence we can conclude that

(9) ^(0,5?) = lim xe~W Ψ(a, 1

= 1

Γ(g) '

Next let us recall the following relation (see page 258 of [2]):

00) j-v

This implies that

(11) *ί(*,*) = <

for #>0. Take now the limit of the equation (11) as #JO, keeping (8) in mind.
Then the cancelation will occur between the terms of order O(x"1). Thus we
get

(12) *ί(θ,,) = -_l

Similarly, from the expression of ώ2(x, η) for #<0, we obtain
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(13) (̂0,,) = -JL-,

*ί(0, rj) =

The equations (9), (12) and (13) immediately give our assertion.

REMARK 4. From Proposition 2, we can see that afa, -η) and ύ2(χ, η) are
linearly dependent for η>Q if b= — 1, —3, —5, ••• and for 97<0 if 6=1,3,5, •••

(recall that α=— t- and — - -=0 for w=0, 1, 2, •••). Also it is clear that,
2 Γ(— n)

for sufficiently large | η \ , ^(Λ?, )̂ and $2(#, 97) are linearly independent if b is not
odd integer.

Next we investigate Theorem 2. In the case of Theorem 2 we consider
the equation (3) with A(x) and μ(x) being respectively replaced by £(x)—
sgn# exp(— M"1) and μ(x)~&'(x). The similar argument as above gives us
the folloiwng

Proposition 3. (i) For η>Q, there exist solutions which have the following
expressions :

η) for

and

U2(x, η) = -xe-*w Ψ(l-α, 1 -2£(x)-η) for

Moreover the Wronskian of them is

{2 log 2?-

(ii) For η <0, there exist solutions which have the following expressions:

Ufa, η) = xeλw Ψ(l-α, 1 -2λ(x)η) for

and

Λ2(x> l) = -xe~λw Ψ(a, 1, 2ϋ(x)η) for

Moreover the Wronskian of them ύ

W( η) Γ g)

REMARK 5. As in the case of Theorem 1, we can conclude from Proposi-

tion 3 that, for sufficiently large |^|, $ι(#, 97) and a2(
x>v) are linearly inde-

pendent if b is not odd integer (i.e., αeZ). Moreover, even if
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1 if |2α-l |=3mod4,

-1 if |2α-l |=lmod4.

(See page 15 of [2].) Thus we see that ώ2(#, η) and ύ2(x, ΎJ) are linearly in-
dependent for such α. This is the reason why Theorem 2 is free from such an
assumption as in Theorem 1.
Now w turn to prove the non-hypoellipticity part of Theorem 1 .

Proof of non-hypoellipticity in Theorem 1. First let us observe thrt, if

P is hypoelliptic, we get the following inequality from the argument of Banach's
closed graph theorem.

For any positive number / and for any pair of open sets Ω and Ω' satisfy-
ing Π'cΩ, there exist a positive integer m and a constant C such that

(14) \\D'yu\\

We are now going to show that the inequality (14) never holds provided b is

odd integer. Let us set Ω=(— δ, δ)x(— δ, δ) and Ω'=(— δ', δ')x(— δ', δ')
with δ and δ' satisfying 0<δ'<δ<l. Moreover set

(15) uΎI(Xyy)

with η>0 if b= — 1, —3, ••• and with 9?<0 if 4=1, 3, ••• (Observe that ύ^x, η)
= —ύ2(xyΎj) provided b is odd integer. To see this, compare (9), (12) and
(13).) Let us substitute u^(x,y) into (14) and compare the asymptotic behavior
of the both hand sides as | η\ — >oo. Clearly, in the right hand side, it holds that

=0.
Observe now that there exists a constant C (independent of rj) such that

?)| <C for
and

for -

This can be seen from the remark after the statement of Proposition 1 and the

asymptotic behaviors of Ψ(#, 1; z) and Ψ(l— a, 1; z) as sjO. Indeed, for ex-
ample, it follows from (8) that
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1 + 1*| log 2+ 1* log Λ(*) I + 1* log 9l)

for 0<Λ<(log Zi;)-1 and η>eβ. Hence, if we substitute u,, into (14), the
right hand side is not larger than

(16) IKIL'cω^δ' C.

On the other hand, in the left hand side of (14), it is clear that

Moreover, from the asymptotic behavior of Ψ(α, 1; z) as #-^00, it follows that
there exist positive constants ε and M such that

| for M<2Λ(x)\η\<2M.

Hence we obtain that

(17) IID
l/2

Finally taking />! immediately implies the contradiction among (14), (16)
and (17).

2. Proof of hypoellipticity

In the present section, we assume that W(rj)=£Q for I?;) >C, and denote
by Q(x, xf η) the Green function of (3) (in the case of Theorem 2, A(x) and
μ(x) being replaced respectively by Λ(#) and fi(x)), i.e.,

Then we have the following

Proposition 4. For any non-negative integer m, there exists a constant Cm

such that the following inequalities hold:

(18) Γ
J-l
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(19)

Proof. Here we prove the proposition in the case of Theorem 1. First
we shall verify (18) when m=0. Observe now the following inequality:

(20)

^ { I *4*. T?) I £ I *!(*', ,) \dx'+\ *!(*, ,) I J* t

Let us set Λ?,=(log (17 1)""1 (then A(xr,)\η\=l). We are going to estimate the
right hand side of (20). Here we assume η>0. In the case of η<0, the
argument is completely parallel if α is replaced by I—a.

(I) Now we are going to show that the value of Jii \Q(x,x'ϊη)\dxf is
uniformly bounded for #„<£#<£! and 97>max{C, e}. Concerning the first term
on the right hand side of (20), we can use the expression of ^(Λ?', -η) for x'>0
and the asymptotic behavior Ψ(α, 7, z)=O(z~*) as #->oo. Hence we have

We cannot use the expression of ύ2(
x> η) f°Γ ^>0. So let us express it by

linear combination of ύ^x, η) and

Ufa 17) = ̂ -AW Φ(α, 1 2λ(x)η) for Λ;>0

(concerning the definition of Φ(#, 7; #), see page 248 of [2]). From the facts
that ά3(0, η) =0 and ̂ (0, ̂ )=1, it follows

(21) Ufa η) = Aύfa η)+BUfa η) ,

where

Hence we obtain

(22)
X

^{IPFMI-H^MI+C I^MI} Γ |
JΛ

Now recall that

Φ(α, y; ar) = -^*-^(l+O(|ar| -1)) as
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(see page 278 of [2]), and K'(x') η=μ(xt}η>(x^)-2 for #„:<#' <1. Hence, con-
cerning the second term on the right of (22), we have furthermore

J J*ι(*', *)!<**'
1 (Λ(*')>?)-β e~^'^ K'(x')η dx'

" Γ* e~> dt
A(x>η

Here we have used the fact that S~Γ"e-tdt=O(s-*e-$) as s-»+oo. The simi-
lar argument is applicable for estimating the first term on the right of (22).
Consequently, the first term on the right of (20) is uniformly bounded for

Xq<x<l and 77>max {C, e}.
Concerning the second term on the right of (20), let us decompose it in

the following way:

For #'<#„, the expression of ^2(x',η) can be applied, and also for
ώ2(#', η) can be decomposed as (21). Thus, by using the asymptotic behaviors

of Ψ(α, 1 #) and Φ(α, 1 z) as £->°o, we see that the first and the third terms
are uniformly bounded. Concerning the integral with — Λ?η<Λ?'<0, the expres-

sion of ά2(
x/> η) and the asymptotic behavior of Ψ(α, 1 z) as z \ 0 can be applied

(see page 262 of [2]). Hence it holds that

Λ)V)-. I W(η)\ -1 \x'

Concerning the integral with 0 <#'<#,,, we can estimate in the similar way,
by using the fact (21). Thus we see that the second term on the right of (20)
is also uniformly bounded for #,<#<! and ^>max{C, e}.

(Π) For — !<#<:— #„, the argument for the estimate is completely paral-
lel if we interchange the roles of ά^x, η) and ύ2(xy -η). Also for —
the argument is similar if we rewrite (20) as
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and estimate the each term on the right hand side. Consequently, we see that
the value of $l-\\Q(oc,xr\7j)\dx' is uniformly bounded for — \<,x<\ and 97 2>

max{C, e}.
The argument to show (18) for w>0 is similar to the above if we notice

the fact (10) and

--Φ(α, «/;*) = ^-Φ(a+ 1, γ+ 1 *)

(see page 254 of [2]). Thus the proof of Proposition 4 is clear.

Now we are in position to verify the hypoellipticity parts of Theorems.
Proof of hypoellipticity : First let us notice that the operator P is elliptic

except x=ϋ. Hence we can restrict our consideration at (0, y0). Moreover, since
P is non-characteristic with respect to the variable x, the smoothness of the solu-
tion w.r.t. the variable x follows from the one w.r.t. the variable y. To be more

precise, let Hktl be the space of distributions u satisfying (l+£2)*/2(l+972)//2ώ(£, 97)
eL%R2) (ξ and -η are the dual variables of x and y respectively). Then
and PweC~ at (0, y0) implies that w<E Π Z.i Hk+2m'l~2m at (0, y0). Thus

and PweC00 at (OyyQ) implies that #eC°° at (0, j>0). So it suffices to prove that

tte#°'~ at (0, jo) when Pu(ΞC°° at (0,y0).
Secondly we can assume that the support of the solution is contained in a

small neighborhood of (0, y0). To observe this, let us take a function X(xyy)^
C0~ satisfying X(x,y) = l for ]*| + 1 y-yQ\ <Cδ/2 and %(*, y)=0 for |*| + | y-Λ|
>δ. Then the second term on the right of

Pu = PXu+P(l-X)u

is equal to 0 in a neighborhood of (0, y0). So it suffices to show that Xu is
smooth at (0, y0) provided PXu is smooth there.

Now take a function φ(η)^C°* such that φ(ιj) = Q for (77! <max{C, e} and
) = l for \η\ >2max{C, e}, and set

(23) Qu(χ,y) = J- JJJ e^'v Q(χ, x';

Then it follows from (18) and (19) with m=0 that Q is a bounded operator
H°'l((— 1, 1)XΛ) for all /<Ξ/2. Moreover since Q(x, x'\ η) is the Green func-
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tion of (3), it holds that PQ=I+K19 where KI is an operator with symbol
1— φ(η), in particular, it is regularizing operator w.r.t. y, i.e., the one from
H°'l((-l, 1)XΛ) into fl° -(-l, l)χΛ). Now let &(*,*';?) be the Green
function of (3) with b being replaced by 5, and let R be the adjoint operator
of (23) with Q(x, x'; -η) being replaced by Q^x, x'\ -η). Then it holds that

where K is an operator from HQ l((—l, 1)XΛ) into H° °°((— 1, l)xΛ). Fur-
thermore R has pseudo-local property w.r.t. y mod H°'°°. To be more precise,
let Xι(y) be a function of class C^ satisyfing Xi(y) = l for |j>— Jol ^*£ Then
the second term of the right of

belongs to Hΰt°° at (0, yQ) for any/eJf/0*'. It is a consequence of (18) and (19).
Indeed, R^—X^f is expressed as

where

-L J J

for arbitrary positive integer /#, and the values of

and

are uniformly bounded for η^R, \ y—y0 \ <β and yr e Λ. Hence
is an operator valued symbol of class /Sr"00((<y0— ε, yQ+ε)xR/X RΏ\ L\—l, 1)).

Thus, if P u is of class if0'00 at (0,j0) and the supports of % and %x are
taken properly small, then all terms on the right hand side of the equation

%u = RPXu-KXu

are of class H0>0° at (0,jy0), since Xw becomes of class H0>1 for some / and the
singular support of Xu becomes contained in {(x,y)\x=Q} Πsupp X. This
completes the proof.
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