

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Osaka Mathematical journal Vol. 6, No. 2, December, 1954.

The Fundamental Solution of the Parabolic Equation in a Differentiable Manifold, II

By Seizό Iτό

§ 0. Introduction (and supplements to the previous paper). Recently we have shown the existence of the fundamental solution of parabolic differential equations in a differentiable manifold (under some assumptions) in a previous paper¹ which will be quoted here as [FS]. We have set no boundary condition in [FS], while we shall here show the existence of the fundamental solution of parabolic differential equations with some boundary conditions in a compact subdomain of a differentiable manifold.

We shall first add the following supplements 1° and 2° to [FS], as we shall quote not only the results obtained in the paper but also the procedures used in it:

1°) CORRECTIONS. Throughout the paper [FS]

for $\exp \{M_1(t-s)\}$, read $\exp \{M_1(t-s)\}$; $\text{for} \quad \exp \{2M_{1}(t-s)^{\frac{1}{2}}\}, \quad \text{read} \quad \exp \{2M_{1}(t-s)\}.$

In the inequality (3. 4),

for $(t-s)^{-(\frac{m}{2}+1)}$, read $(t-s)^{-\frac{m+1}{2}}$

 2°) The proof of Theorem 4 in [FS, §4] is available only for the case: $t_0 = \infty$. Instead of completing the proof, we are enough to establish a slightly ameliorated theorem as follows:

Theorem 4. i) The function $u(t, x; s, y)$ is non-negative, and $\int_M u(t, x; s, y) d_a y \leq \exp \{ \lambda(t - s) \}$ where $\lambda = \sup_{t, s} c(t, x)$; ii) if especially $c(t, x) \equiv 0$, then $\int_M u(t, x; s, y) d_a y = 1$.

We see that $|\lambda| \leq K(<\infty)$ by virtue of the assumption II) in [FS, p. 76]. To prove this theorem, we consider the functions

(0. 1)
$$
f_s(t, x) = \int_M u(t, x; s, y) f(y) d_a y
$$

and

¹⁾ S. Itô: The fundamental solution of the parabolic equation in a differentiable manifold, Osaka Math. J. 5 (1953) 75-92.

168 S. Iτό

(0.2)
$$
g_s^{(\tau,n)}(t,x) = f_s(t,x) \exp \left\{-\left(\frac{t-s}{\tau-s}\right)^n\right\}
$$

where $f(x)$ is an arbitrary function continuous on M , with a compact support $\subset M$ and satisfying $0 \le f(x) \le 1$, and n is a natural number ≥ 2 and $s < \tau < t_0$. Then $g_s^{(\tau,n)}(t, x)$ is continuous in [s, t_0) x **M** and

$$
(0,3) \t g_s^{(r,n)}(s,x) \equiv f(x), \text{ consequently } 0 \leq g_s^{(r,n)}(s,x) \leq 1.
$$

By virtue of $[FS, (3, 10)]$ and the correction 1°) stated just above, we have

$$
(0, 4) \quad |f_s(t, x)| \leq M \exp \{M(t - s)\}
$$

for a suitable constant $M>0$.

Lemma A. If $c(t,x) \leq 0$, then the function $g_s^{(\tau,n)}(t,x)$ takes neither *positive maximum nor negative minimum at any point in* $(s, t_0) \times M$.

The proof may be achieved by the well known method and so will be omitted.

Lemma B. If
$$
c(t, x) \leq 0
$$
, then $u(t, x; s, y) \geq 0$ and $\int_M u(t, x; s, y) d_a y \leq 1$.

PROOF. By virtue of the continuity of $u(t, x; s, y)$ (see [FS, Theorem 1]), it is sufficient to prove that $0 \le f_*(t, x) \le 1$ for any function $f(x)$ satisfying the above stated conditions (see $(0, 1)$).

Suppose that $f_{s_1}(t_1, x_1) > 1$ for some $t_1 > s_1$ and x_1 . Then, if we take τ and τ' such that $t_1 \leq \tau \leq \tau' \leq t_0$ and sufficiently large *n*, we have

$$
g^{(\tau,\,n)}_{\,s,\,t}(t_{\scriptscriptstyle 1},\,x_{\scriptscriptstyle 1})\!>\!1
$$

and

$$
|g_{s_1}^{(\tau,\,n)}(t_1,x_1)| \!\geqslant\! |g_{s_1}^{(\tau,\,n)}(t,x)| \quad \text{for any } t \!\geqslant\! \tau' \text{ and } x \!\in\! \textbf{\textit{M}}
$$

by virtue of (0.2) and (0.4) . From this fact and (0.3) , it follows that $g^{(τ,n)}_{s}$ (*t, x*) takes the positive maximum at some point in $(s, t_0) \times M$; this contradicts Lemma A. Hence we have $f_s(t, x) \leq 1$.

Similar argument shows that, if $f_{s_1}(t_1, x_1) < 0$ for some $t_1 < s_1$ and *x*₁, there exist τ and *n* such that $g^{(\tau,n)}_{s_1}(t, x)$ takes the negative minimum at some point in $(s, t_{\scriptscriptstyle 0}) \times M$ contradictly to Lemma A. Hence we get $f_s(t, x) \geq 0$, q.e.d.

PROOF OF THEOREM 4. Let $u(t, x; s, y)$ be the fundamental solution of the equation $Lf=0$. Then we may easily prove that the function

$$
u_{\lambda}(t, x; s, y) = e^{-\lambda(t-s)}u(t, x; s, y)
$$

is the fundamental solution of the equation $(L-\lambda) f = 0$. Since $c(t, x)$ $-\lambda \leq 0$, we have

 $u_{\lambda}(t, x; s, y) \ge 0$ and $\int_{\mathcal{X}} u_{\lambda}(t, x; s, y) d_a y \le 1$

by Lemma B, and hence

$$
u(t, x; s, y) \ge 0
$$
 and $\int_M u(t, x; s, y) d_a y \le e^{\lambda(t-s)}$.

Finally, if $c(t, x) \equiv 0$, we may apply Theorem 2 in [FS] to the function $f(t, x) \equiv 1$ and we get

$$
\int_M u(t, x; s, y) d_a y = 1, \qquad \qquad \text{q.e.d.}
$$

§ 1. Fundametal notions and main results. We shall say, by definition, that a function $f(x)$ defined on a subset E of the Euclidean m-space R^m satisfies the *generalized Lipschitz condition* in E if, for any $x \in E$, there exist positive numbers *N*, δ and γ (each of them may depend on *x*) such that $|f(x)-f(y)| \leq N \sum_i |x^i-y^i|^{\gamma}$ whenever $y \in E$ and $|x^{i}-y^{i}| \leq \delta(i=1, ..., m)$, where (x^{i}) and (y^{i}) denote the coordinates of x and y respectively².

A function $f(x)$ defined on a domain $G\subset R^m$ is said to be of $C^{k,L}$ *class* if $f(x)$ is of C^k -class in the usual sense and each partial derivative of k -th order of $f(x)$ satisfies the generalized Lipschitz condition in G. A *manifold of C^k ' L -class,* a *hyper surf ace of C*fL-class,* etc. should be understood analogously.

Let M be an m-dimensional manifold of $C^{4,L}$ -class, and G be a domain in M such that the closure G is compact and the boundary $B = \overline{G} - G$ consists of a finite number of hypersurfaces of $m-1$ dimension and of $C^{4,L}$ -class.

Under a *canonical coordinate around* $x \in M$, we understand any local coordinate which maps a neighbourhood of *x* onto the interier of the unit sphere in R^m and especially transforms x to the centre of the sphere. For each $x \in M$ and any fixed canonical coordinate around x, we denote by $U_{\epsilon}(x)$ the neighbourhood of x of the form

 $\{y \in M: \sum (y^i - x^i)^2 \leq \varepsilon\}$ where $0 \leq \varepsilon \leq 1$.

We understand the partial derivatives of a function $f(x)$ (defined on \bar{G}) at $\xi \in B$ as follows: $\partial f(\xi)/\partial x^i = \alpha_i$ ($\xi \in B$), $i = 1, ..., m$, means that

$$
f(x) = f(\xi) + \alpha_i (x^i - \xi^i) + o\left(\sum_i |x^i - \xi^i|\right) \text{ for any } x \in U(\xi) \bigcap \bar{G}
$$

where *U(ξ)* is a coordinate neighbourhood of *ξ.*

²⁾ Cf. Footnote 1) in [FS].

170 S. Iτό

We fix s_o and t_o such that $-\infty < s_o < t_o < \infty$ and consider the parabolic differential operator *L :*

$$
(1.1) \tL \equiv L_{tx} = A_{tx} - \frac{\partial}{\partial t}, \t(x \in \bar{G}, s_0 < t < t_0)
$$

where

(1.2)
$$
A \equiv A_{tx} = a^{ij}(t, x) \frac{\partial^2}{\partial x^i \partial x^j} + b^i(t, x) \frac{\partial}{\partial x^i} + c(t, x)
$$

and $||a^{ij}(t, x)||$ is a strictly positive-definite symmetric matrix for each $\langle t, x \rangle \in (s_0, t_0) \times \bar{G}$; $a^{ij}(t, x)$ and $b^{i}(t, x)$ are transformed between any two local coordinates by means of (1.3) and (1.4) in [FS]. We assume that

(A. 1) *the functions*

$$
\frac{\partial a^{ij}(t, x)}{\partial t}, \frac{\partial^3 a^{ij}(t, x)}{\partial x^k \partial x^k \partial x^l}, \frac{\partial b^i(t, x)}{\partial x^k} (i, j, h, k, l = 1, ..., m)
$$

and $c(t, x)$

satisfy the generalized Lipschitz condition in $[\![s_{\scriptscriptstyle 0},t_{\scriptscriptstyle 0}]\!]\times\bar{\bm{G}}$.

We define the *partial derivative* $\partial f(\xi)/\partial n_{\xi}$ to the *outer transversal direction* $n_{i\epsilon}$ as follows: when *B* is represented by $\psi(x) \equiv \psi(x^1, \dots, x^m)$ $= 0$ with respect to a local coordinate around ξ and $\psi(x) > 0$ in G, we set

(1. 3)
$$
\frac{\partial f(\xi)}{\partial \mathbf{n}_{t\xi}} = -\frac{\partial f(\xi)}{\partial x^i} \cdot \frac{\partial \psi(\xi)}{\partial x^j} a^{i\jmath} \langle t, \xi \rangle ;
$$

this notion is independent of the special choice of the local coordinate around *ξ* by virtue of the transformation rule for *a ίj(t, x)* (see [FS. (1. 3)]). If we take a local coordinate with respect to which $a^{ij}(t, \xi) = \delta^{ij}$ i.e. $a^{ij}(t, \xi)$ $\frac{\partial^2}{\partial x^i \partial x^j} = Laplacian$ at the point $\langle t, \xi \rangle$ (fixed), then $\partial f(\xi)/\partial n_i$ means the partial derivative to the outer normal direction to *B.* We consider the boundary condition :

$$
(B_{\alpha(t)}) \qquad \alpha(t,\xi)f(\xi) + \{1-\alpha(t,\xi)\}\frac{\partial f(\xi)}{\partial \mathbf{n}_{t\xi}} = 0 \quad (\xi \in \mathbf{B})
$$

for each *t*, where $\alpha(t, \xi)$ is a function on $[s_0, t_0] \times \mathbf{B}$, of C¹-class in *t* and of $C^{2,L}$ e boundary condition:
 $\alpha(t, \xi) f(\xi) + \{1 - \alpha(t, \xi)\}\frac{\partial f(\xi)}{\partial n_{t\xi}} = 0 \quad (\xi \in \mathbf{B})$

where $\alpha(t, \xi)$ is a function on $[s_0, t_0] \times \mathbf{B}$, of C¹-class in t

-class in ξ and $0 \le \alpha(t, \xi) \le 1$. We shall say that a function
 $f(t, x)$ on $(s_0, t_0) \times \bar{G}$ satisfies the boundary condition (B_α) if it satisfies $(B_{\alpha(t)})$ for any $t \in (s_0, t_0)$.

We define the metric tensor $a_{ij}(x)$, as stated in [FS, p. 79], and consider the measure $d_a x = \sqrt{a(x)} dx^1 \cdots dx^m$ *(a(x)* $=$ det $\| a_{ij}(x) \|$ and de-

fine the adjoint operator L^* resp. A^* of L resp. A with respect to this measure. If M is an orientable Riemannian manifold with a metric tensor $g_{ij}(x)$ *a priori*, then it is natural to take the measure $d_g x =$ $\sqrt{g(x)}dx^1 \cdots dx^m$ ($g(x) = \det \|\overline{g_{ij}(x)}\|$) in place of d_ax ; in this case, it is sufficient only to replace $a(x)$ by $g(x)$ throughout the course of the present paper, while $a_{ij}(x)$ should not be replaced by $g_{ij}(x)$.

We assume further that :

(A. 2) *the following relations hold on the set*

$$
\{\langle\zeta t,\xi\rangle;\ \alpha(t,\xi)+1\}\,(\zeta\big[s_{_0},t_{_0}\big]\times\boldsymbol{B})\,.
$$

(1.4)
$$
\frac{\partial a^{ij}(t,\xi)}{\partial n_{i\xi}} = 0^{3} \quad (i,j = 1,\ldots,m) \quad and
$$

(1.5)
$$
b^{i}(t, \xi) = \frac{1}{\sqrt{a(\xi)}} \cdot \frac{\partial}{\partial x^{j}} \left[\sqrt{a(\xi)} a^{i}(t, \xi)\right] (i = 1, ..., m).
$$

Under the above stated conditions $(A.1)$ and $(A.2)$, we shall consider the parabolic differential equations $Lf=0$ and $L^*f^*=0$ in the domain G with the boundary condition (B_{α}) .

By definition, a function $u(t, x; s, y)$, $s_o \, < s \, < \, t \, < \, t_o\, ;\, x, y \in \bar{\boldsymbol{G}}$, is called a fundamental solution of the parabolic equation $Lf=0$ with the *boundary condition* (B_{α}) if, for any s and any function $f(x)$ which is continuous in G and satisfies the condition $(B_{\alpha(s)})$, the function

(1.6)
$$
f(t, x) = \int_{G} u(t, x; s, y) f(y) d_{a} y \quad (t < s)
$$

satisfies the conditions⁴):

 $\int f(t, x)$ is of C¹-class in *t* and of C²-class in *x*, and satisfies the (1.7) (equation $Lf=0$ as well as the boundary condition (B_{α})

and

(1.8)
$$
\lim_{t \to \infty} f(t, x) = f(x) \quad \text{uniformly on } \bar{G}.
$$

A function $u^*(s,y;t,x)$, $s_{\scriptscriptstyle 0}$ $\displaystyle \leqslant$ $\displaystyle s$ $\displaystyle \leqslant$ $\displaystyle t$ $\displaystyle \leqslant$ t $\displaystyle \leqslant$ t $\displaystyle \leqslant$ $\displaystyle x,y\in \bar{G},$ is called a *fundamental solution of the adjoint equation* $L^*f^* = 0$ (of the equation $Lf = 0$) with *the boundary condition* (B_a) if, for any t and any continuous function

³⁾ It is true that $\frac{\partial a^{i j}}{\partial n_{t}}$ depends on the local coodinate, but the condition (1.4) is independent of it, because, if $||a^{ij}||$ is changed into $||\bar{a}^{ij}||$ by means of the coodinate transformation $(x^i) \rightarrow (\overline{x}^i)$, then we get $\frac{\partial \overline{x}^i}{\partial x^i} = \frac{\partial \overline{x}^i}{\partial x^i} \cdot \frac{\partial \overline{x}^j}{\partial x^i} \cdot \frac{\partial \overline{x}^{k}}{\partial x^i}$ by virtue of [FS, (1.3)].

^{4), 5)} Cf. [FS, Definition 2]. The conditions corresponding to (1.9) and (1.9*) in [FS] follow from (1.7) and (1.7*) respectively in the case where \vec{G} is compact.

 $f(x)$ on \boldsymbol{G} , the function

$$
(1.6^*) \t f^*(s,y) = \int_G u^*(s,y;t,x) f(x) d_a x \t (s < t)
$$

satisfies the conditions⁵⁾:

 $(f^{*}(s, y)$ is of C¹-class in *s* and of C²-class in *y*, and satisfies the equation $L^*f^* = 0$ as well as the boundary condition (B_α)

and

(1.8*)

$$
\lim_{s \to t} f^*(s, y) = f(y)
$$

pointwisely in G and also strongly in $L^1(G)$.

The purpose of the present paper is to prove the following theorems, which are literally the same as those in $[FS]^{\circ}$ except the statements concerning the boundary condition.

Theorem 1. There exists a function $u(t, x, s, y)$ of C^1 -class in t and $s(s_0 < s < t < t_0)$ and of C²-class in x and y $(x, y \in \bar{G})$, with the following *properties :*

i) $u(t, x; s, y)$ *is a fundamental solution of the equation* $Lf = 0$ *with the boundary condition* (B_{α}) ,

ii) $u^*(s, y; t, x) = u(t, x; s, y)$ is a fundamental solution of the adjoint *equation* $L^*f^* = 0$ with the boundary condition (B_α) ,

iii) $L_{tx}u(t, x; s, y) = 0$, $L_{ty}^{*}u(t, x; s, y) = 0$ and $u(t, x; s, y)$ satisfies *the boundary condition* (B_{α}) *as a function of* $\left<\,t,x\right>$ *and also as a function of* $\langle s, y \rangle$,

iv) $\int_{G} u(t, x, \tau, z) u(\tau, z; s, y) d_{a} z = u(t, x; s, y), s <$

Theorem 2. Let $u(t, x; s, y)$ and $u^*(s, y; t, x)$ be the functions stated *in Theorem* 1.

i) If a function $f(t, x)$ on $(s, t_o) \times \bar{G}$ satisfies $(1, 7)$ and $(1, 8)$ where *f*(x) is continuous in \bar{G} and satisfies (B_{α}), then it is expressible by (1.6).

ii) If a function $f^*(s, y)$ on $(s_0, t) \times \bar{G}$ satisfies $(1, 7^*)$ and $(1, 8^*)$ *where f(x) is a continuous function on* \tilde{G} , then it is expressible by (1.6*).

Theorem 3. If a function $v(t, x; s, y)$ is continuous in the region: $s_{\text{o}} \displaystyle < s \displaystyle < t \displaystyle < t_{\text{o}}$; $x,y \in \bar{\bm{G}},$ and fatisfies the condition i) or ii) in Theorem 1, *then it is identical with* $u(t, x; s, y)$ *stated in Theorem* 1.

Theorem 4. i) $u(t, x; s, y) \geq 0$ and $\int_G u(t, x; s, y) d_a y \leq e^{\lambda(t-s)}$ where

⁶⁾ As for Theorem 4, see the supplement to [FS] in §0 of the present paper.

 $\lambda = \sup_t x_c(t, x)$; ii) if $c(t, x) \equiv 0$ in the differential operator A_{tx} and if $\alpha(t, \xi) \equiv 1$ in the boundary condition (B_{a}) , then $\int_G u(t, x; s, y) d_a y = 1$.

We shall show, in another paper⁷, the existence of the fundamental solution of the parabolic differential equation with a boundary condition considered in a domain whose closure is not compact.

§ 2. Preliminaries. The following lemma may be proved by means of Lebesgue's convergence theorem, and will be useful throughout the present paper:

Lemma 1. *Let (X, μ) be a measure space, and assume that*

i) $f(t, \chi)$ is measurable in $\chi \in X$ for each $t \in (t_1, t_2)$,

ii) $f(t, \chi)$ is differentiable in t for a.a. $\chi \in X$ and

iii) *there exists a measurable function φ(X) such that*

$$
\left|\frac{\partial f(t, x)}{\partial t}\right| \leq \varphi(x) \text{ in } (t_1, t_2) \text{ and } \int_{X} \varphi(x) d\mu(x) < \infty
$$

Then

$$
\frac{d}{dt}\int_x f(t, \chi)d\mu(\chi) = \int_x \frac{\partial f(t, \chi)}{\partial t}d\mu(\chi).
$$

Now let G, B and A_{tx} be as stated in §1 and z be any fixed point in *B.* Then, for any canonical coordinate (see §1) around z , $B \bigcap U_i(z)$ is represented by means of $\psi(x^1, \dots, x^m) = 0$ where ψ is a function of $C^{4,L}$ -class. Hence, considering a suitable coordinate transformation in $U_i(z)$, we may show that

Lemma 2. *There exists a canonical coordinate (x¹) around z such that* $\mathbf{B} \setminus \bigcup U_i(z)$ is expressible by $x^i = 0$ and that $x^i > 0$ in $\mathbf{G} \bigcap U_i(z)$. Next we shall prove that

Lemma 3. *Let (x¹) be a canonical coordinate as stated in Lemma* 2, *and consider the coordinate transformation:* $(x^{i}) \rightarrow (x_{i}^{i})$, for each $t(s_{o} \leq t)$ $\leq t_0$), defined by

(2. 1)
$$
\begin{cases} x_t^1 = \varphi^1(t, x) \equiv \gamma x^1 \\ x_t^j = \varphi^j(t, x) \equiv \gamma \left\{ -\frac{a^{1j}(t, \xi_x)}{a^{11}(t, \xi_x)} x^1 + x^j \right\}, & j = 2, ..., m, \end{cases}
$$

⁷⁾ See the author's paper: Fundamental solutions of parabolic differential equations and eigenfunction expensions for elliptic differential equations, forthcoming to Nagoya Mathematical Journal.

 $where \xi_x = \langle 0, x^2, \ldots, x^m \rangle \in B$ for $x = \langle x^1, \ldots, x^m \rangle \in U_1(z)$ and γ is a suitable positive constant. Then there exists $\delta = \delta$ _{*a*} >0 such that i) $U_s(z) \subset U_1^t(z) \subset U_1(z)$ and $U_{s/s}(z) \subset U_1^t(s)$ for any t, ii) **B** is represented by $x_i^1 = 0$ in $U_1^i(z)$ and iii) if $a^{ij}(t, x)$ is changed into $a^{ij}_\varphi(t, x)$ by *means of this transformation* $(i, j = 1, ..., m)$, then

 $(2, 2)$ $a_{\varphi}^{1j}(t, \xi) = a_{\varphi}^{j1}$ $a^i(t,\xi) = 0$ and $a^e_{1j}(t,\xi) = a^e_{j1}(t,\xi) = 0$, $j = 2, ..., m$,

for any $\xi \in B\bigcap U_1^t(z)$ *, where* $U_i^t(x) = \{y \in M\,;\ \sum_i (y_i^t - x_i^t)^2 \leq \varepsilon\}$ and $\| a_{ij}^{\varphi}(t, x) \| = \| a_{\varphi}^{ij}(t, x) \|^{-1}$. The mapping $\varphi_t(x) = \langle \varphi^1(t, x), \dots, \varphi^m(t, x) \rangle$ *of* $U_{\delta}(z)$ into $U_{1}^{t}(z)$ is one-to-one and of $C^{3,t}$ -class in x, and a *φ* $\dot{y}(t, x), i, j =$ 1, \dots , m , are of C^1 -class in t and of $C^{2,L}$ -class in x.

PROOF. We notice that $a^{11}(t, x) > 0$ in $U_1(z)$ *,* and consider the coordinate transformation (2.1) around z. Then $x_i¹ = 0$ if and only if ordinate transformation (2.1) around z. Then $x_i = 0$ if a $x^i = 0$, and we have for any $\xi = \langle 0, x^2, ..., x^m \rangle \in B \cap U_1(z)$

$$
(2.3) \qquad \begin{cases} \left(\frac{\partial x_i^1}{\partial x^k}\right)_{x=\xi} = \gamma \delta_k^1\\ \left(\frac{\partial x_i^1}{\partial x^k}\right)_{x=\xi} = \gamma \left\{-\frac{a^{1j}(t,\xi)}{a^{11}(t,\xi)}\delta_k^1 + \delta_k^j\right\} & (\delta_k^j: \text{ Kronecker's delta}) \end{cases}
$$

for $1 \leq j \leq m$ and $2 \leq j \leq m$. Hence the Jacobian

$$
\frac{\partial(x_t^1,\ldots,x_t^m)}{\partial(x^1,\ldots,x^m)}
$$

is bounded away from zero in $U_{s_1}(z)$ for suitable $\varepsilon_{\scriptscriptstyle{1}}$ ($0\!<\!\epsilon_{\scriptscriptstyle{1}}\!\!<\!\!1)$ which may be chosen independently of t by virtue of the continuity of $a^{ij}(t,x)$ on the compact set $[s_{\scriptscriptstyle 0},t_{\scriptscriptstyle 0}] \times \overline{U_{\scriptscriptstyle \rm g}(z)}$ for any ε ($0\,{<}\,\varepsilon\,{<}\,1$), and hence the transformation (2.1) is well defined in $U_{\epsilon_1}(z)$. Considering the continuity of $a^{ij}(t, x)$ on $[s_0, t_0] \times \overline{U_{s_1}(z)}$ again, we may determine γ and $\delta > 0$ so that $U_s(z) \subset U_i(z) \subset U_i(z)$ and $U_{s/s}(z) \subset U_i^s(s)$ for any t. By virtue of the transformation rule for a^{ij} (see [FS, $(1, 3)$]), we have, for any $\langle t, \xi \rangle \in [s_{\scriptscriptstyle 0}, t_{\scriptscriptstyle 0}] \times (\boldsymbol{B} \bigcap U_1^t(z))$ and for

$$
a_{\varphi}^{1j}(t,\xi) = \left(\frac{\partial x_{t}^{1}}{\partial x^{k}}\right)_{x=\xi} \cdot \left(\frac{\partial x_{t}^{j}}{\partial x^{1}}\right)_{x=\xi} a^{kl}(t,\xi)
$$

= $-\gamma^{2} \frac{a^{1j}(t,\xi)}{a^{11}(t,\xi)} a^{11}(t,\xi) + \gamma^{2} a^{1j}(t,\xi) = 0 \quad (\text{see } (2,3)),$

and consequently we get (2.2). The last part of Lemma 3 is also evident by means of the above arguments.

The Fundamental Solution of the Parabolic Equation in a Differentiable Manifold, II 175

§ 3. Local construction of a quasi-parametrix. Let G, B and A_{tx} be as before, let z be any fixed point in **B**, and let (x^i) and (x^i) ($s_0 \le t \le t_0$) be canonical coordinates around *z* as stated in Lemma 3. Then we have

(3.1)
$$
\frac{\partial f(\xi)}{\partial \mathbf{n}_t} = -\frac{\partial f(\xi)}{\partial x_t^i} a_\varphi^{i_1}(t, \xi) = -a_\varphi^{11}(t, \xi) \frac{\partial f(\xi)}{\partial x_t^1}
$$
 $(\xi \in \mathbf{B})$

for any function $f(x)$ of C¹-class, and hence the assumption (1.4) implies that

(3. 2)
$$
\frac{\partial a_{ij}^{\varrho}(t,\xi)}{\partial x_{i}^{1}} = 0 \text{ on } \{ \langle t,\xi \rangle ; \alpha(t,\xi) \neq 1 \}
$$

Now we put for $s_0 \le s < t \le t_0$ and X,

$$
(3.3) \begin{cases} V_0(A_{ij}; t, X; s, Y) = (t-s)^{-\frac{m}{2}} \exp\left[-\frac{A_{ij}(X^i - Y^i)(X^j - Y^j)}{4(t-s)}\right] \\ V_0(A_{ij}) = \int_{R^m} \exp\left[-\frac{A_{ij}Y^iY^j}{4}\right] dY^1 \dots dY^m, \end{cases}
$$

and define for $s_{\scriptscriptstyle 0} \!\leq\! s \!<\! t \!\leq\! t_{\scriptscriptstyle 0}$ and $x,y\!\in\! U_s\!(z)\bigcap \bar{\bm{G}}$ ($\delta\!=\!\delta_{\bm{z}}$ as stated in Lemma 3)

(3.4)
$$
\begin{cases} V(t, x; s, y) = V_0(a_{ij}^{\varphi}(t, x); t, \varphi_t(x); s, \varphi_s(y)) & (\text{see Lemma 3})\\ \bar{V}(t, x; s, y) = V_0(a_{ij}^{\varphi}(t, x); t, \varphi_t(x); s, \bar{\varphi}_s(y))\\ V(t, x) = V_0(a_{ij}^{\varphi}(t, x)) \end{cases}
$$

where $\bar{\varphi}_s(y) = \langle -\varphi^1(s, y), \varphi^2(s, y), \dots, \varphi^m(s, y) \rangle$. Further we put

$$
(3.5) \begin{cases} p(t, x; s, y) \\ = \frac{2(t - s) \cdot \alpha(t, \xi_{tx})}{2(t - s)\alpha(t, \xi_{tx}) + \varphi^1(s, y)[1 - \alpha(t, \xi_{tx}) \exp\{-|\varphi^1(t, x)|^2\}}] \\ q(t, x; s, y) \\ = \frac{\varphi^1(s, y)[1 - \alpha(t, \xi_{tx}) \exp\{1 - |\varphi^1(t, x)|^2\}}{2(t - s)\alpha(t, \xi_{tx}) + \varphi^1(s, y)[1 - \alpha(t, \xi_{tx}) \exp\{-|\varphi^1(t, x)|^2\}}] \end{cases}
$$

where ξ_{tx} is the point $(\in \mathbf{B})$ defined by the equations:

$$
\varphi^{1}(t, \xi_{tx}) = 0
$$
, $\varphi^{j}(t, \xi_{tx}) = \varphi^{j}(t, x)$ for $j \ge 2$;

such ξ_{tx} is uniquely determined for any $x \in U_{\delta}(z)$ and any *t* by virtue of Lemma 3.

Applying (3. 1), (3. 2), Lemma 1 and Lemma 3 to (3. 3), (3. 4) and (3.5), and making use of the fact that $\partial f / \partial n_{\xi}$ is independent of the local coordinate, we obtain

$$
176 \t\t S. ITô
$$

$$
\frac{\partial V(t,\xi)}{\partial \mathbf{n}_{t\xi}} = 0
$$

and

(3.7)
$$
\frac{\partial V(t, \xi; s, y)}{\partial \mathbf{n}_{t\xi}} = -a_{\varphi}^{11}(t, \xi) \cdot \left\{ -a_{11}^{\varphi}(t, \xi) \cdot \frac{-\varphi^{1}(s, y)}{2(t - s)} V(t, \xi; s, y) \right\}
$$

$$
= \frac{-\varphi^{1}(s, y)}{2(t - s)} V(t, \xi; s, y)
$$

for $\left< t, \xi \right>$ such that $\xi \in \boldsymbol{B} \bigcap U_{\delta}(\boldsymbol{z})$ and $\alpha(t,\xi)$ =1, and we get also

(3.8)
$$
\frac{\partial p(t, \xi; s, y)}{\partial n_{\iota \varepsilon}} = \frac{\partial q(t, \xi; s, y)}{\partial n_{\iota \varepsilon}} = 0
$$

and

(3. 9)
$$
V(t, \xi; s, y) = \bar{V}(t, \xi; s, y)
$$

for any $\xi \in \boldsymbol{B} \bigcap U_{\delta}(\boldsymbol{z}).$ We define

 $\Delta \sim 1$

(3. 10)
$$
W_s(t, x; s, y) = p(t, x; s, y) J_s(y) \frac{V(t, x; s, y) - \bar{V}(t, x; s, y)}{V(t, x)} + q(t, x; s, y) J_s(y) \frac{V(t, x; s, y) + \bar{V}(t, x; s, y)}{V(t, x)}
$$

where

(3. 11)
$$
J_s(y) = \frac{\partial \big[\varphi^1(s, y), \ldots, \varphi^m(s, y)\big]}{\partial \big[y^1, \ldots, y^m\big]} \quad \text{(Jacobian)}.
$$

Then we may prove from (3. 6—9) and by simple calculation that

(3.12)
$$
\alpha(t,\xi)W_z(t,\xi;s,y) + \{1-\alpha(t,\xi)\}\frac{\partial W_z(t,\xi;s,y)}{\partial n_{tx}} = 0
$$

for $\xi \in U_{\delta}(z) \cap \mathbf{B}$,

that is, $W_z(t, x; s, y)$ satisfies the boundary condition (B_α) as a function of $\langle t, x \rangle \in [s_0, t_0] \times U_{\delta}(x)$. Since

$$
(3.13) \quad \int_{U_{\delta}(z)\cap G} V(t, x; s, y) J_s(y) dy + \int_{U_{\delta}(z)\cap G} \overline{V}(t, x; s, y) J_s(y) dy
$$

$$
\leq \int_{R^m} V_o(a_i^{\varphi}(t, x); t, \varphi_t(x); s, Y) dY = V(t, x)
$$

$$
(dy = dy^1 \cdots dy^m, dY = dY^1 \cdots dY^m)
$$

and since the denominators and numerators in the right-hand side of (3.5) are positive for any $x, y \in U_{\delta}(z) \cap G$, we get

The Fundamental Solution of the Parabolic Equation in a Differ entiable Manifold, II 177

$$
(3. 14) \quad \int_{U_{\delta}(z)\cap G} |W_z(t, x\,; s, y)| dy \leq 1 \quad \text{for any} \quad x \in U_{\delta}(z) \cap \bar{G}.
$$

Now we have the following

Lemma 4. If $f(x)$ is continuous in \bar{G} and vanishes outside $U_{\delta}(z)$, *then*

(3. 15)
$$
\lim_{t \to s} \int_G \frac{V(t, x; s, y) + V(t, x; s, y)}{V(t, x)} f(y) J_s(y) dy = f(x)
$$

uniformly in $U_s(z) \bigcap \bar{G}$.

PROOF. By virtue of (3.3) and the uniform continuity of $\varphi^{j}(t, x)$ on $[s_0, t_0] \times \overline{U_s(z)}$, we may show that

$$
\lim_{t\downarrow s}\int_{R^m}\frac{V_o(a_{i,j}^o(t,x); t, \varphi_t(x); s, Y)}{V_o(a_{i,j}^o(t,x))} F(Y)dY = F(\varphi_s(x))
$$
\nuniformly in $U_s(z) \cap \overline{G}$

for any continuous function $F(Y)$ with a compact support; and hence, if especially $F(\bar{Y}) = F(Y)$ where $\bar{Y} = \langle -Y^1, Y^2, ..., Y^m \rangle$ for

$$
\lim_{t\downarrow s}\int_{R^m(Y^1>0)}\frac{V_{0}(a_{ij}^{\varrho}(t,x);t,\varphi_t(x);s,Y)+V_{0}(a_{ij}^{\varrho}(t,x);t,\varphi_t(x);s,\bar{Y})}{V_{0}(a_{ij}^{\varrho}(t,x))}F(Y)dY
$$
\n
$$
=F(\varphi_s(x))\quad\text{uniformly in}\quad U_{\delta}(z)\bigcap\bar{G}\,.
$$

Putting

$$
F(Y) = F(\bar{Y}) = \begin{cases} f(\varphi_s^{-1}(Y)) & \text{if } \sum_s (Y^j)^2 < 1 \\ 0 & \text{if not} \end{cases}
$$

in the above relation, and considering (3.4) and (3.11) , we obtain (3.15) .

Lemma 5. If $f(x)$ is such a function as stated in Lemma 3 and if *D* is an open set containing $B^{(s)} = \{\xi \in B\,; \alpha(s, \xi) = 1\}$, where s is any *fixed real number* ($s_o \lt s \lt t_o$), then

$$
\lim_{t\downarrow s}\int_G W_s(t,x\,;s,y)f(y)dy=f(x)\quad \textit{uniformly in}\quad U_s(z)\bigcap \bar{G}-D\,.
$$

PROOF. Let ε be an arbitrary positive number. Then, by virtue of Lemma 4, there exists $\Delta_1 > 0$ such that

$$
(3. 16) \quad \Big|\int_{U_{\delta}(z)\cap\overline{G}}\frac{V(t, x; s, y)+V(t, x; s, y)}{V(t, x)}J_{s}(y)f(y)dy-f(x)\Big|<\frac{\varepsilon}{4}
$$

for any $x \in U_{\delta}(z) \cap \overline{G}$ whenever $s \le t \le s + \Delta_1$. On the other hand, by

virtue of (3.13) and (3.14), there exists $\eta_1>0$ such that

$$
(3.17) \left| \int_{U_{\delta}(z) \cap \{\varphi^1(s,y) < \eta_1\} \cap \bar{G}} \frac{V(t,x;s,y) + \bar{V}(t,x;s,y)}{V(t,x)} J_s(y) f(y) dy \right| < \frac{\varepsilon}{4}
$$

and that

$$
(3. 18) \qquad \Big|\int_{U_{\delta}(z)\cap\{\varphi^1(s,y)<\eta_1\}\cap\bar{G}}W_s(t,x\,;s,y)f(y)dy\Big|\leq \frac{\varepsilon}{4}\,.
$$

Since $1 - \alpha(t, \xi_{tx}) \exp \{-|\varphi^1(t, x)|^2\} > 0$ for any t and any $x \in U_{\delta}(z)$ $\tilde{\bm{G}}$ — $\bm{B}^{\scriptscriptstyle{(s)}}$, there exists $\eta_{\scriptscriptstyle{2}}\!\!>\!0$ such that

$$
1-\alpha(t,\xi_{tx})\exp\{-|\varphi^{1}(t,x)|^{2}\}\geq\eta_{2}\qquad\text{(see (3.5))}
$$

for any t and any $x \in U_{\delta}(z) \bigcap \bar{G} - D$. Hence $\varphi^{\scriptscriptstyle 1}(s,y) \geq \eta_{\scriptscriptstyle 1}$ implies that

$$
|1-q(t, x; s, y)| = |p(t, x; s, y)| \le (t-s)/\eta_1 \eta_2
$$

for any $t\geq s$ and any $x\in U_{\delta}(\boldsymbol{z})\bigcap \bar{\boldsymbol{G}}-\boldsymbol{D},$ and hence it follows from (3.10) and (3.13) that there exists Δ ₂>0 such that

$$
(3. 18) \qquad \Big|\int_{U_{\delta}(z)\cap\{\varphi^1(s, y)\geq \eta_1\}\cap \overline{G}}\Big\{W_s(t, x; s, y)-\frac{V(t, x; s, y)+\overline{V}(t, x; s, y)}{V(t, x)}J_s(y)\Big\}f(y)dy\Big|<\frac{\varepsilon}{4}
$$

for any $x \in U_{\delta}(z) \bigcap \mathbf{G}-\bar{\mathbf{D}}$ whenever $s \big\langle t \big\langle s+\Delta_2. \right.$ Since $f(y)=0$ for $y \in \mathbf{G} - U_s(z)$, it follows from (3.16–19) that

$$
|f_{\mathbf{G}} W_{\mathbf{G}}(t, x; s, y) f(y) dy - f(x)| < \varepsilon \quad \text{for any } x \in U_{\delta}(z) \bigcap \overline{G} - D
$$

whenever $s < t < s + min{\{\Delta_1, \Delta_2\}}$. Thus we obtain Lemma 5.

Lemma 6. Assume that $f(x)$ is continuous in \overline{G} , vanishes outside $U_{\delta}(z)$ and satisfies the boundary condition $(B_{\alpha(s)})$. Then

$$
\lim_{t\downarrow s}\int_{G}W_{z}(t,x\,;s,y)f(y)dy=f(x)\quad uniformly\ \ in\ \ U_{\delta}(z)\bigcap\bar{G}.
$$

PROOF. Let ε be an arbitrary positive number, and put

$$
\boldsymbol{D=} \{x \, ; \, x \in \bar{\boldsymbol{G}}, |\, f(x)| \, \text{if} \, f(\bar{x}) \, \text{if} \, \bar{x} \, ; \, x \in \bar{\boldsymbol{G}}, |\, f(x)| \text{if} \, \text{if} \, f(\bar{x}) \, \text{if} \, f(\bar{x}) \, \text{if} \, \text{if} \, f(\bar{x}) \, \text{if} \, f(\bar
$$

where $\bar{x} = \langle -x^1, x^2, ..., x^m \rangle$ for $x = \langle x^1, x^2, ..., x^m \rangle$. Then, by virtue of the assumption of this lemma, *D* is an open set containing $\mathbf{B}^{(s)} = {\xi \in \mathbf{B}}$; $\alpha(s, \xi) = 1$ } and hence, by Lemma 5, there exists $\Delta > 0$ such that

$$
(3.20) \quad |f_{\mathbf{G}} \ W_{\mathbf{g}}(t, x; s, y) f(y) dy - f(x)| < \varepsilon \quad \text{for any } x \in U_{\delta}(z) \bigcap \overline{\mathbf{G}} - \mathbf{D}
$$

whenever $s < t < s + \Delta$. On the other hand, by Lemma 4, there exists Δ' > 0 such that

$$
\int_G \frac{V(t, x; s, y) + \bar{V}(t, x; s, y)}{V(t, x)} |f(y)| J_s(y) dy < \frac{2}{5} \varepsilon
$$

for any $x \in U_s(z) \cap \bar{G} \cap D$

whenever $s < t < s + \Delta'$. Hence, considering the non-negativity of $V(t, x; s, y)$, $\bar{V}(t, x; s, y)$ and $J_s(y)$ (see the proof of Lemma 3) and using the facts: $0 \leq p(t, x; s, y) \leq 1$ and $0 \leq q(t, x; s, y) \leq 1$, we obtain from (3.10) that

$$
\Big|\int_{\mathbf{G}}W_{z}(t,x\,;\,s,\,y)f(\,y)dy\Big|\!<\!\frac{4}{5}\,\varepsilon\quad\text{ for any }\,x\in U_{\delta}(z)\bigcap\bar{\mathbf{G}}\bigcap\mathbf{D}
$$

and accordingly

(3.21) $|\int_G W_z(t, x; s, y)f(y)dy - f(x)| < \varepsilon$ for any $x \in U_\delta(z) \cap \overline{G} \cap D$ whenever $s < t < s + \Delta'$. From (3.20) and (3.21) we get

$$
|\text{ } \text{ } f_{_{\mathbf{G}}} \text{ } W_{_{\mathbf{z}}}(t,\text{ }x\text{ ; }s\text{, }y) \text{ } f\text{ }(\text{ }y) d\text{ }y \text{ } \text{ } -f\text{ }(x)\text{ }|<\varepsilon\text{ } \text{ } \text{ for any } \text{ }x\in U_{\delta}(\text{ }z\text{) }\text{ } G
$$

whenever $s < t < s + min{\{\Delta, \Delta'\}}$. Thus we obtain Lemma 6.

Next, let $f(\tau, y)$ be a continuous function on $(s, t_0) \times G$ which vanishes outside $U_\delta(z)$ and satisfies the condition: $\int_s^t \int_G |f(\tau,y)| dy d\tau$ $\lt \infty$, and put

$$
f(t, x, \tau) = \int_G W_z(t, x; \tau, y) f(\tau, y) dy, \quad t > \tau > s,
$$

$$
F(t, x) = \int_s^t f(t, x, \tau) d\tau.
$$

Then we have

Lemma 7. i) $f(t, x, \tau)$ and $F(t, x)$ satisfy the boundary condition *(B_a*) in $U_{\delta}(z) \bigcap \mathbf{B}$; ii) for any $s'(t_0 > s' > s)$

$$
\lim_{\tau\downarrow s'}\int_{G}f(\tau,\,x)\,W_{s}(\tau,\,x\,;\,s',\,y)dx=f(s',\,y)\,\,in\,\,G\cap U_{\delta}(z)\,;
$$

iii) if $f(\tau, y)$ satisfies the generalized Lipschitz condition in $(s, t_0) \times \bar{G}$, *then*

$$
\frac{\partial F(t, x)}{\partial t} = f(t, x) + \int_s^t \int_G \frac{\partial W_s(t, x; \tau, y)}{\partial t} f(\tau, y) dy d\tau,
$$

$$
A_{tx} F(t, x) = \int_s^t \int_G A_{tx} W_s(t, x; \tau, y) f(\tau, y) dy d\tau.
$$

OUTLINE OF THE PROOF. The proposition i) may be shown by means of (3. 12) and Lemma 1, and the proposition ii) may be proved similarly to [FS, Lemma 2]. The proposition iii) is proved as follows. Considering the fact that the mapping $\varphi_t(x)$ is one-to-one and of $C^{2,1}$ -class for any *t* (see Lemma 3), using the same idea as in [FS, Lemmas 1 and 3] and applying Lemma 1 $(\S 1)$, we may show that

$$
\frac{\partial f(t, x, \tau)}{\partial t} = \int_G \frac{\partial W_z(t, x; \tau, y)}{\partial t} f(\tau, y) dy,
$$

$$
\frac{\partial f(t, x, \tau)}{\partial x^i} = \int_G \frac{\partial W_z(t, x; \tau, y)}{\partial x^i} f(\tau, y) dy,
$$

$$
\frac{\partial^2 f(t, x, \tau)}{\partial x^i \partial x^j} = \int_G \frac{\partial^2 W(t, x; \tau, y)}{\partial x^i \partial x^j} f(\tau, y) dy.
$$

and

$$
\lim_{\substack{t>t>\tau\\t\to\tau}} f(t, x, t') = f(\tau, x)
$$

and that there exist $M > 0$ and $\gamma = \gamma(t, x) > 0$ such that

$$
\frac{\partial f(t', s, \tau)}{\partial t'} \leq M(t-s)^{-(1-\frac{\gamma}{2})} \text{ whenever } s < \tau < t \leq t';
$$

further we have

$$
\int_s^t \left|\t\frac{\partial f(t,\,x,\,\tau)}{\partial x^t}\right|d\tau < \infty \ \ \text{and} \ \ \int_s^t \left|\t\frac{\partial^2 f(t,\,x,\,\tau)}{\partial x^t \partial x^j}\right|d\tau < \infty \ .
$$

Hence we may prove the proposition iii) by the same manner as in [FS, Lemma 4].

Lemma 8. If $\omega(t, x)$ is a function of C^1 -class in t and of C^2 -class in x, and vanishes outside $U_{\delta} (z),$ then there exists a constant $M_{\rm o} \! > \! 0$ *such that*

$$
|L_{tx}[\omega(t, x)W_s(t, x; s, y)]| \leq M_0(t-s)^{-\frac{m+1}{2}} \exp \left\{-\frac{M_0 \sum_i (x^i-y^i)^2}{4(t-s)}\right\}.
$$

This may be proved similarly to [FS, Lemma 5].

Finally we define a quasi-parametrix *W^z (t, x\ s, y)* around any inner point *z* of *G* as follows. We fix a canonical coordinate *(x*)* around *z* satisfying $U_1(z) \subset G$ and put

$$
\begin{aligned}\n\int \delta_z &= 1 \\
x_t^i &= \varphi^i(t, x) = x^i, i = 1, \dots, m, \text{ for any } t\n\end{aligned}
$$

(consequently $\varphi_t(x) = \langle x^1, \dots, x^m \rangle$ and $a_{ij}^{\varphi}(t, x) = a_{ij}(t, x) - c$ f. Lemma 3). Using this local coordinate, we define $V(t, x; s, y)$ and $V(t, x)$ by means of (3. 3) and (3. 4), and put

$$
W_{z}(t, x; s, y) = \frac{V(t, x; s, y)}{V(t, x)}
$$
 (s₀ < \lt s < t < t₀; x, y \in U₁(z)) .

Then we may easily prove that Lemmas 6, 8 and Lemma 7 ii), iii) hold for $W_s(t, x; s, y)$ defined here. (See Lemmas 2, 4 and 5 in [FS].)

§4. Gloval construction of a quasi-parametrix and a fundamental solution. For each $z \in \overline{G} (= G + B)$, we fix canonical coordinates $(xⁱ)$ and (x_i^i) around z as stated in §2, and put

$$
U(z,\,\varepsilon)=\{x\in\mathbf{M}\,;\,\sum_i(x^i-z^i)^2\big\langle\,\varepsilon\big\}\qquad(\varepsilon\big\geq0)\,.
$$

Since \bar{G} is compact, there exists a finite sequence $\{z_1, \ldots, z_n\}$ such that

(4.1)
$$
\bar{G} \subset \bigcup_{\nu=1}^N U(z_\nu,\,\delta_\nu/3) \text{ where } \delta_\nu = \delta_{z_\nu} \text{ (see § 2)},
$$

and then, since

(4.2)
$$
z_{\nu} \in G
$$
 implies $U(z_{\nu}, \delta_{\nu}) \subset G$ (see § 2),

we have

/ *^Λ* Q\ ϊ? /^**" \ / *TΊί>y* 5^ /Q\ **(4.** *ό)* -O C^ \y c/(/£^v ,*^o ^v / ό) .*

Let $\omega(\lambda)$ be a function of $C^{2,L}$ -class in $0 \leq \lambda \leq \infty$ such that $\omega(\lambda) = 1$ or 0 if $0 \le \lambda \le 1/3$ or $\lambda \ge 2/3$ respectively and that $0 \le \omega(\lambda) \le 1$ for any λ, and put for each *v*

$$
\omega_{\nu}(t, x) = \begin{cases} \omega(\sum_{i} [x_{t}^{i} - (z_{\nu})_{i}^{i}]^{2}) & \text{for } x \in \bar{G} \bigwedge U(z_{\nu}, \delta_{\nu}) \\ 0 & \text{for } x \in \bar{G} - U(z_{\nu}, \delta_{\nu}). \end{cases}
$$

Then $\omega_{\nu}(t, x)$, $\nu = 1, ..., N$, are of C¹-class in *t* and of C², ^{*z*}-class in $x \in \overline{G}$, and

$$
(4.4) \qquad \frac{\partial \omega_{\nu}(t,\xi)}{\partial \mathbf{n}_{t_{\xi}}}=0 \qquad \text{for any } \in [s_{0}, t_{0}]\times \mathbf{B};
$$

this may be proved by considering the local coordinate (x_i) around z_i for each *t* since the operator $\partial/\partial n_t$ is independent of the special choice of the local coordinate.

Now let $a_{\nu}(x)$ be the restriction of $a(x) = \det || a_{ij}(x) ||$ (see §1) to $U(z_1, \delta_1)$ with the local coordinate (x^i) around *z* stated above, and put, for $s_0 < s < t < t_0$,

$$
W_{\nu}(t, x; s, y) = \begin{cases} W_{z_{\nu}}(t, x; s, y) \text{ (as stated in § 3) if } x, y \in U(z_{\nu}, \delta_{\nu}) \bigcap \bar{G} \\ 0 \quad \text{if not.} \end{cases}
$$

We define a quasi-parametrix :

$$
Z(t, x; s, y) = \frac{\sum_{\nu} \omega_{\nu}(t, x) \omega_{\nu}(s, y) W_{\nu}(t, x; s, y)}{\sum_{\nu} \omega_{\nu}(t, x)^2 \sqrt{a_{\nu}(y)}} \begin{pmatrix} s_{\circ} \leq s \leq t \leq t_{\circ} \\ x, y \in \bar{G} \end{pmatrix}
$$

Then $Z(t, x; s, y)$ is of C¹-class in t and s, and of C^{2, t}-class in x and *y,* and it follows from (3. 12), (4. 2), (4. 3) and (4. 4) that

$$
(4.5) \qquad \alpha(t,\,\xi)Z(t,\,\xi\;;\;s,\,y)+\{1-\alpha(t,\,\xi)\}\frac{\partial Z(t,\,\xi\;;\;s,\,y)}{\partial \boldsymbol{n}_{t\xi}}=0\;\;(\xi\in\boldsymbol{B})\;,
$$

that is, $Z(t, x; s, y)$ satisfies the boundary condition (B_α) as a function of $\langle t, x \rangle$. Further, by virtue of Lemmas 6, 7 and 8, we obtain the following three lemmas.

Lemma 9. i) If $f(x)$ is continuous in G , then

 $\lim_{t \to s} \int_{G} Z(t, x; s, y) f(y) d_{a} y = f(x)$ in **G**;

if especially f(x) satisfies the boundary condition $(B_{\alpha(s)})$ *, then the above convergence is uniform in G.*

ii) if $f(t, x)$ is continuous in [s, t_o) \times **G**, then

$$
\lim \int_G f(t, x) Z(t, x; s, y) d_a x = f(s, y) \text{ in } G.
$$

Lemma 10. If $f(\tau, y)$ is continuous in $(s, t_0) \times \bar{G}$ and satisfies the *condition :* $\int_s^t \int_G |f(\tau, y)| d_\alpha y d\tau \leq \infty$, then
 $f(t, x, \tau) = \int_G Z(t, x; \tau, y) f(\tau, y) d\tau$

$$
f(t, x, \tau) = \int_{G} Z(t, x; \tau, y) f(\tau, y) d_{a} y \qquad (t < \tau < s)
$$

and

$$
F(t, x) = \int_s^t f(t, x, \tau) d\tau
$$

satisfy the boundary condition (B_{α}) ; *if further* $f(\tau, y)$ satisfies the gener a lized Lipschitz condition in $(s,t_{\scriptscriptstyle 0})\!\times\!\bar{\bm{G}},$ then

$$
\begin{cases} \frac{\partial F(t, x)}{\partial t} = f(t, x) + \int_s^t \int_G \frac{\partial Z(t, x; \tau, y)}{\partial t} f(\tau, y) d_a y d\tau, \\ A_{tx} F(t, x) = \int_s^t \int_G A_{tx} Z(t, x; \tau, y) f(\tau, y) d_a y d\tau. \end{cases}
$$

The Fundamental Solution of the Parabolic Equation in a Differ entiable Manifold, II 183

Lemma 11. $Z(t, x; s, y)$ satisfies all inequalities stated in [FS, Lemma 8] for a suitable constant $M > 0$.

Thus we see that $Z(t, x; s, y)$ has all properties stated in [FS, § 2]. Hence, starting from this quasi-parametrix $Z(t, x; s, y)$, we may construct $u(t, x; s, y)$ in the entirely same way as in [FS, § 3]. We may also construct $u^*(t, x; s, y)$ in the similar manner for the adjoint equation $L^* f^* = 0$ with the same boundary condition (B_α) . The functions $u(t, x; s, y)$ and $u^*(t, x; s, y)$ defined here have the properties stated in [FS, § 3] where the manifold *M* should be replaced by the compact domain \vec{G} and the uniformity of the convergence in [FS, (3.13)] may be proved if and only if $f(x)$ is the limit of a uniformly convergent sequence of functions satisfying the the boundary condition $(B_{\alpha(s)})^{\delta}$. Moreover $u(t, x; s, y)$ and $u^*(t, x; s, y)$ satisfy the boundary condition *(B_a)* as functions of $\left\langle t, x\right\rangle$ — see Lemma 10 and the procedure of the construction of $u(t, x; s, y)$ (in [FS, §3]).

§5. Proof of Theorems.

Lemma 12. If $f(x)$ and $h(x)$ are functions of C^2 -class on \bar{G} satisfy*ing the boundary condition* $(B_{\alpha(t)})$ (*t*: *fixed*), *then*

$$
\int_G f(x) \cdot A_{tx} h(x) d_a x = \int_G A_{tx}^* f(x) \cdot h(x) d_a x.
$$

PROOF. By partial integration, we obtain the Green's formula :

$$
\begin{split} \int_{G} f(x) \cdot A_{tx} h(x) d_{a}x - \int_{G} A_{tx}^{*} f(x) \cdot h(x) d_{a}x \\ &= \int_{B} \left\{ f(\xi) \frac{\partial h(\xi)}{\partial \mathbf{n}_{t}} - \frac{\partial f(\xi)}{\partial \mathbf{n}_{t}} h(\xi) \right\} \tilde{d} \xi \\ &+ \int_{B} \left\{ \frac{\partial}{\partial x^{j}} \left[\sqrt{a(\xi)} a^{ij}(t, \xi) \right] - \\ &\quad - \sqrt{a(\xi)} b^{i}(t, \xi) \right\} \frac{\partial \psi(\xi)}{\partial x^{i}} f(x) h(x) \tilde{d} \xi \end{split}
$$

where $\tilde{d}\xi = d\xi^1, \ldots, d\xi^{m-1}$ is the hypersurface area on \bm{B} and $\psi(x)$ is such function that $\psi(x) = 0$ determines **B** and that $\psi(x) > 0$ in **G**. But the right-hand side equals zero by virtue of the boundary condition $(B_{\alpha(t)})$ and the assumption (1.5). Hence we obtain Lemma 12.

From this lemma we obtain the following (see [FS, Lemma 11])

Lemma 13. If a function $f^*(s, y)$ on $(s_0, t) \times \bar{G}$ satisfies (1.7^*) and *(B^a), then*

⁸⁾ This assumption for $f(x)$ is equivalent to the following one: $f(\xi) = 0$ on $\mathbf{B}^{(s)} =$ $\{\xi \in \mathbf{B} \; ; \; \alpha(s, \xi) = 1\}$

 $\int_G f^*(\tau, x)u(\tau, x; s, y)d_a x = f^*(s, y)$ for any $\tau \in (s, t)$.

Therefore, we may see that :

PROOF OF THEOREMS 1, 2 AND 3 *may be performed in the same way as the proof of the corresponding theorems in* [FS] (see [FS, pp. 89-90]). It seems not to be necessary to repeat the entirely same argument. *The propositions concerning the boundary condition which are not included in* [FS] may be easily proved from properties of $u(t, x; s, y)$ and $u^*(t, x; s, y)$ stated in § 4 of the present paper.

In order to prove Theorem 4, we consider, as in \S 0, the functions

(5.1)
$$
f_s(t, x) = \int_G u(t, x; s, y) f(y) d_ay
$$

and

(5.2)
$$
g(t, x) \equiv g_s^{(\tau, n)}(t, x) = f_s(t, x) \exp \left\{-\left(\frac{t - s}{\tau - s}\right)^n\right\}
$$

where $f(x)$ is an arbitrary continuous function on G such that $0 \leq$ $f(x) \leq 1$ and the support of $f(x)$ is a compact set contained in the domain **G**, and τ and *n* are as stated in § 0. Then $g^{(\tau,n)}_s(t, x)$ is continuous in $(s, t_0) \times G$ and satisfies (0.3), (0.4) and the boundary condition (B_α) .

Lemma 14. If $c(t, x) \leq 0$, then the function $g(t, x)$ takes neither positive maximum nor negative minimum at any point in $(s, t_0) \times \bar{G}$ (for *any fixed* r, *n and s).*

PROOF. It is easily proved by the well known method that $g(t, x)$ takes neither positive maximum nor negative minimum at any point in the open set $(s, t_0) \times G$.

Suppose that :

(5.3) g(t, x) takes the positive maximum at $\langle t_1, \xi_1 \rangle \in (s, t_0) \times \mathbf{B}$.

 $f_{s}(t, x)$ satisfies $Lf = 0$ in $(s, t_{0}) \times \bar{G}$ as may be seen from the properties of $u(t, x; s, y)$, where the partial derivatives at any $\xi \in B$ should be understood as defined in §1, and $g(t, x)$ satisfies the boundary condition (B_a) as well as $f_s(t, x)$. We adopt a canonical coordinate around ξ _{*i*} as stated in Lemma 3. Then we obtain from (5.3) , (3.1) and (B_α) that $\partial g(t_1, \xi_1)/\partial x_t^1 \leq 0$ and that

$$
\alpha(t_1, \xi_1)g(t_1, \xi_1) - \{1 - \alpha(t_1, \xi_1)\}a_{\varphi}^{11}(t_1, \xi_1) \frac{\partial g(t_1, \xi_1)}{\partial x_t^1} = 0.
$$

Since $g(t_1, \xi_1) > 0$ and $a^{\text{11}}_{\varphi}(t_1, \xi_1) > 0$, it follows that $\alpha(t_1, \xi_1)$ should be

The Fundamental Solution of the Parabolic Equation in a Differentiable Manifold, II 185

zero, consequently $\partial g(t_1, \xi_1)/\partial x_t^1 = 0$, and accordingly $\partial^2 g(t_1, \xi_1)/(\partial x_t^1)^2$ \leq 0 by virtue of (5.3). Moreover, since $\lt t_1, \xi_1$ may be considered as the maximising point of $g(t, \xi)$ restricted to $(s, t_0) \times B$, we have

$$
\textstyle \sum\limits_{i,j\geq 2} a^{ij}_{\varphi}(t_{\scriptscriptstyle 1},\,\xi_{\scriptscriptstyle 1})\,\frac{\partial^2 g(t_{\scriptscriptstyle 1},\,\xi_{\scriptscriptstyle 1})}{\partial x^i_t\partial x^j_t} \leq 0\enspace \text{and} \enspace b^i_{\varphi}(t_{\scriptscriptstyle 1},\,\xi_{\scriptscriptstyle 1})\,\frac{\partial g(t_{\scriptscriptstyle 1},\,\xi_{\scriptscriptstyle 1})}{\partial x^i_t} = 0
$$

where we use the following facts: $a_{\varphi}^{1j}(t_1, \xi_1) = a_{\varphi}^{11}(t_1, \xi_1) = 0$ for j (see Lemma 3) and accordingly $||a_{\psi}^{i,j}(t_1, \xi_1)||_{i,j=2}, ..., m$ is a positive-definite symmetric matrix. Thus we get $Ag(t_1, \xi_1) \leq 0$, and hence

$$
0 = \frac{\partial g(t_1, \xi_1)}{\partial t} = A g(t_1, \xi_1) - \frac{n(t_1 - s)^{n-1}}{(\tau - s)^n} g(t_1, \xi_1) < 0;
$$

that is a contradiction. Hence the function $g(t, x)$ on $(s, t_0) \times \bar{G}$ does not take the positive maximum at any point in $(s, t_0) \times B$. Similarly it does not take the negative minimum at any point in $(s, t_0) \times B$.

PROOF OF THEOREM 4 may be performed by means of the entirely same manner as in § 0 by making use of Lemma 14 in place of Lemma A in \S 0. We omit to repeat here the argument in \S 0.

Mathematical Institute, Nagoya University

(Received August 17, 1954)