

Title	Immersion and embedding problems for complex flag manifolds
Author(s)	Sugawara, Tamio
Citation	Osaka Journal of Mathematics. 1978, 15(1), p. 117–135
Version Type	VoR
URL	https://doi.org/10.18910/8132
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Sugawara, T. Osaka J. Math. 15 (1978), 117–135

IMMERSION AND EMBEDDING PROBLEMS FOR COMPLEX FLAG MANIFOLDS

TAMIO SUGAWARA

(Received November 22, 1976) (Revised May 11, 1977)

Introduction

For a partition $n=n_1+n_2+\cdots+n_r$ of an integer *n*, let

$$W = W(n_1, \dots, n_r) = U(n)/U(n_1) \times \dots \times U(n_r)$$

be the complex (generalized) flag manifold. For example $W(k, n-k)=G_{k,n-k}$ is the complex Grassmann manifold and $W(1, 1, \dots, 1)=F(n)$ is the (usual) flag manifold $U(n)/T^n$ where T^n is a maximal torus in U(n). Then we have the natural bundle projection $\pi: F(n) \to W$ and the induced map

$$\pi^* \colon K(W) \to K(F(n)) = Z[\gamma_1, \gamma_2, \cdots, \gamma_n]/I^+$$

is a monomorphism (see §2). We write $M \subset \mathbb{R}^n$ the existence of an embedding and $M \subseteq \mathbb{R}^n$ the existence of an immersion of the differentiable manifold M in the Euclidean space \mathbb{R}^n .

The purpose of this paper is to prove the following non-immersion and non-embedding theorem for the complex flag manifolds.

Theorem 4.1. Let $2m = \dim W = n^2 - (n_1^2 + \dots + n_r^2)$. For a positive inetger k, if the element

$$2^{m} \prod_{(i,j)\in\mathcal{A}} \{1 + (\gamma_{i} - \gamma_{j}) \sum_{l=1}^{\infty} \left(-\frac{1}{2}\right)^{l} (\gamma_{i} + \gamma_{j})^{l-1}\}$$

of K(F(n)) is not divisible by 2^{k+1} , then

(i) $W \subset \mathbb{R}^{4^{m-2k}}$, (ii) $W \subseteq \mathbb{R}^{4^{m-2k-1}}$.

For the definition of the set A, see (3.1).

As an application of Theorem 4.1, we also prove the following non-existence theorem of immersions and embeddings for some complex Grassmann manifolds $G_{2,n-2}$ for odd integers *n*.

Theorem 6.1.* For each integer $u \ge 0$, we put $\beta(u)=2\alpha(u)-\nu_2(u+1)+1$. (For the definition of $\alpha(u)$ and $\nu_2(u+1)$, see p. 128) Then we have

(i) $G_{2,2n+1} \oplus R^{8(2n+1)-2\beta(n)}$, (ii) $G_{2,2n+1} \oplus R^{8(2n+1)-2\beta(n)-1}$.

We give the first few examples of non-embeddabilities:

Problems of immersions and embeddings for flag manifolds have been investigated by many topologists. Hoggar [10] showed that $G_{2,n-2} \oplus R^{3m}$ and that $G_{2,n-2} \oplus R^{3m-1}$ where $2m = \dim_R G_{2,n-2} = 4(n-2)$. He made use of the geometrical dimensions introduced by Atiyah [1]. Our results claim stronger facts that $G_{2,n-2} \oplus R^{4m-23}$ and that $G_{2,n-2} \oplus R^{4m-2\beta-1}$ because $\beta/m \to 0$ as $n \to \infty$. Our method relies on a theorem of Nakaoka [13] which seems much close to the Atiyah-Hirzebruch's integrality theorem [3]. Tornehave [15] investigated the existence of immersion of flag manifolds $W(n_1, \dots, n_r \subseteq R^{n^2-r})$ using the theory of Lie algebras and Hirsch's theorem [7]. Kee Yuen Lam [12] also proved the same result making use of his new functor μ^2 . Connell [6] discussed on the existence and the non-existence of immersions of some low dimensional flag manifolds. Among his results, there are

(i)
$$G_{2,2} \subseteq \mathbb{R}^{14}$$
, (ii) $G_{2,2} \not\subseteq \mathbb{R}^{12}$,
(iii) $G_{2,3} \subseteq \mathbb{R}^{23}$, (iv) $G_{2,3} \not\subseteq \mathbb{R}^{19}$.

The last statement (iv) agrees with a consequence of our result.

This paper is arranged as follows. In §1, we recall the immersion and embedding theorem of Nakaoka [13]. The structure of K-rings and tangent bundles of W and F(n) are discussed in §§2–3. §4 is devoted to the proof of the main theorem (Theorem 4.1). Here we make use of Atiyah's γ -operations and the fact that the tangent bundle $\tau(W)$ has its splitting on F(n). §5 is on some preliminaries for §6, where we discuss non-immersion and non-embedding of some complex Grassmann manifolds $G_{2,n-2}$. Calculations used here are quite elementry although a little bit complicated.

I should like to express my gratitude to Professors Tatsuji Kudo (my thesis advisor), Hiroshi Toda and Minoru Nakaoka for their kind advices and criticism. I am indebted to K. Shibata who read the manuscript. I am also indebted to T. Kobayashi, M. Kamata and H. Minami for their valuable discussions and suggestions.

1. Immersion and embedding of almost complex manifolds

For a complex vector bundle ξ over a finite CW-complex X, let $\gamma^i(\xi) \in K(X)$

^{*} More complete results are obtained in [18].

denote the Atiyah class of ξ [2]. The map $\gamma_t: \operatorname{Vect}_c(X) \to 1 + K(X)[t]^+$ defined by $\gamma_t(\xi) = \sum_{i \geq 0} \gamma^i(\xi) t^i$ is multiplicative: $\gamma_t(\xi \oplus \eta) = \gamma_t(\xi) \gamma_t(\eta)$. We define the dual Atiyah class $\overline{\gamma}^i(\xi) \in K(X)$ by $\overline{\gamma}^0(\xi) = 1$ and $\sum_{i+j=k} \gamma^i(\xi) \overline{\gamma}^j(\xi) = 0$ for k > 0. Then $\overline{\gamma}_t(\xi) = \sum_{i \geq 0} \overline{\gamma}^i(\xi) t^i$ is the inverse element of $\gamma_t(\xi)$ in the multiplicative group $1 + K(X)[t]^+$.

If M is an almost complex manifold of 2m-dimension, that is, its tangent bundle $\tau(M)$ has a structure of m-dimensional complex vector bundle, then we write $\gamma^i(M)$ (resp. $\bar{\gamma}^i(M)$) for $\gamma^i(\tau(M)-m)$ (resp. $\bar{\gamma}^i(\tau(M)-m)$). We see that $\bar{\gamma}^i(M)=0$ if i>m. The following theorem due to Nakaoka [13, Theorem 8] is the starting point of our investigations.

Theorem 1.1. Let M be a closed almost complex manifold of real dimension 2m such that K(M) has no elements of finite order. Then if M can be embedded (resp. immersed) in \mathbb{R}^{4m-2k} , the element $\sum_{i=0}^{m} 2^{m-i}\overline{\gamma}^{i}(M) \in K(M)$ is divisible by 2^{k+1} (resp. 2^{k}).

Note that the element in Theorem 1.1 is rewritten as

$$\sum_{i=0}^{m} 2^{m-i} \bar{\gamma}^{i}(M) = 2^{m} \sum_{i=0}^{m} \bar{\gamma}^{i}(M) \left(\frac{1}{2}\right)^{i} = 2^{m} \bar{\gamma}_{1/2}(M)$$

where $\overline{\gamma}_{1/2}(M)$ is regarded as the element of $K(M) \otimes Z[\frac{1}{2}]$. If N is another almost complex manifold of dimension 2n, it holds that

$$2^{m+n}\bar{\gamma}_{1/2}(M\times N) = 2^m\bar{\gamma}_{1/2}(M)\otimes 2^n\bar{\gamma}_{1/2}(N)$$

The following theorem is a generalization of Theorem 9 of Nakaoka [13] and the proof relies on Sanderson-Schwarzenberger [14, Theorem 1].

Theorem 1.2. Let M be the same as in Theorem 1.1. For a positive integer k, if the element $\sum_{i=0}^{m} 2^{m-i}\overline{\gamma}^{i}(M)$ is not divisible by 2^{k+1} , then (i) $M \oplus R^{4m-2k}$. (ii) $M \oplus R^{4m-2k-1}$.

Before we prove Theorem 1.2, we put a remark on the exponent of 2 in the binomial coefficient $\begin{pmatrix} a \\ b \end{pmatrix}$. Let $\nu_2(n)$ denote the exponent of 2 in n and $\alpha(n)$ the number of 1's in the diadic expansion of n. Since the equality $\nu_2(n!)=n-\alpha(n)$ holds by the elementary number theory, we have the following

Lemma 1.3.
$$\nu_2\begin{pmatrix}a\\b\end{pmatrix} = \alpha(b) + \alpha(a-b) - \alpha(a).$$

Proof of Theorem 1.2. (i) Straightfoward from Theorem 1.1. (ii) Suppose

 $M \subseteq \mathbb{R}^{4m-2k-1}$. We fix an integer $s=2^t > m$. By James [11] it holds that $CP^s \subset \mathbb{R}^{4s-1}$ and therefore by Sandeson-Schwarzenberger [14, Lemma] it holds that $M \times CP^s \subset \mathbb{R}^{4m+4s-2k-2}$. Thus by Theorem 1.1 the element

$$2^{m+s}ar{\gamma}_{1/2}(M imes CP^s)=2^mar{\gamma}_{1/2}(M)\otimes 2^sar{\gamma}_{1/2}(CP^s)$$

is divisible by 2^{k+1} . On the other hand, the isomorphism $\tau(CP^s) \oplus 1_c \simeq (s+1)\eta$ implies $\gamma_t(CP^s) = (1+tx)^{s+1}$ and $\overline{\gamma}_t(CP^s) = (1+tx)^{-s-1}$ where η is the canonical line bundle over CP^s and $x = \eta - 1_c \in K(CP^s)$. Therefore we have

$$2^{s} \overline{\gamma}_{1/2}(CP^{s}) = 2^{s}(1+x/2)^{-s-1} \pmod{x^{s+1}} = \sum_{i=0}^{s} (-1)^{i} \binom{s+i}{i} 2^{s-i} x^{i}.$$

Since $\binom{s+i}{i} 2^{s-i}$ $(0 \le i < s)$ are divisible by 4 and $\binom{2s}{s}$ is divisible by 2 but not by 4 (see Lemma 1.3), $2^s \bar{\gamma}_{1/2}(CP^s)$ is divisible by 2 but not by 4. Hence $2^m \bar{\gamma}_{1/2}(M)$ must be divisible by 2^{k+1} . This leads to a contradiction.

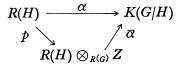
2. K-ring of flag manifolds

Let (n_1, n_2, \dots, n_r) be a partition of an integr $n: n=n_1+n_2+\dots+n_r$ and let

$$W = W(n_1, n_2, \cdots, n_r) = U(n)/U(n_1) \times U(n_2) \times \cdots \times U(n_r)$$

be a complex flag manifold. For example for $(1, 1, \dots, 1)$ we have the usual flag manifold $F(n)=U(n)/T^n$ where T^n is a maximal torus of U(n). For (k, n-k) we have the complex Grassamann manifold $G_{k,n-k}$ of all k-planes in C^n and for (1, n-1), W is just the complex projective space CP^{n-1} .

In this paragraph, we determine the ring structure of K(F(n)) and K(W)explicitly. Generally for a compact Lie group G and its closed subgroup H, the ring homomorphism $\alpha: R(H) \rightarrow K(G/H)$ is constructed by Atiyah-Hirzebruch [4] as follows. For an isomorphism class $x=[V] \in R(H)$ of an H-vector space $V, \alpha(x)$ is the isomorphism class of vector bundle $V \rightarrow G \times_H V \rightarrow G/H$ associated with the natural principal H-bundle over G/H. If V is moreover a G-vector space, that is, x is in the image of $i^*: R(G) \rightarrow R(H)$, the bundle map $\alpha: G \times_H V \rightarrow$ $G/H \times V$ difined by $\alpha(g \times_H v) = (gH, gv)$ is an isomorphism and hence $\alpha(x) =$ $(dim V) \mathbf{1}_c$. Therefore α is factored through the natural projection p:



The following theorem is due to Hodgkin [9, Corollary of Lemma 9.2]. **Theorem 2.1.** Let G be a compact connected Lie group with $\pi_1(G)$ free and let H be a closed connected subgroup of G with maximal rank. Then the ring homomorphism $\overline{\alpha}$: $R(H) \otimes_{R(G)} Z \rightarrow K(G/H)$ is an isomorphism.

We use these facts for G=U(n) and $H=T^n$ or $\prod_j U(n_j)$. First we will investigate the case F(n) and then the general case $W(n_1, n_2, \dots, n_r)$. As is well known we have

$$\begin{split} R(T^n) &= Z[\alpha_1, \, \alpha_1^{-1}, \, \alpha_2, \, \alpha_2^{-1}, \, \cdots, \, \alpha_n, \, \alpha_n^{-1}] \\ R(U(n)) &= Z[\lambda_1, \, \lambda_2, \, \cdots, \, \lambda_n, \, \lambda_n^{-1}] \end{split}$$

and λ_i is mapped on the *i*-th elementary symmetric polynomial of $\alpha_1, \alpha_2, \dots, \alpha_n$ by the monomorphism $i^*: R(U(n)) \to R(T^n)$. Let ξ_i be the image of α_i by the ring homomorphism $\alpha: R(T^n) \to K(F(n))$, then $\xi_1 \oplus \xi_2 \oplus \dots \oplus \xi_n$ is the vector bundle associated with the principal T^n bundle $T^n \to U(n) \to F(n)$. Let $\sigma^k(x_1, x_2, \dots, x_n)$ denote the k-th elementary symmetric polynomial in variables x_1, x_2, \dots, x_n . The element $\sigma^k(\alpha_1, \alpha_2, \dots, \alpha_n)$ has the same dimension as $\binom{n}{k} 1_c$ and they coincide with each other in $\bigotimes_{j=1}^{r} R(U(n_j)) \otimes_{R(U(n)} Z$. Therefore $\sigma^k(\xi_1, \xi_2, \dots, \xi_n) = \binom{n}{k}$ holds in K(F(n)). In particuler $\xi_1 \xi_2 \dots \xi_n = 1$ holds and we have $\xi_j^{-1} = \prod_{k \neq j} \xi_k$. Therefore the ring K(F(n)) is isomorphic to the quotient ring of $Z[\xi_1, \xi_2, \dots, \xi_n]$ factored by the ideal generated by

$$\{\sigma^{k}(\xi_{1}, \xi_{2}, \cdots, \xi_{n}) - \binom{n}{k}; k > 0\}$$

For the convenience of the later use we adopt the generators $\gamma_i = \xi_i - 1$. Then we can choose the elements

$$\{\sigma^k(\gamma_1, \gamma_2, \cdots, \gamma_n), k > 0\}$$

as a new generator system of the ideal. Hence we have the following

Proposition 2.2.

$$K(F(n)) = Z[\gamma_1, \gamma_2, \cdots, \gamma_n]/I^+$$

where I^+ is the ideal generated by $\{\sigma^k(\gamma_1, \gamma_2, \dots, \gamma_n); k > 0\}$.

We repeat the same procedure for $W = W(n_1, n_2, \dots, n_r)$. For a partition (n_1, n_2, \dots, n_r) of n, we define a sequence of integers (m_0, m_1, \dots, m_r) inductively as follows:

$$m_0 = 0, \quad m_j = m_{j-1} + n_j \quad (1 \le i \le r).$$

For the representation ring of $\prod_{i} U(n_{i})$ we have

$$R(\prod_{j} U(n_{j})) = \bigotimes_{j=1}^{\prime} R(U(n_{j})) = \bigotimes_{j=1}^{\prime} Z[\lambda_{1}^{(j)}, \lambda_{2}^{(j)}, \dots, \lambda_{n_{j}-1}^{(j)}, \lambda_{n_{j}}^{(j)}, (\lambda_{n_{j}}^{(j)})^{-1}]$$

and $i^*: R(\prod_j U(n_j)) \to R(T^n) \text{ maps } \lambda_p^{(j)}$ on the *p*-th fundamental symmetric polynomial in variables $\{\alpha_i: m_{j-1} < i \leq m_j\}$. We denote $\sigma_p^{(j)}$ for the image of $\lambda_p^{(j)}$ by the map $\alpha: R(\prod_j U(n_j)) \to K(W)$. Since the element

$$\sum_{i_1+\cdots+i_r=k}^r \lambda_{i_1}^{(1)} \lambda_{i_2}^{(2)} \cdots \lambda_{i_r}^{(r)} \in \bigotimes_{j=1}^r R(U(n_j))$$

has the same dimension as $\binom{n}{k} 1_c$, they conicide with each other in $\bigotimes_{j=1}^r R(U(n_j)) \otimes_{R(U(n))} Z$. Therefore $\sum_{i_1+\cdots+i_r=k} \sigma_{i_1}^{(1)} \sigma_{i_2}^{(2)} \cdots \sigma_{i_r}^{(r)} = \binom{n}{k}$ holds in K(W). In particular $\sigma_{n_1}^{(1)} \sigma_{n_2}^{(2)} \cdots \sigma_{n_r}^{(r)} = 1$ holds and we obtain $(\sigma_{n_j}^{(j)})^{-1} = \prod_{k \neq j} \sigma_{n_k}^{(k)}$. Therefore the ring K(W) is isomorphic to the quotient ring of

$$\bigotimes_{j=1}^{r} Z[\sigma_1^{(j)}, \sigma_2^{(j)}, \cdots, \sigma_{n_j}^{(j)}]$$

factored by the ideal generated by the elements

$$\{\sum_{i_1+\cdots+i_r=k} \sigma_{i_1}^{(1)} \sigma_{i_2}^{(2)} \cdots \sigma_{i_r}^{(r)} - \binom{n}{k}; k > 0\}.$$

Again we change the generators as follows. The homomorphism $\pi^*: K(W) \to K(F(n))$ induced by the projection of the fibre bundle $\prod_j F(n_j) \to F(n) \to W$ is a monomorphism. In fact, since the odd dimensional parts of the cohomology groups $H^{2i+1}(F(n), Z)$ and $H^{2i+1}(W, Z)$ vanish (Bott [16; Theorem A]), the induced homomorphism $\pi^*: H^*(W, Z) \to H^*(F(n), Z)$ is monic because the Serre spectral sequence of the above fibre bundle collapses (Serre [17]). Moreover, the Atiyah-Hirzebruch spectral sequence of W also collapses and hence the Chern character $ch: K(W) \to H^*(W, Q)$ is monic [4]. Therefore, the commutative diagram

$$\begin{array}{ccc} K(W) & \longrightarrow & K(F(n)) \\ ch & \downarrow & & \downarrow & ch \\ H^*(W, Q) & \longrightarrow & H^*(F(n), Q) \end{array}$$

leads that the homomorphism $\pi^*: K(W) \to K(F(n))$ is monic. We define the element $c_p^{(i)}$ such that $\pi^*(c_p^{(j)})$ is the *p*-th elementary symmetric polynomial in $\{\gamma_i; m_{j-1} < i \le m_j\}$. Then $\sigma_p^{(j)}$ and $c_p^{(j)}$ differ in $Z[\gamma_1, \gamma_2, \dots, \gamma_n]$ only by an element of the submodule generated by $\{c_k^{(j)}; k < p\}$ or, the same, by $\{\sigma_k^{(j)}; k < p\}$. Hence we can adopt $c_p^{(j)}$ as ring generators of K(W).

Proposition 2.3.

$$K(W) = \bigotimes_{j=1}^{r} Z[c_1^{(j)}, c_2^{(j)}, \cdots, c_{n_j}^{(j)}]/J^+$$

where J^+ is the ideal generated by

$$\{\sum_{i_1+\cdots+i_r=k} c_{i_1}^{(1)} c_{i_2}^{(2)} \cdots c_{i_r}^{(r)}; k > 0\}.$$

3. Tangent bundles of F(n) and W

The tangent bundles of F(n) and $W = W(n_1, n_2, \dots, n_r)$ are investigated by such authors as Hirzebruch [8, §13] and Kee Yuen Lam [12] as follows:

Proposition 3.1.

(1) Let $\xi_1 \oplus \cdots \oplus \xi_n$ be the vector bundle associated with the principal bundle $T^n \rightarrow U(n) \rightarrow F(n)$, then we have

$$\tau(F(n)) \simeq \sum_{i>j} \xi_i \otimes \xi_j^*.$$

(2) Let $\zeta_1 \oplus \cdots \oplus \zeta_r$ be the vector bundle associated with the principal bundle $U(n_1) \times \cdots \times U(n_r) \rightarrow U(n) \rightarrow W$, then we have

$$\tau(W) \simeq \sum_{\alpha > \beta} \zeta_{\alpha} \otimes \zeta_{\beta}^*.$$

With a partition (n_1, n_2, \dots, n_n) of an integer *n*, we associate an increasing sequence (m_0, m_1, \dots, m_r) defined as follows:

$$m_0 = 0$$
, $m_i = m_{i-1} + n_i (0 < i \le r)$.

Let $\pi: F(n) \to W$ be the natural projection. Since $\pi^*: K(W) \to K(F(n))$ is a monomorphism and it holds that $\pi^*(\zeta_{\alpha}) = \sum_{m_{\alpha}-1 < i \leq m_{\alpha}} \xi_i$, we have the splitting

(3.1)
$$\pi^*(\tau(W)) = \sum_{(i,j)\in\mathcal{A}} \xi_i \otimes \xi_j^*$$

where $B = \bigcup_{\alpha=1}^{'} \{(i, j); m_{\alpha-1} < j < i \le m_{\alpha}\}$ and $A = \{(i, j); 1 \le j < i \le n\} - B$.

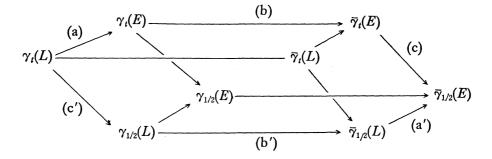
4. Immersion and embedding of flag manifolds

As we saw in §1, for the problem of immersion and embedding of flag manifolds, we have to know $\bar{\gamma}_{1/2}(W)$. Note that the following three procedures are commutative with each other.

- (a) To get γ_t of a vector bundle from γ_t of its splitting line bundles.
- (b) To get $\bar{\gamma}_t(\xi)$ from $\gamma_t(\xi)$

(c) Substituting
$$t = \frac{1}{2}$$

Therefore we have the following "commutative diagram" of three procedures:



So let us take the path $(a)^{-1}(c')(b')(a')$ instead of the path (b)(c). Recall that the projection $\pi: F(n) \to W$ induces the monomorphism $\pi^*: K(W) \to K(F(n))$ (see §2) and $\pi^*\tau(W) = \sum_{(i,j) \in \mathcal{A}} \xi_i \otimes \xi_j^*$ (see §3). Hence

$$\pi^* \gamma_t(W) = \pi^*(\gamma_t((W) - m)) = \gamma_t(\sum_{(i,j) \in \mathcal{A}} (\xi_i \otimes \xi_j^* - 1))$$
$$= \prod_{(i,j) \in \mathcal{A}} \gamma_t(\xi_i \otimes \xi_j^* - 1).$$

Recall that for a line bundle η , we have $\gamma_i(\eta-1)=1+(\eta-1)t$ [2]. As we have put $\gamma_i=\xi_i-1$, the equality $\xi_i\otimes\xi_i^*=1$ implies $\xi_i^*=1/(1+\gamma_i)$. Therefore

$$\gamma_i(\xi_i \otimes \xi_j^* - 1) = 1 + (\xi_i \otimes \xi_j^* - 1)t$$
$$= 1 + \left(\frac{1 + \gamma_i}{1 + \gamma_j} - 1\right)t = 1 + \left(\frac{\gamma_i - \gamma_j}{1 + \gamma_j}\right)t.$$

Substituting $t = \frac{1}{2}$ and taking its inverse element:

$$\bar{\gamma}_{1/2}(\xi_i \otimes \gamma_j^* - 1) = \left\{ 1 + \frac{\gamma_i - \gamma_j}{1 + \gamma_j} \left(\frac{1}{2} \right) \right\}^{-1} = \frac{1 + \gamma_j}{1 + \frac{1}{2} (\gamma_i + \gamma_j)}$$
$$= 1 - \frac{\frac{1}{2} (\gamma_i - \gamma_j)}{1 + \frac{1}{2} (\gamma_i + \gamma_j)} = 1 + (\gamma_i - \gamma_j) \sum_{l=1}^{\infty} \left(-\frac{1}{2} \right)^l (\gamma_i + \gamma_j)^{l-1}$$

Therefore we have

$$\pi^*(\bar{\gamma}_{1/2}(W)) = \prod_{(i,j)\in \mathcal{A}} \{1 + (\gamma_i - \gamma_j) \sum_{l=1}^{\infty} \left(-\frac{1}{2}\right)^l (\gamma_i + \gamma_j)^{l-1}\}.$$

Combining this result with Theorem 1.2 we obtain the following

Theorem 4.1. Let $2m = \dim W = n^2 - (n_1^2 + \dots + n_r^2)$. For a positive integer k, if the element ~ (1)]

$$2^{m}\prod_{(i,j)\in\mathcal{A}}\left\{1+(\gamma_{i}-\gamma_{j})\sum_{i=1}^{\infty}\left(-\frac{1}{2}\right)^{l}(\gamma_{i}+\gamma_{j})^{l-1}\right\}$$

of K(F(n)) is not divisible by 2^{k+1} , then we have

(i)
$$W \subset \mathbb{R}^{4m-2k}$$
, (ii) $W \subseteq \mathbb{R}^{4m-2k-1}$.

It does not seem easy to find from this theorem the dimension of Euclidean space in which $W(n_1, n_2, \dots, n_r)$ cannot be embedded or immersed. In the following paragraph, we will discuss non-immersion and non-embedding for only the case $W(2, n-2)=G_{2,n-2}$ for odd integer n.

5. Preliminaries

In §2, we have determined the ring structure of K-ring of F(n) and $W = W(n_1, n_2, \dots, n_r)$ as follows:

$$K(F(n)) = Z[\gamma_1, \gamma_2, \cdots, \gamma_n]/I^+$$
$$K(W) = \bigotimes_{j=1}^{r} Z[c_1^{(j)}, c_2^{(j)}, \cdots, c_{n_j}^{(j)}]/J^+ .$$

For the next paragraph, we observe some algebraic properties of these rings. Although K-ring has no geometrical grading, giving deg $\gamma_i=1$ and deg $c_i^{(j)}=i$, we regard K(F(n)) and K(W) as graded algebras. It is possible because the ideals I^+ and J^+ are generated by homogeneous elements. (see §2).

First in K(F(n)), it holds that

(5.1)
$$\gamma_i^n = 0 \quad (i = 1, 2, \dots, n).$$

In fact let $\pi_i: F(n) \to CP^{n-1}$ be such natural projection that the induced homomorphism $\pi_i^*: K(CP^{n-1}) = Z[x]/(x^n) \to K(F(n))$ satisfies $\pi_i^*(x) = \gamma_i$. Then $x^n = 0$ implies $\gamma_i^n = 0$.

Next, as far as the applications discussed in §6 are concerned, it is sufficient to observe the case $W=G_{k,n-k}$. In this case, we have

$$K(G_{k,n-k}) = Z[c_1, c_2, \cdots, c_k, c_1', c_2', \cdots, c_{n-k}]/J^+$$

and J^+ is generated by

(5.2)
$$\{c_i + c_{i-1}c_1' + \dots + c_ic_{i-1}' + c_i', \quad 1 \leq i \leq k(n-k)\} .$$

Of course we understand that $c_i=0$ if j>k and $c_i'=0$ if j>n-k.

Proposition 5.1. In the ring $K(G_{k,n-k})$, we have

(5.3)
$$c_{l}' = \sum_{||I||=l} (-1)^{|I|} {|I| \choose i_{1}, i_{2}, \cdots, i_{k}} c_{1}^{i_{1}} c_{2}^{i_{2}} \cdots c_{k}^{i_{k}}$$

where $|I| = \sum_{j=1}^{k} i_{j}$ and $||I|| = \sum_{j=1}^{k} j i_{j}$ for $I = (i_{1}, i_{2}, \dots, i_{k})$.

Proof. By (5.2) it is sufficient to check

$$\sum_{t+j=s} \{ c_t \sum_{||I||=j} (-1)^{|I|} {|I| \choose i_1, i_2, \cdots, i_k} c^I \} = 0$$

The left hand side is rewritten as

$$\sum_{i=0}^{s} \sum_{||I||=s-i} (-1)^{|I|} {|I| \choose i_1, i_2, \cdots, i_k} c^I c_t.$$

Put $J_t = (i_1, \dots, (i_t+1), \dots, i_k)$ for $1 \leq t \leq k$ then we have

$$=\sum_{||I||=s} (-1)^{|I|} {|I| \choose i_1, i_2, \cdots, i_k} c^I + \sum_{i=1}^s \sum_{||I||=s-i} (-1)^{|J_i|-1} {|J_i|-1 \choose i_1, i_2, \cdots, i_k} c^{J_i}$$
$$=\sum_{||I||=s} (-1)^{|J|} \left\{ {|J| \choose j_1, j_2, \cdots, j_k} - \sum_{i=1}^s {|J|-1 \choose j_1, \cdots, (j_i-1), \cdots, j_k} \right\} c^J = 0$$

by the formula for the multinomial coefficients and thus Proposition 5.1 is proved.

By Proposition 5.1, we see that all monomials in $K(G_{k,n-k})$ is written only by c_1, c_2, \cdots . Moreover, it seems that $K(G_{k,n-k})$ is the free module over Z with a base consisting of the monomials $\{c_{j_1}c_{j_2}\cdots c_{j_r}: j_1+\cdots+j_r\leq n-k\}$ but the author has succeeded only to prove Proposition 5.3. Before that, we prove the following

Lemma 5.2. Let n and k be two integers with $0 \le k \le n$, then we have

$$\sum_{i\geq 0} (-1)^{i} \binom{n-i}{i} \binom{n-2i}{k-i} = 1$$

Proof. Putting ${n \atop k} = \sum_{i \ge 0} (-1)^i {\binom{n-i}{i} \binom{n-2i}{k-i}}$, we show that ${n \atop k} = 1$ by induction on n and k. Evidently we have ${n \atop 0} = {\binom{n}{0} \binom{n}{0}} = 1$ and ${\binom{n}{n}} = {\binom{n}{0} \binom{n}{n}} = 1$. Next it is easy to see that

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1} - \binom{n-2}{k-1} .$$

holds and by the hypothesis of induction, ${n \atop k} = 1+1-1=1$. q.e.d. In what follows, we consider the case k=2 and we put r=n-2.

Proposition 5.3. In $K(G_{2,r})=Z[c_1, c_2, c_1', c_2', \dots, c_r']/J^+$ it holds that the 2rdimensional part is generated by c_2' and other monomials of 2r-dimension is written as

$$c_1^{2j}c_2^{r-j} = \left\{ \binom{2j}{j} - \binom{2j}{j-1} \right\} c_2^r.$$

Proof. In Proposition 5.1, the convention $c_l = 0$ $(r < l \le 2r)$ leads to the relations

(5.4)
$$\sum_{i_1+2i_2=l} (-1)^{i_1+i_2} {i_1+i_2 \choose i_2} c_1^{i_1} c_2^{i_2} = 0 \quad (r < l \le 2r)$$

Multiplying c_1^{2k-l} and rewriting $i_2=r-j$ and $i_1+i_2=l-r+j$, we have the relations in homogeneous 2r-dimensions:

$$\sum_{j} (-1)^{j} \binom{l-r+j}{r-j} c_{1}^{2j} c_{2}^{r-j} = 0 \quad (r < l \le 2r)$$

Therefore it is sufficient to solve the following homogeneous linear equations in r+1 variables x_0, x_1, \dots, x_r .

(5.5)
$$\begin{cases} A_{r,r+1} = \sum_{j} (-1)^{j} {\binom{1+j}{r-j}} x_{j} = 0 \\ A_{r,r+2} = \sum_{j} (-1)^{j} {\binom{2+j}{r-j}} x_{j} = 0 \\ \dots \\ A_{r,2r} = \sum_{j} (-1)^{j} {\binom{r+j}{r-j}} x_{j} = 0 \end{cases}$$

We fix integers j, k and r with $r \ge k+j$. Comparing the coefficients of y^{r-j} in the expansion of the equality

$$(1+y)^{r+j}(1-(1+y)^{-1})^k = y^k(1+y)^{r-k+j}$$
,

(I owe this equality to K. Shibata) we obtain the relation

$$\sum_{s=0}^{k} (-1)^{s} \binom{k}{s} \binom{r-s+j}{r-j} = \binom{r-k+j}{r-k-j}.$$

Hence we have

$$\sum_{s=0}^{k} (-1)^{s} \binom{k}{s} A_{r,2r-s} = A_{r-k,2(r-k)} \quad 1 \leq k < r.$$

This means that (5.5) is equivalent to the following homogeneous equations

(5.6)
$$\begin{cases} A_{1,2} = \sum_{j=0}^{1} (-1)^{j} {\binom{1+j}{1-j}} x_{j} = 0 \\ A_{2,4} = \sum_{j=0}^{2} (-1)^{j} {\binom{2+j}{2-j}} x_{j} = 0 \\ \dots \\ A_{r,2r} = \sum_{j=0}^{r} (-1)^{j} {\binom{r+j}{r-j}} x_{j} = 0 \end{cases}$$

This is rewritten as

(5.7)
$$\begin{cases} \sum_{j>0} (-1)^{j} {\binom{1+j}{1-j}} x_{j} = -x_{0} \\ \sum_{j>0} (-1)^{j} {\binom{2+j}{2-j}} x_{j} = -x_{0} \\ \dots \\ \sum_{j>0} (-1)^{j} {\binom{r+j}{r-j}} x_{j} = -x_{0} \end{cases}$$

and the matrix is a triangular one with the diagonal consisting of 1 and -1 alternatively. Hence the matrix is unimodular and the solution is unique. It is therefore sufficient to show that

(5.8)
$$x_{j} = \left\{ \begin{pmatrix} 2j \\ j \end{pmatrix} - \begin{pmatrix} 2j \\ j-1 \end{pmatrix} \right\} x_{0}$$

is the solution. In Lemma 5.2 putting n-i=l+j and i=l-j, we have n-2i=2j. Moreover putting (i) k-i=j and (ii) k-i=j-1, we have

(i)
$$\sum_{j} (-1)^{j} {\binom{l+j}{l-j}} {\binom{2j}{j}} = (-1)^{l} \quad 1 \leq l \leq r$$
,
(ii) $\sum_{j} (-1)^{j} {\binom{l+j}{l-j}} {\binom{2j}{j-1}} = (-1)^{l} \quad 1 \leq l \leq r$,

and hence $\sum_{j} (-1)^{j} {\binom{l+j}{l-j}} {\binom{2j}{j} - \binom{2j}{j-1}} = 0, 1 \le l \le r$. This means that (5.8) is just the solution of (5.6) and hence of (5.5).

6. Non-immersion and non-embedding of Grassmann manifolds

For an application of Theorem 4.1, we investigate the dimension of Euclidean spaces in which Grassmann manifolds $G_{k,n-k}$ cannot be immersed or embedded. Only the case k=2 and n is odd was succeeded. First we show the results. $\alpha(n)$ denotes the number of l's in the diadic expansion of an integer n and $\nu_{\alpha}(n)$ denotes the exponent of a prime p in n.

Theorem 6.1. For each integer $u \ge 0$ we put $\beta(u)=2\alpha(u)-\nu_2(u+1)+1$. Then we have

(i) $G_{2,2u+1} \oplus R^{8(2u+1)-2\beta(u)}$, (ii) $G_{2,2u+1} \oplus P^{8(2u+1)-2\beta(u)-1}$.

REMARK 1. It might be interesting to compare these results with the Atiyah-Hirzebruch's results [3] that (i) $CP^m \oplus R^{4m-2^{i\alpha}(m)}$ and (ii) $CP^m \oplus R^{4m-2^{i\alpha}(m)-1}$.

REMARK 2. Connell [6] also proved that $G_{2,3} \oplus \mathbb{R}^{19}$.

Proof. By the results in §3 we have

(6.1)
$$K(G_{2,n-2}) = Z[c_1, c_2, c_1', c_2', \cdots, c_{n-2}]/J^+$$

(6.2)
$$K(F(n)) = Z[\gamma_1, \gamma_2, \cdots, \gamma_n]/I^+$$

Let $\pi: F(n) \to G_{2,n-2}$ be the projection of the fibre bundle with the fibre $F(2) \times F(n-2)$, then $\pi^*: K(G_{2,n-2}) \to K(F(n))$ is a monomorphism and $\pi^*(c_i)$ (resp. $\pi^*(c_i')$) is the *i*-th symmetric polynomial in γ_1 , γ_2 (resp. γ_3 , γ_4 , \dots , γ_n). In Proposition 5.1 we have shown that c_2^{n-2} generates the 2(n-2)-dimensional part of the graded module $K(G_{2,n-2})$ and we will show in Lemma 6.4 that the coefficient *a* of c_2^{n-2} in $\sum_{i=0}^{m} 2^{m-i} \overline{\gamma}^i(G_{2,n-2})$ is

(6.3)
$$a = \begin{cases} 0 & n: \text{ even} \\ -\frac{2(2u+3)}{(2u-1)(u+1)} {\binom{2u}{u}}^2 & n = 2u+3 \end{cases}$$

Therefore unfortunately we get no informations if *n* is even. When *n* is odd, note that $\nu_2(\binom{2u}{u}) = \alpha(u)$ holds by Lemma 1.3. Then we have

(6.4)
$$\nu_2(a) = \beta(u) = 2\alpha(u) - \nu_2(u+1) + 1$$
.

Since $\sum_{i=0}^{m} 2^{m-i} \overline{\gamma}^{i}(G_{2,n-2})$ cannot be devided by $2^{\nu_{2}(a)+1}$, Theorem 6.1 follows from Theorem 1.2. q.e.d.

It is left to get the coefficient a of c_2^{n-2} in

(6.5)
$$2^{m} \prod_{\substack{3 \leq i \leq n \\ 1 \leq j \leq 2}} \{1 + (\gamma_{i} - \gamma_{j}) \sum_{i=1}^{\infty} \left(-\frac{1}{2}\right)^{l} (\gamma_{i} + \gamma_{j})^{l-1} \}$$

which will be done in Lemmas 6.2, 6.3 and 6.4. In Lemma 6.2 we work in the case $G_{k,n-k}$ for arbitraly k, but in Lemmas 6.3 and 6.4 we restrict ourselves to the case k=2.

Lemma 6.2.

(a) For fixed j, we can put

(b)
$$\prod_{i=k+1}^{n} \{1 + (\gamma_{i} - \gamma_{j}) \sum_{l=1}^{\infty} \left(-\frac{1}{2}\right)^{l} (\gamma_{i} + \gamma_{j})^{l-1} \}$$
$$= \sum_{l=0}^{\infty} \left(-\frac{1}{2}\right)^{l} \sum_{p=0}^{l} (-1)^{p} e_{n,l-p,p} \pi^{*}(c_{p}) \gamma_{j}^{l-p}$$
$$e_{n,l-p,p} = \sum_{r=0}^{l-p} (-1)^{r} \binom{n-k}{r} \binom{l-1}{l-p-r}.$$

Proof.
$$\bar{\gamma}_{1/2}(\xi_i \otimes \xi_j^* - 1) = 1 + \sum_{l=1}^{\infty} \left(-\frac{1}{2} \right)^l (\gamma_i - \gamma_j) (\gamma_i + \gamma_j)^{l-1}$$

 $= 1 + \sum_{l=1}^{\infty} \left(-\frac{1}{2} \right)^l \sum_{p=0}^{l-1} \binom{l-1}{l-p-1} (\gamma_i - \gamma_j) \gamma_j^p \gamma_j^{l-p-1}$
 $= 1 + \sum_{l=1}^{\infty} \left(-\frac{1}{2} \right)^l \left\{ \sum_{p=1}^{l} \binom{l-1}{l-p} \gamma_j^p \gamma_j^{l-p} - \sum_{p=0}^{l-1} \binom{l-1}{l-p-1} \gamma_i^p \gamma_j^{l-p} \right\}.$

In order to introduce a new function, we recall some properties of binomial coefficient $\begin{pmatrix} a \\ b \end{pmatrix}$. Putting $\begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1$ and $\begin{pmatrix} 0 \\ b \end{pmatrix} = 0$ if $b \neq 0$, $\begin{pmatrix} a \\ b \end{pmatrix}$ is defined by $\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a-1 \\ b \end{pmatrix} + \begin{pmatrix} a-1 \\ b-1 \end{pmatrix}$ for each pair (a, b) of integers. Then $\begin{pmatrix} a \\ b \end{pmatrix} = 0$ if b < 0 or if $0 \le a < b$. $\begin{pmatrix} a \\ 0 \end{pmatrix} = 1$ for each a and $\begin{pmatrix} a \\ a \end{pmatrix} = 1$ if $a \ge 0$. We define a new function $\begin{bmatrix} a \\ b \end{bmatrix}$ for each pair (a, b) of integers by

(6.6)
$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} - \begin{pmatrix} a \\ b-1 \end{pmatrix}$$

Then, we have $\begin{bmatrix} a \\ b \end{bmatrix} = 0$ if b < 0 or if $0 \le a+1 < b$, $\begin{bmatrix} a \\ 0 \end{bmatrix} = 1$ for each a and $\begin{bmatrix} a \\ a+1 \end{bmatrix} = -1$ if $a \ge 0$. Using these the above equations are continued as follows:

$$=\sum_{l=0}^{\infty}\left(-\frac{1}{2}\right)^{l}\sum_{p=0}^{l}\begin{bmatrix}l-1\\l-p\end{bmatrix}\gamma_{i}^{p}\gamma_{j}^{l-p}.$$

Therefore

$$\begin{split} &\prod_{i=k+1}^{n} \tilde{\gamma}_{1/2} (\xi_i \otimes \xi_j^* - 1) \\ &= \prod_{i=k+1}^{n} \sum_{l_i=0}^{\infty} \left\{ \left(-\frac{1}{2} \right)^{l_i} \sum_{p_i=0}^{l_i} \begin{bmatrix} l_i - 1 \\ l_i - p_i \end{bmatrix} \gamma_i^{p_i} \gamma_j^{l_i - p_i} \right\} \\ &= \sum_{l=0}^{\infty} \left(-\frac{1}{2} \right)^{l} \sum_{l_{k+1}+\dots+l_n=l} \sum_{p=0}^{l} \left\{ \sum_{p_{k+1}+\dots+p_n=p} \prod_{i=k+1}^{n} \begin{bmatrix} l_i - 1 \\ l_i - p_i \end{bmatrix} \prod_{i=k+1}^{n} \gamma_i^{p_i} \right\} \gamma_j^{l-p} \\ &= \sum_{l=0}^{\infty} \left(-\frac{1}{2} \right)^{l} \sum_{p=0}^{l} \left\{ \sum_{p_{k+1}+\dots+p_n=p} \sum_{l_{k+1}+\dots+l_n=l} \prod_{i=k+1}^{n} \begin{bmatrix} l_i - 1 \\ l_i - p_i \end{bmatrix} \prod_{i=k+1}^{n} \gamma_i^{p_i} \right\} \gamma_j^{l-p} \\ &= \sum_{l=0}^{\infty} \left(-\frac{1}{2} \right)^{l} \sum_{p=0}^{l} \left\{ \sum_{p_{k+1}+\dots+p_n=p} \sum_{l_{k+1}+\dots+l_n=l} \prod_{i=k+1}^{n} \sum_{l_i=k+1}^{n} \gamma_i^{p_i} \right\} \gamma_j^{l-p} \end{split}$$

We first show that $\sum_{l_{k+1}+\dots+l_n=l} \prod_{i=k+1}^n \begin{bmatrix} l_i-1\\ l_i-p_i \end{bmatrix}$ depends only on p but does not depend on the partition (p_{k+1}, \dots, p_n) of p and moreover it is equal to

(6.7)
$$e_{n,l-p,p} = \sum_{r=0}^{l-p} (-1)^r \binom{n-k}{r} \binom{l-1}{l-p-r}.$$

For that we set up a relation of the function $\begin{bmatrix} a \\ b \end{bmatrix}$. Comparing the

coefficient of x^t in the expansion of the equality

$$\prod_{i=1}^{n} (1+x)^{-s_i} = (1+x)^{-s}, \quad (s = s_1 + \dots + s_q),$$

we have $\sum_{t_1+\dots+t_q=t} \prod_{i=1}^q {s_i+t_i-1 \choose t_i} = {s+t-1 \choose t}.$

From this we easily see that

(6.9)
$$\sum_{t_1+\dots+t_q=t} \prod_{i=1}^q \begin{bmatrix} s_i+t_i-1\\t_i \end{bmatrix} = \sum_{r=0}^q (-1)^r \binom{q}{r} \binom{s+t-1}{t-r}.$$

In fact

$$\sum_{t_{1}+\dots+t_{q}=t} \prod_{i=1} \left\{ \binom{s_{i}+t_{i}-1}{t_{i}} - \binom{s_{i}+t_{i}-1}{t_{i}-1} \right\}$$
$$= \sum_{t_{1}+\dots+t_{q}=t} \sum_{I \supset J} (-1)^{r} \prod_{i=1}^{q} \binom{s_{i}'+t_{i}'-1}{t_{i}'}$$

where J runs through all of the subsets of $I = \{1, 2, \dots, q\}$ and r is the number of elements in J. Moreover

$$s_i' = s_i + 1$$
 and $t_i' = t_i - 1$ if $i \in J$
 $s_i' = s_i$ and $t_i' = t_i$ if $i \notin J$.

Hence the above equation is continued as

$$=\sum_{I\supset J} (-1)^{r} \sum_{t_{1}'+\dots+t_{q'=t-r}} \prod_{i=1} {s_{i}'+t_{i}'-1 \choose t_{i}'} \\ =\sum_{I\supset J} (-1)^{r} {s+t-1 \choose t-r} = \sum_{r=0}^{q} (-1)^{r} {q \choose r} {s+t-1 \choose t-r}.$$

Replace l_i for s_i+t_i and l_i-p_i for t_i in (6.9). Since $p_{k+1}+\cdots+p_n=p$ is constant, the condition $t_1+\cdots+t_q=t$ is replaced by $l_{k+1}+\cdots+l_n=l$ and hence we have

(6.10)
$$\sum_{l_{k+1}+\dots+l_n=l} \prod_{i=k+1}^{q} {l_{i-1} \choose l_i-p_i} = \sum_{r=0}^{n-k} (-1)^r {\binom{n-k}{r}} {\binom{l-1}{l-p-r}}$$

as required.

Next we show that in K(F(n)) it holds that

(6.11)
$$\pi^* c_p = (-1)^p \sum_{p_{k+1}^+ \cdots + p_n = p} \prod_{i=k+1}^n \gamma_i^{p_i}.$$

In fact,

$$\prod_{1 \leq j \leq k} (1+\gamma_j) \prod_{k+1 \leq i \leq n} (1+\gamma_i) = \prod_{1 \leq i \leq n} (1+\gamma_i) = 1$$

implies

$$\pi^*(\sum_{p} c_p) = \prod_{1 \le j \le k} (1 + \gamma_j) = \prod_{k+1 \le i \le n} (1 + \gamma_i)^{-1}$$

$$=\prod_{k+1\leq i\leq n}\sum_{p_i=0}^{\infty}(-\gamma_i)^{p_i}=\sum_{p=0}^{\infty}(-1)^{p}\sum_{p_{k+1}+\cdots+p_n=p}\prod_{i=k+1}^{n}\gamma_i^{p_i}$$

Hence we have (6.11) and Lemma 6.2 is proved.

For the calculations in Lemma 6.4, we restrict ourselves to the case k=2 and determine the values of some $e_{n,l-p,p}$'s more explicitly. We put

(6.12)
$$e_{ij} = (-1)^j e_{n,n-i,j}$$
.

Lemma 6.3.

(1) When n is even, putting n-2=2u, we have

$$e_{ij} = \sum_{2^{r+s}=2^{u+2-i}} (-1)^{r+j} {2u \choose r} {j+1-i \choose s} \quad \text{if } j+1 \ge i$$

$$e_{ij} = \sum_{2^{r+s=2^{jj}+2^{-i}}} (-1)^{r+s+j} {2u-i+j+1 \choose r} {i-j-1 \choose s}$$
 if $j+1 \leq i$.

(2) When n is odd, putting n-2=2u+1, we have

$$e_{ij} = \sum_{2r+s=2^{ij}+3-i} (-1)^{r+j} {2u+1 \choose r} {j+1-i \choose s} \quad \text{if } j+1 \ge i.$$

$$e_{ij} = \sum_{2^{r+s}=2^{u}+3^{-}i} (-1)^{r+s+j} {2u-i+j+2 \choose r} {i-j-1 \choose s} \quad \text{if } j+1 \leq i$$

Proof. Comparing the coefficients of x^m in the expansion of

$$(1-x)^{k}(1+x)^{l} = \begin{cases} (1-x^{2})^{k}(1+x)^{l-k} & \text{if } l \ge k \\ (1-x^{2})^{l}(1-x)^{k-l} & \text{if } l \le k \end{cases}$$

we have

$$\sum_{r=0}^{m} (-1)^{r} \binom{k}{r} \binom{l}{m-r} = \begin{cases} \sum_{2r+s=m} (-1)^{r} \binom{k}{r} \binom{l-k}{s} & \text{if } l \geq k \\ \sum_{2r+s=m} (-1)^{s+r} \binom{l}{r} \binom{k-l}{s} & \text{if } l \leq k \end{cases}$$

Applying this to Lemma 6.2 (b) with k=2, we have Lemma 6.3. q.e.d.

We give the list of some e_{ij} $(1 \le i \le 5, 0 \le i \le 2)$ which we will use in Lemma 6.4.

(1) When *n* is even, putting n-2=2u, we have

$$e_{10} = 0 \qquad e_{11} = (-1)^{u+1} {\binom{2u}{u}} \qquad e_{12} = (-1)^{u} 2 {\binom{2u}{u}}$$

$$e_{20} = (-1)^{u} {\binom{2u-1}{u}} \qquad e_{21} = (-1)^{u+1} {\binom{2u}{u}} \qquad e_{22} = (-1)^{u} {\binom{2u}{u}}$$

$$e_{30} = (-1)^{u} 2 {\binom{2u-2}{u-1}} \qquad e_{31} = (-1)^{u+1} {\binom{2u-1}{u-1}} \qquad e_{32} = 0$$

$$e_{40} = (-1)^{u-1} {\binom{2u-3}{u-1}} + (-1)^{u} 3 {\binom{2u-3}{u-2}}$$

$$e_{41} = (-1)^{u} \binom{2u-2}{u-1} + (-1)^{u+1} \binom{2u-2}{u-2} \qquad e_{42} = (-1)^{u-1} \binom{2u-1}{u-1} \\ e_{50} = (-1)^{u-1} \binom{2u-4}{u-2} + (-1)^{u} \binom{2u-4}{u-3} \\ e_{51} = (-1)^{u} \binom{2u-3}{u-2} + (-1)^{u+1} \binom{2u-3}{u-3} \qquad e_{52} = (-1)^{u-1} \binom{2u-2}{u-2} \\ e_{51} = (-1)^{u-1} \binom{2u-3}{u-2} + (-1)^{u+1} \binom{2u-3}{u-3} \qquad e_{52} = (-1)^{u-1} \binom{2u-2}{u-2} \\ e_{51} = (-1)^{u-1} \binom{2u-3}{u-2} + (-1)^{u-1} \binom{2u-3}{u-3} \qquad e_{52} = (-1)^{u-1} \binom{2u-2}{u-2} \\ e_{51} = (-1)^{u-1} \binom{2u-3}{u-2} + (-1)^{u-1} \binom{2u-3}{u-3} \qquad e_{52} = (-1)^{u-1} \binom{2u-3}{u-2} \\ e_{51} = (-1)^{u-1} \binom{2u-3}{u-2} + (-1)^{u-1} \binom{2u-3}{u-3} \qquad e_{52} = (-1)^{u-1} \binom{2u-3}{u-2} \\ e_{51} = (-1)^{u-1} \binom{2u-3}{u-2} + (-1)^{u-1} \binom{2u-3}{u-3} \qquad e_{52} = (-1)^{u-1} \binom{2u-3}{u-2} \\ e_{51} = (-1)^{u-1} \binom{2u-3}{u-2} + (-1)^{u-1} \binom{2u-3}{u-3} \qquad e_{52} = (-1)^{u-1} \binom{2u-3}{u-2} \\ e_{51} = (-1)^{u-1} \binom{2u-3}{u-2} + (-1)^{u-1} \binom{2u-3}{u-3} \qquad e_{52} = (-1)^{u-1} \binom{2u-3}{u-2} \\ e_{51} = (-1)^{u-1} \binom{2u-3}{u-2} + (-1)^{u-1} \binom{2u-3}{u-3} \qquad e_{52} = (-1)^{u-1} \binom{2u-3}{u-2} \\ e_{51} = (-1)^{u-1} \binom{2u-3}{u-2} + (-1)^{u-1} \binom{2u-3}{u-3} \qquad e_{52} = (-1)^{u-1} \binom{2u-3}{u-2} \\ e_{51} = (-1)^{u-1} \binom{2u-3}{u-3} \qquad e_{52} = (-1)^{u-1} \binom{2$$

(2) When *n* is odd, putting n-2=2u+1, we have

$$\begin{split} e_{10} &= (-1)^{u+1} \binom{2u+1}{u} \quad e_{11} = (-1)^{u} \binom{2u-1}{u} \quad e_{12} = 0 \\ e_{20} &= (-1)^{u+1} \binom{2u}{u} \quad e_{21} = 0 \quad e_{22} = (-1)^{u} \binom{2u+1}{u} \\ e_{30} &= 0 \quad e_{31} = (-1)^{u+1} \binom{2u}{u} \quad e_{32} = (-1)^{u} \binom{2u+1}{u} \\ e_{40} &= (-1)^{u} 3\binom{2u-2}{u-1} + (-1)^{u+1} \binom{2u-2}{u-2} \\ e_{41} &= (-1)^{u-1} 2\binom{2u-1}{u-1} \quad e_{42} = (-1)^{u} \binom{2u}{u-1} \\ e_{50} &= (-1)^{u-1} \binom{2u-3}{u-1} - 6\binom{2u-3}{u-2} + \binom{2u-3}{u-3} \\ e_{51} &= (-1)^{u} \binom{2u-2}{u-1} + (-1)^{u+1} 3\binom{2u-2}{u-2} \\ e_{52} &= (-1)^{u-1} \binom{2u-1}{u-1} + (-1)^{u} \binom{2u-1}{u-2} \end{split}$$

Lemma 6.4. In $K(G_{2,n-2})$, the coefficient a of c_2^{n-2} in $2^m \overline{\gamma}_{1/2}(G_{2,n-2})$ is

(6.13)
$$a = \begin{cases} 0 & n: \text{ even} \\ -\frac{2(2u+3)}{(2u-1)(u+1)} {\binom{2u}{u}}^2 & n = 2u+3 \end{cases}$$

Proof. Combining (6.5), (a) of Lemma 6.2 and (6.12), we have

$$2^{m}\bar{\gamma}_{1/2}(G_{2,n-2}) = 2^{m} \left\{ \sum_{i_{1}=1}^{n} \sum_{j_{1}=0}^{2} \left(-\frac{1}{2} \right)^{n+j_{1}-i_{1}} e_{i_{1}j_{1}} c_{j_{1}} \gamma_{1}^{n-i_{1}} \right\} \\ \times \left\{ \sum_{i_{2}=1}^{n} \sum_{j_{2}=0}^{2} \left(-\frac{1}{2} \right)^{n+j_{2}-i_{2}} e_{i_{2}j_{2}} c_{j_{2}} \gamma_{2}^{n-i_{2}} \right\}$$

The term of degree m=2(n-2) in this equation is

(6.14)
$$\sum_{i_1+i_2=j_1+j_2+4} e_{i_1j_1} e_{i_2j_2} c_{j_1} c_{j_2} \gamma_1^{n-i_1} \gamma_2^{n-i_2}$$

and as $j_1, j_2 \leq 2$, it must hold that $4 \leq i_1 + i_2 \leq 8$. So we can list up all terms which appear in (6.14) as follows:

T. SUGAWARA

$e_{i_1 j_1} e_{i_2 j_2}$	$c_{j_1}c_{j_2}\gamma_1^{n-i_1}\gamma_2^{n-i_2}$
$e_{20}e_{20}$	$\gamma_1^{n-2}\gamma_2^{n-2}=c_2^{n-2}$
$e_{10}e_{30}$	$(\gamma_1^2+\gamma_2^2)\gamma_1^{n-3}\gamma_2^{n-3}=-c_2^{n-2}$
$e_{20}e_{31}+e_{21}e_{30}$	$c_1(\gamma_1+\gamma_2)\gamma_1^{n-3}\gamma_2^{n-3}=c_2^{n-2}$
$e_{30}e_{32} + e_{32}e_{30}$	$c_2\gamma_1^{n-3}\gamma_2^{n-3}=c_2^{n-2}$
$e_{31}e_{31}$	$c_1^2 \gamma_1^{n-3} \gamma_2^{n-3} = c_2^{n-2}$
$e_{10}e_{41}+e_{11}e_{40}$	$c_1(\gamma_1^3+\gamma_2^3)\gamma_1^{n-4}\gamma_2^{n-4}=-c_2^{n-2}$
$e_{20}e_{42}+e_{22}e_{40}$	$c_2(\gamma_1^2+\gamma_2^2)\gamma_1^{n-4}\gamma_2^{n-4}=-c_2^{n-2}$
$e_{21}e_{41}$	$c_1^2(\gamma_1^2+\gamma_2^2)\gamma_1^{n-4}\gamma_2^{n-4}=0$
$e_{31}e_{42}+e_{32}e_{41}$	$c_1c_2(\gamma_1+\gamma_2)\gamma_1^{n-4}\gamma_2^{n-4}=c_2^{n-2}$
$e_{42}e_{42}$	$c_2^2 \gamma_1^{n-4} \gamma_2^{n-4} = c_2^{n-2}$
$e_{10}e_{52}+e_{12}e_{50}$	$c_2(\gamma_1^4+\gamma_2^4)\gamma_1^{n-5}\gamma_2^{n-5}=0$
$e_{11}e_{51}$	$c_1^2(\gamma_1^4+\gamma_2^4)\gamma_1^{n-5}\gamma_2^{n-5}=-c_2^{n-2}$
$e_{21}e_{52}+e_{22}e_{51}$	$c_1c_2(\gamma_1^3+\gamma_2^3)\gamma_1^{n-5}\gamma_2^{n-5}=-c_2^{n-2}$
$e_{32}e_{52}$	$c_2^2(\gamma_1^2+\gamma_2^2)\gamma_1^{n-5}\gamma_2^{n-5}=-c_2^{n-2}$
$e_{11}e_{62}+{}_{12}e_{61}$	$c_1c_2(\gamma_1^5\!+\!\gamma_2^5)\gamma_1^{n-6}\gamma_2^{n-6}=0$
$e_{22}e_{62}$	$c_2^2(\gamma_1^4+\gamma_2^4)\gamma_1^{n-6}\gamma_2^{n-6}=0$
$e_{12}e_{72}$	$c_2^2(\gamma_1^6+\gamma_2^6)\gamma_1^{n-7}\gamma_2^{n-7}=0$

Note that the relations on the right hand side is obtained from Proposition 5.3. Therefore the coefficient a of c_2^{n-2} in (6.2) is obtained as follows:

$$a = e_{20}e_{20} - e_{10}e_{30} + e_{20}e_{31} + e_{21}e_{30} + e_{30}e_{32} + e_{32}e_{30}$$
$$+ e_{31}e_{31} - e_{10}e_{41} - e_{11}e_{40} - e_{20}e_{42} - e_{22}e_{40} + e_{31}e_{42}$$
$$+ e_{41}e_{32} + e_{42}e_{42} - e_{11}e_{51} - e_{21}e_{52} - e_{22}e_{51} - e_{32}e_{52}$$

Applying the list given bellow Lemma 6.3 to this equation, we have (6.13).

q.e.d.

Kyushu University

References

- [1] M.F. Atiyah: Immersions and embeddings of manifolds, Topology 1 (1962), 125-132.
- [2] M.F. Atiyah: K-theory. Benjamin, 1967.
- [3] M.F. Atiyah-F. Hirzebruch: Quelque théorèmes de non-plongement pour les variétés différentiables, Bull. Soc. Math. France 87 (1959), 383-396.
- [4] M.F. Atiyah-F. Hirzebruch: Vector bundles and homogeneous spaces, Proc. Symp. Pure Math. 3, Differential geometry, (1961), 7-38.

- [5] A. Borel-F. Hirzebruch: Characteristic classes and homogeneous spaces, I. Amer. J. Math., 80 (1958), 458-538.
- [6] F.J. Connell: Nonimmersions of low dimensional flag manifolds, Proc. Amer. Math. Soc. 44 (1974), 474–478.
- [7] M.W. Hirsch: Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242– 276.
- [8] F. Hirzebruch: Topological methods in algebraic geometry, 3rd ed., Springer-Verlag, Berlin, 1966.
- [9] L.H. Hodgkin-V.P. Snaith: Topics in K-theory, Lecture Note in Math. 496 Springer 1975.
- [10] S.G. Hoggar: A nonembedding results for complex Grassmann manifolds, Proc. Edinburgh Math. Soc. 17 (1970–1971), 149–153.
- [11] I.M. James: Some embeddings of projective spaces, Proc. Cambridge Philos. Soc. 55 (1959), 294–298.
- [12] Kee Yuen Lam: A formula for tangent bundle of flag manifolds and related manifolds, Trans. Amer. Math. Soc. 213 (1975), 305-314.
- [13] M. Nakaoka: Characteristic classes with values in complex cobordism, Osaka J. Math. 10 (1973), 521-543.
- [14] B.J. Sanderson-R.L.E. Schwarzenberger: Non-immersion theorems for differentiable manifolds, Proc. Cambridge Philos. Soc. 59 (1963), 319-322.
- [15] J.Tornehave: Immersions of complex flagmanifolds, Math. Scand. 23 (1968), 22–26.
- [16] R. Bott: An application of the Morse theory to the topology of Lie groups, Bull. Soc. Math. France 84 (1956), 251–281.
- [17] J.-P. Serre: Homologie singulière des espaces fibrés. applications, Ann. of Math. 54 (1951), 425-505.
- [18] T. Sugawara: Non-immersion and non-embedding of complex Grassmann manifolds, to appear.