

Title	On indecomposable modules and blocks
Author(s)	Kawai, Hiroaki
Citation	Osaka Journal of Mathematics. 1986, 23(1), p. 201-205
Version Type	VoR
URL	https://doi.org/10.18910/8137
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Kawai, H.
Osaka J. Math.
23 (1986), 201–205

ON INDECOMPOSABLE MODULES AND BLOCKS

Dedicated to Professor HIROSI NAGAO for his 60th birthday

HIROAKI KAWAI

(Received November 30, 1984)

Introduction

Let G be a finite group and F a field of prime characteristic p . Let M be an irreducible FG -module belonging to a block B of FG with defect group D . Then the following fact is well-known. Namely if M has height 0 in B , then D is a vertex of M and the dimension of D -source of M is prime to p (provided that F is sufficiently large). The main objective of this paper is to study an indecomposable module M which satisfies the conclusion in the above statement. In particular it will turn out that M_H has a component with the same property for $H \leq G$ under certain circumstances (see Theorem 2.1). We shall apply our results to give new proofs to some of important theorems concerning blocks.

The notation is almost standard: We fix a complete discrete valuation ring R of characteristic 0 with F as its residue class field. We assume that the quotient field of R is a splitting one for every subgroup of G . We let θ denote R or F . By an θG -module M , we understand a right θG -module which is finitely generated free over θ . If M is indecomposable, we denote its vertex by $vx(M)$. For another module N , $N|M$ indicates that N is isomorphic to a direct summand of M and we say “ N is a component of M ” if N is indecomposable. If n is an integer and p^n is the highest p -power dividing n , then we write $m=v(n)$. Finally for a block B of G , we denote by $\delta(B)$ a defect group of B .

1. Sources with θ -rank prime to p

For later convenience, we put down the following well-known fact without proof.

Lemma 1.1. *Let M be an indecomposable θG -module with vertex Q . Let V be an indecomposable θQ -module. Then V is a Q -source of M if and only if $V|M_Q$ and Q is a vertex of V .*

Let M be an indecomposable θG -module. We consider the following condition;

$$(*) \quad p \nmid \text{rank}_\theta V \quad \text{for a source } V \text{ of } M.$$

Theorem 1.2. *Let H be a subgroup of G . Let M be an indecomposable θG -module with vertex Q which satisfies (*). Let P be a maximal member of $\{Q^x \cap H \mid x \in G\}$. Then there exists a component N of M_H such that P is a vertex of N and N satisfies (*).*

Proof. We set $P = Q^a \cap H$ ($a \in G$) and let V be a Q^a -source of M . Then there exists a component W of V_P with $p \nmid \text{rank}_\theta W$. Then P is a vertex of W by Green's theorem. We may assume that $V \mid M_{Q^a}$ and hence $W \mid M_P$. Let N be a component of M_H such that $W \mid N_P$. Then $P \subseteq_H vx(N)$. On the other hand, $N \mid M_H$ means that $vx(N) \subseteq_H Q^x \cap H$ for some $x \in G$. Therefore we have $vx(N) =_H P$ by the choice of P . Moreover W is a P -source of N by Lemma 1.1. This completes the proof.

We mention a couple of remarks concerning the condition (*).

REMARK 1.3. Let M be an indecomposable FG -module with cyclic vertex. Then M satisfies (*).

For the proof of this fact, it is sufficient to show the following lemma, which may be, much or less, well-known.

Lemma 1.4. *Let $Q = \langle x \rangle$ be a cyclic group of order p^s . Let M be an arbitrary indecomposable FQ -module. Then M satisfies (*).*

Proof. (Watanabe) We denote by Q_i the subgroup of Q with order p^i ($0 \leq i \leq s$). For each i , FQ_i has exactly p^i indecomposable modules V_{ij} with $\dim_F V_{ij} = j$ ($1 \leq j \leq p^i$). Recall that each $M_{ij} = (V_{ij})^Q$ is indecomposable by Green's theorem. Moreover if $(j, p) = 1$, then $\nu(\dim_F M_{ij}) = \nu(|Q: Q_i|)$. This implies that Q_i is a vertex of M_{ij} and so V_{ij} is a Q_i -source of it. Now we see that the set $\bigcup_{i=0}^s \{M_{ij} \mid (j, p) = 1, 1 \leq j \leq p^i\}$ must be a full set of non-isomorphic indecomposable FQ -modules, since $p^s = \sum_{i=0}^s \varphi(p^i)$ (φ denotes the Euler totient function). This completes the proof of Lemma 1.4.

REMARK 1.5 (Knörr [5], Theorem 4.5). Assume that F is algebraically closed. Let M be an indecomposable θG -module. Then if $\nu(\text{rank}_\theta M) = \nu(|G: vx(M)|)$, M satisfies (*).

As an application of Theorem 1.2, we show the following;

Corollary 1.6. *Let H be a normal subgroup of G . Let M be an irreducible*

FG -module and N an irreducible constituent of M_H . Then if $\nu(\dim_F M) = \nu(|G: vx(M)|)$, we have $\nu(\dim_F N) = \nu(|H: vx(N)|)$.

Proof. For the proof of this result, we may assume that F is algebraically closed. By Theorem 1.2 and Remark 1.5, there exists an irreducible constituent \hat{N} of M_H such that \hat{N} satisfies (*). However, since a source of N and that of \hat{N} are G -conjugate to each other, we have that $\nu(\dim_F N) = \nu(|H: vx(N)|)$ by Theorem 4.5 in [5].

As one of typical modules which satisfy (*), let us take what is called a Scott module. For any subgroup X of G , we denote by I_X the trivial θX -module (an θX -module of rank 1 on which X acts trivially). For a p -subgroup Q of G , $(I_Q)^G$ has exactly one component S which contains I_G as a submodule, and then Q is a vertex of S (see Burry [2]). Following Burry, we call S the Scott G -module with vertex Q . The following theorem was suggested by Okuyama.

Theorem 1.7. *Let H be a subgroup of G and S the Scott G -module with vertex Q . Let P be a maximal member of $\{Q^x \cap H \mid x \in G\}$. Then there exists a component U of S_H which is the Scott H -module with vertex P .*

Proof. We prove by the induction on $|Q|/|P|$. If $|Q|=|P|$, our assertion follows immediately from Theorem 2 in [2]. So we assume that $|Q| > |P|$. We set $H_1 = N_G(P)$ and let P_1 be a maximal member of $\Omega = \{Q^x \cap H_1 \mid Q^x \cap H_1 \neq P, x \in G\}$. It is clear that Ω is not empty. Thus by the induction hypothesis, there exists a component U_1 of S_{H_1} which is the Scott H_1 -module with vertex P_1 . We set $T = N_H(P)$, then there exists a component \hat{U} of $(U_1)_T$ which contains I_T as a submodule. However, since $(P_1)^y \cap T = P$ for all $y \in H_1$, $\{(I_{P_1})^H\}_T$ is a direct sum of copies of $(I_P)^T$ by Mackey decomposition theorem. Thus \hat{U} must be the Scott T -module with vertex P . Let U be a component of S_H such that $\hat{U} \mid U_T$. Then since P is a vertex of U , U corresponds to \hat{U} in the Green correspondence with respect to (H, P, T) . Thus by Theorem 1 in [2], U is the Scott H -module with vertex P .

2. Some applications to block theory

Let H be a subgroup of G and b a block of H . Following Brauer, we call b G -admissible provided $C_G(\delta(b)) \subseteq H$. Note that this does not depend on the particular choice of $\delta(b)$ and b^G is defined. The following theorem was suggested by Okuyama.

Theorem 2.1. *Let b be a G -admissible block of H . If M is an indecomposable θG -module in $B = b^G$ which has $\delta(B)$ as a vertex and satisfies (*), then there exists a component N of M_H which belongs to b and has $\delta(b)$ as a vertex and*

satisfies (*).

Proof. We prove by the induction on $|\delta(B)|/|\delta(b)|$. If $|\delta(B)|=|\delta(b)|$, our assertion follows immediately from Corollary 9 in [6] and Lemma 1.1. So we assume that $|\delta(B)|>|\delta(b)|$. Let \hat{b} be a root of b in $T=\delta(b)C_G(\delta(b))$. We set $H_1=N_G(\delta(b))$ and $b_1=\hat{b}^{H_1}$. Then $|\delta(b_1)|>|\delta(b)|$ by Brauer's first main theorem and the assumption. Thus by the induction hypothesis, there exists a component N_1 of M_{H_1} in b_1 such that $\delta(b_1)$ is a vertex of N_1 and N_1 satisfies (*). Since $H_1 \triangleright T$, b_1 covers \hat{b} . Thus by Theorem 1.2, we can show that there exists a component \hat{N} of $(N_1)_T$ such that \hat{N} belongs to \hat{b} and $vx(\hat{N})=\hat{H}_1\delta(b_1) \cap T$. However, since $vx(\hat{N}) \subseteq \delta(b) \subseteq \delta(b_1)$, we have that $vx(\hat{N})=\delta(b)$ from the above. Let N be a component of M_H such that $\hat{N}|N_T$. Then $N \in b$ by (3.7a) in [3]. Since $N \in b$ and $\hat{N}|N_T$, $\delta(b)$ is a vertex of N and N satisfies (*) by Lemma 1.1. Thus the proof is complete.

The above theorems allow us to give alternative proofs to some of important results concerning blocks.

Corollary 2.2 (Brauer's third main theorem). *Let b be a G -admissible block of a subgroup of G . If b^G is principal, then b is principal.*

Proof. This is immediate from the above theorem by taking $M=I_G$, the trivial θG -module.

For the proofs of the following corollaries, we may assume that F is algebraically closed.

Corollary 2.3 (Alperin and Burry [1]). *Let Q be a p -subgroup of G and H a subgroup of G such that $H \supseteq QC_G(Q)$. Let B be a block of G . If P is a maximal member of $\{\delta(B)^x \cap H \mid x \in G, \delta(B)^x \cap H \supseteq Q\}$, then there exists a block b of H such that $b^G=B$ and P is a defect group of b .*

Proof. Let M be an irreducible FG -module in B of height 0. Then $v(\dim_F M)=v(|G: vx(M)|)$ and $\delta(B)$ is a vertex of M . By Theorem 1.2 and Remark 1.5, there exists a component N of M_H such that P is a vertex of N . Let b be a block of H which contains N . Since $C_G(P) \subseteq H$, b^G is defined and equals to B by (3.7a) in [3]. Furthermore by the maximality of P , we see easily that P is a defect group of b .

Corollary 2.4 (Knörr [4]). *Let H be a normal subgroup of G . Let B be a block of G and b a block of H . If B covers b , then $\delta(b)=_G\delta(B) \cap H$.*

Proof. Let M be an irreducible FG -module in B of height 0. Then by Theorem 1.2 and Remark 1.5, we can show that there exists a component N of M_H such that N belongs to b and $vx(N)=_G\delta(B) \cap H$. So we have $\delta(b) \supseteq$

${}_{\mathcal{C}}\delta(B) \cap H$. On the other hand, for an irreducible FH -module N in b with $\delta(b)$ as a vertex, there exists an irreducible FG -module M in B such that $N \mid M_H$ (see Proposition 4.1 in [4]). Thus we have $\delta(b) \subseteq {}_{\mathcal{C}}\delta(B) \cap H$. Combining with the above, $\delta(b) = {}_{\mathcal{C}}\delta(B) \cap H$ as asserted.

Corollary 2.5. *Let H be a normal subgroup of G . Let B be a block of G and φ an irreducible Brauer character of G in B . If φ has height 0, then any irreducible constituent of φ_H has height 0 in the block of H to which it belongs.*

Proof. This is immediate from Corollary 1.6 and Corollary 2.4.

Acknowledgement. The author wishes to thank Dr. T. Okuyama and A. Watanabe for their helpful advice.

References

- [1] L.J. Alperin and D.W. Burry: *Block theory with modules*, J. Algebra **65** (1980), 225–233.
- [2] D.W. Burry: *Scott modules and lower defect groups*, Comm. Algebra **10** (1982), 1855–1872.
- [3] J.A. Green: *On the Brauer homomorphism*, J. London Math. Soc. (2) **17** (1978), 58–66.
- [4] R. Knörr: *Blocks, vertices and normal subgroups*, Math. Z. **148** (1976), 53–60.
- [5] _____: *On the vertices of irreducible modules*, Ann. of Math. (2) **110** (1979), 487–499.
- [6] A. Watanabe: *Relations between blocks of a finite group and its subgroup*, J. Algebra **78** (1982), 282–291.

Department of Mathematics
 Osaka City University
 Sumiyoshi-ku, Osaka 558,
 Japan

