

Title	On a system of valuations of algebraic function fields with several variables
Author(s)	Nobusawa, Nobuo
Citation	Osaka Mathematical Journal. 1958, 10(2), p. 205-212
Version Type	VoR
URL	https://doi.org/10.18910/8148
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Nobusawa, Nobuo
Osaka Math. J.
10 (1958), 205-212.

***On a System of Valuations of Algebraic Function Fields
with Several Variables***

Nobuo NOBUSAWA

Let w be a discrete valuation of rank n of a rational function field $k(x_1, x_2, \dots, x_n)$ of characteristic 0 and let (t_1, t_2, \dots, t_n) be a system of prime elements of $w^1)$. We consider a set S of all w such that $t_i \in k(x_i)$ ($i = 1, 2, \dots, n$) and that t_i are of the first degree except one t_j . The first property to be proved in this paper is that, if u is a non zero element of $k(x_1, x_2, \dots, x_n)$ such that $w(u) = 0$ for all w in S , then u belongs already to the constant field k . The next one is the following: The formal power series expansions of $k(x_1, x_2, \dots, x_n)$ by (t_1, t_2, \dots, t_n) of w in S are performed in such a way that $k(x_1, x_2, \dots, x_n)$ can be imbedded in $\bar{k}((t_1, t_2, \dots, t_n))^2)$. It is then our next problem to generalize the results in the case of a finite extension of $k(x_1, x_2, \dots, x_n)$. When K is a finite extension of $k(x_1, x_2, \dots, x_n)$, we denote by \bar{S} the set of all the valuations of K that are the extensions of w in S . The first property is proved to be also true in this case³⁾, although the second one is possible in the unramified case under some conditions. Finally it will be shown that divisors and principal divisors with respect to \bar{S} will be defined in the similar sense of Lamprecht [1].

1. Rational function fields.

Throughout this paper we consider only discrete valuations w of rank n of an algebraic function field K of characteristic 0 with n variables;

$$w(u) = (\alpha_1, \alpha_2, \dots, \alpha_n) \text{ for non zero elements } u \text{ of } K,$$

where α_i are rational integers. We assume naturally that, for the elements a of k , $w(a) = (0, 0, \dots, 0) = 0$. The order in the value group will be always defined in such a way that $(\alpha_1, \alpha_2, \dots, \alpha_n) > (\beta_1, \beta_2, \dots, \beta_n)$ if $\alpha_n = \beta_n, \dots, \alpha_{i+1} = \beta_{i+1}$ and $\alpha_i > \beta_i$. A system of prime elements of w

- 1) For the definition, see the first section.
- 2) For the definition, see the first section. Cf. [2] p. 78.
- 3) For a different approach, see [1].

is a system (t_1, t_2, \dots, t_n) consisting of such elements t_i that $w(t_1) = (1, 0, \dots, 0)$, $w(t_2) = (0, 1, 0, \dots, 0)$, \dots , $w(t_n) = (0, \dots, 0, 1)$. $k[[t_1, t_2, \dots, t_n]]$ is an integral domain consisting of formal power series $\sum_{i_1, i_2, \dots, i_n \geq 0} a_{i_1, i_2, \dots, i_n} t_1^{i_1} t_2^{i_2} \dots t_n^{i_n}$ where $a_{i_1, i_2, \dots, i_n} \in k$, and $k((t_1, t_2, \dots, t_n))$ is the quotient field of $k[[t_1, t_2, \dots, t_n]]$.

In this section we are concerned with a valuation of a rational function field $k(x_1, x_2, \dots, x_n)$ with n variables x_i . Our consideration is also restricted to such a valuation w of $k(x_1, x_2, \dots, x_n)$ that, for a system (t_1, t_2, \dots, t_n) of prime elements of w ,

- 1) $t_i \in k(x_i)$ ($i = 1, 2, \dots, n$)
- 2) $t_i = x_i - a_i$ or x_i^{-1} except one t_j .

We denote the set of all those valuations w of $k(x_1, x_2, \dots, x_n)$ by S .

Theorem 1. *Let t_i be prime elements of $k(x_i)$ at some places for $i = 1, 2, \dots, n$. If t_i are of the first degree except one t_j , that is, satisfy 2), then there exists a unique valuation w of $k(x_1, x_2, \dots, x_n)$ such that (t_1, t_2, \dots, t_n) is a system of prime elements of w . In this case we can imbed $k(x_1, x_2, \dots, x_n)$ in $\bar{k}((t_1, t_2, \dots, t_n))$ ⁴⁾ by the formal power series expansions by (t_1, t_2, \dots, t_n) .*

Proof. By the valuation theory of algebraic function fields with one variable, we can first imbed $k(x_j)$ in $\bar{k}((t_j))$ with respect to $k(t_j)$ in a unique way within automorphisms of \bar{k}/k . Since $\bar{k}((t_j))$ and $k(t_1, \dots, t_n)$ ($= k(x_1, \dots, x_{j-1}, t_j, x_{j+1}, \dots, x_n)$) are algebraically independent over $k(t_j)$, $k(x_1, x_2, \dots, x_n)$ can be imbedded isomorphically in $\bar{k}((t_j)) k(t_1, \dots, t_n) \subseteq \bar{k}((t_1, t_2, \dots, t_n))$ with respect to $k(t_1, t_2, \dots, t_n)$. It is then clear that there exists a unique valuation of $\bar{k}((t_1, t_2, \dots, t_n))$ such that (t_1, t_2, \dots, t_n) is a system of prime elements of it.

We denote the valuation of Theorem 1 by $w_{(t_1, t_2, \dots, t_n)}$.

Theorem 2. *Let $f(x_1, x_2, \dots, x_n)$ and $g(x_1, x_2, \dots, x_n)$ be two polynomials in $k[x_1, x_2, \dots, x_n]$. If $\frac{f(x_1, x_2, \dots, x_n)}{g(x_1, x_2, \dots, x_n)} \notin k$, then there exists a valuation w in S such that $w\left(\frac{f(x_1, x_2, \dots, x_n)}{g(x_1, x_2, \dots, x_n)}\right) \neq 0$.*

Proof. This theorem is a direct consequence of next Theorem 3.

Theorem 3. *Under the same assumption as in Theorem 2, there exist*

4) We can always imbed $k(x_1, x_2, \dots, x_n)$ in $\bar{k}\{t_1\}\{t_2\}\dots\{t_n\}$ with a system (t_1, t_2, \dots, t_n) of prime elements of any valuation. But $\bar{k}((t_1, t_2, \dots, t_n)) \subseteq \bar{k}\{t_1\}\{t_2\}\dots\{t_n\}$. Cf. [3].

valuations w and w' in S such that $w\left(\frac{f(x_1, x_2, \dots, x_n)}{g(x_1, x_2, \dots, x_n)}\right) > 0$ and $w'\left(\frac{f(x_1, x_2, \dots, x_n)}{g(x_1, x_2, \dots, x_n)}\right) < 0$.

Proof. We shall prove Theorem 3 by induction. It is clear for $n=1$. First assume that $f(0, x_2, \dots, x_n) = f(x_1, x_2, \dots, x_n)$, that is, $f(x_1, x_2, \dots, x_n) \in k[x_2, x_3, \dots, x_n]$. If moreover $g(0, x_2, \dots, x_n) = g(x_1, x_2, \dots, x_n)$, then by induction hypothesis there exist such valuations w_0 and w'_0 of $k(x_2, x_3, \dots, x_n)$ that $w_0\left(\frac{f(0, x_2, \dots, x_n)}{g(0, x_2, \dots, x_n)}\right) > 0$ and $w'_0\left(\frac{f(0, x_2, \dots, x_n)}{g(0, x_2, \dots, x_n)}\right) < 0$. If $w_0 = w_{(t_2, t_3, \dots, t_n)}$ and $w'_0 = w_{(t_2', t_3', \dots, t_n')}$, then $w = w_{(x_1, t_2, \dots, t_n)}$ and $w' = w_{(x_1, t_2', \dots, t_n')}$ are required valuations. Hence we may assume that $f(0, x_2, \dots, x_n) \neq f(x_1, x_2, \dots, x_n)$ or $g(0, x_2, \dots, x_n) \neq g(x_1, x_2, \dots, x_n)$. Since $\frac{f(x_1, x_2, \dots, x_n)}{g(x_1, x_2, \dots, x_n)} \notin k$, there exist a_i ($i = 2, 3, \dots, n$) in k such that $g(x_1, a_2, \dots, a_n) \neq 0$ and $\frac{f(x_1, a_2, \dots, a_n)}{g(x_1, a_2, \dots, a_n)} \notin k$. If t_1 and t_1' are prime elements of valuations w_1 and w'_1 of $k(x_1)$ such that $w_1\left(\frac{f(x_1, a_2, \dots, a_n)}{g(x_1, a_2, \dots, a_n)}\right) > 0$ and $w'_1\left(\frac{f(x_1, a_2, \dots, a_n)}{g(x_1, a_2, \dots, a_n)}\right) < 0$, then $w = w_{(t_1, x_2-a_2, \dots, x_n-a_n)}$ and $w' = w_{(t_1', x_2-a_2, \dots, x_n-a_n)}$ are required valuations⁵⁾.

REMARK. S is not a minimal system which satisfies Theorem 2. For example, let $n=2$ and let S' be a subset of S consisting of valuations $w_{(t_1, x_2-a)}$ and $w_{(x_1, t_2)}$ where a are all elements of k and t_1 and t_2 are all the prime elements of $k(x_1)$ and $k(x_2)$. Then it is seen from the proof of Theorem 3 that Theorem 3 holds with respect S' instead of S . We shall give another example in which Theorem 2 does not hold. Let $n=2$ and let S'' be a subset of S' consisting of all the valuations $w_{(t_1, x_2)}$ and $w_{(x_1, t_2)}$. Put $u = \frac{1+x_1x_2}{1+2x_1x_2}$. Then $w_{(t_1, x_2)}(1+x_1x_2) = w_{(t_1, x_2)}(1+2x_1x_2) = 0$, that is, $w_{(t_1, x_2)}(u) = 0$. If $t_2 \neq x_2^{-1}$, $w_{(x_1, t_2)}(1+x_1x_2) = w_{(x_1, t_2)}(1+2x_1x_2) = 0$, that is, $w_{(x_1, t_2)}(u) = 0$. Lastly $w_{(x_1, x_2^{-1})}\left(\frac{1+x_1x_2}{1+2x_1x_2}\right) = (1, -1) - (1, -1) = 0$. Hence, for all w in S'' , $w(u) = 0$ in spite of the fact $u \notin k$.

2. Finite extensions of rational function fields.

Let K be a finite extension of a rational function field $k(x_1, x_2, \dots, x_n)$

5) Note that $f(x_1, a_2, \dots, a_n)$ is the term which contains only elements of k and x_1 in the expansion of $f(x_1, x_2, \dots, x_n)$ by $((x_2-a_2), (x_3-a_3), \dots, (x_n-a_n))$.

where $k = K \cap \bar{k}$. The set of all the valuations of K that are the extensions of the valuations in S will be denoted by \bar{S} .

Theorem 4. *If s is a non constant element of K , then there exist \bar{w} and \bar{w}' in \bar{S} such that $\bar{w}(s) > 0$ and $\bar{w}'(s) < 0$.*

Proof. Let an irreducible equation of s over $k(x_1, x_2, \dots, x_n)$ be

$$F(z) = z^m + u_1 z^{m-1} + \dots + u_m = 0,$$

where $u_i \in k(x_1, x_2, \dots, x_n)$ ($i = 1, 2, \dots, n$) and $u_i \notin k$ for some i . By Theorem 3 there exists w' in S such that $w'(u_i) < 0$. We shall first prove that, for one of the extensions \bar{w}' of w' , $\bar{w}'(s) < 0$. We split $F(z)$ into irreducible factors in $(\bar{k}\{t_1\}\{t_2\} \dots \{t_n\})(z)^{6)}$. Here (t_1, t_2, \dots, t_n) is a system of prime elements of w' .

$$(1) \quad F(z) = (z^{m_1} + u_1' z^{m_1-1} + \dots + u_{m_1}')(z^{m_2} + u_1'' z^{m_2-1} + \dots + u_{m_2}'') \dots (z^{m_r} + u_1^{(r)} z^{m_r-1} + \dots + u_{m_r}^{(r)}),$$

where $u_i^{(j)} \in \bar{k}\{t_1\}\{t_2\} \dots \{t_n\}$. If $w'(u_{m_i}^{(j)}) \geq 0$ for all $u_{m_i}^{(j)}$, then $w'(u_i^{(j)}) \geq 0$ for all $u_i^{(j)}$, and hence $w'(u_i) \geq 0$ for all u_i . This is a contradiction. Thus $w'(u_{m_i}^{(i)}) < 0$ for some i , in other words, for one of the extensions \bar{w}' of w' , $\bar{w}'(s) < 0^{6)}$. Next we shall prove the existence of \bar{w} in Theorem 4. If $u_m \notin k$, then by Theorem 3 there exist w of $k(x_1, x_2, \dots, x_n)$ such that $w(u_m) > 0$. Then $w(u_{m_i}^{(i)}) > 0$ for some $u_{m_i}^{(i)}$ in (1). One of the extensions of w has then a required property. If $u_m \in k$, put

$z' = \frac{1}{z}$ and we have instead of $F(z) = 0$

$$F'(z') = z'^m + \frac{u_{m-1}}{u_m} z'^{m-1} + \dots + \frac{1}{u_m} = 0.$$

We can conclude from the previous discussion that, for $s' = \frac{1}{s}$, there exists one of the extensions \bar{w}' of w' having the property $\bar{w}'(s') < 0$, that is, $\bar{w}'(s) > 0$. The proof is completed.

Let K be a simple extension of $k(x_1, x_2, \dots, x_n)$ with a primitive element s and let an irreducible equation of s be

$$F(z) = z^m + r_1(x_1, x_2, \dots, x_n) z^{m-1} + \dots + r_m(x_1, x_2, \dots, x_n) = 0,$$

6) Cf. footnote 4).

7) Note that Hensel's lemma holds in $\bar{k}\{t_1\}\{t_2\} \dots \{t_n\}$. Cf. [3].

8) s is naturally algebraic over $\bar{k}\{t_1\}\{t_2\} \dots \{t_n\}$ and the above discussion implies that, for one of the extensions \bar{w}' of w' in $(\bar{k}\{t_1\}\{t_2\} \dots \{t_n\})(s)$, $\bar{w}'(s) < 0$. Then, for the restriction \bar{w}' of \bar{w}' to $k(x_1, x_2, \dots, x_n)(s)$, $\bar{w}'(s) < 0$ and \bar{w}' is an extension of w' .

where $r_i(x_1, x_2, \dots, x_n) \in k(x_1, x_2, \dots, x_n)$. We denote by D the resultant of $F(z)$. Let $w = w_{[t_1, t_2, \dots, t_n]} \in S$.

Theorem 5. *Under the following assumptions:*

- i) $r_i(x_1, x_2, \dots, x_n) \in \bar{k}[[t_1, t_2, \dots, t_n]]$
- ii) $w(D) = 0$
- iii) $w(r_m(x_1, x_2, \dots, x_n)) = 0$,

w is unramified in $K/k(x_1, x_2, \dots, x_n)$ and we have $K \subseteq \bar{k}((t_1, t_2, \dots, t_n))$ by the formal power series expansions of K by (t_1, t_2, \dots, t_n) .

Proof. By i) we may put $r_i(x_1, x_2, \dots, x_n) = r(t_1, t_2, \dots, t_n) \in \bar{k}[[t_1, t_2, \dots, t_n]]$, and

$$F(z) = z^m + r_1(t_1, t_2, \dots, t_n) z^{m-1} + \dots + r_m(t_1, t_2, \dots, t_n) = 0.$$

It is sufficient to prove that n distinct roots of $F(z) = 0$ are found in $\bar{k}[[t_1, t_2, \dots, t_n]]$ and are all units in $\bar{k}[[t_1, t_2, \dots, t_n]]$. We shall prove this by induction. First assume $n=1$. The roots of $F(z) = 0$ will be found in the following way. We denote by $F_{t_1=0}(z)$ a polynomial obtained from $F(z)$ by putting $t_1=0$. ii) implies $D_{t_1=0} \neq 0$ and hence $F_{t_1=0}(z) = 0$ has n distinct roots a_0 in \bar{k} . iii) implies that none of a_0 is zero. Then we put $z = a_0 + a_1 t_1$ in $F(z)$ and we shall define a_1 such that the term of t_1 may disappear. The coefficient of t_1 in $F(a_0 + a_1 t_1)$ is

$$ma_0^{m-1}a_1 + r_1(0)(m-1)a_0^{m-2}a_1 + \dots + r_{m-1}(0)a_1 + a,$$

where a is defined only by $F(z)$ and a_0 . However we have

$$F'_{t_1=0}(a_0) = ma_0^{m-1} + r_1(0)(m-1)a_0^{m-2} + \dots + r_{m-1}(0) \neq 0,$$

since $D_{t_1=0} \neq 0$ and a_0 is roots of $F_{t_1=0}(z) = 0$. Therefore $a_1 = -a(F'_{t_1=0}(a_0))^{-1}$. Next we put $z = a_0 + a_1 t_1 + a_2 t_1^2$ and shall define a_2 in \bar{k} such that the term of t_1^2 in $F(z)$ will disappear. This is done by the same method as above. This process is continued to obtain $z = a_0 + a_1 t_1 + a_2 t_1^2 + \dots$ which are n distinct roots of $F(z) = 0$ in $\bar{k}[[t_1]]$ and are all units in $\bar{k}[[t_1]]$ as desired. Now let us return to the general case. It is easily proved that the assumptions i), ii) and iii) are satisfied in $F_{t_n=0}(z) = 0$. By the induction hypothesis, all the roots $f_0(t_1, t_2, \dots, t_{n-1})$ are units in $\bar{k}[[t_1, t_2, \dots, t_{n-1}]]$. Put $z = f_0 + f_1 t_n$ where $f_1 \in \bar{k}[[t_1, t_2, \dots, t_{n-1}]]$. We shall define f_1 in such a way that the term of t_n in $F(z)$ will disappear. The coefficient of t_n in $F(z)$ is $mf_0^{m-1}f_1 + r_1(t_1, \dots, t_{n-1}, 0)$

$(m-1)f_0^{m-2}f_1 + \dots + r_{m-1}(t_1, \dots, t_{n-1}, 0)f_1 + f$ where f is an element of $\bar{k}[[t_1, t_2, \dots, t_n]]$ defined only by $F(z)$ and f_0 . Since

$$F'_{t_n=0}(f_0) = mf_0^{m-1} + r_1(t_1, \dots, t_{n-1}, 0)(m-1)f_0^{m-2} + \dots + r_{m-1}(t_1, \dots, t_{n-1}, 0)$$

are units in $\bar{k}[[t_1, t_2, \dots, t_{n-1}]]$, we put $f_1 = -f(F'_{t_n=0}(f_0))^{-1}$. In the same manner we can define f_2, f_3, \dots such that $z = f_0 + f_1t_n + f_2t_n^2 + \dots$ are n distinct roots of $F(z) = 0$ in $\bar{k}[[t_1, t_2, \dots, t_n]]$ and are all units. Thus the proof is completed.

3. Divisors and principal divisors.

We shall give in this section a definition of divisors with respect \bar{S} in the similar way as in [1]. For the sake of simplicity we assume $n = 2$. We can easily generalize the result for $n \neq 2$.

Lemma. *Let $u \in k(x_1, x_2)$ and $w_{[t_1, t_2]}(u) = (\alpha_1, \alpha_2)$ for $w_{[t_1, t_2]}$ in S . Then $\alpha_2 \neq 0$ for at most a finite number of t_2 , and $\alpha_1 \neq 0$ for at most a finite number of t_1 when t_2 is fixed⁹⁾.*

Proof. t_2 can be considered to be also prime elements at some places \mathfrak{p}_{t_2} in $k(x_1, x_2)/k(x_1)$, and, for a finite number of \mathfrak{p}_{t_2} , $w_{[t_2]}(u) \neq 0$, that is, the first part of Lemma holds¹⁰⁾. Next we imbed $k(x_1, x_2)$ in $\bar{k}((x_1, t_2))$ and get $u = \frac{f_1(x_1, t_2)}{f_2(x_1, t_2)}$ where $f_i(x_1, t_2) \in \bar{k}[[x_1, t_2]]$. Then $w_{[t_1, t_2]}(u) = w_{[t_1, t_2]}(f_1(x_1, t_2)) - w_{[t_1, t_2]}(f_2(x_1, t_2)) = (\alpha'_1, \alpha'_2) - (\alpha''_1, \alpha''_2)$ ¹¹⁾. But it is easy to see that $\alpha'_1 \neq 0$ and $\alpha''_1 \neq 0$ for a finite number of t_1 .

Let K be a finite extension of $k(x_1, x_2)$ and denote by $w_{[t_1, t_2]}^{(i)}$ the extensions of $w_{[t_1, t_2]}$ in K .

Theorem 6. *Let $w_{[t_1, t_2]}^{(i)}(s) = (\alpha_1, \alpha_2)$ for an element s of K . Then $\alpha_2 \neq 0$ for at most a finite number of t_2 , and $\alpha_1 \neq 0$ for at most a finite number of t_1 when t_2 is fixed.*

9) In this section we assume naturally that prime elements of the same place are the same.

10) We can show that, if $w_{[t_1, t_2]}(u) = (\alpha_1, \alpha_2)$, then $w_{[t_2]}(u) = \alpha_2$.

11) More exactly, if $t_2 \neq x_2^{-1}$, $u = \frac{f_1(x_1, x_2)}{f_2(x_1, x_2)}$ with $f_i(x_1, x_2) \in k[x_1, x_2]$ and $f_i(x_1, x_2) = f_i(x_1, t_2) \in \bar{k}[x_1][[t_2]]$, and, if $t_2 = x_2^{-1}$, $u = \frac{f_1(x_1, x_2^{-1})}{f_2(x_1, x_2^{-1})}$ with $f_i(x_1, x_2^{-1}) \in k[x_1, x_2^{-1}]$ and $f_i(x_1, x_2^{-1}) = f_i(x_1, t_2) \in k[x_1, t_2]$. If we denote by $f_i^0(x_1, t_2)$ the lowest term of $f_i(x_1, t_2)$ with respect to t_2 , then $f_i^0(x_1, 1) \in \bar{k}[x_1]$ and $w_{[t_1]}(f_i^0(x_1, 1)) = \alpha_1$. Here we must notice that $f_i(x_1, 1) \in k[x_1]$ when t_1 is not of the first degree.

Proof. Let the equation of s be

$$s^m + u_1 s^{m-1} + \cdots + u_m = 0,$$

where $u_j \in k(x_1, x_2)$. Let $w_{[t_1, t_2]}(u_j) = (\alpha_1^{(j)}, \alpha_2^{(j)})$. It is clear from the previous lemma that $\alpha_2^{(j)} = 0$ ($j = 1, 2, \dots, m$) for almost all t_2 . If $\alpha_2 \neq 0$, then $w_{[t_1, t_2]}^{(i)}(u_i s^{m-i})$ ($i = 0, 1, \dots, m$) are all different, which is a contradiction. Hence $\alpha_2 = 0$ for almost all t_2 . When t_2 is fixed, $w_{[t_1, t_2]}(u_j) = (0, \alpha_2^{(j)})$ ($j = 1, 2, \dots, m$) for almost all t_1 by the previous lemma. Then we can show by the similar way that $w_{[t_1, t_2]}^{(i)}(s) = (0, \alpha_2)$ for almost all t_1 .

Now we give a definition of divisors with respect \bar{S} . We mean by a divisor a mapping of \bar{S} into the value group of the valuations:

$$\mathfrak{A} = \{w_{[t_1, t_2]}^{(i)} \rightarrow (\alpha_1, \alpha_2)_{t_1, t_2; i}\},$$

where two next conditions are satisfied:

- 1) $\alpha_2 \neq 0$ for at most a finite number of t_2 ,
- 2) $\alpha_1 \neq 0$ for at most a finite number of t_1 when t_2 is fixed.

Theorem 5 implies that, if s is a non zero element of K ,

$$(s) = \{w_{[t_1, t_2]}^{(i)} \rightarrow w_{[t_1, t_2]}^{(i)}(s)\}$$

is a divisor. We call this divisor a *principal divisor*. We now define addition of two divisors \mathfrak{A} and \mathfrak{B} :

$$\begin{aligned} \mathfrak{A} &= \{w_{[t_1, t_2]}^{(i)} \rightarrow (\alpha_1, \alpha_2)_{t_1, t_2; i}\} \\ \mathfrak{B} &= \{w_{[t_1, t_2]}^{(i)} \rightarrow (\beta_1, \beta_2)_{t_1, t_2; i}\} \end{aligned}$$

such as

$$\mathfrak{A} + \mathfrak{B} = \{w_{[t_1, t_2]}^{(i)} \rightarrow (\alpha_1 + \beta_1, \alpha_2 + \beta_2)_{t_1, t_2; i}\}.$$

Then clearly

$$(s_1 s_2) = (s_1) + (s_2).$$

Thus all divisors form an additive group D and all principal divisors form a subgroup H of D . And

$$s \rightarrow (s)$$

gives a homomorphic mapping of the multiplicative group K^* with the additive group H . The kernel of this homomorphism is k^* by Theorem 2.

(Received September 10, 1958)

References

- [1] E. Lamprecht: Bewertungssysteme und Zetafunktionen algebraischer Funktionenkörper III, Math. Ann. **132** (1957), 373-403.
- [2] S. Lefschetz: Algebraic geometry, Princeton (1953).
- [3] O. F. G. Schilling: The theory of valuations, New York (1950).