|

) <

The University of Osaka
Institutional Knowledge Archive

. On a system of valuations of algebraic function
Title ) . :
fields with several variables

Author(s) |Nobusawa, Nobuo

Osaka Mathematical Journal. 1958, 10(2), p. 205-

Citation 12

Version Type|VoR

URL https://doi.org/10.18910/8148

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Nobusawa, Nobuo
Osaka Math. J.
10 (1958), 205-212.

On a System of Valuations of Algebraic Function Fields
with Several Variables

Nobuo NoBuUsAwA

Let w be a discrete valuation of rank # of a rational function field
k(x,, x,, -, x,) of characteristic O and let (¢, ¢,,---,¢,) be a system of
prime elements of w”. We consider a set S of all w such that # € k(x;)
({=1,2,-,n) and that ¢, are of the first degree except one #;. The
first property to be proved in this paper is that, if # is a non zero element
of k(x,, x,,-+,x,) such that w(u) =0 for all w in S, then « belongs
already to the constant field 2 The next one is the following: The
formal power series expansions of k(x,, x,, -, x,) by (¢, ¢, -,¢,) of w
in S are performed in such a way that k(x,, «x,, ---, x,) can be imbedded
in k((¢,, t,, -, 1,))>. It is then our next problem to generalize the results
in the case of a finite extension of k(x,, «x,, -, x,). When K is a finite
extension of k(x,, x,, -, x,), we denote by S the set of all the valua-
tions of K that are the extensions of w in S. The first property is proved
to be also true in this case®, although the second one is possible in the
unramified case under some conditions. Finally it will be shown that
divisors and principal divisors with respect to S will be defined in the
similar sense of Lamprecht [1].

1. Rational function fields.

Throughout this paper we consider only discrete valuations w of
rank » of an algebraic function field K of characteristic 0 with #»
variables ;

w(u) = (@, a,, ---,a,) for non zero elements » of K,

where «,; are rational integers. We assume naturally that, for the
elements @ of k, w(@)=(0, 0, ---,0)=0. The order in the value group
will be always defined in such a way that («,, «,, -, @) >(B,, B,,-+,5,)
if ¢,=8,,,a,,,=8;, and a,_>B,. A system of prime elements of w

1) For the definition, see the first section.
2) For the definition, see the first section. Cf. [2] p. 78.
3) For a different approach, see [1].
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is a system (¢, ¢,,:-,%,) consisting of such elements #; that w(¢,)
=(1, 0, --,0), w(t,)=(0,1,0,:-,0), -, w(t,)=(0,--,0,1). k¢, &, -,
t,]1 is an integral domain consisting of formal power series
o a thty --- ti» where a;,,,,,...,;, €k, and k((t,, t,, -, 1))
I .
is the quotient field of K[, %, -, %11

In this section we are conserned with a valuation of a rational
function field k(x,, x,, ---, x,) with # variables x;,. Our consideration is
also restricted to such a valuation w of k(x,, x,,---,x,) that, for a

system (¢,, ¢,, -=-,%,) of prime elements of w,

1) t,€kx) =12, -,n
2) t,==x;,—a; or x;' except one ;.

i15 i2y " dip

We denote the set of all those valuations w of k(x,, x,, -+, x,) by S.

Theorem 1. Let t; be prime elements of k(x;) at some places for
i=1,2,--,n If t; are of the first degree except one t;, that is, satisfy
2), then there exists a unique valuation w of k(x,, x,,---,x,) such that
(¢, t,, -+, 1,) is a system of prime elements of w. In this case we can

imbed k(x,, x,,--,x,) in k((, ¢, ,t,)° by the formal power series
expasions by (t,, t,, - ,t,).

Proof. By the valuation theory of algebraic function fields with one
variable, we can first imbed k(x,) in k((¢;)) with respect to k(¢,) in a
unique way within automorphisms of k/k. Since k((¢;)) and k(t,, -+, t,)
(=k(x,, -, %;_1, t;, X;,, -+, %,)) are algebraically independent over k(z,),
k(x,, %,,-,%,) can be imbedded isomorphically in k((¢;)k(t,, -, ¢,)
CEk((, t,, -, t,)) with respect to k(¢ t,,--,t,). It is then clear that
there exists a unique valuation of E((tl, t,, ==+, t,) such that (¢,, ¢,, -, ¢,
is a system of prime elements of it.

We denote the valuation of Theorem 1 by wy,, +,.....s, -

Theorem 2. Let fix,, x,,-,x,) and g(x,, x,, -+, %,) be two poly-
f(xu Xay *tty xn)
g(xn Xay *tt s xn)
f(xl) Xay *tt ’xn)

g(xn X2y *** xn)>:|:0

Proof. This theorem is a direct consequence of next Theorem 3.

nomials in k[ x,, x,, -+, x,]. If ¢k, then there exists a

valuation w in S such that w(

Theorem 3. Under the same assumption as in Theovem 2, there exist

4) We can always imbed k(x,, x5, -+, x,,) in l;{tl}{tz}~~-{t,,} with a system (%, &, -+, £,)
of prime elements of any valuation. But E((#,, f, -, t,)) Sk{tHt:} - {¢,}. Cf. [3]
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. . S(xy, %y 00, %)
valuations w and w in S such that w(- IR S0 and
g(x1> Xay =ty xn)
/<f(x1> Xas *** xn)><0
x,) ’

g(xu Xzy 't

Proof. We shall prove Theorem 3 by induction. It is clear for
n=1. First assume that £(0, x,, -, x,) = f(x,, %,, -, x,), that is,
flx,, x,, -, x,)€k[x,, x5, -+, x,]. If moreover g(0, x,, --- , x,) = g(x,, %,,

-+, x,), then by induction hypothesis there exist such valuations w, and

O’x’...’xn O’x,...’x”

w, of k(x,, x,,---,x,) that wﬂ<£§0, x:, ;xn;>>0 and w°/(£§0, x:, o x:;>
<0, If we=wy,, 4, ....sp a0d W' =Wy 47, .. 17, then w=wq + .. .,
and W’ = w,, ./, ..., are required valuations. Hence we may assume
that (0, x,, ---, x,)==f(x,, x,, -+, x,) or g(0, x,, -+, x,)=F g(x,, x,, =, %,,).
f(xI? Xyt xn)
g(xl’ Koy =" xn)

¢k, there exist a; (=2, 3,--,n) in k such that

f(xu ayy *t s
g(xl) ayy s

Since

g(x,, a,, -+ ,a,)F0 and Z";gék. If ¢ and ¢’ are prime

flxy, a,, - ,a,,)>

elements of valuations w, and w,” of k(x,) such that w1< g, @, ,a,)
f(xl, Ay,

a
>O and wl/(g(xn Ayy o a:;><o’ then w = II);,I, Xz=@2 vy Xn—ap) and

W =Wy, 2y, ... xp-ap are required valuations®.

b

REMARK. S is not a minimal system which satisfies Theorem 2. For
example, let » =2 and let S’ be a subset of S consisting of valuations
Wy, x,-a» and w., ., where a are all elements of & and ¢ and ¢, are all
the prime elements of k(x,) and k(x,). Then it is seen from the proof
of Theorem 3 that Theorem 3 holds with respect S’ instead of S. We
shall give another example in which Theorem 2 does not hold. Let
n=2 and let S” be a subset of S’ consisting of all the valuations

1+x.x,
Wiy, zp a0 Wy, 1. Put =375 rx, Then wy,, ,H(1+2,%0,) = Wy, 2,
(1+2x,x,) =0, thatis, wy, () =0. If L7423, we,,, ,1+x23,)=w,, .,
) ( 1 +x1xz>
(1+2x,x,) =0, that is, w,, »(u)=0. Lastly w, .- T+2xx,)— 1, —1)

—(1,—1) = 0. Hence, for all w in S”, w(x) = 0 in spite of the fact u ¢ k.

2. Finite extensions of rational function fields.

Let K be a finite extension of a rational function field k(x,, x,, -+, x,)

5) Note that f(x, @, ---, a,) is the term which contains only elements of % and x, in
the expansion of f(x;, %z, -, %,) by ((#2—a2), (x3—as), -, (¥s—ay)).
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where k= K/N\k. The set of all the valuations of_ K that are the
extensions of the valuations in S will be denoted by S.

Theorem_4. If s is a non constant element of K, then there exist
w and W in S such that w(s) >0 and w'(s)<0.

Proof. Let an irreducible equation of s over k(x,, x,, -, x,) be
F@z)=2"+uz""+ -+ +u,=0,

where w;€k(x,, x,,--,x,) (=1,2,---,n) and u;¢£k for some 7. By
Theorem 3 there exists w’ in S such that w’(#;)< 0. We shall first prove
that, for one of the extensions w’ of w’, w’(s)< 0. We split F(z) into
irreducible factors in (k{t}{t,} - {£,})(2)>. Here (¢, t,,-,¢,) is a
system of prime elements of w’.
(1)  F2) = (" +u/2"7 4 o dup )@ +u2"27 4 o 4upy) -
("7 +uP2" T e Uy,

where u” €k{t,}{t,} - {t,}. If w/(u@)=0 for all «$, then w'(uf”)=0
for all #{””, and hence w'(x,)=0 for all #;,. This is a contradiction.
Thus w'(u.))< 0 for some 7, in other words, for one of the extensions
w of w, w(s)<0®. Next we shall prove the existence of w in
Theorem 4. If u,, &k, then by Theorem 3 there exist w of k(x,, x,,

-+, x,) such that w(«,)>>0. Then w(u;))>>0 for some u, in (1). One
of the extensions of w has then a required property. If «, €k, put

1
2 = > and we have instead of F(z) =0
7 1
/(! —— /T /m—1  —
F(Z)==z +umz + +um—0.
1
We can conclude from the previous discussion that, for &' = 5 there

exists one of the extensions w’ of w’ having the property w’(s’)< 0, that
is, w’(s)—>0. The proof is completed.

Let K be a simple extension of k(x,, x,,---x,) with a primitive
element s and let an irreducible equation of s be

F(Z) =zm+r1(x” X2y "';xn) FAaE +rm(xl7 Xy oot »xn) =O»

6) Cf. footnote 4).

7) Note that Hensel’s lemma holds in E{#,}{%} - {f,}. Cf. [3].

8) s is naturally algebraic over I;{ t, }{t,}---{¢,} and the above discussion implies that, for
one of the extensions @’ of w’ in (B{t,{t,}---{t.}) (s), @ (s)< 0. Then, for the restriction &’
of w to k(xy, x5, -+, %,) (8), W' (s)< 0 and @’ is an extension of w'.
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where 7,/(x,, x,,--,x,) €k(x,, x,, -+, x,). We denote by D the resultant
of F(z). Let w=1wgy,,, ... €S.

Theorem 5. Under the following assumptions :

1) ri(xl’ Xgs ** xn) EE[[tu tzy Tty tn]]
ii) w(D)=20
lil) w(rm(xn Xay ** xn)) = 0’

w is unramified in K/k(x,, %,, - ,x,) and we have KZk((t,, t,, - ,1,)
by the formal power series expansions of K by (¢,, t,, -, t,).

Proof. By i) we may put r,(x,, x,,,x,)=7#, £, ,1%,) ck[[t, t,
-+,%,1], and

F(z)=z"‘+rl(tl, byy - >tn) At TS +rm(t1’ AN Ytn)=0'

It is sufficient to prove that » distinct roots of F(2)=0 are found in
E[[t,, t,, -, t,]] and are all units in k[[¢, ¢, ,%,]]. We shall prove
this by induction. First assume #=1. The roots of F(z)=0 will be
found in the following way. We denote by F, _,2) a polynomial
obtained from F(z) by putting #,=0. ii) implies D, _,=#0 and hence
F, _(2)=0 has » distinct roots @, in k. iii) implies that none of a, is
zero. Then we put z2=ga,+a,t, in F(2) and we shall define @, such that
the term of #, may disappear. The coefficient of # in F(a,+a,t) is

may a,+r,(0)m—1) a ’a,+ --- +7,,_,(0) a,+a,
where a is defined only by F(2) and @,. However we have
Fi _a)) = may ' +r,0)(m—1) a}™*+ -+ +7,_,(0)==0,

since D, -,#+0 and a, is roots of F,_,(2)=0. Therefore a, =
—a(F} - a,))'. Next we put z=a,+a,t,+a,t. and shall define a, in E
such that the term of # in F(z) will disappear. This is done by the
same method as above. This process is continued to obtain z = a,+a,?,
+a,’+ -~ which are # distinct roots of F(z) =0 in k[[#,]] and are all
units in E[[#,]] as desired. Now let us return to the general case. It
is easily proved that the assumptions i), ii) and iii) are satisfied in
F,,-.(2) = 0. By the induction hypothesis, all the roots fi(t,, £, -+, %,-.)
are units in E[[¢#, t,, -, t,,]). Put z= f,+ft, where f,€k[[t, t,,
«+,t,_,]]. We shall define f, in such a way that the term of £, in F(2)
will disappear. The coefficient of ¢, in F(2) is mfp~'f,+r(t,, - ,t,_., 0)
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(m—1) fr2f,+ oo +7 (b, - E,y, 0) fi+f where f is an element of
E[[¢,, t,, - ,t,]] defined only by F(z) and f,. Since

F;n=0(f0) = mf:)n_l'*'rl(tn Tty n -1 (m 1)f<7)n + .
+rm—1(t1’ Ty tn—ly 0)

are units in k[[#, 4, -, t,,]1], we put f, = —A(F,, _(f))". In the same
manner we can define f,, f,, --- such that z= f,+fit,+f.t.+ - are n
distinct roots of F(z)=0 in k[[t, t,,-,?,]] and are all units. Thus
the proof is completed.

3. Divisors and principal divisors.

We shall give in this section a definition of divisors with respect S
in the similar way as in [1]. For the sake of simplicity we assume 7z = 2.
We can easily generalize the result for n==2.

Lemma. Let u€k(x,, x,) and wy, ,(u) = (a,, a,) for wy,, ., in S.
Then a,==0 for at most a finite number of t,, and &, =0 for at most a
finite number of t, when t, is fixed®.

Proof. ¢, can be considered to be also prime elements at some places
., in k(x,, x,)/k(x,), and, for a finite number of p,,, w,,(«)=0, that is, the
first part of Lemma holds'”. Next we imbed k(x,, x,) in k((x,, t,)) and

Sz, ) -
get u= Flx,, 1) Whe‘re filx,, t,)€k[[x,, t,]]. Then wy,, ;,(u) = wy,,

(fl(xl) 2)) Wiy, , tgj(fz(xu tz)) (a y O ) (a ”, a//)u) But it is easy to
see that @/==0 and «,”==0 for a finite number of £,.

Let K be a finite extension of k(x,, x,) and denote by w? ., the
extensions of wy,, ., in K.

Theorem 6. Let w) .,(s) = (a,, &) for an element s of K. Then
a,=4=0 for at most a finite number of t,, and &, ==0 for at most a finite
number of t, when t, is fixed.

9) In this section we assume naturally that prime elements of the same place are the same.
10) We can show that, if wcy, 1,3(%)= (a1, @), then we,,3(w)=a,.

11) More exactly, if f&==x,"1, u=%% with f;(x,, x,) € k[ x,, x,] and fi(x, x,) =

—_ -1
Filon, )€ R8T, and, i t=nh 6 =P8 200 it fia, 20 € Mz, 21] and
1y 42
fi(xy, 2~ ) =f;(x1, tp) € k[ %1, £,]. If we denote by f;°(x,, ;) the lowest term of f;(x,, ¢,) with
respect to #,, then f;°(x,, 1)€k[x] and wc,3(fi%x,,1))=a,. Here we must notice that
fi(x1, 1) € k[x,] when #, is not of the first degree.
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Proof. Let the equation of s be
sS"+u s+ e +u, =0,

where u;€k(x,, x,). Let we,, ,y(u;) = (", a;”). It is clear from the
previous lemma that «” =0 (j=1,2,---,m) for almost all #. If
a,==0, then w(, ,,(u;s™*) (i=0,1,--,m) are all different, which is a
contradiction. Hence «, =0 for almsot all #,. When ¢, is fixed, wy,, 4,
(u;) =(0, ;") (j=1,2,--,m) for almost all # by the previous lemma.
Then we can show by the similar way that w) .(s)=(0, @,) for almost
all ¢,.

Now we give a definition of divisors with respect S. We mean by
a divisor a mapping of S into the value group of the valuations :

A= {w[yl). t) (al) az)tl. tz',i} )
where two next conditions are satisfied :

1) «,==0 for at most a finite number of £,,
2) «,==0 for at most a finite number of £, when ¢, is fixed.

Theorem 5 implies that, if s is a non zero element of K,
(8) = {wetd oy = Wity 0 2(8)}

is a divisor. We call this divisor a principal divisor. We now define
addition of two divisors 2 and B :

W = {w? o,y = (A, X))y, 1p0i)
B = {wcx) t) > (B,, Bz)tl, tg;i}
such as
A+B = {w? oy = (@48, OQ+B), 14} -
Then clearly
(8:8,) = (8) +(S2) -

Thus all divisors form an additive group D and all principal divisors
form a subgroup H of D. And

s—(9)

gives a homomorphic mapping of the multiplicative group K* with the
additive group H. The kernel of this homomorphism is £* by Theorem 2.

(Received September 10, 1958)
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