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Organic materials continue to attract researchers as promising semiconducting media for future 

electronics. After a recent demonstration 1 of high optical gain and stimulated emission (SE) in films of 

several 冗—conjugated polymers, these materials have been intensively studied worldwide as possible gain media 

for laser applications. Considerable attention has been drawn to lasing in various optical cavities containing 

luminescent 冗—conjugated polymers, as well as smaller organic molecules. In our studies of the 2,5-dioctyloxy 

poly(p-phenylene-vinylend)[D00-PPV] polymer with high photoluminescence (PL) efficiency we 

demonstrated the occurrence of various SE regimes, such as amplified spontaneous emission (ASE) and lasing. 

In this contribution we summarize the optical properties of cylindrical, high-Q polymer microcavities such 

as microring and microdisk laser, and show that light emitting polymer microdiodes with cylindrical geometries 

are possible candidates for electrically driven plastic lasers. In addition we also report on SE and lasing in 

opal photonic crystals infiltrated by a variety of polymer and dye solutions. For polymer films we also discuss 

two unusual SE phenomena, which lead to super-narrow laser-like emission lines without any cavity involved. 

These phenomena are random lasing2 and stimulated Raman gain3. 

There are two classes of 冗—conjugated polymers:luminescent and nonluminescent. The optical 

properties of the luminescent polymers are very similiar to those of regular organic laser dyes, such as 

Rhodamines or Coumarins. The primary excitations in these polymers are excitons, which may produce PL 

with high quantum yield, TJ, defined as the ratio between the number of emitted photons to the number of 

absorbed photons. Typically, the radiative decay channel of excitons has to compete with various channels 

of nonradiative decay; as a result, TJ is always less than unity. In our studies we have focused on two varieties 

of luminescent conducting polymers with particularly high PL yields, namely dioctyloxy-PPV (D00-PPV) 

with TJ""0.2 and poly(l-Phenyl-2-p-n-butylphenylactylene)[PDPA-nBu] with TJ""0.4. The Stokes-shifted PL 

bands, which are broadened by both homogeneous (phonons) and inhomogeneous (disorder) contributions, 

appear in the spectral range where the ground state absorption is weak. Therefore, a simple exciton model 

has been adopted to describe the optical transitions responsible for absorption and emission in these polymers. 

According to this model, the lowest excitations in 冗—conjugated polymers form a 4-level system, where 
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transitions l→ 2 and 3→ 4 describe the absorption and emission processes, respectively. The phonon-assisted 

relaxations 2→ 3 and 4→ I are very efficient and occur within 100 fsec and l psec, respectively. On the other 

hand, the exciton lifetime, i.e. the decay (mostly nonradiative) time oflevel 3, in our polymer films is in the 

range of 100 ps to 1 ns. We conclude that it is possible to achieve inversion between the levels 3 and 4 and 

thus satisfy the main requirement for a laser medium. 

The polymer residual absorption, Clres, at the optical frequency between levels 3 and 4 determines the 

threshold excitation density that is necessary for the population inversion and consequently, lasing. It is 

preferable, therefore, to have <lres as low as possible. However, one of the primary requirements for a polymer 

laser medium is its high PL yield. It has been noticed that in general, ri determined not only by the exciton 

lifetime, but also by the exciton generation yield. The later may also be less than unity due to the formation 

of interchain excitations and other nonradiative species. It is essential, therefore, for achieving high ri to have 

both long exciton lifetime and low generation yield of nonemissive excitations. The last fundamental 

condition influencing the performance of a polymer as a SE medium is the spectral extent of the excitonic 

photoinduced absorption (PA) in photopumped lasers, and current induced absorption (CIA) of polarons in 

electrically deiven lasers. The PA or CIA spectra may overlap with the spectrum of the stimulated emission 

(SE) and thus cancel the total optical gain. It has been shown, however that the PA and SE spectra of singlet 

excitons in D00-PPV are well separated, indicating that this polymer can be a good candidate for 

photopumped laser media. 

In our studies of laser action in 冗—conjugated polymers we have observed ASE in thin films, micro-

cavities and polymers infiltrated in opal photonic crystals2. True lasing has been achieved in micro-cavities 

such as micro-rings and micro-disks, but also in opal photonic crystals via the mechanism of distributed 

feedback aided by phase flips. We also observed random lasing in disordered films or in polymers infiltrated 

in micro-crystalline opals. In addition we also report on switching that occurs in very thin D00-PPV films 

and in polyfluorene films4 after thermal cycling. The switching occurs between the narrow line emissions 

associated with 0-0 and 0-1 transitions. 
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