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Abstract
Every compact real-analytic Riemannian manifold has a complexification called

the Grauert tube. We give an asymptotic expansion of the leading coefficient of the
logarithmic term of the Szegö kernel for two-dimensional Grauert tubes.

1. Introduction

Every compact manifold has a complexification, that is, there exists a com-
plex manifold C such that is a totally real submanifold ofC. When a Rieman-
nian metric on is given, one can define a canonical complexification of ( ).
This complexification is realized as a subset := of the tan-
gent bundle on for some 0 , where denotes the length of a tan-
gent vector with respect to the metric . Then is identified with the zero section
of , and the function ( ) := 2 2 is strictly plurisubharmonic in . We call
the complex manifold the Grauert tube of radius over . The purpose of this
paper is to investigate the asymptotic behavior, as +0, of the leading coefficient
of the logarithmic term of the Szegö kernel for the two-dimensional Grauert tube.

For a relatively compact strongly pseudoconvex domain with boundary
in an -dimensional complex manifold, we choose a contact form on called a
pseudo-hermitian structure, and consider the volume form () 1 on . It was
shown in [2] and [1] that the Szegö kernel for with respect to ( ) 1 can
be written in the form

(1.1) ( ¯) =
( )

( )
+ ( ) log ( )

where and are functions on which are smooth up to , and ( ) is a defin-
ing function for with ( ) 0 in . We note that the leading coefficient of the log-
arithmic term is independent of the choice of ( ) and gives a pseudo-hermitian
invariant of . More precisely speaking, it can be written as alinear combination of
complete contractions, with respect to the Levi-form, of the tensor products of the
Tanaka-Webster curvature, torsion and their covariant derivatives. In case = 2, an
explicit form of was given in [5].
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When = 2, is a constant multiple of the -curvature in real three-
dimensional CR manifolds ([3]), which is a reason why we are interested in .
We briefly explain the -curvature in conformal and CR geometries here. The

-curvature in conformal geometry is a scalar Riemannian invariant which is confor-
mally invariant up to an error given by a conformally invariant power of the Lapla-
cian. In dimension two, the -curvature is equal to a half of the Gaussian curvature.
On the other hand, let be a (2 1)-dimensional CR manifold, andlet be the
bundle of complex ( 0)-forms on . Then, for a pseudo-hermitian structure on ,
the Fefferman metric is defined on the circle bundle := ( )R+ ([7]). Since
the conformal -curvature of on is invariant under the1-action, we can regard
it as a function on . This is called the CR -curvature on . It should be
noted that the integral := ( )1 gives a CR invariant. When = 2, we
have = 0 for any CR manifold . In general dimensions, it was shown in [3] that
if is an invariant contact form, then = 0, and consequently = 0. However,
it is not known whether we can choose such that 0 for any CR manifold .
Moreover, many problems on and remain unsolved. Our investigation of
for two-dimensional Grauert tubes is a trial to study the -curvature in CR geometry.

Let ( ) be an -dimensional connected compact Riemannian manifold, and let
be the Grauert tube of radius over . We define the function ( ) :=2 2

for , and set := ( ) 2 for 0 2 . Then
:= = 2 is a strongly pseudoconvex CR manifold. We take a pseudo-hermitian

structure ( ) := 1 on , where is the embedding of into . The
Szegö kernel ( ) can be written in the form (1.1). Setting := = 1 ,
we can identify with by the map 2. We regard ( )

0 := ( )

as a function on with the parameter by this identification, and investigate the
asymptotic behavior of ( )

0 as +0.
We can now state our main result as follows:

Theorem. Assume that = 2. Then ( )
0 has the following expansion as +0:

(1.2) ( )
0 =

=0

( ) 2 + ( 2( +1)) for all 0

where = ( ) is a function of and such that is bounded as +0.
The coefficient 0 is given by

(1.3) 0 =
1

120 2

1

2
( )

where is the Gaussian curvature, ( ) is a contraction of 2 ,
and is the Laplacian.

We note that the tensor in the braces of (1.3) is the trace-free part of the Hessian
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of . This means that the integral of0 on each fiber of vanishes.
The proof of the theorem is based on a method of Kan. In [6], when = 2, Kan

gave expressions of the Tanaka-Webster connection by using, and proved that the
Burns-Epstein invariant ( ) on has the following expansion as +0:

(1.4) ( ) =
3

16 2

1

8
+

=1

2 + 2( +1) for all 1

where is the volume form on ( ). She determined the coefficientof the con-
stant term of (1.4) by calculating the invariant on the boundary of the Grauert tubes
over 2, without giving coefficients of terms of in detail. We determinine coef-
ficients of lower order terms of explicitly (Proposition 4.2) by the method stated
in [6], and then prove the theorem by direct calculation. We also give expansions of
the Tanaka-Webster scalar curvature and torsion (Propositions 4.4 and 4.5).

This paper is organized as follows: In Section 2, we recall the definitions of three-
dimensional CR manifolds, pseudo-hermitian structures and Szegö kernels, and state a
result of Hirachi on the expression of . In Section 3, we recall the definition of
Grauert tubes and the calculations of the Tanaka-Webster connection by Kan. In Sec-
tion 4, we give coefficients of some lower order terms of , and prove the theorem.
Finally, in Section 5, we state the method, due to Kan, of determining the coefficients.

ACKNOWLEDGEMENT. The author is grateful to Professor Kengo Hirachi for his
helpful suggestion and advice. Also, the author would like to thank Professor Satoru
Shimizu for his helpful advice and encouragement.

2. Pseudo-hermitian structures and Szeg̈o kernels

Let be a real three-dimensional manifold in a two-dimensional complex
manifold . We define a one-dimensional complex subbundle1 0 C by

1 0 := 1 0 C

We call 1 0 a CR structure on . We assume that is strongly pseudoconvex,
that is, there exists a real non-vanishing one-form such that ( ) = 0 for any local
section of 1 0 and that the Hermitian form on 1 0 defined by

( ) := 1 ( )

is positive-definite. We say that such a form defines a pseudo-hermitian structure.
Let be the unique vector field on such that ( ) = 1 and = 0, and

let 1 be any local frame of 1 0 . Then 1 1̄ , the coframe dual to 1 1̄ ,
where 1̄ := 1, satisfies

= 1 11̄
1 1̄
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for some positive function 11̄. In terms of this frame, the Tanaka-Webster connection
on C is defined by the following relations for one-forms 1

1 and 1:

1 = 1
1 1 1̄ = 1̄

1̄ 1̄ = 0
1 = 1 1

1 + 1

11̄ + 1̄1 = 11̄

1
1 = 0

where 1̄
1̄

:= 1
1 and we use 11̄ and its inverse 11̄ to raise or lower indices. We can

write 1 = 11
1, and we call 1 the Tanaka-Webster torsion form. The curvature of

the Tanaka-Webster connection is

1
1 = 11̄

1 1̄ + 1
1

1̄
1̄

The Tanaka-Webster scalar curvature is defined by :=11 . If 1 are components
of a tensor, then its -th covariant derivative is the tensor with components denoted by

1 1 .
Let be a relatively compact domain with boundary in . If a volume

form on is specified, then the Szegö kernel is defined as the reproducing ker-
nel associated with the Hardy space2( ) consisting of holomorphic functions in
which have 2 boundary values with respect to . For any complete orthonormal sys-
tem of 2( ), is given by

( ) =
=1

( ) 2

Assume that is strongly pseudoconvex. We take a pseudo-hermitian structure on
, and consider the Szegö kernel for with respect to the volume form

on . It was shown in [2] and [1] that admits an expansion

( ) =
( )

( )2
+ ( ) log ( )

where and are functions on which are smooth up to , and ( ) is a defin-
ing function for with ( ) 0 in . As for , it was proved in [5] that it is
given by

(2.1) =
1

24 2
1

1
1̄

1̄ 2 Im 11
11

where 1
1 , 1̄

1̄
and 11

11 are the contractions of the second covariant derivatives.
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3. A pseudo-hermitian structure on the boundary of Grauert tubes

Let ( ) be an -dimensional connected compact Riemannian manifold, and
let : R be a geodesic. We define a map :C by

( + 1 ) := ˙ ( )

It was proved in [9] that, for some 0 , := admits
the complex structure such that is holomorphic for every geodesic on . We
call the complex manifold the Grauert tube of radius over .

Define the function : R by ( ) := 2 2 for . Then the fol-
lowing theorem holds:

Theorem 3.1 ([4], [8]). The function has the following properties:
(1) is strictly plurisubharmonic,
(2) = 1(0), where we identify the zero section of with,
(3) the Kähler metric obtained from the K̈ahler form 1 2 is compatible
with , that is, = ,
(4) ( ) = 0 in , and
(5) if is another function which satisfies all the conditions above, then = .

Set := ( ) 2 and := for 0 2 . Then (1) of this
theorem shows that is a strongly pseudoconvex CR manifold.

We assume that = 2. For a geodesic normal coordinate system (1 2) centered
at , let ( 1 2) = ( 1 + 1 1 2 + 1 2) be the local holomorphic coordi-
nate system. Then ( 1 1 1 2) corresponds to the vector ( )( ), and for

( )( ) , there exists a vector ( )( ) := = 1
such that

(3.1) 1 =
1

2
1 2 =

1

2
2

Take a pseudo-hermitian structure( ) := ( 1 ) on , where is the embed-
ding of into . We define local sections ofC ( ) by

=
1

2 2 2 1
+

1

1 =
1

2 1 2 1 2 2 1 1 2

where

=
2

2

1 1 1

2

1 2
=

2

2

2 1 1

2

2 2
(3.2)
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=
2

1 1

2

2 2

2

1 2

2

2 1

and, 1 2 and 1 2 denote the positive branches of in and in ,
respectively (note that 0 in since is strictly plurisubharmonic). For 0,

( ) := and ( )
1 := 1 are local sections ofC , ( ) satisfies ( )( ( )) = 1

and ( ) ( ) = 0, and ( )
1 is a local frame of 1 0 . Setting

1 :=
1

2 1 2 1 2
1 + 2

we see that ( ) ( )1 ( )1̄ , where ( )1 := ( 1), is the coframe dual to
( ) ( )

1
( )
1̄

and that ( ) = 1 ( )1 ( )1̄.
The Tanaka-Webster connection form, the torsion form and the curvature are given

as follows:

( )1
1 = 1 ( ) ( ) + ( ) ( )1 ( ) ( )1̄ ( )

1 = ( )
11

( )1

( )1
1 = ( )

11̄
( )1 ( )1̄ + ( )

1
( )1 ( ) ( )

1̄
( )1̄ ( )

where ( ), ( ), ( )
11̄

, ( )
11 and ( )

1 are restrictions to of , , 11̄, 11 and 1

which are defined by

=
1

2
+

1

4 2 2
+

2 1 1
(3.3)

=
1

2 1(3.4)

11̄ = 2 2
1¯

1̄(3.5)

11 =
1

2 2 3 2 3 2
1 1(3.6)

1 = 1 + ¯ 11 + 1 1

4. Proof of the theorem

In Sections 4 and 5, = (1 2) and = ( 1 2) denote multi-indices with 1,

2, 1, 2 0. We use the following propositions in order to prove the theorem:

Proposition 4.1 ([6]). Let = . Then is of the following form:

(4.1) ( 1 2) = 2 11( )( 1)2 + 4 12( ) 1 2 + 2 22( )( 2)2 +
4 even

( )

where each is a real-analytic function.
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Let ( ) be the Gaussian curvature of , and let

:= (0) 1 :=
1

(0)

Proposition 4.2. Set 2 = ( 1)2 + ( 2)2 and = 2 1 1 2. Then

(4.2) ( 1 2) = 2 2 + 1( ) + 2( ) 2 + ( 7)

where

1( ) =
3

1

6
1

1 + 2
2 +

2

45
11

20
( 1)2 12

10
1 2 +

2

45
22

20
( 2)2

2( ) =
2

15
+ 11

60
( 1)2 + 12

30
1 2 +

2

15
+ 22

60
( 2)2

and ( ) is a function of the form

+ =

( )

for real-analytic functions .

We first give the proof of the theorem in the rest of this section, and then prove
Proposition 4.2 in the next section.

We write F if is a real-analytic function on and the Taylor expansion
of at = 0 can be written in the form

(4.3)
: even

( ) + 1
: odd

( )

for real-valued functions . In particular, we write F0 if F and is a real-
valued function. The following properties hold for , F :
(1) + , F ,
(2) 1 2 1 2 F , and
(3) , 1 2

1 F .

Lemma 4.3. Let 0 be a function on such that 0 = ( )
0 := ( )

for 0 2 . Then 3
0 F0.

Proof. It follows from F that , , F . Considering the Taylor expan-
sion of 2 at the origin for Z, we have 2 F . By the definitions of , ,

11̄ and 11, we see , 1 2 , 11̄, 1 2
11 F . Since 11̄ is real, we have

11̄ F0.
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We note that ( ) = ( )
11̄

= 11̄ . Set

(4.4) 1
1 + 1̄

1̄ := 2( 1̄ 1 11̄ + ¯ 1 11̄) 1 11̄

and

(4.5) 11
11 := 2

1̄ 11 + 2 1̄ 11 + 3 1̄ 11 + 2
2

11

Then we have 2( 1
1 + 1̄

1̄
), 1 3 11

11 F and

( )1
1 + ( )1̄

1̄
= ( 1

1 + 1̄
1̄ ) ( ) 11

11 = 11
11

Hence, we see 3
0 F by (2.1). Since 0 is real, we obtain 3

0 F0.

We now calculate 11̄ and 11. First, we calculate , and by differentiat-
ing (4.2) and using (3.2). Next, differentiating , by the definitions of and , we
get them. Then, differentiating with respect to 1 and using (3.5), we obtain

11̄ =
1

2
1 +

2

3
+ 1

1 + 2
2 2(4.6)

+ 11

15
+

4

15
22

4

45
2 ( 1)2 2

3
12

1 2

+
4

15
11

22

15

4

45
2 ( 2)2 2

+ 11

3
( 1)2 +

2

3
12

1 2 + 22

3

2

9
( 2)2 ( 1)2

+ 11

3

2

9
( 1)2 +

2

3 12
1 2 + 22

3
( 2)2 ( 2)2

+
2

9
2 1 2 1 2+ ( 5)

Differentiating and with respect to 1 and using (3.6), we get

1̄1̄ := 11

(4.7)

=
1

4 2

4

3
1 1 + 2 2 2 +

1

3 1
1 + 2

2 4

1( 1)2 +
2

3 2
1 2 + 1

3
( 2)2 1 2

2

3
( 1)2 +

2

3
1

1 2 + 2( 2)2 2 2
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+
2

5
11 +

22

45
2 1 + 12

5
2 ( 1)3 2

+
3

5
12

1 + 11

5
+ 22

5
+

22

45
2 2 ( 1)2 2 2

+ 11

5
+ 22

5
+

22

45
2 1 +

3

5 12
2 1( 2)2 2

+ 12

5
1 +

2

5
22 +

22

45
2 2 ( 2)3 2

+ 1 4 2 4

3
4 2

3
2

4

3
1

1 + 2
2 4 +

2

9
2 2 2 + 2 2( ) 2

+
2

15
11 +

14

45
2 ( 1)2 +

4

15
12

1 2 +
2

15
22 +

14

45
2 ( 2)2 4

2

3
11 +

2

9
2 ( 1)2 +

4

3
12

1 2 +
2

3
22

2

9
2 ( 2)2 ( 1)2 2

2

3 11
2

9
2 ( 1)2 +

4

3 12
1 2 +

2

3 22 +
2

9
2 ( 2)2 ( 2)2 2

8

9
2 1 2 1 2 2 + ( 3) + ( 7)

By (4.4) and differentiation of (4.6), we have

1
1 + 1̄

1̄ =0
=

1
2

11

3
( 1)2 +

2

3
12

1 2 + 22

3
( 2)2 2 + ( 5)

Differentiating and the conjugate of (4.7) with respect tō1 and using (4.5), we
have

11
11 =0

=
1
3

1

3
1

1 + 2
2 4

+ 1 11

15

2

5
22 ( 1)2

+
14

15
12

1 2 2

5
11

22

15
( 2)2 4 + ( 7)

Therefore, by these two equations, (2.1) and Lemma 4.3, substituting (3.1), for 0,
we obtain

( )
0 =0

=
1

24 2

1

10

1

5
11( 1)2 + 2 12

1 2 + 22( 2)2 + ( 2)

This completes the proof of the theorem.
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REMARK. Since 11̄ F0 and 1 2
1̄1̄ F by the proof of Lemma 4.3,

setting = 0 and substituting (3.1) into (4.6) and (4.7), we have the following propo-
sitions:

Proposition 4.4. The Tanaka-Webster scalar curvature( ) has the following ex-
pansion as +0:

( ) =
1

2 2
+

=0

( ) 2 + ( 2( +1)) for all 0

where

0 =
1

6 1 =
1

90
2 +

1

30
( )

1

24

Proposition 4.5. The Tanaka-Webster torsion( )1
1̄

has the following expansion
as +0:

( )1
1̄

=
1

2 2
+

=0

( ) + ( +1) for all 0

where

0 =
1

12 1 =
1

48 2
( )

2 =
7 1

720
2 +

1

240

5. Determination of lower order terms of

We give the proof of Proposition 4.2 by using Proposition 4.1and a method of
Kan. It follows from (4) of Theorem 3.1 that

( )2 =
1

4 2
( ) = 0

that is,

= ( )

This equation is equivalent to the following one:

2
2

( 1)2
+

2

( 1)2

2

( 2)2
+

2

( 2)2
(5.1)
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2

1 2
+

2

1 2

2 2

1 2

2

2 1

2

=
1

2

+
1

2 2

( 2)2
+

2

( 2)2

+
2

2

+
2

2 2

( 1)2
+

2

( 1)2

2
1 2

+
1 2

2

1 2
+

2

1 2

+ 2
2 1 1 2

2

1 2

2

2 1

By using Proposition 4.1, we set

( 1 2) = 2 11( )( 1)2 + 4 12( ) 1 2 + 2 22( )( 2)2(5.2)

+
4

=0

( )( 1)4 ( 2) +
6 even

( )

The Taylor expansions of are given as follows:

11( ) = 1 + ( 2)2 ( ) + ( 5)

12( ) = 1 2 ( ) + ( 5)

22( ) = 1 + ( 1)2 ( ) + ( 5)

where

( ) =
6

1

12 1
1 + 2

2 +
2

90
11

40
( 1)2 12

20
1 2+

2

90
22

40
( 2)2

Substituting (5.2) into (5.1) and comparing the coefficients of ( 1)4 on both sides
of (5.1), we have

0( ) =
1

3

2
11

( 1)2
+

1

6( 11 22
2
12)

11
11
2

2 12
1

2

+2 12
11
1

11
2

2 12
1

+ 22
11
1

2

=
2

15
+ 11

60
( 2)2 + ( 3)
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Arguments similar to above yield

1( ) =
2

15
2 + 11

30
1 2 + 12

30
( 2)2 + ( 3)

2( ) =
2

15
+ 11

60
( 1)2 12

15
1 2 +

2

15
+ 22

60
( 2)2 + ( 3)

3( ) = 12

30
( 1)2 2

15
2 + 22

30
1 2 + ( 3)

4( ) =
2

15
+ 22

60
( 1)2 + ( 3)

Hence one can write

(5.3) ( 1 2) = 2 2 + 1( ) + 2( ) 2 +
6

=0

( 1)6 ( 2) + ( 7)

We substitute (5.3) into (5.1) and set = 0. Comparing the coefficients of ( 1)6 ( 2)
on both sides of (5.1), we have = 0 for = 0 6. We therefore obtainProposi-
tion 4.2.
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