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Abstract
Every compact real-analytic Riemannian manifold has a dexification called
the Grauert tube. We give an asymptotic expansion of theirigacbefficient of the
logarithmic term of the Szegd kernel for two-dimensionab@ert tubes.

1. Introduction

Every compaciC® manifold has a complexification, that is, ehexists a com-
plex manifold X¢ such thatX is a totally real submanifold &fc. When a Rieman-
nian metricg onX is given, one can define a canonical complexifio of (X, g).
This complexification is realized as a subg€tx {i=e TX | ||v]| < r} of the tan-
gent bundleTX onX for some & r < co , whef@| denotes the length of a tan-
gent vectorv with respect to the metrgc . Th&n  is identifiedhvilie zero section
of TX, and the functionp « ) := Pv||? is strictly plurisubharmonic iff”X . We call
the complex manifoldr’'” X the Grauert tube of radius ower . Theppse of this
paper is to investigate the asymptotic behavior;as- +0, efl¢lading coefficient
of the logarithmic term of the Szegd kernel for the two-disienal Grauert tube.

For a relatively compact strongly pseudoconvex dom@in  with boundaryd 2
in an n-dimensional complex manifold, we choose a contaanféron 92 called a
pseudo-hermitian structure, and consider the volume férm d0)"t! on Q. It was
shown in [2] and [1] that the Szegd kern§)  fer  with respecBta (d6)"~* can
be written in the form

%o(2)
r(Z)n

wheregy andy, are functions o2  which are smooth up®  ,and () isfia-de
ing function forQ withr ¢)> 0 inQ2 . We note that the leading coeffict of the log-
arithmic term, |, is independent of the choiceot () and gives eugde-hermitian
invariant of 6 . More precisely speaking, it can be written abnaar combination of
complete contractions, with respect to the Levi-form, oé ttensor products of the
Tanaka-Webster curvature, torsion and their covarianivakdres. In casen = 2, an
explicit form of vy|,o Was given in [5].

(1.1) So,z)=

+Yo(z) logr(z),
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Whenn = 2, yylyq IS a constant multiple of th@ -curvature in real ¢hre
dimensional CR manifolds ([3]), which is a reason why we arerested inyyl,o -
We briefly explain the O -curvature in conformal and CR geoiestrhere. The
Q-curvature in conformal geometry is a scalar Riemanniamriant which is confor-
mally invariant up to an error given by a conformally invatigopower of the Lapla-
cian. In dimension two, the -curvature is equal to a half & Gaussian curvature.
On the other hand, le be a2 1)-dimensional CR manifold, l@hd” be the
bundle of complex#, 0)-forms o . Then, for a pseudo-hermig&uctured onM
the Fefferman metridi, is defined on the circle bundle A M /RY ([7]). Since
the conformalQ -curvature of, off s invariant under tffeaction, we can regard
it as a functionQy, onM . Thig), is called the CR -curvature @n . Itudticdbe
noted that the integraly ¥, Qs0 A df "y! gives a CR invariant. When =2, we
have L, =0 for any CR manifold/ . In general dimensions, it wasashin [3] that
if 6 is an invariant contact form, the®, = 0, and consequelitly .HOwever,
it is not known whether we can choose such tght= 0 for any CR faldnivf.
Moreover, many problems o@, ard, remain unsolved. Our iryastin of V|,q
for two-dimensional Grauert tubes is a trial to study fie rvature in CR geometry.

Let (X, g) be ann -dimensional connected compact Riemannian foldniand let
T"X be the Grauert tube of radius ovér . We define the funcpon ( 2|#|?
forv e T'X, and setQ, :={v € T"X | p{ )< €2} for 0 < ¢ < +/2r. Then
M, = {p = €%} is a strongly pseudoconvex CR manifold. We take a pseudmitian
structured® :=* (—/=19p) on M, , where, is the embedding 8f, inlwX . The
Szeg0d kernelSy«) can be written in the form (1.1). Settin§X {(HF#eTX||UIl F1,
we can identifySX withM, by the ma/ — U /2. We regardy) := oy,
as a function onSX with the parameter by this identificationd amvestigate the
asymptotic behavior ofpé‘”') ase — +0.

We can now state our main result as follows:

Theorem. Assume thak = 2. Thenw(()‘”') has the following expansion as— +0:

L
(1.2) v =D F)e? + 0E*) forall L >0,
=0

where f = O(¢™) is a function ofU ands such that/e” is bounded as— +O0.
The coefficientFyp is given by

1

(1.3) Fo = ~ 12072

1 o
{V,-le( - E(V,(ka)g,-j} ulut,

where K is the Gaussian curvatyrév;V; K )u'u/ is a contraction ofV’K ® U ® U,
and —V, V¥ is the Laplacian.

We note that the tensor in the braces of (1.3) is the traee{fisgt of the Hessian
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of K. This means that the integral @¢f on each fiber ofM, vanishes.

The proof of the theorem is based on a method of Kan. In [6],nwhes 2, Kan
gave expressions of the Tanaka-Webster connection by usirend proved that the
Burns-Epstein invarian®) on M, has the following expansion as—  +0:

3 1 =
1.4) pu® = /dV ——/ Kdvx+) Fl'e+0(e***Y) forall L>1,
(1.4) n vz )V e ). X 2 e (e ) >

wheredVy is the volume form onX(, g ). She determined the coefficd#nthe con-
stant term of (1.4) by calculating the invariant on the bamdof the Grauert tubes
over S2, without giving coefficients of terms op in detail. We deténine coef-
ficients of lower order terms op  explicitly (Proposition %.By the method stated
in [6], and then prove the theorem by direct calculation. W agive expansions of
the Tanaka-Webster scalar curvature and torsion (Propositt.4 and 4.5).

This paper is organized as follows: In Section 2, we recaldefinitions of three-
dimensional CR manifolds, pseudo-hermitian structures &regd kernels, and state a
result of Hirachi on the expression afy|,, . In Section 3, we rfettad definition of
Grauert tubes and the calculations of the Tanaka-Webstamection by Kan. In Sec-
tion 4, we give coefficients of some lower order termspof , anove the theorem.
Finally, in Section 5, we state the method, due to Kan, of rdaiténg the coefficients.

AcKNOWLEDGEMENT.  The author is grateful to Professor Kengo Hirachi for his
helpful suggestion and advice. Also, the author would ligethank Professor Satoru
Shimizu for his helpful advice and encouragement.

2. Pseudo-hermitian structures and Szedy kernels

Let M be a real three-dimensional™  manifold in a two-dimenaiocomplex
manifold W . We define a one-dimensional complex subburith€yM c CTM by

YoM =T W nCTM.

We call T*°M a CR structure on¥ . We assume thit is strongly pseudoconvex,
that is, there exists a real non-vanishing one-fégfrm  such @e) = 0 for any local
sectionV of 7+°M and that the Hermitian form off*-°M defined by

Lo(V, V') :i= —/=1d6(V A V)

is positive-definite. We say that such a fofm defines a pséeadamitian structure.

Let T be the unique vector field o  such thatl’ ( ) = 1 &hdo =0, and
let Z; be any local frame of °M. Then {6, 6%, #'}, the coframe dual t4T, Z1, Z7},
where Z7 := Z;, satisfies

d6 = J/—L1h,70* A 6*
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for some positive functiork;7. In terms of this frame, the Tanaka-Webster connection
D on CT M is defined by the following relations for one—formgl and t1:

DZi=w,'® 71, DZi=w;i'®Z;, DT =0,
dot =6 A t+ 6 AT
w11 T wiy = dhyg,
1 N\ 91 =0,

wherew;* := w;* and we user;7 and its inverser'! to raise or lower indices. We can
write 7, = A1101, and we callr; the Tanaka-Webster torsion form. The curvature of
the Tanaka-Webster connection is

dw,* = R0t A 02 + W16Y A 6 — Wiot A 6.

The Tanaka-Webster scalar curvature is definedvby erl—: If 7,,..«, are components
of a tensor, then itg -th covariant derivative is the tensith womponents denoted by
Ty yroys -

Let @ be a relatively compact domain with>*  bounda&® Wn . If a vol
form o onaQ is specified, then the Szegod kersel is defined as tm®dacing ker-
nel associated with the Hardy spa&&(Q2) consisting of holomorphic functions if
which haveL? boundary values with respect to . For any complete orthoabsys-
tem {h;} of H(RQ), S is given by

oo

S(z,2) =) i)

J=1

Assume thatQ is strongly pseudoconvex. We take a pseudoiti@rnstructured on
9%, and consider the Szegd kerngl far  with respect to the veldonm 6 A d6
on 9. It was shown in [2] and [1] tha§, admits an expansion

_ z
59 = 29 4y @) logr )
r(z)
wheregy andy, are functions o  which are smooth up®  ,7and () isfia-de
ing function forQ withr ¢)> 0 inQ. As foryy|sq , it was proved in [5] that is
given by

1 —
2.1) 1mb9:Ezﬁ(—Ril—Ril—znnAnlﬂ,

whereR ', R ;' and A;; ! are the contractions of the second covariant derivatives.
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3. A pseudo-hermitian structure on the boundary of Grauert tubes

Let (X, g) be ann -dimensional connected comp@ét Riemannian foldniand
let y: R — X be a geodesic. We define a mgp C:— TX by

Yy (& ++/=1n) =y €).

It was proved in [9] that, for some @ r < o0 T'X e TX ||| <r} admits
the complex structure such thaik, is holomorphic for everydge@y onX . We
call the complex manifold’” X the Grauert tube of radius oxer

Define the functionp 77X — R by p(v) := 2|v||? for v € T"X. Then the fol-
lowing theorem holds:

Theorem 3.1([4], [8]). The functionp has the following properties
(1) p is strictly plurisubharmonic
(2) X =p~1(0), where we identify the zero section B wikh
(3) the Kahler metric G obtained from the #ler form /—109p/2 is compatible
with g, that is G|x = g,
(4) (03 /p)"=0in T"X \ X, and
(5) if p is another function which satisfies all the conditions alyahen’s = p.

SetQ, ={veT'X|pb)< e’ and M, :=9Q, for O< & < +/2r. Then (1) of this
theorem shows that/. is a strongly pseudoconvex CR manifold.

We assume that = 2. For a geodesic normal coordinate syst&m?j centered
at p e X, let g1, z9) = (x* + V=1y% x2+ V/=1y?) be the local holomorphic coordi-
nate system. Theny(—1y, vV/—1y?) corresponds to the vector 9/9x’ p( ), and for
yi(0/3x))(p) € M,, there exists a vectar’ 3fdx’ Y & SX H eTX||U| 1
such that

(3.1) = bop e Lloe

Take a pseudo-hermitian structu#®) := *(—/—1dp) on M, , wherei, is the embed-
ding of M, into T"X . We define local sections &f7(7"X \ X) by
/1 <A 3 0 d d )

4 0z Z 0z

7. = 1 ap 0 ap 0
YT 2pvzpye\oz2ozt 971922)°
where

ap 92 9p 92 9p 92 ap 92
(3.2) A= %P % 9P g% 9P 9 IP
072 0710zt 9zt 971922 0720720z 971 972072
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_%p 3% B 9%p 9%

0719710922022 974922 07202

and, p¥2 and PY/2 denote the positive branches gfp in 77X \ X and /P in T"X,
respectively (note thaP > 0 "X singe is strictly plurisubhanic). Fore > 0,
7@ :=T|y and Zf) '= Z1|y, are local sections oETM,, T satisfiesd© (1) = 1
and 7€)]d6® = 0, and Z) is a local frame ofT'-%M,. Setting

1
1. 1 2
= ——— (Adz" + Bdz9),
73 ppya A4+ BT
we see that{e®,0®1 g1} where 91 = *(pY), is the coframe dual to

(1), 2P, 29} and thatde® = /=16©* A §EL,
The Tanaka-Webster connection form, the torsion form aedctirvature are given
as follows:
w(ls)l = /Z1a®e® + pEg©1 _ WG(S)I’ Tf) — A(lsl)e(s)l’
do = REGEOT A 9O+ WEGEL A 9©) — WL A ),

where a®, b, R%)’ A(fl) and Wf') are restrictions ta, of: p R;1, A1 and Wy
which are defined by

1 1 AP _ 9P P 93P
(33) a=——+—- A—+A—_—B——B—_ 3
20 4pP? 072 972 azt 971
1
3.4 = 7P,
(3.4) >p 21 )
(3.5) Rii = —a — 2|b|? — Z1b — Z7b,
/—1 o
3.6 Apn=———" (AZiB—BZ:1A
(3.6) 11 zﬁps/zpa/z(_ 1 14),

Wi=+—1ab +EA11+ ~—=1Zya — Tbh.

4. Proof of the theorem

In Sections 4 and 5¢ =af, a2) and 8 = (1, B2) denote multi-indices withyy,
g, B1, B2 = 0. We use the following propositions in order to prove theotieen:

Proposition 4.1 ([6]). Letg =g;;dx' ® dx’. Thenp is of the following form

4.1 pEh )= 200N+ 4g2(0)y Y + 2822(0) (D) D) pulX)y,

|a|>4, even

where eachy, is a real-analytic function.
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Let K (x) be the Gaussian curvature &f , and let

3K
K = K(O), K}/l"'}/j = m(o)

Proposition 4.2. Set|y|? = (y})? + (y?)? and Y = x2y* — x1y2 Then

(4.2) p " 2% = 2y7 + {filx) + £2(0)} Y2+ O(lxy|"),
where
K 1 K? K11 K12 K? K2
= D T (Kol ko) D)2 12 a2 (B R22) 2y
filx) = =5 — 5 (Kt + Kox) (45 20)(x) 10 "\ 25 20) )
K? K K K? K
() = (E + 6—2)1> (h2+ 3—52)’1)’2 + <E + 6—§)Z> 3,

and O(|xy|™) is a function of the form

D aaplx, y)xy”

||+ Bl=m

for real-analytic functionsa,s .

We first give the proof of the theorem in the rest of this sectiand then prove
Proposition 4.2 in the next section.

We write h € F if h is a real-analytic function orf”X and the Taylor expansion
of h at y =0 can be written in the form

(4.3) S Ry VLY Fa(a)y®

|af: even |a|: odd

for real-valued functiong’, . In particular, we writee Fo if h € F andh is a real-
valued function. The following properties hold far i) € F:

(1) h+h', hh' € F,

(2) 9h/dz, 0h/dz% 0h/0zL, 9h/0z2 € F, and

(3) pTh, p¥?Z1h € F.

Lemma 4.3. Let ¢ be a function on7”"X \ X such thafo|y, = w((f) = Yool
for 0 < e < +/2r. Thenp3yp € Fo.

Proof. It follows fromp € F that A, B, P € F. Considering the Taylor expan-
sion of P*/2 at the origin fork € Z, we have P¥/2 ¢ F. By the definitions ofa b ,
R, and A1, we seepa ,0Y?%b, pRy7, ~/—1p2A11 € F. Since R7 is real, we have
PRi1 € Fo.
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We note thatrR®) = R%) = Rqilm,. Set

(4.4) Ry Y+ R ;1= 2(Z5Z1Ryi +bZ1Ret) — V—1TRig
and
(45) All .- ZJZ—_A]_]_ +2 (ZIB) At %ZIAll + ZBZA]_]_.

Then we havep®(R ;! + R.II), V—=1p%A;; e Fand

)1 )1 _ 1 15 ) 11 _ 11
R+ R =R, +R7Y|,, AR M=4y

M, "

Hence, we se@3yp € F by (2.1). Sinceyy is real, we obtainp3yg € Fo. O

We now calculateR,7 and Aj;. First, we calculateA B and® by differentiat-
ing (4.2) and using (3.2). Next, differentiating , by the d&fons of « andb , we
get them. Then, differentiating with respect toZ; and using (3.5), we obtain

1 2
(4.6) Ry = 5[1+— (K + Kix' + Kox?) |y|?

K11 4 4 2 1,2 2 1.2

—— 4+ —Kyp— —K — =K

( 15 15 22 45 )()’) 3 12Y°y
K22 4

{

. <1;45K11_ - 4_51<2> (y2)2}|y|2
{
{

2 K K?
e TNV 1.2 H22 A 2\2 1,2
22+ Skt (B2 - 1) 07 0

K1 K? 1\2 2 1.2, K22, 59 2\2
—_— — — + — + ==
(3 9)(x) Kaarta?+ S22 ()

2
+ SR 2 o<|xy|5)].

Differentiating A and B with respect toZ; and using (3.6), we get

17 4 1

2 K
Kule + SKart?+ 26022

2
- ?(xl)2 + §le1x2 + Kz(xz)z} y2yl?
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2 22 K1
+ 1 ZKu+ 2K ) xt+ 202 (Y3
(5 T )x 5 ¥ }(y )71yl

3 K11 Ky 22
* —K12x1+<—+— K2 ) x?p O12y21y)?

5 5 5 45

Ki1 Ky 22 1,3 ol 1, 22, 2
+i|l—+—+—K +-K

( 5 5 45 )x 5 127 ¢ y () Iyl

K12 14 2 22 2\ .2 213,12
+{— Ko+ —K

¥ (5 2% x“p (v)7Iyl

+ 1[4|y|2——1<|y|4 Zky?

4 2
-3 (Kix' + Kox )IJ’I4+§K2|y|2Y2+2f2(J’)Y2

4 2 14
+ £2) (b2 + 2 kovly2 e Kont 2202) (221 4
< )()’) 1Ky (15 2% )(Y) }Iyl
ne, 4 1.2, (2 2 2\ 22| ponney 2
K+ - K (x7) +§K12xx + §K22—§K =9t )7yl
ne, 4 1.2, (2 2 2\ 22| po2v2y 2
— K11——K (x7) +§K12xx + §K22+§K (=9t )7yl
8
gKoxx iy Ayl "] +O(x’) + 0(|xy|7)}.

By (4.4) and differentiation of (4.6), we have

(%

Differentiating » and the conjugate of (4.7) with respect ¥y and using (4.5), we
have

[{ LSERR §K12y1y2+ %(y2)2}|y|2+ 0(|y|5)].

1 1
Ay Mo = ;[—g (Kay™ + K2y°) Iy1*
K 2
++-1 { (i - 5K22> (h?
14 2 Koo
+ 1—5K12y y? (5K11 — —) (y2)2}|y|“+ 0(|y|7)]

Therefore, by these two equations, (2.1) and Lemma 4.3 titutibgy (3.1), fore > 0,
we obtain

()
0

1 1 1
= ViVEK — Z{K 240K 24 ko 2 + 0(e2) |,
x=0 24712[10 k 5{ 1) 101 22(u®)?} (&9)

This completes the proof of the theorem.
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RemARK. Since pRi7 € Fo and «/—1p?A7 € F by the proof of Lemma 4.3,
settingx = 0 and substituting (3.1) into (4.6) and (4.7), weehthe following propo-
sitions:

Proposition 4.4. The Tanaka-Webster scalar curvatuRé) has the following ex-
pansion ase — +0:

1 L
R©) = 57t Y FAU)e? + 0 ) forall L >0,
=0

where

1 1 1 1 o
F§:6K’ FlR:_%K2+{%(VkaK)g,-j—ﬂV,-VjK}u’uf.

Proposition 4.5. The Tanaka-Webster tOI’SiOAg—S)l has the following expansion
as e — +0:
-1

L
APt = ot S FU)e' + 0@t forall L>0,
=0

where

=1 1 .
F,=———K, F =——NV:K)u',
0 12 ! 48f2( )

+«/—1

:7 _1K2 (V,'VjK)Miuj.

F'L’
27 720 240

5. Determination of lower order terms of p

We give the proof of Proposition 4.2 by using Proposition 4rid a method of
Kan. It follows from (4) of Theorem 3.1 that

_ 1 _ _ _ _
(80/p)? = a7 {0p A3p A 33p — p(d3p A dDp)} =0,

that is,
3 Adp Addp =p(ddp ADIp).

This equation is equivalent to the following one:

82 82 82 82
ey i <<3(xf)2 * a(yf)z) <8(x§)2 ’ 8(y§)2>
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2 2
_ 92p + 92p _ 9%p _ 92p
0x19x2  0yloy? ox19y2  9x29y?l
AN VAN i
ox1! ay 1 3()(2)2 30,2)2
2 2
+ 3,0 9°p + a°p
2 a(xl)Z a(yl)z
dp dp . 9p dp 9%p 9%p
-2 _—
ax1 8x2 aytay2 ) \oxlox2 = 9ylay?
19 ap 0dp ap dp 92p 92p
ax29yl  9x19y2 ) \oaxlay2 ox23yl)’

By using Proposition 4.1, we set

(5.2) p(zh, 22) = 2g11(x)(v")? + Aga2(x)yy? + 2g22(x) (v?)?

4
Y 0i@ONTOY Y ealx)y”.

j=0 |x|>6, even

The Taylor expansions of;; are given as follows:

gu(x) = 1+ ()2 f(x) + O(Ix[),
812(x) = —x'x2f (x) + O(IxP°),
g22(x) = 1+ (12 £ (x) + O(Ix ),

where

1 K? Kn ne Ki2 4 K? Ko 2\2
2 (Kt K - _tu D12y .
flx) = 12( v+ Kor) + <9o 40)(” 20" " (90 40)(x)

Substituting (5.2) into (5.1) and comparing the coeffigenf (y})* on both sides
of (5.1), we have

@o(x) = 2 Peu + ! g1 (3g11 - 2_8g12>2
30(x1)?  6(g11822— 85») dx2 dxt

0g11 (9811 0812 dg11\°
+2 —2 + g [ 284
812t < 0x2 axt ) 82\ Gyt

KZ K11 2\2 3
= (15 62 637+ 0GP



350 E. Koizumi

Arguments similar to above yield

2 K K
o1(x) = — (—K2 + j) w2 K202 4 600p9),

15 30 30
oo(x) = (Ii—; + %) ()2 — %x1x2+ <I§_52 + %) 22+ 0(1x3),
p3(x) = % x1)? — <135K2 + %) x1x2+ 0(|x3),
i) = (55 + 52) w2+ 00

Hence one can write

6

(5.3) p " 2D = 2yP+ {Alx) + LON Y2+ pi (6D (%) + O(lxyl).
=0

We substitute (5.3) into (5.1) and set = 0. Comparing thefiiefts of ()57 (y?)/
on both sides of (5.1), we havye; =0 fgr $.0., 6. We therefore obRamposi-
tion 4.2.
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