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1. INTRODUCTION 

There has been a growing interest in the use of an acoustic wave device for application 

such as gas [1], mass [2,3], and liquid sensing [4]. In the device construction as a mi-

crosensor operating in liquid environment, it is essential to evaluate the liquid properties 

such as viscosity [5], density [6] and conductivity [7]. For the above purpose, the acoustic 

wave device requires low energy loss into a liquid layer. Rayleigh and Lamb wave devices 

immersed in viscous liquid media suffer high propagation loss at a solid/liquid interface via 

the mode conversion to the longitudinal wave in the liquid. Recently, much interest has 

been focused on the use of a shear horizontal (SH) wave for liquid sensing. The SH wave 

device has the advantage of low energy loss at a solid/liquid interface. 

In this paper, the propagation characteristics of SH waves in a piezoelectric ceram-

ic/liquid/glass trilayer are described through the numerical calculation and experiment. 

Mechanical displacement distributions of the SH wave in the trilayer are strongly depen-

dent on the thickness of the liquid layer and the liquid viscosity. The device used for the 

experiment need a small amount of liquid sample compared with that in a commonly-used 

rotational viscous meter. Theoretical temperature dependence of viscosity (silicon oil) is 

successfully compared to the measured result. This method has the advantage of stable 

measurement because of the sandwiched liquid medium. 

2. NUMERICAL ANALYSIS 

Figure 1 shows a coordinate system to calculate the propagation characteristics of SH 

wave in a trilayer structure composed of a piezoelectric ceramic thin plate, a liquid layer 

(Silicon oil) and a glass plate._ The origin (ふ=0) is considered as the interface between 

the piezoelectric thin plate with a thickness d, and the liquid layer with a thickness r1 d 

(0三r1三1).Numerical calculation of the phase velocity of the SH wave in the trilayer 

structure is carried out by developing the Parnell's method [8]. 
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Fig.1 Coordinate system used in numerical 
analysis. 

Figure 2 shows relative displacemen-

t distributions ofい ofthe S。modeSH 

wave in the trilayer for various thickness-

es of the liquid layer. The calculated re-

sults correspond to the carrier frequency 

of 5.56 MHz. Dotted and broken curves 

for the cases of 2μm-thick and 6μm-

thick silicon oil layers indicate that the 

displacements of the S。modepenetrate 

into the glass plate beyond the silicon oil 

layer. On the other hand, the displace-

ment of the SH wave completely decays 

in the silicon oil layer thicker than 12μm 

and does not exist in the region of the 

glass plate. 

The calculated fractional ve-

Fig.2 Relative displacement distributions of U2 
in trilayer for various thicknesses of liquid lay-
er. Calculations are performed for S。modewith 
carrier frequency of 5.56MHz 
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. Fig.3 Fractional velocity change of S。modeof SH 
locity change as a function of viscosity 

wave as function of viscosity. Calculation is per-
is shown in Fig. 3 corresponding to the formed at for frequency of 5.56MHz 

S。modeof SH wave with the frequency 

of 5.56 MHz, which decreases linearly as 

the square root of viscosity. This result suggests the usefulness of viscosity measurement 

by using the S。modeof SH wave. 
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3. EXPERIMENTAL RESULTS AND DISCUSSION 

Figure 4 shows a schematic construction of the SH wave device prepared for this study. 

A silicon oil (Shin-Etsu, KF96-100) is sandwiched between a 230μm-thick piezoelectric 

ceramic plate (TDK, 101A) and a 400μm-thick glass plate (Corning, 7059). The thickness 

of the silicon oil layer is 25μm, adjusted by PET film for spacer. This device needs 

a small amount of liquid sample with the capacity of about 0.003 ml. Two interdigital 

transducers (ID Ts) are mounted on the piezoelectric ceramic thin plate, each of which has 

seven electrode-finger pairs and 400μm interdigital periodicity. The device is contained in 

a controllable temperature bath. 

Measured frequency dependences of the insertion losses of the SH wave device are shown 

in Fig. 5 for two cases corresponding to the device without and with silicon oil, represented 

by real and dotted lines, respectively. The difference of the insertion losses in the two cases 

is substantially omitted. This result indicates that the SH wave does not suffer from the 

propagation loss at the solid/liquid interface. It is also obvious that the center frequency 

of S。modeis 5.56 MHz, being equal to the frequency in Fig. 2 and 3. 

Figure 6 shows temperature dependences of the phase change of the delay device. The 

phase change is measured via a network analyzer (HP, 4195A) while the temperature is 

kept by a temperature controller (Shimaden, FP21) over the range from 30 to 90°C. The 

viscosity and density of silicon oil used for the evaluation are dependent on the temperature, 

where the viscosity change is from 0.097 to 0.038 Pa.s, and the density change is from 963.04 

to 915.10 g/cm3. The numerical calculation result represented by real line based on the 

data in a technical report on Shin-Etsu Silicon. The change of phase delay of the S。mode
propagation between the two IDTs shows an almost linear behavior with temperature. The 

experimental results are in good agreement with the numerical calculation. 

Fig.4 Schematic construction of device pre-
pared for experiment. 
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Fig.5 Frequency dependences of insertion losses 
of SH wave device. Real and dotted lines cor-
respond to insertion losses of device with and 
without silicon oil, respectively. 
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4. CONCLUSION 

゜A viscosity measurement method 

of liquid (silicon oil) was evaluat-

ed. Propagation characteristics of 

SH wave in a piezoelectric ceram-

ic/liquid/ glass trilayer was numerical-

ly analyzed. The measured tempera-

ture dependence of the viscosity of sili-

con oil is good consistency with numer-

ical analysis results. This technique 

has the advantage of low energy loss, 

small amount ofliquid sample and sta-

bility of liquid sample. 
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Fig.6 Temperature dependences of phase change of 
delay device. Real line and open circles are for numer-
ical calculation and experimental results, respectively. 
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