<table>
<thead>
<tr>
<th>Title</th>
<th>On the unknotted sphere S² in E⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Terasaka, Hidetaka; Hosokawa, Fujitsugu</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Mathematical Journal. 1961, 13(2), p. 265-270</td>
</tr>
<tr>
<td>Version Type</td>
<td>VoR</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/8165</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University
On the Unknotted Sphere S^2 in E^4

By Hidetaka Terasaka and Fujitsugu Hosokawa

The construction of a locally flat, knotted sphere introduced by Artin [1] has given rise to a series of further investigations in this direction, [2], [3]. The construction is simply thus: Let E^2 be a plane in E^3 which is in turn in E^4, and let κ be a knot in E^3 having a segment ab in common with E^2, otherwise contained wholly in the positive half E^3_+ of E^3. Call the arc $\kappa^0 = \kappa - ab$ an open knot with end points a, b. Artin obtained the desired sphere S^2 by rotating the open knot κ^0 around E^2 as axis in E^4. He showed that the fundamental group of $E^4 - S^2$ is isomorphic to the knot group of κ, that is, to the fundamental group of $E^3 - \kappa$. Fox and Milnor [4] showed that if a locally flat sphere S^2 in E^4 is cut by an E^3, and if the intersection $S^2 \cap E^3$ is a knot, which they called a null-equivalent knot, then the Alexander polynomial of this knot must be of the form $f(x)f(x^{-1})x^n$. As it happens, the Alexander polynomial of $S^2 \cap E^3$ is $\Delta(x)$ for the sphere S^2 of Artin type, for then the knot in question is the product of κ, of Alexander polynomial $\Delta(x)$, with its symmetric image κ^* with respect to E^2, as will be seen in the figure.

Now the question is: what can be concluded about the knottedness of a given locally flat sphere $S' \subseteq E^4$ from the information about that of $S' \cap E^3$ for any hyperplane E^3 of E^4? This and other related questions

1) "sum" would be a better terminology.
are still open; in the present note we shall only show that there is a class of non-trivial knots, called doubly null-equivalent knots, of which each \(\kappa \subset \mathbb{E}^3 \) admits an unknotted sphere \(S^2 \subset \mathbb{E}^4 \) to pass through such that \(\kappa = S^2 \cap \mathbb{E}^4 \).

A cylindrical surface in \(\mathbb{E}^3 \) bounded by a pair of simple closed curves \(\kappa' \) and \(\kappa'' \) will be called unknotted, if it is isotopic to a ringed region on a plane of \(\mathbb{E}^3 \).

Let \(T \) be a torus in \(\mathbb{E}^3 \) with a boundary \(\kappa \), which is a knot. Such a torus can be brought isotopically into the Seifert normal form [5],

\[\text{Fig. 2} \]

\[\text{Fig. 3} \]
On the Unknotted Sphere S^3 in E^4

Now, if there is an arc ab joining two points a and b of κ on T such that an unknotted cylindrical surface may be obtained by cutting T along ab, then κ is a null-equivalent knot, [4], [6] (cf. also [7], p. 134). If there is moreover another arc joining points c and d of κ on T which is disjoint from ab and not homotopic to ab and which has the same property as above, then κ will be called a doubly null-equivalent knot. Call ab and cd conjugate cross-cuts. In Fig. 3, (1) represents the knot 9_{46} of the knot table in [8] and, by taking ab and cd as conjugate cross-cuts, it is seen to be a doubly null-equivalent knot, while (2) is the knot 6_1 with the same Alexander polynomial as that of 9_{46}, but is undecided whether or not it is doubly null-equivalent.

The theorem we are to prove is the following:

Theorem. Let κ be a doubly null-equivalent knot in a hyperplane E^3 of E^4. Then there is a trivial sphere S^2 in E^4 whose intersection with E^3 coincides with κ.

Proof will be divided into several steps.

1st step. First we define a continuous family of curves Γ_t, $-3 \leq t \leq 3$, on the standard 2-dimensional sphere Σ^2 in E^3, which is essentially a topological map of the family of general lemniscates

\[(*) \quad ((x-1)^2+y^2)((x+1)^2+y^2) = k^2\]

for $0 \leq k \leq 2$ on the northern hemisphere H_+ of Σ^2 and its symmetric image on the southern hemisphere H_- (cf. Fig. 4):

- Γ_3 is the image of the foci $k=0$ of (*) and consists of a pair of points α'_3 and α''_3.
- Γ_t for $3 > t > 1$ is the image of (*) for $0 < k < 1$ and consists of a pair of simple closed curves Γ'_t and Γ''_t around α'_3 and α''_3 respectively.
- Γ_1 is the image of the ordinary 8-shaped lemniscate $k=1$ of (*).
- Γ_t for $1 > t > 0$ is the image of (*) for $1 < k < 2$ and is a simple closed curve. Especially Γ_0 is the equator of Σ^2.

Further let $\Gamma_{-t}(3 \geq t > 0)$ be the symmetric image of Γ_t with respect to the equatorial plane of Σ^2.

On the basis of Γ_t we now define a continuous family of disjoint surfaces Φ_t filling up the full sphere Δ^3 of Σ^2, as follows:

- Let Φ_t coincide with Γ_t, that is, with points α'_3 and α''_3.
- Let Φ_t for $3 > t > 2$ consist each of a pair of disjoint hemispheres bounded by Γ'_t and Γ''_t respectively.
- Let Φ_t be a pair of hemispheres having a single point in common and bounded each by Γ'_2 and Γ''_2 respectively.
Let Φ, for $2 > t > 1$ be each a cylindrical surface bounded by Γ' and Γ''.

Let Φ_i be a torus bounded by the 8-shaped curve Γ_i.

Finally let Φ_t be for $1 > t > 0$ a torus bounded by Γ_t.

For negative t, $0 \geq t \geq -3$, the family of surfaces $\{\Phi_t\}$ should be as a whole homeomorphic to $\{\Phi_i\}$ defined above, $\Phi_0 = \{\Phi_i\} \cap \{\Phi_{-i}\}$ being mapped onto itself by this homeomorphism.

2nd step.
We now provide in the hyperplane $x_4 = 0$, which we denote by E_0^3, a continuous family of not necessarily disjoint surfaces T_t; $-3 \leq t \leq 3$, of the following kind (cf. Fig. 5, where T_t are shaded):

$\kappa_0 = \kappa$ is the given doubly null-equivalent knot spanned with a torus T_o, with conjugate cross-cuts $a_o b_o$ and $c_o d_o$.

For $0 < t < 1$, T_t is a torus bounded by a knot κ_t.

T_{1} is a torus bounded by the union κ of two trivial knots κ_1 and κ'_1 having in common a single point $a_1 = b_1$, which is the limit of the cross-cut $a_o b_o$ on T_o.
For $1 < t < 2$, T_t is an unknotted cylindrical surface bounded by a pair of trivial knots κ_t' and κ_t''.

T_2 is the union of two disks bounded by κ_2' and by κ_2'' respectively and having a single inner point in common.

For $2 < t < 3$, T_t consists of two disjoint disks bounded by knots κ_t' and κ_t'' respectively.

T_3 consists of a pair of distinct points κ_3' and κ_3''.

For $-3 \leq t < 0$, T_t is homeomorphic with T_{-t}, provided that the common point of κ_{-1}' and κ_{-1}'' of T_{-1} is the limit of the cross-cuts c_0d_0 of T_0.

Final step.

Now let E_t^4 be the family of parallel hyperplane $x_i = t$ in E^4 for $-3 \leq t \leq 3$.

To each t of $-3 \leq t \leq 3$ project the surface T_t just defined in E_0^3 into E_t^3, and denote it by F_t. Then, since T_t, and hence F_t, is homeomorphic to Φ_t, the union $\bigcup_{-3 \leq t \leq 3} F_t = D$ is clearly a full sphere in E^4, and consequently its boundary $\partial D = \bigcup_{-3 \leq t \leq 3} \kappa_t$, $\kappa_t = \kappa_t' \cup \kappa_t''$, must be a trivial sphere S^2 in E^4. But $S^2 \cap E_0^3$ is nothing other than the original knot $\kappa_0 = \kappa$, which proves our theorem.

REMARK. By the same method of proof it can be easily shown that any product of doubly null-equivalent knots has the same property as the doubly null-equivalent knot in the theorem.

(Received September 29, 1961)
References