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Plasma and Thermal Neutron Diffusions in Two-Dimensional 

Periodic Structures Analogical to Photonic Crystals 

Hiroyuki TAKEDA and Katsumi YOSHINO 

Department of Electronic Engineering, Graduate School of Engineering, 

Osaka University, 2-1 Yamada-oka, Suita Osaka 565-0871, Japan 

We theoretically discuss plasma and thermal neutron diffusions in two-dimensional periodic structures with 

respect to the analogy of photonic crystals. In such structures, there exist the relaxation frequency regions 

and damping constant regions in which diffusion cannot take place, which may also provide novel 

contribution in applications utilizing plasma and thermal neutron. 
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フォトニック結晶との類推による二次元周期構造でのプラズマ、熱中性子拡散

武田寛之、吉野勝美

大阪大学大学院工学研究科電子工学専攻

〒565-0871大阪府吹田市山田丘2-1

我々はフォトニック結晶との類似の観点から二次元周期構造でのプラズマ、熱中性子拡散を議論

する。そのような構造では拡散が生じない緩和周波数領域や減衰定数領域が存在し、そのことはま

たプラズマや熱中性子を用いた応用において斬新な貢献をもたらすかもしれない。

1. Introduction fu・ s1on and fission significantly depend on plasma 
3 4) Recently, photonic crystals with periodic and thermal neutron diffusion, respectively. ・ 

dielectric structures have attracted much attention Therefore, we propose the use of periodic 

from both fundamental and practical viewpoints, structures in diffusion with respect to the analogy of 

because novel concepts such as photonic band gaps photonic crystals. Indeed, plasma diffusion is 

have been predicted, and various new applications described by the diffusion equation, while 

of the photonic crystals have been proposed.1・2l In electromagnetic waves are described by the wave 

earlier works, two fundamentally new optical equation, that is, plasma diffusion and light 

principles, that is, the localization of light and the propagation are different physical phenomena. 

controllable inhibition of spontaneous emission of However, diffusion equations with constant 

light were considered to be the most important. relaxation frequencies and damping constants are 

In nuclear fusion and fission, on the other hand, analogical to wave equations with constant 

plasma and thermal neutron diffusion are important frequencies, and therefore, periodic structures have 

problems. Especially, the inhibition of diffusion relaxation frequency regions and damping constant 

would provide novel applications, because nuclear regions in which plasma diffusion cannot take place 
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like inhibition of propagation of electromagnetic where y is a relaxation frequency. Using Bloch's 

waves in photonic band gaps. We define such theorem, we may expand N(r) as 

relaxation frequency regions and damping constant N(r) = LN(G)exp{i(k + G). r}, (2. 4) 

regions as diffusion band gaps. Moreover, there G 

exist complex dispersion relations between where N(G) is a Fourier coefficient ofN(r) and k is 

relaxation frequencies, damping constants and the wave vector which indicates the direction of 

directions of diffusions. We define such dispersion diffusions. 

relations as diffusion band structures. Inserting Eqs. (2. 2)-(2. 4) into Eq. (2. 1) results 

In this paper, we theoretically demonstrate in the following infinite matrix eigenvalue problem: 

plasma and thermal neutron diffusion in 

two-dimensional periodic structures with triangular 

and square lattices, respectively. We do not consider 

diffusion perpendicular to two-dimensional planes. 

In plasma diffusion, two-dimensional periodic 

structures are assumed to be composed of periodic 

cylindrical magnetic field, although it is difficult to 

sustain such structures. In thermal neutron diffusion, 

on the other hand, two-dimensional periodic 

structures are assumed to be composed of periodic 

cylindrical moderators. Such structures could easily 

be realized. 

2. Plasma diffusion 

2.1 Theory 

In order to obtain diffusion band structures, we 

start with the diffusion equations of plasma for 

two-dimensional structures 

V・[D(r)VN(r,t)] = , 
BN(r,t) 

(2. 1) 
at 

where D(r) is the diffusion coefficient, and N(r, t) is 

the particle number of plasma. For simplification, 

D(r) is assumed to depend only on space. The 

diffusion coefficient D(r)=D(r+R) is periodic with 

respect to the lattice vector R generated by the 

primitive translation and it may be expanded in a 

Fourier series on G, the reciprocal vector 

D(r) = LD(G)exp(iG・r), (2. 2) 
G 

where D(G) is a Fourier coefficient ofD(r). 

N(r, t) is described by the following equation. 

N(r,t) = N(r)exp(-yt), (2. 3) 

苫MG,G'N(G')= yN(G), (2. 5a) 

where 

M G,G'= D(G -G')(k + G)・(k + G'). (2. Sb) 

For numerical purposes, Eq. (2. Sa) is truncated 

by retaining only a finite number of reciprocal 

lattice vectors. However, high convergence cannot 

be obtained from Eq. (2. 2). Thus, we use another 

method, that is, to calculate the matrix of Fourier 

coefficients of 1/D(r) and then take their inverse in 

order to obtain required coefficients D(G-G'). In 

the case of triangular lattices, ff1(G-G') is 

represented as 

D―'(G-G') 

~r。•+ (1/ D," -1/ D。.,)f(G~G') , 

2(1/ Din -1/ D.。ut)
J,(IG-G1R) 

IG-G'IR 
/(G-:t;G') 

where / = 2冗炉／ふa2, R is the radius of 

cylindrical magnetic field, a is the lattice constant, 

and Din andD。utare diffusion coefficients inside and 

outside cylindrical magnetic field, respectively. J1 is 

the first-order Bessel function. D(G-G') can be 

obtained from the inverse matrix of ff1(G-G'). 

Then, errors of eigenfrequencies computed with 441 

and 1369 reciprocal vectors are within 1 %. 

Therefore, we calculate diffusion band structure 

with 441 reciprocal vectors. 

This problem corresponds to the transversal 

electric (TE) mode in two-dimensional photonic 
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 Fig.2. Diffusion band structure of plasma at Dm=O. l [m勺s],

D。"'=0.01(m勺s]and R/a=0.45. A shaded region indicates a 
diffusion band gap. 

Fig. I. Schematic diagram of a two-dimensional structure with 

periodic diffusion coefficients. D,, and D。"'indicatediffusion 
coefficients inside and outside cylindrical magnetic field. R 

indicates the radius of cylindrical magnetic field. a is the 

lattice constant of triangular lattices 

crystals. In the case of the TE mode, photonic 

crystals composed of air rods with triangular lattices 

in a dielectric substrate possess large photonic band 

gaps. The velocity of light decreases with increasing 

dielectric indices, which corresponds to the small 

diffusion coefficient in plasma diffusion. Therefore, 

we suppose that diffusion coefficients outside 

cylindrical magnetic field are smaller than those 

inside cylindrical magnetic field. 

2.2 Results and discussion 

In Fig. 1, we show the schematic diagram of 

structures with periodic diffusion coefficients 

composed of cylindrical magnetic field with 

triangular lattices. Magnetic field is perpendicular 

to two-dimensional planes. The region embedded by 

dotted lines indicates the unit cell. In Fig. 2, we 

calculate the diffusion band structure of plasma at 

Din=O.l [m2/s], D。ui=0.01 [m勺s] and R/a=0.45. 

Shaded region indicates the diffusion band gap in 

which plasma diffusion cannot take place. The「,M 

and K indicate directions of diffusions that are 

drawn by arrows in Fig. 1. 

In photonic crystals, spontaneous emission with a 

certain frequency is inhibited by photonic band gaps. 

Relaxation frequencies significantly depend on 

electromagnetic energy densities and plasma 

temperature, that is, it is possible to obtain plasma 

with a certain relaxation frequency artificially. 

Therefore, plasma diffusion with a certain 

relaxation frequency may be inhibited by diffusion 

band gaps. However, we must control diffusion 

band gaps in considering that diffusion coefficients 

depend on external factors such as plasma 

temperature practically. 

Although we focused our attention on 

two-dimensional structures with periodic diffusion 

coefficients, three-dimensional structures with 

periodic diffusion coefficients that possess diffusion 

band gaps could be realized with respect to the 

analogy to three-dimensional photonic crystals, 

which may make it possible to inhibit plasma 

diffusion in three dimensions. 

3. Thermal neutron diffusion 

3. 1 Theory 

In order to obtain diffusion band structures, we 

start with the diffusion equation of thermal neutron 

for two-dimensional structures 
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1 
[V・{D(r)Vt/J(r,t)} 

fd(r図 (r)

-:Ea (r)¢(r,t)] = 
靖(r,t)

at 

(3.1) 

where D(r), td(r) and La(r) are the diffusion 

coefficient, the diffusion time and the absorption 

cross section, respectively, and (j>(r, t) is the thermal 

neutron flux. We do not consider thermal neutron 

sources to investigate properties of two-dimensional 

structures with periodic moderators. The diffusion 

coefficient D(r)=D(r+R), the diffusion time td(r)= 

td(r+R) and the absorption cross section 

La(r)= La(r+R) are periodic with respect to the 

lattice vector R generated by the primitive 

translation, and they may be expanded in Fourier 

series on G, the reciprocal vector 

D(r) = LD(G)exp(iG・r), (3. 2a) 
G 

La(r)= LLa(G)exp(iG-r), (3.2b) 
G 

1 

fd(T図 (r) (3. 2c) 

= Ictふ）―1(G)exp(iG・r) 
G 

where D(G), La(G) and (tふ）ー1(G)are the Fourier 

coefficients of D(r), La(r) and 1/td(r)La(r), 

respectively. 

中(r,t) is described by the following equation. 

</J(r,t) = </J(r)exp(一At), (3. 3) 

where入 isa damping constant. Using Bloch's 

theorem, we may expand (j)(r) as 

</J(r) = L</J(G)exp{i(k + G)・r}, (3. 4) 
G 

where q>(G) is a Fourier coefficient of (j)(r) and k is 

the wave vector which indicates the direction of 

diffusion. 

Inserting Eqs. (3. 2)-(3. 4) into Eq. (3. 1) results 

in the following infinite matrix eigenvalue problem: 

苓叫，G'</J(G')=峰(G), (3. 5a) 

where 

叫，G'=I(tふ）―1(G-G")
G" 

{D(G" -G')(k+G")・(k+G'). 

心 aCG" -G')} 

(3. 5b) 

For numerical purposes, Eq. (3. Sa) is truncated 

by retaining only a finite number of reciprocal 

lattice vectors. However, ・high convergence cannot 

be obtained from Eqs. (3. 2a)ー(3.2c). Thus, we use 

another method, that is, to calculate the matrix of 

Fourier coefficients of 1/D(r), 1/Ia(r) and td(r)Ia(r), 

and then take their inverse in order to obtain 

required coefficients D(G-G'), ~a(G-G') and 

(tふ）ー1(G-G'),respectively. In the case of square 

lattices, for example, (tふ）(G-G') is represented as 

（心）(G-G') 

~r亡+(1/笠'" -1/"'互゜")f(G~G)
2(t)nLain -f /utL u゚t

刈G-G1R)
a) 
JG-G1R 

f(G*G') 

where f =冗Rソが，Ris a radius of a rod and a is 

a lattice constant. tげ andtct out are diffusion time 

inside and outside rods, respectively, while Lain and 

こ戸areabsorption cross sections inside and outside 

rods, respectively. J 1 is the first-order Bessel 

function. (tふ）―1(G-G')can be obtained from the 

inverse matrix of (tふ） (G-G'). Then, errors of 

eigenfrequencies computed with 441 and 1369 

reciprocal vectors are within 1 %. Therefore, we 

calculate diffusion band structure with 441 

reciprocal vectors. 

In the case of C, the diffusion coefficient, the 

diffusion time, the absorption cross section are 

Dc=0.84[cm], t記=0.017[s]and r/=2.4x10-4[cm-1], 

respectively. In the case of凡0,on the other hand, 

the diffusion coefficient, the diffusion time, the 

absorption cross section are D叫0=0.16[cm],
HO  tct 2 =2.lx10-4[s] and L HO  a 2 =0.0197[cm― ］， 

respectively. 
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Fig.3. Schematic diagram of a two-dimensional structure with 

periodic moderators. R is the radius of a rod. a is the lattice 

constant of square lattices. Arrows indicate the direction of 

thermal neutron diffusion. 

3.2 Results and discussion 

In Fig.3, we show the schematic diagram of 

two-dimensional structures with periodic 

moderators composed of rods with square lattices. 

The region embedded by dotted lines indicates the 

unit cell. Arrows indicate directions of diffusion. 

In Fig. 4, we calculate the diffusion band 

structure of thermal neutron when moderators inside 

and outside rods are C and H20, respectively. The 

radius of a rod is R/a=0.35, where a=l5[cm]. A 

shaded region indicates the diffusion band gap in 

which thermal neutron diffusion cannot take place. 

The r, X and M indicate the direction of diffusion 
that is drawn by arrows in Fig. 3. As shown in Fig. 

3, there exists a cutoff damping constant in the 

diffusion band structure. The cutoff damping 

constant is 2410 [ 1/s]. 

In Fig. 5, moreover, we calculate the diffusion 

band structure of thermal neutron when moderators 

inside and outside rods are H20 and C, respectively. 

The radius of a rod is R/a=0.45, where a=20[cm]. 

A shaded region indicates the diffusion band gap in 

which thermal neutron diffusion cannot take place. 

As shown in Fig. 5, there exists a cutoff damping 

constant in the diffusion band structure. The cutoff 

damping constant is 2230[1/s]. 

[
 
sn] v-o~x 

"l 

Fig.4. Diffusion band structure of thermal neutron when 

moderators inside and outside rods are C and 凡0,

respectively. The radius of a rod is R/a=0.35, where 

a=l S[cm]. A shaded region indicates a diffusion band gap. 
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Fig.4. Diffusion band structure of thermal neutron when 

moderators inside and outside rods are H20 and C, 

respectively. The radius of a rod is R/a=0.45, where 

a=20[cm]. A shaded region indicates a diffusion band gap 

In photonic crystals, the spontaneous emission 

photonic 

band 

certain 

band 

structures. 

Although 

two-dimensional 

moderators 

structures 
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gaps. 

we 

can 
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Therefore, 

focused 

structures 

this paper, 

M
 

be 

our 

inhibited 

neutron 

thermal 

with 

r
 

by 

diffusion 

occurs by thermal neutron flux spreading in the real 

space. However, thermal neutron flux with a certain 

damping constant in diffusion band gaps cannot 

spread because of the lack of solutions in diffusion 

neutron 

diffusion with a certain damping constant may be 

inhibited by diffusion band gaps. 

attention on 

periodic 

three-dimensional 

with periodic moderators that possess 
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diffusion band gaps could be realized from the Acknowledgement 
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In conclusion, we theoretically demonstrated 

plasma and thermal neutron diffusions in 

two-dimensional periodic structures with respect to 

the analogy of photonic crystals. In such 

structures, there exist the relaxation frequency 

regions and damping constant regions in which 

diffusion cannot take place, which may provide 

novel contribution in applications utilizing plasma 

and thermal neutron diffusion. 
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