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1. Introduction

In [3] we raised the following question:

Let G be a finite group acting properly (as a group of homeomorphisms) on
the n-sphere. For any (topological) m-manifold M and any map f: S"—M let
A(f)={x S"| f(x)=f(xg), all g& G}. What can be deduced about dim A(f)?

In case M= R™, euclidean m-space, A(f) is the set of solutions of
(|G| —1)m+1 equations in #+1 unknowns so one might hope to get

(1. 1) dim A(f)>n—(|G|—1)m.

If G is cyclic of prime order then (1.1) actually holds even for maps
f: S"™—=>M™ provided M™ is compact (for G=Z, and m=n assume also that
f+=0: H(S"; Z,)—> H,(M"; Z,)), see [3]. In this note we consider G=Z ,
cyclic of odd prime power order, and we restrict attention to maps into R™.

Our results are expressed in two theorems:

Mod p® Borsuk-Ulam theorem: For any proper action of Z,. on S*™7,
p an odd prime, and any map f: S '—R"™ one has

dim A(f)>(2n—1)—(p*—1)m—[m(a— 1) p* — (ma+2)p* *+m-+3] .
Mod p° Borsuk-Ulam anti-theorem: Consider the standard linear action

of Zyaon S, Assume a>1 and p* 9. If 2n—1<(p*—1)m+ (2p—3)ym—1
then there exists a map f: S*™'—R™ with A(f)=¢.

Notice that the anti-theorem says that (1.1) fails whenever a>1 and p*=9;
the theorem gives m(a—1)p®—(ma+2)p*~'+m-+3 as an upper bound for this
failure. For a=1 this upper bound is 1, so for G=Z, we are 1 off our previous
results [3].

Remargs. 1. dim means covering dimension.
2. For p*=9 and m>1 there is a result similar to the anti-theorem.
We leave that to the interested reader.
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3. In private correspondence with M. Nakaoka I have recently learned
that (1.1) holds for Z,-actions on modp homology spheres S” and maps
f: S"—>M™ without the restriction of niceness of f imposed by me in [3].

2. Proof of theorem

Let u: SXG—S be a proper action of the cyclic group G of odd prime
power order p°=¢g=2k+1 on the (2n—1) sphere S. Denote by 7 the cor-
responding principal G-bundle S—S/p over the orbit space S/u. For a
complex G-module M let »[M] be the complex vector bundle SX ;M —S/pu.
The correspondence M—n[M] gives rise to a ring homomorphism o: RG—
K°(S/u) where RG is the complex representation ring for G while K° denotes
complex K-theory. Denote by L the standard 1-dimensional complex G-
module, i.e. L=C, the field of complex numbers, and, fixing a generator g, for
G, gic=exp (2rqg"'\/—1)c. Then RG=Z[p]/(p?—1) where p is the class
of L. Finally, put A=»[L] and for any map f: S—R™ let A, be the restriction
of A to A(f)/ =S/

Now the mod p* Borsuk-Ulam theorem is essentially contained in

Lemma 1. If d\, has a never vanishing section then d >n—14-p°"
1 a a—1
‘z"am(P 7).

Proof. Assume that d\, has a never vanishing section. We first show

@.1) P(p): = (p—1) [(p—1)(p*—1) - (p— D" € (p—1)" Z [p]/(p*—1)..

Recall that the ¢** Atiyah class 4,(£) of an n-dimensional complex vector bundle
£ is given by a,(§)=v(E—n) with * as in [1]. Then we have the usual
Whitney duality, namely a,(&,DE,)= > a;(&;)ax(£,), also for any line bundle

£, a(§)=E—1. Therefore it is immediate that aP(p)=a () where A is the
vector bundle AA@m[APN*B--- B ], and so (2.1) follows from
(2.2) Ker (a¢: RG—K(S/p))S(p—1)"- RG,
(2.3) A admits a never vanishing section.

To get (2.2) we compare p with the standard linear action p,: SXG—S
obtained by viewing S as the unit sphere in nL=L@--- PL. Sy, is a
(2n—1)-dimensional cell complex and 7: S—S/u is (2n—1)-universal in the

sense of [5]. Hence there is a bundle map

b

S—— S

l’“ b l”

Slpe —> Slp.
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Furthermore, it is obvious that

RG 25 KY(S/u)
\ao / b*
K(S] o)

commutes, so Ker a CKer a,. But , fits into an exact sequence (see [1])

KRG -2 R6 2% K(S) )

where @ is multiplication by A_,(np)=(1—p)", so Ker a,S(p—1)"- RG.

In [3] it is shown that f gives rise to a section S of m(APA?---PA*) which
vanishes precisely on A(f)/w (see especially Digression 1, p. 171-2 and Step 3,
p. 180-1 of [3]). s and the given section s, of d\, go together to prove (2.3).
This completes the proof of (2.1).

Our next step is to show that (2.1) is actually equivalent to the inequality
d=> n—l—{—p““——é— am(p®—p®~'). The equivalence is obvious if n<<d+mk, so

assume n>d+mk. Lift (2.1) to the polynomial ring Z[x] to get the equivalent
(2.1.1) g, he Z[x]: P(x) = g(x)(x—1)"+h(x)(x?—1).

Now P(x)=(x—1)¢*m*. IIj_o f;(x)"*¥71; (x*—1)=(x—1)-II¢_. fi(x) where f; is
the j** cyclotomic polynomial and [k/j] is the integral part of k/j. Hence, if
(2.1.1) holds then g is divisible by 11¢Z1f,i(x) and £ is divisible by (x—1)4+#m-1,
So, putting &,=0if j 4'p?, €,=1if j|p* (2.1.1) implies (and is clearly implied by)

(2.1.2) 3z, ke Z[x]: [hasf (x)#1-5 = g(x)- (x— 1)~ *m F(x)-fo(x) -

Let o be a primitive ¢** root of unity and consider the projection Z[x]—>Z[y]<C.
Its kernel is the ideal generated by f,(x) so (2.1.2) is equivalent to

(2.1.3) (y=1y= " e fly)™ 71 in Z[y].

Now Z[v] is precisely the algebraic integers of the field O(vy) and (y—1)Z[y] is
the unique prime ideal in Z[v] lying above pZ, see e.q. [6]. Let J1: Q (y)—>Q
be the norm map for the extension Q(y)/Q. It is then an immediate con-
sequence of classical ideal theory for Dedekind extensions that (2.1.3) is equivalent
to

(2.1.4) Ty =1y~ e TUf ()"~ in Z.

The norms involved here are not hard to compute, so rearranging (2.1.4) slightly

it takes the desired form d Zn—l—i—p""l—% am(p®—p*).
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If A(f)/n happens to be a CW complex then of course we have
(dim A(f)/n<<2d)= (dn, has a never vanishing section), and the above lemma
can then be translated into a condition on dim A(f)/x. Since also dim A(f)=
dim A(f)/p (because A(f)—A(f)/n is a finite covering and dim has the mono-
tonicity and sum-properties, see [4]) this completes the proof of the mod p*
Borsuk-Ulam theorem. A(f)/u, however, need not be a CW complex so we
need to know the following

Lemma 2. If A is a complex line bundle over a compact metric space X of
covering dimension <<2d then d) admits a never vanishing section.

I certainly do not believe that this lemma is unknown. However, nor do
I know of any reference for it, so a proof of it is given as an appendix.

3. Proof of the anti-theorem

Consider the standard linear action u, of G=Z,. on S*7*, N big, i.e. view
S?N7! as the unit sphere in NL=L&---HL. S*N7'[u,is a CW-complex with
S*N7'u, as (2n—1)-skeleton. Let £ be the vector bundle S*N7'Xx;IG—
S*N7'u, where IG is the augmentation ideal of the real group algebra RG.
We notice that the anti-theorem is a consequence of

@3.1) m& admits a never vanishing section over the

[(p*—1)ym~+(2p—3)m—1]-skeleton.

Indeed, it is well known how a section s of m§ over the (2n—1)-skeleton cor-
responds to an equivariant map F: S*'—-»m(IG)=IGHIGPH--- PIG. If
i: IG— RG is the inclusion then equivariance of F means that (@ --- @7)F has
the form ((P---Pi) F(x)=(Z fi(xg g, **, 2 fm(xg™")g) for well defined con-
tinuous maps f;: S* '—R. Put f=(f, ---, f,,) and notice that A(f)=¢ is
equivalent to s having no zeros.

If we have shown (3.1) for m=1 then it follows for general m by noticing
that mf =< A*(EX -+ X&) for any skeletal approximation A: S*N7!/y,—
SN o X o X SNy, to the m-fold diagonal. Hence, assume m=1. In [3]
we showed that the mod p Euler class of £ vanishes whenever a>1. If we
further exclude the case p*=9 then the same proof shows that the integral Euler
class vanishes. Hence £ does have a never vanishing section over the 2k
skeleton. The obstructions to extending this section over the succesive skeleta
lie in H#**(S2N-1|G; 7y, 1 (SZ*1))== H?**(G; mop_1+,(S%*77)). For 0<i<
2p—3 the homotopy group in question has vanishing p-primary component
so the obstructions vanish and we do have our desired section over the

(2k+2p—4)-skeleton.

REMARK. In the above we have made strong use of the fact that £ admits



Borsuk-ULAM THOEREM FOR Z 2 ACTIONS ON S%"-2 455

a complex structure so that £ is orientable and hence no twisting of coefficients
occur.

4. Remarks on the case G=Z,, m=1, linear action

For G=Z,, and m=1 our results show that there exists a map f: S*—R
with A(f)=¢ whereas every map f: S®— R has A(f)+¢. In fact every map
f: S*—R has A(f)+¢ as we now show. Suppose that A(f,)=¢ for some
fo: S®*—=R. Then

$(*¥G) = (%, (2 fo(%g™)E))G

defines a cross-section s, of £ over the 31-skeleton. (z: RG—IG is given
by n(Er,/g)=Zr(g—1)). The obstruction to extending s, further lie in
H»4(S*N7YZ o5 wy:(S™)). Since the 5—primary component of ., (S%) is
zero for 0 <¢<C6 we get a never vanishing section over the 37-skeleton. As in
§3 this gives an f: S — R with A(f)=¢. But that contradicts the above result
for maps S* —R.

Unfortunately for p*>25 our positive and negative results are too far apart
to close the gap between them by means as trivial as the above.

Appendix. Proof of lemma 2

Let A be the abstract 4d-1 simplex and |A| its standard realization in
R*. By the general embedding theorem for compacta (see e.g. p. 139 of [2])
X can be taken as a closed subspace of |[A|. Let K, be the subcomplex of A™
(=n"* barycentric subdivision of A) spanned by all 4d — 1 simplices 7 for which
[TINX=+¢. Then K, is a subcomplex of the barycentric subdivision of
K,_, so the inclusion 7,: |K,|—|K,_,| admits a simplicial approximation
@q: K,—K,_;. Also {|K,|} is cofinal in the (downward) directed set of all
neighborhoods of X in |A|, so for any abelian group A4 we have H *X; 4)
gliry H*(|K,|; A), where as usual H* is Cech cohomology, while H* can be

taken as any ordinary cohomology theory. Since line bundles are characterized
by the first Chern class ceH ’(—; Z) it follows that A admits an extension Ay
over |Ky| for N sufficiently large. Fix such an N and define (inductively,
for a>N) N,=|@,|*\,_,. Let o, be the sphere bundle associated with d.,,.
Since A=x,| X, n>N, it is clearly sufficient to show that o, admits a cross-
section when 7 is sufficiently large, in other words, if we let £ be the maximal
number such that for some #>N o, admits a cross-section over the k-skeleton
| K| of K,, then we must show k>4d—1. Suppose k<<4d—1. Choose n>N
such that o‘,,‘ | K| has a cross-section, s, say. Consider the restriction s’ of s to
the (k—1)-skeleton and the obstruction ¢ to extending s’ over the (k4 1)-skeleton
(obstruction in the sense of [5]). ce H*"'(|K,|; =) where 7=m,(S*""), and —
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by maximality of k— ¢=0. Since k is clearly >2d—1 our assumption on
dim X assures that H**(X; »)=Ilim H**"'(|K;|; =) vanishes so there is an
»j

m>n such that c‘|K,,,| =|@|*c=0; here ¢ is an abbreviation for @, ., @, "
P K,,—K,. Now o,,=|p|*s, and |p]| is skeleton preserving so s gives
rise to a cross-section s, of a-,,,l] K}%|. Moreover, if s,’ is the restriction of s, to
| K% then the obstruction to extending s,” over |K4'!| is precisely || *c.
But |@|*c=0 so s," does extend over | K}+'|, thus contradicting the maximality

of k.
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