

Title	On the Borsuk-Ulam theorem for Z_{p^a} actions on S^{2n-1} and maps $S^{2n-1} \rightarrow R^m$
Author(s)	Munkholm, Hans J.
Citation	Osaka Journal of Mathematics. 1970, 7(2), p. 451-456
Version Type	VoR
URL	https://doi.org/10.18910/8171
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Munkholm, H. J.
 Osaka, J. Math.
 7 (1970), 451-456

ON THE BORSUK-ULAM THEOREM FOR Z_{p^a} ACTIONS ON S^{2n-1} AND MAPS $S^{2n-1} \rightarrow R^m$

HANS J. MUNKHOLM

(Received April 13, 1970)

1. Introduction

In [3] we raised the following question:

Let G be a finite group acting properly (as a group of *homeomorphisms*) on the n -sphere. For any (topological) m -manifold M and any map $f: S^n \rightarrow M$ let $A(f) = \{x \in S^n \mid f(x) = f(xg), \text{ all } g \in G\}$. What can be deduced about $\dim A(f)$?

In case $M = R^m$, euclidean m -space, $A(f)$ is the set of solutions of $(|G| - 1)m + 1$ equations in $n + 1$ unknowns so one might hope to get

$$(1.1) \quad \dim A(f) \geq n - (|G| - 1)m.$$

If G is cyclic of prime order then (1.1) actually holds even for maps $f: S^n \rightarrow M^m$ provided M^m is compact (for $G = Z_2$ and $m = n$ assume also that $f_* = 0: H_n(S^n; Z_2) \rightarrow H_n(M^m; Z_2)$), see [3]. In this note we consider $G = Z_{p^a}$, cyclic of *odd* prime power order, and we restrict attention to maps into R^m . Our results are expressed in two theorems:

Mod p^a Borsuk-Ulam theorem: *For any proper action of Z_{p^a} on S^{2n-1} , p an odd prime, and any map $f: S^{2n-1} \rightarrow R^m$ one has*

$$\dim A(f) \geq (2n - 1) - (p^a - 1)m - [m(a - 1)p^a - (ma + 2)p^{a-1} + m + 3].$$

Mod p^a Borsuk-Ulam anti-theorem: *Consider the standard linear action of Z_{p^a} on S^{2n-1} . Assume $a > 1$ and $p^a \neq 9$. If $2n - 1 \leq (p^a - 1)m + (2p - 3)m - 1$ then there exists a map $f: S^{2n-1} \rightarrow R^m$ with $A(f) = \emptyset$.*

Notice that the anti-theorem says that (1.1) fails whenever $a > 1$ and $p^a \neq 9$; the theorem gives $m(a - 1)p^a - (ma + 2)p^{a-1} + m + 3$ as an upper bound for this failure. For $a = 1$ this upper bound is 1, so for $G = Z_p$ we are 1 off our previous results [3].

REMARKS. 1. \dim means covering dimension.
 2. For $p^a = 9$ and $m > 1$ there is a result similar to the anti-theorem. We leave that to the interested reader.

3. In private correspondence with M. Nakaoka I have recently learned that (1.1) holds for Z_p -actions on mod p homology spheres S^n and maps $f: S^n \rightarrow M^m$ without the restriction of niceness of f imposed by me in [3].

2. Proof of theorem

Let $\mu: S \times G \rightarrow S$ be a proper action of the cyclic group G of *odd* prime power order $p^a = q = 2k+1$ on the $(2n-1)$ sphere S . Denote by η the corresponding principal G -bundle $S \rightarrow S/\mu$ over the orbit space S/μ . For a complex G -module M let $\eta[M]$ be the complex vector bundle $S \times_G M \rightarrow S/\mu$. The correspondence $M \mapsto \eta[M]$ gives rise to a ring homomorphism $\alpha: \mathcal{R}G \rightarrow K^0(S/\mu)$ where $\mathcal{R}G$ is the complex representation ring for G while K^0 denotes complex K -theory. Denote by L the standard 1-dimensional complex G -module, i.e. $L = \mathbb{C}$, the field of complex numbers, and, fixing a generator g_0 for G , $g_0 c = \exp(2\pi q^{-1} \sqrt{-1})c$. Then $\mathcal{R}G = \mathbb{Z}[\rho]/(\rho^q - 1)$ where ρ is the class of L . Finally, put $\lambda = \eta[L]$ and for any map $f: S \rightarrow R^m$ let λ_f be the restriction of λ to $A(f)/\mu \subseteq S/\mu$.

Now the mod p^a Borsuk-Ulam theorem is essentially contained in

Lemma 1. *If $d\lambda_f$ has a never vanishing section then $d \geq n-1+p^{a-1} - \frac{1}{2}am(p^a-p^{a-1})$.*

Proof. Assume that $d\lambda_f$ has a never vanishing section. We first show

$$(2.1) \quad P(\rho) := (\rho-1)^d [(\rho-1)(\rho^2-1) \cdots (\rho^k-1)]^m \in (\rho-1)^n \cdot \mathbb{Z}[\rho]/(\rho^q-1).$$

Recall that the i^{th} Atiyah class $a_i(\xi)$ of an n -dimensional complex vector bundle ξ is given by $a_i(\xi) = \gamma^i(\xi - n)$ with γ^i as in [1]. Then we have the usual Whitney duality, namely $a_i(\xi_1 \oplus \xi_2) = \sum_{j+k=i} a_j(\xi_1) a_k(\xi_2)$, also for any line bundle ξ , $a_1(\xi) = \xi - 1$. Therefore it is immediate that $\alpha P(\rho) = a_{d+mk}(\Lambda)$ where Λ is the vector bundle $d\lambda \oplus m[\lambda \oplus \lambda^2 \oplus \cdots \oplus \lambda^k]$, and so (2.1) follows from

$$(2.2) \quad \text{Ker } (\alpha: \mathcal{R}G \rightarrow K^0(S/\mu)) \subseteq (\rho-1)^n \cdot \mathcal{R}G,$$

$$(2.3) \quad \Lambda \text{ admits a never vanishing section.}$$

To get (2.2) we compare μ with the standard linear action $\mu_0: S \times G \rightarrow S$ obtained by viewing S as the unit sphere in $nL = L \oplus \cdots \oplus L$. S^{2n-1}/μ_0 is a $(2n-1)$ -dimensional cell complex and $\eta: S \rightarrow S/\mu$ is $(2n-1)$ -universal in the sense of [5]. Hence there is a bundle map

$$\begin{array}{ccc} S & \xrightarrow{b} & S \\ \downarrow \eta_0 & \bar{b} & \downarrow \eta \\ S/\mu_0 & \xrightarrow{\bar{b}} & S/\mu. \end{array}$$

Furthermore, it is obvious that

$$\begin{array}{ccc} \mathcal{R}G & \xrightarrow{\alpha} & K^0(S/\mu) \\ & \searrow \alpha_0 & \downarrow \bar{b}^* \\ & & K^0(S/\mu_0) \end{array}$$

commutes, so $\text{Ker } \alpha \subseteq \text{Ker } \alpha_0$. But α_0 fits into an exact sequence (see [1])

$$\mathcal{R}G \xrightarrow{\varphi} \mathcal{R}G \xrightarrow{\alpha_0} K^0(S/\mu_0)$$

where φ is multiplication by $\lambda_{-1}(n\rho) = (1-\rho)^n$, so $\text{Ker } \alpha_0 \subseteq (\rho-1)^n \cdot \mathcal{R}G$.

In [3] it is shown that f gives rise to a section S of $m(\lambda \oplus \lambda^2 \oplus \dots \oplus \lambda^k)$ which vanishes precisely on $A(f)/\mu$ (see especially Digression 1, p. 171–2 and Step 3, p. 180–1 of [3]). s and the given section s_0 of $d\lambda_f$ go together to prove (2.3). This completes the proof of (2.1).

Our next step is to show that (2.1) is actually equivalent to the inequality $d \geq n-1+p^{a-1}-\frac{1}{2}am(p^a-p^{a-1})$. The equivalence is obvious if $n < d+mk$, so assume $n \geq d+mk$. Lift (2.1) to the polynomial ring $Z[x]$ to get the equivalent

$$(2.1.1) \quad \exists g, h \in Z[x]: P(x) = g(x)(x-1)^n + h(x)(x^q-1).$$

Now $P(x) = (x-1)^{d+mk} \cdot \prod_{j=2}^k f_j(x)^{m[k/j]}; (x^q-1) = (x-1) \cdot \prod_{i=1}^a f_{p^i}(x)$ where f_j is the j^{th} cyclotomic polynomial and $[k/j]$ is the integral part of k/j . Hence, if (2.1.1) holds then g is divisible by $\prod_{i=1}^{a-1} f_{p^i}(x)$ and h is divisible by $(x-1)^{d+km-1}$. So, putting $\varepsilon_j = 0$ if $j \nmid p^a$, $\varepsilon_j = 1$ if $j \mid p^a$, (2.1.1) implies (and is clearly implied by)

$$(2.1.2) \quad \exists \bar{g}, \bar{h} \in Z[x]: \prod_{j=2}^k f_j(x)^{m[k/j]-\varepsilon_j} = \bar{g}(x) \cdot (x-1)^{n-d-km} + \bar{h}(x) \cdot f_q(x).$$

Let γ be a primitive q^{th} root of unity and consider the projection $Z[x] \rightarrow Z[\gamma] \subseteq C$. Its kernel is the ideal generated by $f_q(x)$ so (2.1.2) is equivalent to

$$(2.1.3) \quad (\gamma-1)^{n-d-km} \mid \prod_{j=2}^k f_j(\gamma)^{m[k/j]-\varepsilon_j} \quad \text{in } Z[\gamma].$$

Now $Z[\gamma]$ is precisely the algebraic integers of the field $Q(\gamma)$ and $(\gamma-1)Z[\gamma]$ is the *unique* prime ideal in $Z[\gamma]$ lying above pZ , see e.g. [6]. Let $\mathcal{N}: Q(\gamma) \rightarrow Q$ be the norm map for the extension $Q(\gamma)/Q$. It is then an immediate consequence of classical ideal theory for Dedekind extensions that (2.1.3) is equivalent to

$$(2.1.4) \quad \mathcal{N}(\gamma-1)^{n-d-km} \mid \prod_{j=1}^k \mathcal{N}(f_j(\gamma))^{m[k/j]-\varepsilon_j} \quad \text{in } Z.$$

The norms involved here are not hard to compute, so rearranging (2.1.4) slightly it takes the desired form $d \geq n-1+p^{a-1}-\frac{1}{2}am(p^a-p^{a-1})$.

If $A(f)/\mu$ happens to be a CW complex then of course we have $(\dim A(f)/\mu < 2d) \Rightarrow (d\lambda_f \text{ has a never vanishing section})$, and the above lemma can then be translated into a condition on $\dim A(f)/\mu$. Since also $\dim A(f) = \dim A(f)/\mu$ (because $A(f) \rightarrow A(f)/\mu$ is a finite covering and \dim has the monotonicity and sum-properties, see [4]) this completes the proof of the mod p^a Borsuk-Ulam theorem. $A(f)/\mu$, however, need not be a CW complex so we need to know the following

Lemma 2. *If λ is a complex line bundle over a compact metric space X of covering dimension $< 2d$ then $d\lambda$ admits a never vanishing section.*

I certainly do not believe that this lemma is unknown. However, nor do I know of any reference for it, so a proof of it is given as an appendix.

3. Proof of the anti-theorem

Consider the standard linear action μ_0 of $G = Z_{p^a}$ on S^{2N-1} , N big, i.e. view S^{2N-1} as the unit sphere in $NL = L \oplus \dots \oplus L$. S^{2N-1}/μ_0 is a CW -complex with S^{2N-1}/μ_0 as $(2n-1)$ -skeleton. Let ξ be the vector bundle $S^{2N-1} \times_G IG \rightarrow S^{2N-1}/\mu_0$ where IG is the augmentation ideal of the real group algebra RG . We notice that the anti-theorem is a consequence of

$$(3.1) \quad \begin{aligned} m\xi \text{ admits a never vanishing section over the} \\ [(p^a-1)m + (2p-3)m-1]\text{-skeleton.} \end{aligned}$$

Indeed, it is well known how a section s of $m\xi$ over the $(2n-1)$ -skeleton corresponds to an equivariant map $F: S^{2n-1} \rightarrow m(IG) = IG \oplus IG \oplus \dots \oplus IG$. If $i: IG \rightarrow RG$ is the inclusion then equivariance of F means that $(i \oplus \dots \oplus i)F$ has the form $(i \oplus \dots \oplus i)F(x) = (\sum_g f_i(xg^{-1})g, \dots, \sum_g f_m(xg^{-1})g)$ for well defined continuous maps $f_i: S^{2n-1} \rightarrow R$. Put $f = (f_1, \dots, f_m)$ and notice that $A(f) = \phi$ is equivalent to s having no zeros.

If we have shown (3.1) for $m=1$ then it follows for general m by noticing that $m\xi \cong \Delta^*(\xi \times \dots \times \xi)$ for any skeletal approximation $\Delta: S^{2N-1}/\mu_0 \rightarrow S^{2N-1}/\mu_0 \times \dots \times S^{2N-1}/\mu_0$ to the m -fold diagonal. Hence, assume $m=1$. In [3] we showed that the mod p Euler class of ξ vanishes whenever $a > 1$. If we further exclude the case $p^a = 9$ then the same proof shows that the integral Euler class vanishes. Hence ξ does have a never vanishing section over the $2k$ skeleton. The obstructions to extending this section over the successive skeletons lie in $H^{2k+i}(S^{2N-1}/G; \pi_{2k-1+i}(S^{2k-1})) \cong H^{2k+i}(G; \pi_{2k-1+i}(S^{2k-1}))$. For $0 < i < 2p-3$ the homotopy group in question has vanishing p -primary component so the obstructions vanish and we do have our desired section over the $(2k+2p-4)$ -skeleton.

REMARK. In the above we have made strong use of the fact that ξ admits

a complex structure so that ξ is orientable and hence no twisting of coefficients occur.

4. Remarks on the case $G=Z_{25}$, $m=1$, linear action

For $G=Z_{25}$ and $m=1$ our results show that there exists a map $f: S^{29} \rightarrow R$ with $A(f)=\phi$ whereas every map $f: S^{33} \rightarrow R$ has $A(f)\neq\phi$. In fact every map $f: S^{31} \rightarrow R$ has $A(f)\neq\phi$ as we now show. Suppose that $A(f_0)=\phi$ for some $f_0: S^{31} \rightarrow R$. Then

$$s_0(xG) = (x, \pi(\Sigma_g f_0(xg^{-1})g))G$$

defines a cross-section s_0 of ξ over the 31-skeleton. ($\pi: RG \rightarrow IG$ is given by $\pi(\Sigma r_g/g) = \Sigma r_g(g-1)$). The obstruction to extending s_0 further lie in $H^{32+i}(S^{2N-1}/Z_{25}; \pi_{31+i}(S^{23}))$. Since the 5-primary component of $\pi_{31+i}(S^{23})$ is zero for $0 \leq i < 6$ we get a never vanishing section over the 37-skeleton. As in §3 this gives an $f: S^{37} \rightarrow R$ with $A(f)=\phi$. But that contradicts the above result for maps $S^{33} \rightarrow R$.

Unfortunately for $p^a > 25$ our positive and negative results are too far apart to close the gap between them by means as trivial as the above.

Appendix. Proof of lemma 2

Let Δ be the abstract $4d-1$ simplex and $|\Delta|$ its standard realization in R^{4d} . By the general embedding theorem for compacta (see e.g. p. 139 of [2]) X can be taken as a closed subspace of $|\Delta|$. Let K_n be the subcomplex of $\Delta^{(n)}$ ($=n^{\text{th}}$ barycentric subdivision of Δ) spanned by all $4d-1$ simplices τ for which $|\tau| \cap X \neq \phi$. Then K_n is a subcomplex of the barycentric subdivision of K_{n-1} so the inclusion $i_n: |K_n| \rightarrow |K_{n-1}|$ admits a simplicial approximation $\varphi_n: K_n \rightarrow K_{n-1}$. Also $\{|K_n|\}$ is cofinal in the (downward) directed set of all neighborhoods of X in $|\Delta|$, so for any abelian group A we have $\check{H}^*(X; A) \cong \lim_{\rightarrow} H^*(|K_n|; A)$, where as usual \check{H}^* is Čech cohomology, while H^* can be taken as any ordinary cohomology theory. Since line bundles are characterized by the first Chern class $c_1 \in \check{H}^2(-; Z)$ it follows that λ admits an extension λ_N over $|K_N|$ for N sufficiently large. Fix such an N and define (inductively, for $n > N$) $\lambda_n = |\varphi_n|_* \lambda_{n-1}$. Let σ_n be the sphere bundle associated with $d\lambda_n$. Since $\lambda \cong \lambda_n|_X$, $n \geq N$, it is clearly sufficient to show that σ_n admits a cross-section when n is sufficiently large, in other words, if we let k be the maximal number such that for some $n \geq N$ σ_n admits a cross-section over the k -skeleton $|K_n^k|$ of K_n , then we must show $k \geq 4d-1$. Suppose $k < 4d-1$. Choose $n \geq N$ such that $\sigma_n|_{|K_n^k|}$ has a cross-section, s , say. Consider the restriction s' of s to the $(k-1)$ -skeleton and the obstruction c to extending s' over the $(k+1)$ -skeleton (obstruction in the sense of [5]). $c \in H^{k+1}(|K_n|; \pi)$ where $\pi = \pi_k(S^{2d-1})$, and —

by maximality of k — $c \neq 0$. Since k is clearly $\geq 2d-1$ our assumption on $\dim X$ assures that $H^{k+1}(X; \pi) = \lim_{\rightarrow_j} H^{k+1}(|K_j|; \pi)$ vanishes so there is an $m > n$ such that $c|K_m| = |\varphi|^*c = 0$; here φ is an abbreviation for $\varphi_{n+1}\varphi_{n+2}\dots\varphi_m: K_m \rightarrow K_n$. Now $\sigma_m = |\varphi|^*\sigma_n$ and $|\varphi|$ is skeleton preserving so s gives rise to a cross-section s_1 of $\sigma_m|K_m^k|$. Moreover, if s_1' is the restriction of s_1 to $|K_m^{k-1}|$ then the obstruction to extending s_1' over $|K_m^{k+1}|$ is precisely $|\varphi|^*c$. But $|\varphi|^*c = 0$ so s_1' does extend over $|K_m^{k+1}|$, thus contradicting the maximality of k .

UNIVERSITY OF ILLINOIS AT CHICAGO CIRCLE AND AARHUS UNIVERSITY

References

- [1] M.F. Atiyah: K-theory, Notes by D.W. Anderson, Harvard University, 1964.
- [2] W. Franz: Topologie I, Allgemeine Topologie, Walter de Gruyter and Co., Berlin, 1960.
- [3] H.J. Munkholm: *Borsuk-Ulam type theorems for proper Z_p -actions on (mod p homology) n -spheres*, Math. Scand. **24** (1969), 167–185.
- [4] J. Nagata: Modern Dimension Theory, North Holland Publ. Co., Amsterdam, 1965.
- [5] N.E. Steenrod: The Topology of Fibre Bundles, Princeton University Press, 1951.
- [6] H. Weyl: Algebraic Theory of Numbers, Princeton University Press, 1940.