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ABSTRACT:  Partly substituted amylose ethylcarbamate (AEC) samples for which degree of 

substitution DS and weight-average molar mass Mw range between 0.21 – 1.95 and 40 – 130 kg 

mol−1, respectively, were prepared from enzymatically synthesized amylose.  The particle 

scattering function P(q) of the AEC samples in polar organic solvents and water showed that local 

helical structure is retained as in the case of amylose and fully substituted AEC.  The AEC samples 

with DS < 1.3 were soluble in water, and furthermore, the lower critical solution temperature 

(LCST) type phase separation was found for the samples with 0.9 < DS < 1.3.  The cloud point 

temperature Tcloud varied from 12 C to 41 C depending on DS, Mw, and the polymer mass 

concentration c.  The Tcloud values determined as a function of c had a minimum at 10 – 100 mg 

mL−1.  The LCST tended to rise with lowering Mw and DS.  Iodine test indicated that all water-

soluble AEC samples formed complex with iodine while the absorption peak wavelength shifted 

blue with increasing DS.  The local helical structure of AEC may form inclusion complex with 

hydrophobic molecules.  AEC is possibly used for a novel capture material which can be separated 

from water by temperature elevation.  

 

Key Words: polysaccharide derivatives, water-soluble polymers, LCST phase separation, 

inclusion complex, helical polymers, semiflexible polymers. 

 

Introduction 

The entropy of dissolution for polymer solutions is substantially smaller than those for the 

small molecules.1  Relatively small attractive interactions between polymer molecules can cause 

the phase separation of the solution.  Especially for aqueous solution systems, phase separation 

phenomena are widely considered for medical applications, such as, tissue culture scaffolds and 

drug delivery systems.2-6  Such polymers are called as temperature-responsive polymers.  A 

number of synthetic temperature-responsive polymers are reported and one of the most prominent 

polymers is poly(N-isopropylacrylamide) (PNIPAM),7-9 for which phase separation temperature is 
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tunable by using appropriate random copolymers.10-14  Synthetic polymers however have a 

disadvantage taking the less biodegradability into account.  On the other hand, aqueous solutions 

of natural polysaccharide derivatives are temperature responsive.  For example, methylcellulose15 

is a typical polysaccharide derivative for which aqueous solution has lower critical solution 

temperature (LCST) and the phase separation behavior is now a hot research topic because higher 

order structures are found in the concentrated phase.16-17  Furthermore, Ju et al.18 recently reported 

that oligoethylene glycol grafted starch is soluble in water and their aqueous solution has phase 

separation behavior between 17.5 °C and 55 °C depending on the grafting density.   

According to Burchard,19 solutions of carbamate derivatives of cellulose and amylose have 

phase separation behavior in some organic solvents.  Recently, we also found that both LCST and 

upper critical solution temperature (UCST) systems for amylose carbamates when we chose 

appropriate side groups and solvents.20-21     Furthermore, aqueous solutions of partly substituted 

polyvinyl alcohol carbamates have solubility and temperature-responsive behavior in water.22  It 

is therefore reasonably expected that aqueous solution of partly substituted amylose alkyl 

carbamates may be temperature responsive .  Indeed, in our preliminary experiments, aqueous 

solution of amylose ethylcarbamate (AEC) the chemical structure of which is shown in Chart 1 

had good solubility in water at low temperature but became clouded with raising temperature, 

suggesting AEC has LCST in water.   

 

Chart 1.  Chemical Structure of AEC. 

 

We thus synthesized partly substituted AEC samples for which degree of substitution (DS) 

ranges between 0.2 and 2 to determine phase diagram of the aqueous solution and to characterize 

the LCST behavior.  The local helical structure and chain stiffness in organic and aqueous solvents 

were also determined as a function of DS to investigate the helical nature of the polymer.  Taking 

into account the appreciable biodegradability of fatty acid esters of amylose,23 partly substituted 

AEC may be biodegradable.  As is well-known, inclusion complex formation of the helical main 

chain is one of the representative characteristics for starch and amylose.  If AEC retains inclusion 

complex forming ability, it can be applied for capturing materials of hydrophobic materials.  

Consequently, iodine test was carried out for all water-soluble AEC samples.   
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Experimental Section 

Samples.  Previously investigated enzymatically synthesized amylose24 samples, ESA50K 

and ESA120K, were used to prepare AEC samples.25  The weight-average molar mass Mw and the 

dispersity index Đ for ESA50K were determined to be 50 kg mol−1 and 1.2 from those for the 

corresponding phenylcarbamate derivative samples.25-26  A typical procedure to synthesize an AEC 

sample is as follows in the manner reported previously.27 

An amylose sample ESA50K (2 g, 12 mmol) was dried in a two-necked flask in a vacuum 

at 100 C for 3 h with LiCl (Fujifilm-Wako, 2 g).  N,N-dimethylacetamide (Wako, super 

dehydrated grade, 70 mL) was added into the flask to dissolve both LiCl and amylose by stirring 

at 120 C.  Pyridine (80 mL) distilled over CaH2 and ethyl isocyanate (Wako, 3.7 mL, 39 mmol) 

were added to the flask.  The mixture was then stirred for 12 h at 120 C.   The molar ratio of ethyl 

isocyanate to the hydroxy group of amylose was chosen to be between 0.2 and 1.0 to obtain 

different DS samples.  The reaction mixture was poured into acetone or water to precipitate the 

AEC sample.   

The crude samples were dried in a vacuum at room temperature and purified by the 

following procedures.  Since most samples were soluble in water at room temperature except for 

the highest DS sample, the water-soluble samples were dissolved in water and dialyzed against 

water for at least 4 days.  The resulting aqueous solutions were lyophilized to obtain the solid 

samples.  A fractional precipitation procedure was employed for a water-insoluble sample with 

methanol as a solvent and water as a precipitant.  The methanol solution of an appropriate middle 

fraction was poured into water to precipitate the AEC sample.  The chemical structure of the 

purified samples was confirmed by 1H-NMR in deuterated dimethyl sulfoxide with a small amount 

of (trimethylsilyl)-1-propanesulfonic acid sodium salt (Figure S1) whereas the intensity of each 

peak cannot be estimated properly as in the case of our previous study for fully substituted 

derivatives.27-28  The degree of substitution DS for which full substitution is defined as DS = 3 was 

determined from the weight ratio of carbon to nitrogen atoms which were determined by ultimate 

analysis.     In the present study, we chose the conventional method to obtain AEC while a modern 

procedure without hazardous reagents29 could be applicable to synthesize low DS samples. 

Static and Dynamic Light Scattering in Organic Solvents.  Both static light scattering 

(SLS) and dynamic light scattering (DLS) measurements were made for all AEC samples in N,N-

dimethylformamide (DMF) at 25 C and AEC50K1.95 in methanol at 25 C with an 

ALV/SLS/DLS-5000 light scattering photometer.   An Nd: YAG laser with a wavelength 0 = 532 

nm in a vacuum was used as an incident light.  Each solution was optically cleaned with a PTFE 

filter, for which pore size was 0.45 m and was poured into a cylindrical cell with 14 mm i.d.  

Distilled toluene was used as the standard sample to evaluate the Rayleigh ratio Rq from the 

scattering intensity where q denotes the magnitude of the scattering vector.  Both Rq and the 

autocorrelation function g(2)(t) of the scattering intensity were determined at different q.  The 

CONTIN analysis was examined for the g(2)(t) data to estimate apparent hydrodynamic radius 

RH,app and the spectrum A(RH,app).  Some A(RH,app) data were bimodal as shown in Figure S2 in the 

Supporting information, owing to small amount of large particles consisting probably of associated 

polymer species.  Since the weight fraction of the aggregated species is negligibly small except for 

AEC120K1.23, the Rayleigh ratio Rq,1 from the dispersed polymer (the fast component) was 

estimated from Rq and the area ratio of the A(RH,app) in the manner reported previously.30-31  The 
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resulting Rq,1 [or Rq for monomodal A(RH,app)] data at different q and at four different polymer mass 

concentrations c were analyzed in terms of the Berry plot32 (the square-root Zimm plot, see Figure 

S3) to determine the weight-average molar mass Mw and the second virial coefficient A2 because 

the Berry plot has a better linearity than the conventional Zimm plots for semiflexible polymers in 

dilute solution.  Mostly flat q dependence of Kc/Rq,1 indicates gyration radii of the samples cannot 

be determined from SLS.  It should be noted that the Mw value for AEC120K1.23 was estimated 

from Mw of AEC120K0.97 assuming the same degree of polymerization.  The apparent 

hydrodynamic radius RH,1,app for the fast component was extrapolated to q2 = 0 and c = 0 as 

displayed in Figure S4 to determine the hydrodynamic radius RH,1.  The refractive index increments 

of the AEC samples in solution at 0 = 532 nm were determined with a Schulz-Cantow type 

differential refractometer.  The evaluated values in DMF were between 0.074 and 0.090 cm3g−1 

depending on DS and that for AEC50K1.95 in methanol was 0.146 cm3g−1.  It should be noted 

that light scattering measurements were infeasible for aqueous systems owing to the high scattering 

intensity from aggregates. 

 Small-Angle X-ray Scattering in Organic and Aqueous Solvents.  SAXS measurements 

were examined for dilute AEC solutions at BL40B2 beamline in SPring-8 (Hyogo, Japan) or at 

BL-6A beamline in KEK-PF (Ibaraki, Japan).33  The wavelength (0) and the camera length were 

set to be 0.1 nm and 4 m for SPring-8 and 0.15 nm and 2.5 m for KEK-PF, respectively.  A quartz 

capillary cell (2.0 mmϕ) was installed in a thermostatic cell holder.  The scattered light was 

acquired by Dectris Pilatus 3S 2M (SPring-8) or Pilatus 3 1M (KEK-PF) two-dimensional 

detectors.  The q value at each pixel on the detector was estimated by the diffraction from silver 

behenate.  A circular average procedure was employed with the SAngler software34 to yield the 

scattering intensity data as a function of q.  The scattering intensity was normalized with the 

intensity of the incident light detected at the lower end of the cell to compensate both intensity of 

the incident light and the transparency of the solution.  The measurement was made for all samples 

in DMF at 25 C, AEC50K1.95 in methanol at 25 C, and AEC50K0.21, AEC50K0.54, and 

AEC50K0.69 in water at various temperatures from 10 C to 50 C.  The data obtained at different 

c between 1 and 10 mg mL−1 were extrapolated to c = 0 and q2 = 0 to determine the z-average 

mean-square radius of gyration S2z and the particle scattering function P(q) (See Figure S5).   

 Turbidity of Aqueous Solution.  Light transmittance measurement was carried out for 

AEC50K1.22, AEC50K0.99, AEC120K1.23, and AEC120K0.97 in water with a Jasco V-550 

UV-Vis spectrophotometer to determine the cloud point temperature Tcloud as a function of c 

ranging between 3 and 210 mg mL−1.   Test solution in a rectangular quartz cell with 2 mm path 

length was heated with the rate of 0.5 C min−1.  Visible light with λ0 = 550 nm was used as the 

incident light.   

 Differential Calorimetry (DSC) for Aqueous Solution.  DSC measurements were made 

on a TA Instrument Nano DSC for AEC50K1.22, AEC50K0.99, and AEC120K0.97 in water.  

Polymer mass concentration c was chosen to be between 90 and 120 mg mL−1.  The molar 

concentration of monosaccharide unit calculated from c M0
−1 to be between 0.40 M and 0.47 M, 

for which average molar mass M0 of the repeat unit is 0.248, 0.232, and 0.231 kg mol−1 for 

AEC50K1.22, AEC50K0.99, and AEC120K0.97, respectively.  Temperature rising rate was set 

to be 1 C min−1. 
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 Iodine Test.  Since appreciable color change was observed when we added aqueous iodine 

solution to AEC, iodine test was made for AEC50K1.22, AEC50K0.99, AEC50K0.69, 

AEC50K0.54, and AEC50K0.21.  A small amount (30 μL) of aqueous iodine (0.5 M) and 

potassium iodine (0.5 M) solution was added to 1.5 mL of aqueous AEC solution (c = 5 mg mL−1).  

The molar concentration I2 in the mixture is calculated to be 10 mM.  The UV-Vis measurement 

was carried out for each mixture with the Jasco V-550 UV-Vis spectrophotometer and a quartz 

rectangular cell of 1 mm path length.  The measurement was done at 25 C for the four low DS 

samples while 10 C was chosen for AEC50K1.22 to avoid phase separation.   

  

Results and Discussion 

 Molecular Characteristics of AEC in Organic Solvents.   The obtained DS values are 

summarized in Table 1.  These values indicate that 65 – 90 % of isocyanate molecules were reacted 

with the hydroxyl groups of amylose except for AEC50K0.22, for which the value was around 

10 % probably due to the contamination.  As is shown in the table, the water-insoluble sample is 

AEC50K1.95.  Aqueous solutions of the four samples, AEC50K1.22, AEC50K0.99, 

AEC120K1.23, and AEC120K0.97 became turbid with raising the temperature while the other 

samples were well soluble in water between 4 and 80 C.  Weight-average molar mass Mw, A2, 

〈S2〉z, and RH,1 determined in DMF (or in methanol) are also summarized in the table.  The degree 

of polymerization for AEC50K series are substantially the same or somewhat smaller than that for 

ESA50K, suggesting chain degradation was not significant.  Large positive A2 indicates DMF is a 

good solvent for AEC samples even though amylose is not soluble in the solvent even though the 

accuracy of A2 is not high enough to discuss the DS dependence.   

 

Table 1. Molecular Characteristics of AEC Samples 

aIn DMF. bIn methanol. cEstimated from Mw of AEC120K0.97. dFrom SLS. eFrom DLS. fFrom 

SAXS. Tc: LCST in water. I: insoluble in water.  S: soluble in water between 4 and 80 C. 

Sample DS 
Mw 

/kg mol−1,d 

104 A2 

/mol m3kg−2,d 
〈𝑆2〉𝑧

1 2⁄
 

/nmf 

RH,1 

/nme 

h 

/nm 

λ−1 

/nm 

d 

/nm 

Tc 

/C 

AEC50K1.95 1.95 
50a 

55b 

4.8a 

2.5b 

7.7a 

7.3b 

5.5a 

4.3b 

0.41a 

0.37b 

6.2a 

5.5b 

1.7a 

1.4b 
I 

AEC50K1.22 1.22 42a 4.6a 6.8a 4.1a 0.33a 5.8a 1.5a 16 

AEC50K0.99 0.99 71a 2.4a 7.8a 5.4a 0.24a 5.5a 1.0a 31 

AEC50K0.69 0.69 45a 8.6a 7.0a 4.2a 0.28a 5.4a 1.4a S 

AEC50K0.54 0.54 49a 7.9a 6.9a 4.5a 0.23a 5.5a 1.2a S 

AEC50K0.21 0.21 52a 2.7a 6.5a 4.4a 0.19a 4.9a 1.1a S 

AEC120K1.23 1.23 134c − 13a − 0.31a 6.3a 1.3a 11 

AEC120K0.97 0.97 120a 4.7a 13a 8.3a 0.33a 6.0a 1.3a 25 
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Figure 1 illustrates the Holtzer plot35 for the AEC samples in DMF and methanol.  The 

Holtzer plateau can be found around q = 1 nm−1 and a peak is found in the lower q range, indicating 

the AEC chain is relatively flexible in the solvent.  The data were analyzed in terms of the touched-

bead wormlike chain for which P(q) can be expressed as36-37 

 

 𝑃(𝑞) = 9 (
2

𝑞𝑑
)
6
(sin

𝑞𝑑

2
−

𝑞𝑑

2
cos

𝑞𝑑

2
)
2
𝑃0(𝑞)  (1) 

 𝑃0(𝑞) =
2

𝐿2
∫ (𝐿 − 𝑡)𝐼(𝜆−1𝑞; 𝜆𝑡)d𝑡
𝐿

0
  (2) 

 

where L, λ−1, and d indicate the contour length, the Kuhn segment length (a measure of the chain 

stiffness), and the bead diameter, respectively; note that the persistence length is half of λ−1.  The 

Nakamura-Norisuye expression38-39 was utilized to calculate the characteristic function I(λ−1q; λt) 

numerically.  At least the former two parameters, L and λ−1, were unequivocally determined by a 

curve fitting procedure.  In actuality, L can be estimated from the height of the plateau around q = 

1 nm−1.  The parameter λ−1 can be determined by the difference between the solid curve for the 

wormlike chain and the dashed line for the rod limit.  The accuracy of the last parameter (d) is 

somewhat worse than the others because qP(q) decreases with increasing q only gradually at high 

q range.  The obtained parameters are also summarized in Table 1, where h is the helix rise (or 

helix pitch) per residue defined as h  LM0/Mw with M0 being the average molar mass of the 

saccharide unit.  It should be noted that intramolecular excluded-volume effects are not significant 

on the basis of the quasi-two-parameter theory37, 40-41 since the Kuhn segment number L is less 

than 30 for the current samples.42-43  The radius of gyration 〈S2〉1/2 for the wormlike chain can be 

calculated by the Benoit-Doty equation;44 note that the chain thickness effect on 〈S2〉1/2 is negligible.  

The calculated 〈S2〉1/2 with h and λ−1 in Table 1 was consistent with the experimental values in the 

experimental error, that is, less than 3%.  The hydrodynamic radius RH for the wormlike cylinder 

was formulated by Yamakawa and Fujii.37, 45  The RH values calculated from the parameters in 

Table 1 are not very different from the experimental data, that is, the difference is between 0.2% 

and 14%.  This slight inconsistency is most likely because the hydrodynamic chain thickness can 

be different from the parameter (d) as is also shown for fully substituted AEC.27  Indeed, the 

experimental RH can be reproduced by the calculated value when we choose a certain possible d 

value for each sample. 
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Figure 1. Holtzer plots for the indicated AEC samples in DMF or methanol at 25 C.  Solid curves, 

theoretical values for the touched-bead wormlike chain with the parameters in Table 1. Dashed 

curves are the rod limiting values (−1 = ∞). 

  

 Figure 2 illustrates DS dependence of h and −1 for AEC in DMF and methanol.  The chain 

stiffness tends to decrease with decreasing DS but still slightly larger than that for amylose in 

previously investigated solvents (~ 3 nm)26, 46-48 except for a metal complex solvent.49  The 

parameter h reflecting the local helical structure also decreases with decreasing DS and the lowest 

value is fairly consistent with amylose in an ionic liquid.26  These small h values suggest that the 

current AEC chains have helical nature at least locally.  We leave the detailed discussion of the 

DS dependence of h and −1 because it can be caused not only by hydrogen bonding interactions 

described in our previous papers21, 27, 50 but also by the other interactions between differently 

substituted monomeric units.   
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Figure 2. Degree of substitution DS dependence of the helix rise per residue h (a) and the Kuhn 

segment length −1 (b) for AEC50K in DMF (blue unfilled circles), AEC120K in DMF (blue filled 

circles), AEC50k in methanol (a red unfilled circle) and the literature value27 for the fully 

substituted AEC in methanol (a triangle) for which Mw ranges from 10 to 1000 kg mol−1.   

 

 Conformational Properties of AEC in Water.   The Holtzer plots for AEC50K0.69 

shown in Figure S6 were similar to those in organic solvents in Figure 1, indicating conformational 

properties of AEC in aqueous solution can be modeled by the wormlike chain.  A curve fitting 

procedure was therefore employed using eqs 1 and 2 to determine the wormlike chain parameters, 

h, λ−1, and d.  The theoretical solid curves reproduced the experimental data almost quantitatively.  

Similar analyses were also performed for AEC50K0.21 and AEC50K0.54.  These three AEC 

samples are all soluble in water in a wide temperature range. 

 The obtained parameters are plotted against temperature as shown in Figure 3.  The 

wormlike chain parameters change only gradually with temperature.  The h values decrease both 

with increasing DS and raising temperature whereas λ−1 does not change significantly.   While the 

result indicates that the local helical structure in aqueous solution is similar to those in the organic 

solvents described above, this h decreasing behavior is likely due to increasing the attractive 

interactions between intramolecular neighboring groups.   We note that the experimental 〈S2〉1/2 

values can be explained consistently with the wormlike chain parameters as in the case of the 

organic solvent systems. 
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Figure 3. Temperature dependence of h (a) and −1 (b) for AEC50K0.21 (unfilled circles), 

AEC50K0.54 (filled circles), and AEC50K0.69 (triangles) in water. 

 

 Phase Diagram of Aqueous Solution.   The transmittance of visible light suddenly 

decreases with raising the temperature as shown in Figure 4.  The temperature at which the 

transmittance was reduced to 90 % is defined as Tcloud.  Figure 5 illustrates the cloud point curves 

of the four AEC samples, AEC50K0.99, AEC120K0.97, AEC50K1.22, and AEC120K1.23 in 

water.  The area above the cloud point is the two-phase region.  Macroscopic phase separation was 

sometimes found in the region.  This is usually found for polymers in poor organic solvent systems 

and poly(N,N-diethylacrylamide) in water.51  Convex upward behavior is typical for the LCST 

type phase separation system and the minimum of the curve can be referred to as the critical 

solution point.  Taking into consideration that AEC50K0.99 and AEC120K0.97 (or AEC50K1.22 

and AEC120K1.23) have similar DS, the critical temperature Tc tends to fall with increasing molar 

mass.  This is consistent with that the entropy of dissolution becomes lower with increasing molar 

mass of the polymer.  On the other hand, the critical temperature significantly declines with 

increasing DS, and furthermore, the phase separation was not found for the AEC samples with DS 

< 0.9 in the investigated temperature range (< 80 C).  This suggests the ethylcarbamate groups 

behave as hydrophobic group in aqueous media.   

 



 10 

 

Figure 4. Typical results of the turbidity measurement for (a) AEC50K1.22, (b) AEC50K0.99, 

(c) AEC120K1.23, and (d) AEC120K0.97 in water.  Each transmittance value was evaluated with 

the heating rate of 0.5 C/min. 

 

Figure 5. Cloud point curves for the indicated AEC samples in aqueous solution. 
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 In general, the LCST type phase separation of aqueous system is caused by the dehydration, 

which can be detected by the DSC measurement.  The DSC curves for AEC50K0.99, 

AEC50K1.22, and AEC120K0.97 in water (Figure S7)  had significant endothermic peaks near 

the cloud point temperature (vertical broken lines).  Broad and asymmetric peaks are most likely 

due to the substituent distribution.  Relatively slow decrease of the transmittance in Figure 4 

supports this suggestion.  Regioselectively substituted AEC is desired to discuss the endothermic 

behavior more quantitatively.  The molar enthalpy change calculated from the area of the peak is 

2.1, 1.3, and 1.7 kJ mol−1 for AEC50K0.99, AEC50K1.22, and AEC120K0.97, respectively.  

These values are appreciably smaller than that for PNIPAM (~14 kJ mol−1).7  If the enthalpy 

change is related to the number of hydrogen bonding water molecules, the current result suggests 

that such water molecules on AEC is substantially fewer than that for PNIPAM.  

We also attempted to find the other LCST system with another polysaccharide 

ethylcarbamate.  While we synthesized partly substituted ethylcarbamate derivatives of cellulose, 

pullulan, and curdlan with substantially the same method for AEC,52-53 the cellulose derivatives 

(0.2 < DS < 0.7) were not soluble in water, and furthermore, we only found completely soluble or 

insoluble systems both for pullulan and curdlan derivatives in water.  The boundary DS values 

were 0.6 and 0.9 for pullulan and curdlan, respectively.  Namely, temperature-responsive 

derivatives might be found while the DS range would be very narrow.  If we consider the locally 

helical fully substituted AEC (DS = 3) has higher solubility than cellulose tris(ethylcarbamate) in 

organic solvents,53 the helical nature of AEC chains can be important to realize the good solubility 

even in the poor solvent, and hence, the temperature responsive behavior for 0.9 < DS  < 1.3 was 

revealed.  Indeed, both UCST and LCST type theta solvent systems were also found for fully 

substituted amylose carbamates19-21 whereas it is rarely found for other semiflexible chain 

systems.54 

Complex Formation Ability.   One of the representative characteristics of starch and 

amylose is the complex formation with hydrophobic and/or amphiphilic molecules in aqueous 

solution.  Here we show the results of iodine test to investigate the complex formation ability of 

AEC in aqueous solution.  Figure 6 shows photographs and absorption spectra for mixed aqueous 

solution of the AEC samples and KI-I2.  Appreciable visible light absorption was found for all 

AEC samples while the color gradually changes with DS.  The UV-Vis absorption spectra in which 

molar extinction coefficient  of iodine plotted against 0 indicate that much higher absorbance is 

found in the visible light wavelength range than that without AEC.  Both the wavelength and height 

of the absorption peak gradually decreases with increasing DS and the peak height of .  This 

change is similar to that for the molar-mass dependence of amylose55 and the current range of the 

visible light absorption spectra corresponds to pure amylose with the degree of polymerization 

being higher than 30, indicating that all the water-soluble AEC samples have complex formation 

ability with iodine.   
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Figure 6. (a) Photo images and (b) UV-VIS absorption spectra for the AEC samples with KI-I2 

solution at 25 C.  Numerical symbols are the DS values of each AEC sample.  Dashed curve, the 

data without AEC.  The polymer mass concentration of AEC was 5 mg mL−1 and the molar 

concentration of I2 and KI are both 10 mM. 

 

 The solubility of the obtained complex can be different from the original AEC in water.  

Figure 7 compares cloud point curves with and without I2.  The cloud point temperatures of the 

complex is appreciably higher than that without iodine.  Taking into account the negatively 

charged I3
− species56 confined in the AEC molecules, intermolecular electrostatic repulsive force 

of the complex makes the complex more hydrophilic.  According to Huang et al.,57 similar behavior 

was also found for polymeric crown ethers with potassium ions.  
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Figure 7. Cloud point curves for AEC50K0.99 (filled circles) and AEC50K1.22 with or without 

iodine.  The molar concentration of I2 and KI are both 10 mM. 

 

Conclusions 

Partly substituted amylose ethylcarbamate ranging in the degree of substitution (DS) 

between 0.2 and 1.3 are soluble in water at low temperature.  The lower critical solution 

temperature (LCST) type phase separation behavior was found for the AEC samples with DS being 

above 0.9 and the LCST descents from 31 C to 11 C with increasing both DS and molar mass, 

indicating that the LCST is tunable around the room temperature.  While the chain stiffness in 

polar organic solvents, methanol and DMF, is typical for relatively flexible polysaccharides, the 

locally helical structure is recognized from the helix rise per residue.  This conformational feature 

of AEC in water is essentially similar to those in the organic solvents.  Inclusion complex with 

iodine was found for the all water-soluble AEC samples and the cloud point temperature of the 

complex is 3 – 7 C higher than the original AEC-water system, suggesting negative charge of the 

(poly) iodine increase the solubility.  In summary, the AEC samples with 0.9 < DS < 1.3 are 

bifunctional materials having the temperature-responsive behavior and inclusion complex 

formation ability in aqueous solution.  Consequently, AEC can potentially be used for capturing 

reagent to remove lipophilic molecules from aqueous solution. 

 

Supporting Information 

A 1H-NMR spectrum, additional light scattering and SAXS data, and the DSC curves.  This 

material is available free of charge via the Internet at http://pubs.acs.org. 
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