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ABSTRACT:  Lyotropic liquid crystallinity was investigated for concentrated solution of linear 

and 3-arm star poly(quinoxaline-2,3-diyl) of which main chain has a rigid helical nature in 

tetrahydrofuran.  Four samples both for linear and star chains were prepared with the weight-

average molar mass Mw ranging from 50 to 250 kg mol−1.  Two phase boundary concentrations, cI 

between the isotropic and biphasic regions and cA between the biphasic and anisotropic regions, 

were determined as a function of Mw.  The resultant cI and cA for the linear chain increased 

gradually with lowering Mw.  This behavior was successfully explained by the latest theory for 

lyotropic liquid crystallinity based on the scaled particle theory (SPT) for the wormlike 

spherocylinder.  The phase diagram for star chains, on the other hand, has similar cI and cA at high 

Mw region but increased abruptly with decreasing Mw.  It can be explained by a modified SPT 

theory in which we assumed two or three arm chains align parallel in the nematic phase.   Small-

angle X-ray scattering pattern for the concentrated solutions indicated that smectic superstructure 

was contained at least a little in the liquid crystalline phase and the diffraction peak of the linear 

chains corresponded to the total chain length while the d-spacing for the star chain is almost the 

same as that for the arm length, supporting the above mentioned assumption for the modified SPT. 

 

Key Words: Stiff chains, star polymer, lyotropic liquid crystallinity, phase diagram, scaled particle 

theory, small-angle X-ray scattering 

 

Introduction 

One of the characteristic feature of stiff chains is lyotropic liquid crystallinity.1  Indeed, 

various stiff polymers consisting of -bond nature, e.g., poly(1,4-benzamide),2 poly(isocyanate)s,3-

6 and poly(carbodiimide)s7-8 have been reported to exhibit lyotropic liquid crystallinity in 

concentrated solutions.  Polymer chains spontaneously align in the liquid crystalline phase, and 

the orientational state is responsive to external electric and flow fields.  Such behavior can be 

applied to produce strong fibers, electro-optical devices, actuators, and so on.9  Concentrated 

solution of such stiff chains forms liquid crystal phase above the phase boundary concentration.  

This phase boundary concentration depends on the chain length, stiffness, and thickness including 
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the intermolecular interactions between the polymer chains, but is insensitive generally to the 

temperature comparing with flexible polymer – poor solvent systems.  The phase boundary 

concentration has therefore been widely investigated for many linear polymers as a function of the 

molar mass of the polymer.10-16 

Poly(quinoxaline-2,3-diyl)s are classified to as a helical polymer17 of which internal rotation 

of the main chain is significantly restricted in solution and thus applied for various asymmetric 

reactions.18-20  Indeed, a poly(quinoxaline-2,3-diyl), that is, poly[5,8-dimethyl-6,7-

bis(propoxymethyl)quinoxaline-2,3-diyl] (LPQ) behaves as a stiff chain of which the Kuhn 

segment length −1 (or twice the persistence length) was estimated to be 43 nm in tetrahydrofuran 

(THF), which is a good solvent of LPQ.21  This value is similar to that for poly(n-hexyl isocyanate) 

of which −1 was reported to be 42 – 84 nm appreciably depending on the solvents.22-24  Indeed, 

another poly(quinoxaline-2,3-diyl) with chiral side groups shows cholesteric superstructure in the 

cast film,25 and certain achiral poly(quinoxaline-2,3-diyl)s exhibit thermotropic liquid crystalline 

phase.26  Moreover, we found LPQ samples have liquid crystalline phases in THF in our 

preliminary experiments.  Concentrated solutions of LPQ in THF are good models to investigate 

thermodynamics of lyotropic liquid crystallinity of stiff polymer chains. 

The liquid crystal state should also depend on the polymer chain architecture.  For example, 

Zakharova et al.27 reported that phase boundary concentration of supercoiled cyclic DNA is 

appreciably different from those for linear DNA, and furthermore, we recently found that a rigid 

ring polysaccharide derivative has somewhat higher phase boundary concentration than that for 

the corresponding linear polymer.28  Similar high boundary concentration was also found for star-

branched poly(n-hexyl isocyanate).29  Quantitative phase diagram for nonlionear rigid polymers is 

however limited. 

Recently, we successfully synthesized 3-arm star poly[5,8-dimethyl-6,7-

bis(propoxymethyl)quinoxaline-2,3-diyl] (A3PQ) by means of the core first method with a tri-

functional initiator.30   Since this polymer behaves as rigid star chain in THF, a good solvent, it is 

a good model for star branched polymer chains consisting of rigid part chains.  We thus 

investigated molar mass dependence of the isotropic-liquid crystal phase boundary concentrations 

for THF solutions of LPQ and A3PQ of which chemical structures are shown in Chart 1.  The 

obtained data were analyzed in terms of the scaled particle theory (SPT) for the wormlike 

spherocylinder10 to elucidate thermodynamic features of concentrated solutions of linear and star-

shaped stiff polymer chains.  Small-angle X-ray scattering measurements for concentrated THF 

solutions both for LPQ and A3PQ were also made to obtain the structural information of the liquid 

crystalline phase. 

 

Chart 1.  Chemical Structures of LPQ and A3PQ. 
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Experimental Section 

Samples. Previously investigated four A3PQ samples, A3PQ-40, A3PQ-80, A3PQ-160, 

and A3PQ-240, were used in this study.  Their weight-average molar mass Mw ranges from 53 to 

245 kg mol−1, which corresponds to the degree of polymerization for each side chain to be between 

60 and 270.  The dispersity index Ð defined as the ratio of Mw to the number-average molar mass 

were less than 1.2.  We further synthesized four LPQ samples, LPQ-200, LPQ-400, LPQ-600, 

and LPQ-800, for which Mw and Ð values were estimated in terms of the size-exclusion 

chromatography equipped with a multi-angle light scattering detector and a viscosity detector as 

reported elsewhere.21  The resultant Mw values are summarized in Table 1 along with those for 

A3PQ samples.  The Ð values were 1.03, 1.04, 1.04, and 1.08 for LPQ-200, LPQ-400, LPQ-600, 

and LPQ-800, respectively.  Similar values were obtained from the universal calibration 

method.31-33   

 

Table 1. Weight-average Molar Mass Mw and the Phase Boundary Concentrations (cI and 

cA) of the LPQ and A3PQ Samples in THF at 25 C 

Sample Mw (kg mol−1)  cI (g cm−3) cA (g cm−3) 

LPQ-200   59.1 a 0.296 0.332 

LPQ-400 118 a 0.267 0.321 

LPQ-600 182 a 0.262 0.309 

LPQ-800 243 a 0.254 0.306 

A3PQ-40 52.9 b 0.506 0.574 

A3PQ-80 88.8 b 0.384 0.452 

A3PQ-160 176 b 0.292 0.382 

A3PQ-240 245 b 0.272 0.330 

a From SEC-MALS. b Ref. 30.  

 

Phase Boundary Concentration Measurements.  Two phase boundary concentrations, 

cI between the isotropic and biphasic regions and cA between the biphasic and anisotropic regions, 

were determined both for LPQ and A3PQ samples with the following procedure.  Their 

concentrated solutions were prepared in a sealed glass tube of which volume was calibrated with 

water as a function of the meniscus height.  The initial concentration c0 was chosen to be between 

0.257 and 0.311 g cm−3 for LPQ and between 0.271 and 0.572 g cm−3 for A3PQ.  The value of c0 

was determined from the weight fraction of polymer sample in solution with the solution density 

.  The  value was calculated with the partial specific volume v which was determined to be 

0.896 cm3g−1 for A3PQ-80 from the solution density measurements by using a DMA-60 

densitometer (Anton-Paar, Austria).  The solution was heated to 40 C to dissolve the polymer 

sample completely and centrifuged at 4,000 rpm for 2 – 6 h at room temperature (approximately 

equal to 25 °C) to achieve a complete phase separation.  The glass tube was placed in a 

thermostated water bath at 25 °C to determine both position of the meniscus and the boundary 
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between isotropic and anisotropic phases by using a traveling microscope with a digital micrometer 

to determine the volume fraction LC of the anisotropic phase in the total solution.  
Small-angle X-ray Scattering (SAXS).  SAXS measurements were made for concentrated 

LPQ and A3PQ solutions in THF at the BL40B2 beamline in SPring-8 (Hyogo, Japan) or at the 

BL-6A beamline in KEK-PF.  The combination of the wavelength and the camera length were 

chosen to be 0.077 nm and 0.50 m (BL40B2), 0.10 nm and 4 m (BL40B2), and 0.15 nm and 2.5 

m (BL-6A).  An R-AXIS VII imaging plate detector (BL40B2) or a Dectris PILATUS3 1M silicon 

pixel detector (BL-6A) were used to obtain the scattering intensity I as a function of the magnitude 

q of the scattering vector with our homemade software or SAngler.34  The actual camera length 

was determined from the diffraction peak of silver behenate.  Sample solutions were prepared in 

glass capillaries with the diameter of 2 mm.  The capillary was centrifuged to obtain uniform 

solution. 

 

Results and Discussion 

Phase Diagram.  Figure 1 displays photographs of a biphasic THF solution of an A3PQ 

sample after centrifugation, without polarizers and under crossed-Nicols condition.  It can be seen 

that almost complete phase separation is achieved with an anisotropic bottom phase, indicating 

that the volume fraction LC is accurately determined.  As shown in Figure 2, plots of c0 against 

LC for all LPQ and A3PQ samples are almost linear.  The phase boundary concentrations cI and 

cA were therefore determined as the extrapolation values of c0 to LC = 0 and LC = 1, respectively. 

 

 
Figure 1. Photographs for coexistence phases of A3PQ-80 in THF at 25 C (c0 = 0.398 g cm−3). 

(a) Non-polarized image. (b) Crossed-Nicols image.  
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Figure 2.  Plots of c0 vs LC for LPQ (a) and A3PQ (b) samples in THF at 25C for LPQ-200 

(unfilled circles), LPQ-400 (filled circles), LPQ-600 (unfilled triangles), LPQ-800 (filled 

triangles), A3PQ-40 (unfilled squares), A3PQ-80 (filled squares), A3PQ-160 (unfilled inverted 

triangles), and A3PQ-240 (filled inverted triangles).  Arrows indicate the polymer mass 

concentration for SAXS measurements (see Figure 6). 

 

Numerical cI and cA data for LPQ and A3PQ samples are summarized in the third and 

fourth columns in Table 1 and the Mw dependence is illustrated in Figure 3.  Both cI and cA for 

LPQ slightly increase with lowering Mw in the investigated Mw range.   This is a typical behavior 

for the semiflexible chains for relatively high Mw samples.10  On the other hand, those for the star 

polymer, A3PQ, are significantly higher than those for the corresponding linear chain at low Mw 

range.  This is consistent with the previous result for 3-arm star poly(n-hexyl isocyanate), which 

has qualitatively higher phase boundary concentrations than those for the linear analogue.29  

Another interesting feature is that the phase boundary concentrations decrease abruptly with 

increasing Mw and the difference in the phase diagram between linear and star chains becomes 

mostly insignificant at high Mw even though chain dimensions between star and linear chains 

appreciably different even for the highest molar mass sample.30   This is a similar behavior at least 

experimentally to those for flexible chains, that is, both critical solution temperature for four-arm35 

and six-arm36 star polystyrene in a theta solvent, cyclohexane, approaches to the identical theta 

temperature of linear polystyrene with increasing Mw.  
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Figure 3. Mw dependence of cI (unfilled symbols) and cA (filled symbols) for LPQ (squares) and 

A3PQ (circles) in THF at 25 C.  

 

X-ray Diffraction.  As mentioned above, SAXS measurements were made for all LPQ 

samples, A3PQ-40, and A3PQ-80 in THF at 25 C.  Concentration of the solution was set to be 

higher than cA, between 0.32 and 0.58 g cm−3.  A broad peak is found for each sample between 2.5 

– 3.5 nm−1, corresponding to 1.8 – 2.5 nm of the lattice spacing.  A small sharp peak for A3PQ 

might be due to the inhomogeneity of the solution since c of the A3PQ samples was somewhat 

higher than those for LPQ.  If we consider this diffraction is owing to the spacing of the hexagonal 

packing, the peak position should be proportional to c1/2.   Plots of I vs q c−1/2 are thus shown in 

Figure 4(b).  Interestingly, the peak position is substantially close to q c−1/2 = 5.0  107 g−1/2cm1/2 

both for linear and star polymers, suggesting at least locally that chain alignment in the liquid 

crystalline phase are insensitive to the polymer architecture and the chain length.   In other words, 

star polymer chains may align linearly as illustrated in Figure 5(a) and 5(b) while another 

conformation in Figure 5(c) should also be found in the isotropic phase.  This is possible for the 

current star polymer because particle scattering function of A3PQ in dilute solution were well 

explained by the wormlike star chain with a universal joint at the branching point30. 

For complete hexagonal packing for rigid rod polymers, the distance a between adjacent 

rods can be written as 

 0

A

2

3

M
a

N hc
=  (1) 

where NA, M0, and h are the Avogadro number, the molar mass of the repeat unit (M0  = 0.300 kg 

mol−1), and the helix pitch per residue (h = 0.19 nm).  If we utilize the Bragg raw, a = 2 / qc, with 

qc being q at the peak, qc c
−1/2 for the hexagonal packing rods can be calculated from the following 

expression  

 
1 2 A

c
0

2 3N h
q c

M
− =  (2) 

From this equation, the calculated value of qc c
−1/2 = 3.6 107 g−1/2cm1/2 is somewhat smaller than 

that for the experimental data.  Taking into consideration that the q c−1/2 value for the tetragonal 

packing (qc c
−1/2 = 3.9 107 g−1/2cm1/2) is still smaller, this difference might be due to gaps between 

two polymer chains between the chain ends. 
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Figure 4. (a) Angular dependence of scattering intensity I for LPQ-200 (unfilled circles, c = 0.402 

g cm−3), LPQ-400 (filled circles, c = 0.374 g cm−3), LPQ-600 (unfilled triangles, c = 0.325 g cm−3), 

LPQ-800 (filled triangles, c = 0.318 g cm−3), A3PQ-40 (unfilled squares, c = 0.580 g cm−3), and 

A3PQ-80 (filled squares, c = 0.458 g cm−3) all in THF at 25 C.  (b) Plots of I vs qc−1/2.  

 

 
Figure 5. Schematic representation of two suggested conformations of A3PQ chains in liquid 

crystal phase (a) (b) and a possible conformation in isotropic phase (c).  Filled circles indicate the 

branching point. 

 

Small diffraction peaks at lower q region were found for four samples, LPQ-200, LPQ-

400, A3PQ-40, and A3PQ-80, as shown in Figure 6.  The first peak for the two LPQ samples 

corresponds to the d-spacing D of 41 and 83 nm for LPQ-200 and LPQ-400, respectively.  These 

values are substantially close but about 10 % longer than those for the corresponding contour 

length L, that is, 37 nm and 74 nm, estimated from dilute solution properties.21  These peaks thus 

suggest the formation of smectic layer.  The q values for the second, third, and forth peaks are 

twice, three times, and four times of the first peak, supporting the smectic structure.  Although 

smectic phases were also found for poly(γ-benzyl α,L-glutamate),37 poly(dialkylsilane),38 and 

amylose derivatives,16 to the best of our knowledge, this is the first example for the synthetic 

helical polymer exhibiting smectic phase without using the bacterial or enzymatic polymerization, 

or the molecular weight fractionation, but sorely using the living polymerization with a transition 

metal initiator.  It is however noticed that the smectic structure of LPQ may not be major around 

cI and cA because the diffraction peak for LPQ at high q range (Figure 4) is broad and cA is smaller 
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than those for the diffraction measurements.  On the contrary, smectic phase for amylose tris(n-

butylcarbamate) has a sharp diffraction at high q range.16  

For star polymer samples, a less significant peak is found for each sample in Figures 6(c) 

and 6(d), also suggesting the existence of the smectic layer.  The d-spacing (D) of the peak is 

calculated to be 9.7 nm and 20 nm for A3PQ-40 and A3PQ-80, respectively.  These values are 

almost the same as those for the contour length Ls of each arm (Ls  L/3) of which the values are 

shown in the figure.   It is consistent with the two conformations shown in Figure 5(a) and 5(b) in 

the liquid crystalline phase.  These peaks for A3PQ samples were also found for another 

measurement which was acquired one month later than the original measurement, thus the 

structure is stable.  The smectic peaks are less significant, when the concentration is close to cA 

(cf. arrows on the right-hand side of Figure 2), so that the smectic structure may not be major in 

the liquid crystal phase near cA. 

 

 
 Figure 6. Angular dependence of scattering intensity I for (a) LPQ-200 (c = 0.402 g cm−3), LPQ-

400 (c = 0.374 g cm−3), A3PQ-40 (c = 0.580 g cm−3), and A3PQ-80 (c = 0.458 g cm−3) all in THF 

at 25 C. 

Scaled Particle Theory (SPT) for LPQ.   It is known that the phase boundary 

concentrations cI and cA for linear semiflexible polymers in solution can be successfully explained 

by the SPT theory based on the hard wormlike spherocylinder model.10-16  This theory may be 

suitable to analyze phase boundary concentrations of LPQ samples in THF if we assume that the 

smectic superstructure found in the SAXS profile is negligible nearby phase boundary 

concentrations as depicted in the previous section.  Here, we explain theoretical details of the SPT 

to extend it for the star polymer as described below.  According to Sato and Teramoto,10 the mixing 

Helmholtz energy A of the solution including n hard wormlike spherocylinders with the contour 

length L and the diameter d of the cylinder is given by 
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2

B B

1 ln
1 2 1 3 1

A c B c C c

nk T k T c c c




  

        
= − + + + +     

  − − −     
 (3) 

where, kB is the Boltzmann constant, T the absolute temperature.  °, c, and  are the standard 

chemical potential, the number concentration, and the volume [= (4)(L – d)d2 + (/6)d3] of the 
spherocylinder, respectively.  The molecular parameters B and C are defined by 

 ( )
2

2
6B L d d   − +  (4) 

 ( )( )3 3

12 6
2C d B d   + − −  (5) 

with the excluded-volume reduction parameter  of the spherocylinder by the wormlike chain 

orientation, and  expresses the orientation and conformational entropy loss by the wormlike chain 

orientation in the nematic phase. The parameters  and  depend on the orientational distribution 

function. If one uses the Onsager trial function for the orientational distribution function,  and  

are calculated as functions of the degree of orientation  in the trial function,39 given by 

 
( ) ( )

2 3

4 30 210 1260
1

32 32 32


  

 
 = − + +
  

 (6) 

 ( ) ( ) 51 2
K K3 12 5

ln 1 e 1 ln cosh 1N N    −  = − + + − + −   (7) 

where NK is the number of the Kuhn statistical segments defined as 

 KN L=  (8) 

with the Kuhn segment length −1 of the wormlike chain.  In the isotropic phase,  = 1 and  = 0. 

The osmotic pressure  of the solution and the chemical potential  of the spherocylinder 

in the solution are calculated from A by 

 

2
B

,

2
1

1 2 1 3 1T n

k TcA B c C c

V c c c  

        
 = − = + +         − − −       

 (9) 

 

2

B,

ln
1 1 1T V

A c c c
B C

n c c c k T


  

  

          
= = + + + + +       

   − − −       
 (10) 

where V is the volume of the solution. When the isotropic and nematic phases with the polymer 

mass concentrations cI and cA, respectively, coexist in the above spherocylinder solution, the 

following equilibrium conditions must be fulfilled: 

 iso I nem A( ) ( )c c =   (11) 

 iso I nem A( ) ( )c c =  (12) 

where the subscripts iso and nem indicate the quantities of the isotropic and nematic phases, 

respectively, and c is calculated from the number concentration c by c = cM/NA with the molar 

mass M of the spherocylinder.  Furthermore, in the equilibrium nematic phase, A must be a 

minimum with respect to : 

 0A   =  (13) 

The equations from 11 to 13 form ternary simultaneous equations to determine cI, cA, and . 

Comparison with Experimental Data of LPQ. The theoretical phase boundary 

concentrations cI and cA can be calculated in terms of the above mentioned SPT if the parameters 

L, −1, and d are given.  The obtained cI and cA can be compared with the experimental data when 
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we assume the incompressibility of the polymer solution around the atmospheric pressure.  The 

first parameter L for LPQ is calculated from the experimental Mw along with the helix pitch (or 

helix rise) per residue h by 

 w

0

M h
L

M
=  (14) 

Here, h and −1 were determined from the dilute solution properties to be 0.19 nm and 43 nm, 

respectively.21  Thus, the adjustable parameter at comparison between theory and experiment for 

the phase boundary concentrations for LPQ is only the parameter d. 

Figure 7 compares theoretical and experimental cI and cA for LPQ in THF.  When d = 1.9 

nm is chosen, good agreements between theory and experimental data are obtained both for cI and 

cA.   The experimental phase gap is slightly broader than the theoretical curves.  It is most likely 

due to a certain molar mass distribution of our polymer samples.30  We may also estimate the 

thermodynamic chain diameter dv from the partial specific volume v by 

 0
v

A

4M v
d

N h
=  (15) 

when the chain end effect is negligible.  The calculated dv value for LPQ is 1.73 nm which is 

substantially close to that of d = 1.9 nm.  We consequently conclude that the isotropic-liquid crystal 

phase behavior of the LPQ-THF system is successfully explained by the current SPT theory for 

the wormlike spherocylinder with the parameters determined in dilute solution.  In other words, 

the liquid crystallinity of the THF solution of LPQ arises from the reduction of the intermolecular 

excluded volume by the chain orientation, just like the other stiff polymer solutions.10  

 

 
Figure 7.  Comparison between experimental cI (unfilled squares) and cA (filled squares) for LPQ 

in THF at 25 C and the theoretical values for cI (solid curve) and cA (dashed curve) with −1 = 43 

nm, h = 0.19 nm, and d = 1.9 nm. 

 

Modified SPT theory for Star Polymers.  Under the single contact approximation,40 A 

of the isotropic solution including uniform 3-arm-star polymers of the total contour length L (= 

3Ls) and the diameter d is identified with that for the linear polymer given by eq 3. Although the 

three-arm star has three chain ends, the end effect on A can be neglected if the arm chains are 

long enough.  On the other hand, A of the nematic solution of the 3-arm-star polymer cannot be 

approximated by that of the corresponding linear polymer, because the excluded volume for the 3-

arm-star polymer taking the conformation in Figure 5(b) or (c) is definitely different from that for 

the linear polymer.  
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We assume here the two orientations of the star polymer as illustrated in Figure 8 as 

suggested in the above mentioned SAXS results with Figure 5; this is consistent with the dilute 

solution properties, that is, each arm connected with a rather flexible joint.30  Case 1: Two arm 

chains align parallel and the star chain behaves as a cylindrical particle with the length of 2Ls 

(panel a).  Case 2: All three arms align parallel with the length of Ls (panel b).  Then, A of the 

nematic solution may be approximated by that given by eq 3 where L and d are replaced by Leff = 

(2/3)L = (2/3)Mwh/M0 (Case 1) or Leff = (1/3)L = (1/3)Mwh/M0 (Case 2) and an effective diameter 

deff (cf. the dotted cylinders in Figure 8); the orientation-dependent parameter  is approximated 

by the same equation as eq 6.  Furthermore, the chain orientation near the branch point may cost 

an excess Helmholtz energy, which must be included in the parameter .  We here simply assume 

that  has an extra constant term , replacing  in eq 7 by 

 ( ) ( ) 51 2
3 12 5

ln 1 e 1 ln cosh 1N N     −  = − + + − + − +    (16) 

The phase boundary concentrations cI and cA as well as  were determined from the simultaneous 

eqs 11 – 13, where nem and nem are calculated from the above mentioned modified A.  

 

 
Figure 8.  Schematic representation of the chain conformation of A3PQ chains in the nematic 

phase. 

 

Let us compare theoretical values for the modified SPT with the experimental data.  Here, 
we assumed the local conformation of each arm chain is the same as those for the linear analogue, 

that is, −1 = 43 nm, h = 0.19 nm, and d = 1.9 nm (in the isotropic phase), as well as M0 = 0.300 

kg mol−1.  The remaining adjustable parameters are thus deff and .  When we chose deff = 2.4 nm 

and  = 20 for Case 1 or deff = 3.7 nm and  = 32 for Case 2, the theoretical values fit the 

experimental data almost quantitatively, as shown in Figure 9.  It is however noticed that no 

numerical solution of the simultaneous equations were found for Mw larger than the right end of 

the theoretical curve at which the resultant theoretical phase boundary concentrations of the star 

polymers are close to those for the corresponding linear chain.  This theoretically ill behavior may 

be due to the cylindrical model for the star polymer in the nematic phase (the dotted cylinder in 

Figure 8), although these mathematical difficulties can be escaped when deff is assumed to increase 

weakly with Mw. In any event, the agreement between theory and experiment in Figure 9 is 

satisfactorily good and the model used is suitable in the limited Mw region.  The obtained deff values 

are reasonable since they should be larger than d (= 1.9 nm) of the LPQ single chain.  Furthermore, 

the ratio  /  is ca. 0.7 (Case 1) or ca. 0.9 (Case 2) in the equilibrium nematic phase, indicating 

that the contribution of  is considerably large, that is, the conformation of the star polymer in 
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the nematic phase illustrated in Figure 8 (the chain in the dotted cylinder), particularly for the Case 

2, is entropically unfavorable.  A further important point is that both Case 1 and Case 2 may explain 

the phase behavior.  Taking the conformational entropy into consideration, both the two 

conformations can exist in the same nematic phase as illustrated in the TOC figure even though 

the Case 1 conformation may be major in the nematic phase because  is smaller than that for 

Case 2 while actual population cannot be determined from the current analysis.   

 

 
Figure 9.  Comparison of the experimental cI (solid curves) and cA (dashed curves) for A3PQ in 

THF at 25 C with the scaled particle theoretical values with the parameters listed in the Figure 

(curves). 

 

Conclusions 

THF solutions of both linear (LPQ) and 3-arm star (A3PQ) poly[5,8-dimethyl-6,7- 

bis(propoxymethyl)quinoxaline-2,3-diyl]s have lyotropic liquid crystallinity at high 

concentrations in the range of Mw from 50 to 250 kg mol−1.  Both phase boundary concentrations 

cI and cA for A3PQ exhibit much stronger Mw dependence, and are remarkably higher in the low 

Mw region than those for LPQ, clearly indicating that the chain architecture is definitely important 

for the isotropic-liquid crystal phase behavior at least for the low molar mass range.  Smectic 

superstructure was also found for some low Mw samples at higher concentration than the biphasic 

region. 

The obtained phase boundary concentrations for LPQ were successfully explained by the 

scaled particle theory (SPT) with the molecular parameters determined from the scattering 

methods in dilute THF solution as in the case of other stiff chains.  The isotropic-liquid crystal 

phase diagram for A3PQ was also successfully explained by a modified SPT when we use the 

cylinder model illustrated in Figure 8 (the dotted cylinders) in the nematic phase.  We conclude 

that the higher phase boundary concentrations for A3PQ than those for LPQ in the low Mw region 

arises from (1) the shorter contour length of the dotted cylinder for A3PQ than the LPQ chain in 

the nematic phase as well as (2) the higher entropic penalty of A3PQ at the nematic phase 

formation.  At this moment, the actual chain conformation of A3PQ in the nematic phase has not 

been confirmed yet other than the weak but sharp diffraction at low q region.  In order to explore 

further functionality of the liquid crystal phase of rigid star polymers, investigation of the 

conformational properties in the nematic (and/or the smectic phase) is an important research topic. 
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