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ABSTRACT:  Six semiflexible helical three-arm star poly[5,8-dimethyl-6,7-

bis(propoxymethyl)quinoxaline-2,3-diyl] (A3PQ) samples which have different arm length 

ranging in the weight-average molar mass Mw from 1.5  104 g mol−1 to 2.5  105 g mol−1 were 

synthesized via the living polymerization of the corresponding 1,2-diisocyanobenzene using a 

trifunctional palladium initiator.  The particle scattering function P(q), the z-average mean-

square radius of gyration S2z, and the intrinsic viscosity [] for the A3PQ samples were 

determined from light and small-angle X-ray scattering and viscosity measurements in 

tetrahydrofuran at 25 C.  The obtained data were compared with modern theories for the 

wormlike star.  The experimental P(q) data were represented by the wormlike star model 

connected with a universal joint.  The other data were comparably explained by the same model.   

 

Introduction 

Star polymers are a class of simple non-linear polymers.   Well-defined star polymers 

consisting of flexible arms are thoroughly investigated both theoretically and experimentally.1-2  

Conformational properties of stiff polymer chains are more readily to be understood theoretically 

since intramolecular excluded-volume effects are much less important than those for the flexible 

polymer chains.3  Experimental researches to determine gyration radii and/or intrinsic viscosities 

of semiflexible or rigid star polymers are however limited to poly(-benzyl-L-glutamate),4 

poly(n-hexylisocyanate),5-6 and specially designed ‘polypod’ DNA.7  Polymer conformations of 

such star polymers are important to understand their structure-function relationships if we 

consider some star polymers with rigid (helical) arms are considerably attractive because of their 

unique features, that is, molecular recognition8 and self-assembly behavior.9-11  Quantitative 

discussion of dimensional and hydrodynamic properties in terms of the modern theories12 are 

however limited.  Taking into account that the heterogeneity of the main chain and relatively 

large core of the star polymers significantly influence their dimensional properties as seen in a 

triple helical peptide with a linker domain,13 star polymers consisting of rigid homopolymer and 

well defined core are indispensable to clarify conformational features of semiflexible stars. 
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We thus synthesized a three-arm star polymer (A3PQ) having rigid helical poly[5,8-

dimethyl-6,7-bis(propoxymethyl)quinoxaline-2,3-diyl] (PQX) with a well-designed three-

functional initiator.  A linear PQX behaves as a semi-rigid polymer of which Kuhn segment 

length (−1) was reported to be 43 nm in tetrahydrofuran (THF) at 25 C.14  It is thus a candidate 

as a unique class of functional polymers because linear poly(quinoxaline-2,3-diyl)s are useful as 

highly effective chiral ligands for transition metal catalysts in asymmetric reactions,15 and 

furthermore, they may have solvent dependent helix reversal behaviors.16-17    We prepared 

A3PQ samples with different molar mass.  Light scattering, small-angle X-ray scattering, and 

viscosity measurements were made for the samples in THF to determine their dimensional and 

hydrodynamic properties.   The resultant solution data were analyzed in terms of the modern 

theories for wormlike stars to clarify their molecular conformation in solution.   

 

Experimental Section 

Synthesis of A3PQ.  Six A3PQ samples were synthesized by the core first method as 

shown in Schemes 1 and 2.  All reactions were carried out under a nitrogen atmosphere.  1,3,5-

Tris-(4-iodo-phenyl)-benzene (1),18 1,2-diisocyano-3,6-di-p-tolylbenzene (3),19 and 1,2-

diisocyano-3,6-dimethyl-4,5-bis(propoxymethyl)benzene (5)20 were prepared according to the 

reported procedures.  Other chemical reagents were purchased from the commercial sources and 

were used without further purification. 

Scheme 1. Synthesis of the trifunctional palladium initiator 4. 

 
Scheme 2. Polymerization of 1,2-dicyanobenzene monomer 5 with the trifunctional palladium 

initiator 4. 
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A procedure to synthesize a trifunctional palladium initiator 4 is as follow:  

Tris(dibenzylideneacetone)dipalladium(0) (Pd2dba3, 1.30 g, 1.42 mmol) and 

dimethylphenylphosphine (PMe2Ph, 0.82 mL, 5.79 mmol) were dissolved in THF (5.85 mL) and 

stirred for 10 min.  A THF solution of 1 (0.4 g, 0.584 mmol in 11.69 mL of THF) was added to 

the reaction mixture and stirred at 50 °C for 54 h. After the reaction, the reaction mixture was 

filtered through a pad of Celite and washed with dichloromethane (CH2Cl2, 50 mL). The filtrate 

was concentrated under reduced pressure.  The residual brown solid was subjected to a silica gel 

column chromatography using CH2Cl2 as an eluent (Rf = 0.42 using CH2Cl2).   After evaporation 

to dryness, the crude product was dissolved in CH2Cl2 (5 mL) and reprecipitated into methanol 

(50 mL).  The precipitate was washed with methanol (50 mL) and dried under vacuum to give 

white solid of 2 (0.66 g, 62% yield).  Compounds 2 (0.300 g, 0.164 mmol) and 3 (0.152 g, 0.491 

mmol) were dissolved in THF (9.8 mL).  The reaction mixture was stirred at 50 °C for 24 h. 

After evaporation of the reaction mixture to dryness, the residual solid was subjected to a silica 

gel column chromatography using n-hexane and CH2Cl2 (n-hexane/ CH2Cl2 = 25/75 to 0/100, Rf 

= 0.50 using n-hexane/ CH2Cl2 = 25/75) to give 4 as a yellow solid (0.35 g, 77% yield). 

A typical procedure for the polymerization is as follows: A3PQ-40: Compound 4 (0.0129 

mol/L, 0.71 mL) was added to a solution of 5 (0.1271 g, 0.4232 mmol) in THF (16.9 mL). The 

reaction mixture was stirred at 50 °C.  After 12 h, excess amount of NaBH4 (0.0534 g, 1.41 

mmol) was added, and the reaction mixture was stirred for 2 h at room temperature.  The 

resultant mixture was poured into water (50 mL) and extracted with chloroform (50 mL × 3). 

The organic extract was dried over MgSO4, and the solvent was evaporated.  The residue was 

subjected to preparative size exclusion chromatography (SEC) to give A3PQ-40 as a brown solid 

(126.5 mg, 96% yield).  Six A3PQ samples, A3PQ-10, A3PQ-20, A3PQ-40, A3PQ-80, A3PQ-

160, and A3PQ-240 of which weight-average molar mass Mw ranges from 1.5  104 g mol−1 to 

2.5  105 g mol−1 were eventually prepared for this study.  The chemical structures of the 

resultant polymer and the initiator were confirmed by 1H NMR and/or X-ray analysis as reported 

in the Supporting Information. 
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Static Light Scattering (SLS) and Viscosity Measurements with SEC.  SLS and 

viscosity measurements for all samples in THF were made using SEC equipped with a DAWN 

HELEOS multi-angle laser light scattering photometer, an Optilab rEX differential refractometer, 

and a VISCOSTAR-II differential viscometer (Wyatt Technology, USA) at room temperature (~ 

25 C).  Two TSKgel GMHXL columns and a G2500HXL column connected in series were used 

for the SEC system.  Details of the experimental and analytical procedures were the same as 

those for the corresponding linear PQX as mentioned previously.14  Differential refractive index 

increments n/c for all A3PQ samples in THF at the wavelength in vacuum (0) of the light 

scattering photometer were determined by using the peak area of the refractive index 

chromatogram and the polymer mass concentration c of injected solution assuming full recovery 

of the A3PQ sample.  The n/c value was also determined for A3PQ-80 with an Optilab T-rEX 

differential refractometer (Wyatt) by a batch method to be 0.192 cm3g−1, which is the same as 

that from the former method.  The weight-average molar mass Mw, the intrinsic viscosity [], 

and the z-average mean-square radius of gyration S2z for the A3PQ samples were determined at 

each retention volume Ve.  We note that the light scattering data were analyzed in terms of the 

Berry square-root plot21 and the values of S2z were not determined for A3PQ-10, A3PQ-20, 

A3PQ-40, and A3PQ-80 because they were less than the lower limit (~ 100 nm2) of the light 

scattering detector.  The resultant Mw values determined from the peak area agreed with those 

from the universal calibration method22-23 within ± 3%.  The dispersity index Ð defined as the 

ratio of Mw to the number average molar mass Mn from the two methods was also determined 

from the two methods.  The SEC chromatograms for A3PQ-80, A3PQ-160, and A3PQ-240 have 

a small shoulder peak suggesting high molar mass component as displayed in Figure 1.   Similar 

component was also observed for the linear PQX samples.14  The shoulder peaks were thus 

omitted in the following analyses. 

 

 
Figure 1.  Retention volume Ve dependence of the weight-average molar mass Mw (circles), the 

z-average radius of gyration S2z
1/2 (squares), the intrinsic viscosity [] (triangles), and the 

polymer mass concentration c (solid curves) for the indicated A3PQ samples in THF at room 

temperature (~ 25 C). 
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Small angle X-ray Scattering (SAXS).  SAXS measurements were performed for A3PQ-

10, A3PQ-20, A3PQ-40, A3PQ-80, and A3PQ-160 in THF at 25 C using a Rigaku R-AXIS 

VII imaging plate at the BL40B2 beamline in SPring-8 (Hyogo, Japan).  The camera length, 0, 

and the accumulation time were set to be 4 m, 0.1 nm, and 180 sec, respectively.  The magnitude 

q of the scattering vector at each pixel was determined from the diffraction pattern of silver 

behenate.  The measurements were carried out for the solvent and four solutions having different 

c ranging in 6  10−3 g cm−3 and 3  10−2 g cm−3.  The scattering intensity I(q) was obtained as a 

function of q by the circular average procedure.  The excess scattering intensity I(q) of each 

solution was determined from the difference between I(q) of the solution and that of the solvent 

in the same capillary cell taking the intensity and transparency of the incident X-ray into account.  

The [c/I(q)]1/2 data were extrapolated to infinite dilution and to q2 = 0 to estimate the particle 

scattering function P(q).   Figure 2 shows the Berry plot of the resultant P(q) data to determine 

S2z.  Since the extrapolation to q2 = 0 was infeasible for A3PQ-160, we estimated the P(q) to fit 

the experimental data at the lowest q to the dashed line of which initial slope was drawn to 

represent the S2z value determined from light scattering measurements.   

 

 
Figure 2. Berry square-root plots for indicated A3PQ samples in THF at 25 C.  Dashed lines 

indicate the initial slopes. 

 

Results 

Table 1 summarizes numerical data for n/c, Mw, Ð (≡ Mw/Mn), <S2>z, and [] mainly 

determined from the above mentioned SEC and SAXS measurements.  The quite small Ð values 

for the A3PQ samples suggest the relatively narrow arm length distribution while direct 

observation has not been examined.  The n/c values for the two lowest Mw samples, A3PQ-10 

and A3PQ-20, are somewhat larger than those for the higher molar mass samples.  This is most 

likely due to the higher refractive index of the core region.   
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Table 1. Molecular Characteristics of Three-arm Star Poly[5,8-dimethyl-6,7-

bis(propoxymethyl)quinoxaline-2,3-diyl] (A3PQ) Samples and Physical Properties in THF 

at 25 C or Room Temperature (~25 C) 

Sample 
n/c 

 (cm3 g−1)  

Mw 

(10−3 g 

mol−1) 

Ð  

(Mw / Mn) 
S2z

1/2 

(nm) 

[]  

(cm3 g−1) 
gs g 

A3PQ-10 0.207   14.8 
1.01 b 

1.09 c 
  1.8 a    4.8 0.51 0.69 

A3PQ-20 0.199   31.9 
1.01 b 

1.15 c 
  3.2 a    7.3 0.38 0.47 

A3PQ-40 0.190   52.9 
1.06 b 

1.18 c 
  5.7 a   14.4 0.48 0.53 

A3PQ-80 0.192   88.8 
1.04 b 

1.08 c 
  9.1 a   29.0 0.51 0.58 

A3PQ-160 0.189 176 
1.07 b 

1.19 c 
16.8 b   67.0 0.60 0.62 

A3PQ-240 0.187 245 
1.18 b 

1.16 c 
22.0 b 103 0.65 0.67 

a From SAXS. b From SEC-SLS. c From universal calibration. 

 

Molar mass dependence of the resultant S2z
1/2 data for the A3PQ samples are illustrated in 

Figure 3.  They are systematically smaller than those for the corresponding linear polymer.  The 

factor gs defined as 

 
2

star
s 2

linear

S
g

S
=                                                       (1) 

 

was calculated using the theoretical values for the corresponding linear chain.14  The resultant gs 

values are listed in the 7th column in Table 1.  These values are between 1/3 and 7/9 for rod like 

and Gaussian three arm stars, respectively (see later).   The Holtzer plot of P(q) has an 

appreciable peak at low q region and it becomes mostly flat with increasing q as illustrated in 

Figure 4 while such peak was not seen in those for the corresponding linear chain.14   This is 

most likely due to the smaller dimensions of the star polymers than those for the corresponding 

linear chain with the same Mw.  
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Figure 3.  Double logarithmic plots of S2z

1/2 vs Mw for A3PQ (unfilled circles) and PQX (filled 

circles) in THF at 25 C or the room temperature.  Solid black and dashed red curves indicate the 

broken (S2BW, eq 9) and fixed (S2FIX, eq 10) wormlike chains, respectively, with the 

parameters shown in the text.   

 

 
Figure 4.  Reduced Holtzer plots for the indicated A3PQ samples in THF at 25 C.  Solid and 

dashed blue curves denote the theoretical values for the rigid [PBR(q), eq 3] and wormlike 

[PBW(q), eq 8] broken star, respectively, with the parameters written in the text.  The dot-dashed 
red curves represent the theoretical values of the fixed star [PFIX(q), eq 7].  The ordinate values 

are shifted by A for clarity. 
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Figure 5 shows molar mass dependence of [] for A3PQ samples in THF along with those 

for the corresponding linear chains.  As in the case of gs, the g factor defined as 

 

 

 
star

linear

g




=                                                (2) 

 

was calculated with the theoretical value for the corresponding linear chain and summarized in 

the 8th column in Table 1.  As also displayed in Figure 5, the obtained g values are between 4/9 

and 0.90 for rigid24 and flexible stars,25 respectively; note that the former value is calculated for 

rigid stars with the fixed connection angle.  Except for the lowest Mw sample, the obtained g 

values increase with increasing Mw.  These features for dimensional and hydrodynamic 

properties strongly suggest the semiflexible nature of the current star polymer samples. 

 

 
Figure 5. Double logarithmic plots of [] vs Mw for the A3PQ (unfilled circles) and PQX (filled 

circles) samples in THF at 25C.  Dashed red and green curves represent the calculated values 

for g = 0.9 and 4/9, respectively. 

 

Discussion 

Wormlike Chain Analysis of P(q).  Since both dimensional and hydrodynamic properties 

suggest the current star polymer behaves as rodlike or semiflexible stars, rod and wormlike star 

chain models are introduced to analyze the experimental data.  According to our recent study,14 

P(q) and  S2z
1/2 data for the linear PQX were explained by the rigid rod model when Mw < 3  

104, suggesting that each arm of the star samples with the Mw value being less than 9  104 may 

be modeled by the rod star model.  According to Huber and Burchard,26 the scattering function 

PBR(q) of the broken three-arm rodlike star having uniform arm length Ls can be expressed as  
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( ) ( ) ( ) ( ) 2

BR s s s s2 2
s

2
Si cos 1 Si

3
P q qL qL qL qL

q L
 = + − +       (3) 

 

where Si(z) is the sine integral defined as 

 

( )
0

sin
Si d

z t
z t

t
=           (4) 

 

Each arm of this model is linked with a universal joint.  The contour length Ls of each arm is 

one-third of the total contour length Lt, which is proportional to Mw.  Thus, an Mw independent 

parameter h, helix pitch (or rise) per residue is defined as 

 

t 0 s 0

w w

3L M L M
h

M M
= =          (5) 

 

where M0 is the molar mass of the repeat unit (= 300.2 g mol−1).   The chain thickness may affect 

P(q) in the high q range.  The touched bead model with the diameter d is utilized to consider this 

effect.  The resultant scattering function P(q) is expressed as 

 

( ) ( )
6 2

0

2
9 sin cos

2 2 2

qd qd qd
P q P q

qd

   
= −   

  
     (6) 

 

where P0(q) is the particle scattering function of the thin chain; in this case, PBR(q).   If we 

assume previously estimated h of 0.19 nm and d = 0.4 nm, the solid blue curves which are the 

theoretical P(q) values from eq 6 with eq 3 reproduce the experimental data almost quantitatively 

except for the lowest and highest Mw samples.   It should be noted that the chain thickness effect 

on P(q) was invisibly small in the current q range.  In order to consider the bond angle between 

the two arms, we also calculated the fixed rodlike star by 

 

( )
( ) ( ) s s

2 2
s s s 0 1 0 1

FIX 0 12 2 2 0 0 2 2
s s 0 1 0 1

2 Si cos 1 sin2
d d

3 3

L LqL qL qL q s s s s
P q s s

q L L q s s s s

 + − + + = +
+ +

    (7) 

 

when we choose 120 as the bond angle between arm chains.  Dot-dashed red curves in Figure 4 

represent the theoretical P(q) for the fixed rodlike star calculated from eq 7.  They clearly 

underestimate P(q) around the peak except for the lowest Mw sample.  The nicely fitted 

theoretical values for the lowest Mw sample may be accidental because the chain end effect as 

well as the core effect on P(q) should be more significant for the sample.  Taking into 

consideration that chain length distribution of side chains should make the peak lower, the 

broken rodlike star (eq 3) is a better model for the A3PQ samples than the fixed rodlike star. 

The discrepancy between experimental and theoretical values for the highest Mw sample 

may be due to the finite chain flexibility.  To consider this effect, the broken wormlike star 

model proposed by Huber and Burchard26 was utilized in which each arm connected with a 
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universal joint as in the case of the broken rodlike star.  In this model, the particle scattering 

function PBW(q) is expressed as 

 

( ) ( ) ( )( )s s
2

1 1

s
0 0

BW 2

s

2 ; ;

( )
3

L L

L t I q t dt I q t dt

P q
L

   − − 
− + 

 =
 

  (8) 

 

Here, I(-1q;t) is the characteristic function of the wormlike chain, that is, the Fourier transform 

of the distribution function of the end-to-end distance of the wormlike chain of the contour 

length t and of λ−1.  We utilized the Nakamura-Norisuye expression27-28 for the numerical 

calculation of I(-1q;t).  The theoretical PBW(q) requires Ls and −1 at given q.  Assuming the 

formally determined values, that is, h = 0.19 nm and −1 = 43 nm for the corresponding linear 

PQX, we obtained theoretical blue dashed curves in Figure 4, for which the highest Mw sample 

reproduce the experimental values almost quantitatively.   Furthermore, theoretical values for 

PBW(q) become close to those for PBR(q) with lowering Mw and they quantitatively explain the 

experimental data except for the lowest Mw sample, supporting the above mentioned suggestion 

for the bond angle between the two arbitrary arms.  A further important point of the result is that 

chain length distribution of each arm may also be narrow while it is infeasible to be determined 

directly. 

 

Molar Mass dependence of Dimensional and Hydrodynamic Properties.   To confirm the 

above mentioned conformational properties, molar mass dependence of S2z
1/2 was also analyzed 

in terms of the wormlike star models.  The radius of gyration S2BW for the wormlike star of 

which each arm is linked with a universal joint can be calculated by the Mansfield-Stockmayer 

scheme.29   In the case of three-arm star, S2BW is written as 

 

  
s s2 2

2 s
2 3 4 2BW

s s

7 5 3 2 1

18 12 12 24

L LL e e
S

L L

 

   

− −
− −

= − + −     (9) 

  

The gs values for the rigid rod (Ls << 1) and the random coil (Ls >> 1) are calculated to be 1/3 

and 7/9, respectively.  The theoretical solid curve in Figure 3 calculated from eq 9 with h = 0.19 

nm and −1 = 43 nm fairly reproduces the experimental data.  Slight underestimation is most 

likely due to both the molar mass distribution and arm length distribution.  The dashed curve in 

the figure is the theoretical gyration radii S2FIX values for the wormlike star with the fixed bond 

angle of 120, which is also calculated by the same Mansfield-Stockmayer expression as follow 

 

  
s s2 4

2 s
2 3 4 2FIX

s s

7 1 2 1

18 3 12 48

L LL e e
S

L L

 

   

− −
− −

= − + −     (10) 

 

The obtained theoretical values closely fit or slightly overestimate the experimental data, 

suggesting that the bond angle of the two arms is difficult to be estimated only from S2z.   

Molar mass dependence of the Flory viscosity factor  
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 

( )
w

3 2
2

z
6

M

S


 =         (11) 

 

is illustrated in Figure 6.  As in the case of the corresponding linear chain,  decreases with 

increasing Mw while the absolute values are systematically larger than those for the linear chains 

at the same Mw.  This is similar tendency for the formally investigated flexible star polymers.30-31  

Since the current theories for [] of the wormlike star are only available for the fixed wormlike 

star,24 comparison of the experimental [] data with the theoretical values are not shown in this 

paper.   It is however noted that analyses of [] will not give us the decisive information about 

the bond angle at the core because the relatively slight difference on [] from the bond angle 

restriction may be compensated by the chain thickness parameter.   Indeed, if we choose d = 2.3 

nm, the theoretical [] with the above mentioned h and −1 mostly fitted by the theory24 (not 

shown in the figure).   

 

 
 

Figure 6. Double logarithmic plots of the Flory viscosity factor  vs Mw for A3PQ (unfilled 

circles) and PQX (filled circles) in THF at 25C. 

 

Conclusions 

We synthesized three-arm star poly[5,8-dimethyl-6,7-bis(propoxymethyl)quinoxaline-2,3-

diyl] (A3PQ) samples with various arm length by living polymerization using a new trifunctional 

palladium initiator.  Solution properties characterized by the scattering function, the gyration 

radius, and the intrinsic viscosity were well explained by the broken wormlike star model, 

indicating that the arm length distribution is quite narrow and each arm connected with a rather 
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flexible joint.  In other words, A3PQ is a well-defined star polymer with uniform arm length and 

suitable as a good model as rigid star polymers.   

 

Supporting Information 

Additional experimental procedures, 1H NMR spectra and Single-Crystal X-Ray Analysis of 

trimetallic initiator 2.  This material is available free of charge via the Internet at 

http://pubs.acs.org. 
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