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ABSTRACT:

Eight amylose tris(ethylcarbamate) (ATEC) samples ranging in the weight-average molar mass My from
1.0 x 10*to 1.1 x 10° g mol™! and five amylose tris(n-hexylcarbamate) (ATHC) samples of which M,
varies from 4.9 x 10* to 2.2 x 10° g mol™! have been prepared from enzymatically synthesized amylose
samples having narrow dispersity indices and no branching. = Small-angle angle X-ray scattering
(SAXS), light scattering, viscometry, and infrared (IR) absorption measurements were carried out for
their dilute solutions, that is, ATEC in tetrahydrofuran (THF), 2-methoxyethanol (2ME), methanol
(MeOH), and ATHC in THF and 1-propanol (1PrOH) to determine My, particle scattering functions,
intrinsic viscosities, and IR spectra. SAXS and viscosity measurements were also made on ATEC in
D- and L-ethyl lactates. The data were analyzed in terms of the wormlike cylinder model to estimate
the helix pitch (or contour length) per residue /4 and the Kuhn segment length A! (stiffness parameter,
twice of the persistence length). Both ATEC and ATHC have large A in THF, that is, 33 and 75 nm,
respectively, and smaller 4! were obtained in alcohols, indicating that they have rigid helical
conformation stabilized by intramolecular hydrogen bonds in THF.  On the contrary, the helical
structure estimated from the 4 value significantly depends on the alkyl side groups in a complex fashion,
that is, # = 0.36 nm for ATEC and # = 0.29 nm for ATHC, and # = 0.26 nm for amylose tris(zn-
butylcarbamate) (ATBC). This is likely related to the bulkiness of side groups packed inside the
amylosic helices. The solvent dependence of 4, 4!, and the fraction faya of intramolecular hydrogen
bonds for ATEC can be explained by a current model as is the case with ATBC [Terao, K. et al.
Macromolecules, 2010, 43, 1061], in which each contour point along the chain takes loose helical and
rigid helical sequences independently.

Key words: wormlike chain, Kuhn segment length, persistence length, helix pitch per residue, light
scattering, small-angle X-ray scattering

m Introduction

Helix is one of the most important secondary structures of biopolymers and thus it is significantly
related with their biological functions. Thus, not only biopolymers but also a large number of synthetic
helical polymers are still a hot research field.! To investigate physicochemical or structural properties
of such polymers, its stereoregularity is definitely important.  Enzymatically synthesized amylose
[linear o(1—4)-p-glucan]? has a strictly stereoregular primary structure and tends to form various kinds
of helices®*” stabilized by intra- or intermolecular hydrogen-bonding (H-bonding) and furthermore the
helix pitch per residue / (or contour length per repeat unit) varies from 0.1 to 0.35 nm in crystalline
state. However, since amylose behaves as rather flexible polymer® in many solvents except for a
specific solvent,’ the local helical structure of flexible amylose chains significantly fluctuates in solution.
Hence, attentions have not been paid to such local structural change in solution yet. Several decades
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ago, it was found that amylose tris(phenylcarbamate) (ATPC) having three C=O and NH groups per
repeat unit is soluble in various kinds of organic solvents, that is, some cyclic ethers, ketones, esters, and
amides; ATPC has quite stiff backbone in 1,4-dioxane® and significant circular dichroism, suggesting
the main chain has regular helical conformation.’

Recently, we found amylose tris(n-butylcarbamate) (ATBC, 2 in Chart 1) has 3.4 times higher chain
stiffness in tetrahydrofuran (THF)!° than ATPC in 1,4-dioxane, and this rigidity is mainly due to the
intramolecular H-bonding when we analyzed their dimensional and hydrodynamic properties in terms of
the wormlike chain'! (a special case of the helical wormlike chain'?). If the helical structure is decided
only by the H-bonds as is the case with a-helices of polypeptides, it is hardly influenced by the slight
difference in the side group. Interestingly, the / value estimated to be 0.26 nm is appreciably shorter
than that for ATPC in 1,4-dioxane (0.34 nm);'? these are intermediate value between double helical A-
or B-amylose (0.353 nm)?® and single helical V-amylose (0.10 — 0.13 nm).> These results may suggest
that bulkiness of n-butyl group in ATBC is related with the helical structure though the chemical nature
of phenyl and n-butyl group are much different. To clarify the relationship between side groups and the
rigid helical structure, it would be suitable to determine the 4 value in solution for amylose alkyl
carbamates with different alkyl chain lengths. It should be noted that no crystal structures have been
published while some calculated structures are available for amylose  tris(3,5-
dimethylphenylcarbamate),'*!*> which is widely used as a chiral stationary phase,'® suggesting difficulty
to determine the crystal structure.

The first aim of this paper was thus to study amylose alkylcarbamates in solution with slightly
shorter and longer side groups compared with ATBC, that is, amylose tris(ethylcarbamate) (ATEC, 1 in
Chart 1) and amylose tris(n-hexylcarbamate) (ATHC, 3), respectively. If they have such rigid helical
conformation in THF, they are compared with those for ATBC and ATPC. Solution properties in
higher polar solvents were also investigated how the intra- and/or inter-molecular H-bonds influence the
main chain conformation.

CaHs C4Hg CeH1s

\ \ \
NH NH NH

%%km

NH HN’&O O NH HN/& O NH HN’&

CoHs Csz C4Ho C4H9 CeHi3 CGH13
1. ATEC 2. ATBC 3. ATHC

Chart 1. Chemical structures of amylose tris(ethylcarbamate) (1. ATEC), amylose tris(n-
butylcarbamate) (2. ATBC), and amylose tris(n-hexylcarbamate) (3. ATHC).

m Experimental Section

Samples and Solvents. ATEC and ATHC samples were synthesized from an excess amount of
corresponding isocyanate (ethyl- or n-hexyl-) and enzymatically synthesized amylose having quite
narrow molar mass distribution and no branching. The reaction was performed by the same method
reported previously for ATBC.!® The reprecipitated ATEC and ATHC samples were further purified
by successive fractional precipitation. Methanol (MeOH) and water were used as the solvent and the
precipitant for ATEC; THF and MeOH were used for ATHC, respectively.  Appropriate middle
fractions were reprecipitated to the corresponding precipitant and they were dried in a vacuum at 80 °C
for three days. The resultant eight ATEC (ATECIOK, ATEC32K, ATEC37K, ATECI100K,
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ATEC150K, ATEC400K, ATEC550K, and ATEC1100K) and six ATHC (ATHC49K, ATHC83K,
ATHC300K, ATHC460K, ATHC720K, and ATHC2000K) samples were chosen for this study. The
degree of substitution was estimated from the mass ratio of nitrogen to carbon to be 3.0 + 0.2 both for
ATHC and ATEC samples. The chemical structure was also confirmed by 'H-NMR and FT-IR spectra.
The ratio of weight- to number-average molecular weight (dispersity index) determined from size
exclusion chromatography equipped with multi-angle laser light scattering detector, was estimated to be
in the range between 1.03 and 1.2. THF, 2-methoxyethanol (2ME), MeOH, 1-propanol (1PrOH), and
pyridine were fractionally distilled over CaH», and D-ethyl lactate (D-EL) and L-ethyl lactate (L-EL)
were prepared by the method reported in ref 17.

Static Light Scattering (SLS). SLS measurements were made on a Fica-50 light scattering
photometer with vertically polarized incident light of 436 nm wavelength (4o) (and 546 nm for three
high molar mass ATHC samples in THF); see ref 13 for experimental details including optical
purification. The measurements were carried out for ATEC400K, ATEC550K, and ATEC1100K in
2ME and THF at 25 °C and ATHC83K, ATHC300K, ATHC460K, ATHC720K, and ATHC2000K in
1PrOH and THF at 25 °C to determine the weight-average molar mass My, the second virial coefficient,
the particle scattering function P(q), and the z-average radius of gyration <S>>,.  See Supporting
Information for the plots of P(q)™" vs g%, where ¢ denotes the magnitude of the scattering vector. The
obtained My’s in different solvents are consistent within the experimental error and are summarized in
the Supporting Information with <$?>,. The second virial coefficients are in the range between 8 x 107
and 1 x 107 mol cm’g?, thus they are good solvent systems. The specific refractive indices on/oc at
25 °C were determined to be 0.0849 cm’g ! for ATEC in THF, 0.0919 cm’g! for ATEC in 2ME,
0.0876 cm®g ! for ATHC in THF, 0.0989 cm’g ! for ATHC in 1PrOH all at Ao = 436 nm, and 0.0867
cm’g! for ATHC in THF at Ao = 546 nm.

Ultracentrifugation.  Sedimentation equilibrium measurements were carried out for ATECI10K,
ATEC32K, ATEC37K, ATEC100K, and ATEC150K in 2ME and ATHC49K in THF all at 25 °C using
a Beckman Optima XL-1 analytical ultracentrifuge at the rotor speed from 8,000 to 20,000 rpm to
determine M,, and z-average molar mass M, (see ref 13 and 18 for experimental details and data
analysis). The On/Oc values at the used wavelength (675 nm) were estimated to be 0.088 and 0.086
cm’g! for ATEC in 2ME and ATHC in THF, respectively. The partial specific volume for the two
systems was evaluated to be 0.754 and 0.884 cm’g’!, respectively, by using an Anton Paar DMA5000
density meter.

Small-angle X-ray Scattering (SAXS). SAXS measurements were made for ATECIOK and
ATEC32K (or ATEC37K) in MeOH, 2ME, THF, D-EL, and L-EL, and for ATHC49K in THF and
1PrOH all at 25 °C at the BL40B2 beamline in SPring-8 and the BL-10C beamline in KEK-PF (see ref
13 for the experimental details). The wavelength, camera length, and accumulation time were chosen
to be 0.10 — 0.15 nm, 1500 — 2000 mm, and 300 s, respectively. The Berry square root plots'® were
utilized to determine both P(g) and <S*>, from the excess scattering intensities for four solutions with
different polymer mass concentration c¢ since this plot has wider linear region for both flexible and rigid
linear chains than those for the Zimm and Guinier plots.5*2°

Viscometry. Relative viscosities for ATEC samples in THF, D-EL, L-EL, 2ME, and MeOH and for
ATHC samples in THF and 1PrOH all at 25 °C were determined for four solutions with different ¢ by
using Ubbelohde type viscometers to determine the intrinsic viscosity [ 77] and the Huggins constant «'.
The latter values (k) were obtained to be from 0.3 to 1.0 for ATEC and from 0.3 to 0.7 for ATHC.

Infrared absorption. FT-IR measurements were made for ATEC400K in THF, 2ME, and MeOH
and for ATHC720K in THF and 1PrOH all at 25 °C on Bio-Rad FTS-300 or Jasco FT/IR 4200 Fourier
transform infrared spectrometer with a solution cell made of CaF; (0.05 mm path length).

m Results
Dimensional and Hydrodynamic Properties. Square roots of <$%>, plotted logarithmically against
My, in Figure 1 have large slopes from 0.7 to 0.9 in lower My range and they become smaller with
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increasing My,. Similar behavior is also found for molar mass dependence of [ 7] displayed in Figure 2.
These are typical for the wormlike chain. Furthermore, the Holtzer plots®! (Figure 3) for ATEC32K in
THF have a plateau at a g range between 0.2 and 0.8 nm™' whereas that for ATEC37K in MeOH has a
peak at 0.3 nm™!, indicating that the chain stiffness of ATEC is much higher in THF than that in MeOH.

10°
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Figure 1. Molar mass dependence of z-average radii of gyration <§?>," for ATEC (a) and ATHC (b)
in THF (circles), 2ME (triangles), and 1PrOH (inversed triangles) all at 25 °C. Solid curves, theoretical
values for the wormlike chain model with the parameters in Table 1; a dashed curve, the theoretical
values for B = 0.
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Figure 2. Molar mass dependence of intrinsic viscosities [77] for ATEC (a) and ATHC (b) in THF
(unfilled circles), D-EL (filled circles), L-EL (filled triangles), 2ME (unfilled triangles), MeOH
(squares), and 1PrOH (inversed triangles) all at 25 °C.
wormlike cylinder model with the parameters in Table 1; dashed curves, theoretical values for B = 0.
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Figure 3. Reduced Holtzer plots for ATEC in THF (a), in D-EL (b), in L-EL (c), in 2ME (d), in MeOH
(e), and ATHC in THF and 1PrOH (f) all at 25 °C. Solid curves, theoretical values for the wormlike
cylinder model with the parameters in Table 1; dashed curves, theoretical values for the rod limit (1! =

o). For clarity, the ordinate values of Mg P(q) are shifted by arbitrary constant (4) indicated in
parentheses.

Solution IR spectra. IR spectra for amide I band mainly reflect C=O stretching'®!> and their
absorption wavenumber is significantly influenced by the environment around the C=0 group, such as
H-bonding. Indeed, we recently analyzed the IR spectra for ATBC in nine solvents and their mixtures
to estimate the number fraction of intramolecular H-bonding C=0 groups fiya.'° Figure 4 displays IR
spectra for ATEC in THF, 2ME, and MeOH, and ATHC in THF and 1PrOH. Both the two polymers in
THF have two peaks while ATEC in MeOH has a broad single peak in between the peaks in THF,
indicating that about 50 % of C=O groups form intramolecular H-bonds in THF. But in MeOH,
intermolecular H-bonds between C=0 and OH group of the solvent are predominant. Thus, C=0
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groups in other solvents may consist of intramolecular H-bonding (1698 and 1700 cm™), free (1725 -
1740 cm™), and intermolecular H-bonding C=0 groups (1720 cm™) with solvent molecules, as is the
case with ATBC, and hence the peaks were separated into three. The fractions foya values at 1698 or
1700 cm™ are listed along with the wormlike chain parameters estimated later (Table 2).

1720 1700
15F 1Y)
. 2!l
0-(5) ~ ATEC in THF
] |
o.(s) — ATEC in 2ME

0.5~ ATEC in MeOH

e (10°M'em™)
|

0.5 ATHC in THF

] .
0-8 — ATHC in 1PrOH m
1 1 .

2000 1800 1698 1600
wavenumber (cm’l)

Figure 4. IR spectra (molar absorption coefficient £ vs wavenumber) for ATEC and ATHC in indicated
solvents at 25 °C.

m Discussion

Wormlike Chain Analysis.  According to the theoretical formulation of P(q) for the wormlike
cylinder,” P(q) is calculated with the parameters, that is, the contour length L, the Kuhn segment length
A1 (stiffness parameter), and the chain diameter d; L is proportional to the molar mass M of the polymer
thus related to the molar mass per unit contour length My by L = M/ My. The two parameters, M1 and
d, were unequivocally determined from the curve fitting in the higher ¢ range since the resultant
theoretical solid curves calculated with the parameters in Table 1 are equivalent to the dashed curves for
the straight cylinder in the ¢ range. The other parameter (1) was determined to fit the peak in low ¢
region. The variation for the parameters determined from the different M, samples are in the error
range shown in Table 1. However, 4! for ATEC in THF and D-EL, and ATHC in THF and 1PrOH
cannot be determined because of the small deviation of the data points from the straight cylinder. This
is reasonable because the theoretical solid curves for the wormlike cylinder with ! obtained from <S>,
and/or [n] well reproduce the experimental data. It should be noted that the radius of gyration
calculated by eq 1 fairly reproduces the experimental <S*>, for the samples shown in Figure 3.



Table 1. Wormlike Chain Parameters for ATEC in Tetrahydrofuran (THF), D-ethyl lactate (D-
EL), L-ethyl lactate (L-EL), 2-Methoxyethanol (2ME), and Methanol (MeOH) and for ATHC in
THF and 1-Propanol (1PrOH) all at 25 °C

Method My (gmol'nm™")  A'(nm) d (nm) B (nm)
ATEC in THF
P(q) 1060 £ 30 332 1.3+0.1 —
<§*>, 1020 + 50 3543 - -
[7] 1040 ® 3243 1.6+0.2 —
ATEC in D-EL
P(q) 1080 + 30 27° 1.1+0.2 —
[77] 1080 2 2742 1.8+0.2 —
ATEC in L-EL
P(q) 990 + 30 16+3 1.0+0.1 —
[77] 990 * 15+1 1.9+0.2 —
ATEC in 2ME
P(q) 990 + 30 13+3 1.1£0.1 —
<§*>, 1000 + 50 16+2 — 1+1
[77] 1000 2 13+1 1.8+0.2 0.5+0.5
ATEC in MeOH
P(q) 990 + 30 85+1.0 1.1£0.1 -
[77] 990 * 9+1 1.4+0.2 1+1
ATHC in THF
P(q) 1900 + 40 758 1.0+0.2 -
<§*>, 1900 + 100 70+ 5 - -
[77] 1900 * 80+5 3.5+ 1.0 —
ATHC in 1PrOH
P(q) 1330 + 40 30° 1.4+0.2 —
<§*>, 1400 + 100 30+5 - -
[7] 1400 * 30+ 5 1.6+ 1.0 —

2 Assumed values.

When the Benoit-Doty equation®® for the radius of gyration <S%> of the unperturbed wormlike chain

L 1 1 1
S%)y=—— -~ 1—exp(-24L
(5 64 47  4PL 8/14L2[ exp(-240)] (1)

is combined with the Domb-Barrett equation®* for the expansion factor in the quasi-two-parameter
(QTP) theory,'>* the radius of gyration for given molar mass is determined by the three parameters: M.,
A1, and the excluded volume strength B. The equations used are summarized in a book chapter.?® The
former two parameters, My, and A", were determined by the curve fitting procedure for ATEC in THF
and 2ME and for ATHC in THF and 1PrOH, and are listed in Table 1. The last parameter B was not
determined for the three systems other than ATEC in 2ME since the expansion factor was essentially the
same as unity for the possible B values; indeed the deviation between solid and dashed curves even for
ATEC in 2ME is at most 7% for the highest molar mass ATEC sample. It should be noted the chain
thickness effects on <§%> estimated from d?/8 for the wormlike cylinder®’ is negligibly small (< 3%) in
the My, range investigated.

Intrinsic viscosities for the perturbed wormlike chain for given M are calculated from the following
four parameters, My, A, d, and B when we utilize the Yamakawa-Fujii-Yoshizaki theory'>?® for
unperturbed wormlike chain and the Barrett function®” with the QTP theory. See also ref 26 for the
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equations.  Since all the four parameters are hardly to determine only from our [7] data, the curve
fitting procedure was employed assuming My determined from P(g) and/or <§>>,. While the two
parameters, A and d, are unequivocally estimated, the viscosity expansion factor is substantially the
same as unity for ATEC in THF, D-EL, and L-EL, and for ATHC in the two solvents, thus the
parameter B was not determined for the five systems. The theoretical values calculated with the
resultant parameters summarized in Table 1 closely fit the experimental data in Figure 2. The obtained
A'’s are consistent with those determined from P(q) and/or <$*>,, indicating that the wormlike chain is
a good model for ATEC and ATHC chains. It should be noted that d determined from [7] is
appreciably larger than that from P(g) since the latter reflects the electron density profile of the chain
cross-section and the former is the hydrodynamic diameter. Similar behavior has been also found for
ATBC."

Wormlike Chain Parameters and Rigid helical Structures in THF. The mean values of A and
the helix pitch per residue /4 calculated as # = Mo/My are summarized in Table 2 along with fhyq where
M, is molar mass of the repeat unit of the polymer (375.4 g mol! for ATEC and 543.7 g mol! for
ATHC). This table includes our previous data for ATBC.!*!7* While fiyq increases with decreasing
the polarity of the solvent and reaches about 0.5 in THF as is the case with ATBC, 4! for ATEC and
ATHC tends to increase and that for ATHC in THF is equivalent to the highest value for single-chain
polysaccharide derivatives, that is, ATBC in THF (4! = 75 nm),'"® amylose tris(3,5-
dimethylphenylcarbamate) in 4-methyl-2-pentanone (1! = 73 nm), ' and curdlan tris(phenylcarbamate)
in THF (A= 57 nm).*® On the other hand, the 4 value for ATEC in THF is about 40% larger than that
for ATBC in the same solvent and ATHC has an intermediate value. Assuming six-fold left handed
helices, the helical structures of the main chain for the three /4’s (0.36, 0.29, and 0.26 nm) are illustrated
in Figure 5(a). The internal rotation angle (¢, y), shown in Panel (b), for the three helices are (91°,
—147°), (81°, —130°), and (80°, —125°), respectively, where ¢ = O(5)-C(1)-O(4)-C(4) and y = C(1)-
O(4)-C(4)-C(5). In the conformational energy map for maltose unit proposed by Shimada et al.,** those
internal rotational angles are in a relatively low energy region, so that those helix states of amylose
without the side chain are energetically favorable. On the other hand, the side-chain bulkiness also
affects the main-chain helical structure of amylose carbamates. It is seen that the space inside the
helices becomes narrower with increasing 4 value. Thus, the smaller ethyl group on the ATEC side
chain may permit a larger 4 value (= 0.36 nm), but the larger butyl group on the ATBC side chain may
not.  Indeed, the side group of the sixth position of ATBC may locate inside the helices having a
smaller 4 = 0.25 nm from the molecular dynamics simulation shown in our previous paper.!® On the
contrary, it is reasonably supposed that such short 4 value is no more stable for amylose carbamates
having bulkier side groups since too large side groups may not be inside the helix and hence the
resultant helical structure may become thinner with larger 4 value. Indeed, the /# value of ATHC in
THF is slightly larger than that for ATBC in the same solvent and furthermore, ATPC of which the
phenyl group should be bulkier than n-hexyl group has a larger 4 value of 0.34 nm in 1,4-dioxane'?
(Figure 5 b). Furthermore, the chain stiffness tends to become higher with decreasing 4 in THF (or in
1,4-dioxane). These clearly indicate that the bulkiness of side groups of amylose carbamates is
definitely important both for the local helical structure and the chain stiffness. This is a unique feature
of amylose carbamates while a-helical structure of polypeptides is almost independent of amino acids.

Another interesting finding is that ! for ATEC in ethyl lactates significantly depends on the chirality
of the solvent, that is, in D-EL and in L-EL. The ratio (1.8) of 2! in the two solvents is larger than that
for ATBC in the same solvents (1.53).!7 Considering the higher chain stiffness of ATBC in D-EL is
due to more intramolecular H-bonds,!” ATEC in D-EL should have larger numbers of intramolecular H-
bonds than that in L-EL.



Table 2. Values of the Helix Pitch per Residue %, the Kuhn Segment Length 4!, and the Number

Fraction fuya of Intramolecular H-bonding C=0 Groups for ATEC, ATHC, and ATBC

Polymer Solvent T(°C) h (nm) A1 (nm) Jnyd
ATEC THF 25 0.36+0.02 33+3 0.46
ATEC D-EL 25 0.35+0.02 27+2 -
ATEC L-EL 25 0.38+0.02 15+2 -
ATEC 2ME 25 038+0.02 14+2 0.26
ATEC MeOH 25 038+0.02 9+1 0
ATHC THF 25 0.29+0.02 75+5 0.53
ATHC 1PrOH 25 0.39+0.02 30+3 0.34

ATBC * THF 25 026+0.01 75%5 0.52
ATBC© D-EL 25 026+0.01 49+4 -

ATBC?® 2BuOH ¢ 45 025+0.01 40+5 0.41

ATBC?® 2EE® 25 025+0.01 38+4 0.39

ATBC®© DL-ELf 25 0.26+0.01 38+3 -

ATBC ¢ L-EL 25 0.26+0.01 32+2 -

ATBC® 1PrOH 40 0.28+0.01 25+2 0.33

ATBC® 2PrOH & 35 029+0.01 20+2 0.29

ATBC ? MeOH 25 032+0.01 11+2 0

2 Ref. 10. ® Ref 30. © Ref 17. 92-Butanol. ¢ 2-Ethoxyethanol. f DL-Ethyl lactate. & 2-Propanol
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Figure 5. (a) Schematic representation of the amylosic main chain for 4 = 0.36, 0.29, and 0.26 nm. (b)
Internal rotation angles ¢, w for amylose carbamates. (c) 4 and A" values for ATEC, ATBC,'° ATHC,
and ATPC"? in THF or 1,4-dioxane.
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Solvent Dependence of the Chain Conformation. We recently showed that the relationship
among h, 4!, and fiya for ATBC in twelve solvents is well explained by a two-state wormlike chain
(TSWC) model,'®*%!7 in which each chain consists of random sequences of semiflexible (loose helical,
L) and rigid helical (R) units. Its radius of gyration is characterized by the Kuhn segment lengths A"
and Ar! for pure L and R chains and the helix pitches per residue /1 and /g, respectively. In this model,
both 4 and 4! of the entire chain can be written as

h=fh, (- f)h, (2)
Ah=fih, +(1—f)A h, 3)

Here, f is the fraction of the rigid helical unit, which may be related to the number fraction fhya of
intramolecular H-bonding C=0 groups by

f.—f
fo_ v hydL 4
Tt (4)

hydR ~ ThydL
with fryar and fnyq,L being foya at f=1 and 0, respectively. For ATBC, fuyar and fhya, L were estimated to
be 0.55 + 0.03 and 0, respectively.!®* Alternatively, if we eliminate f from these equations, / can be
written as

4 .4 hi-nt
h _hLz_ﬁ(ﬂ’_ﬂ”L) (&)

L R

Figure 5 shows the plots of # and Ah for ATEC, ATBC, and ATHC against fnyq, along with the plots of
h'vs A. The plots of 4! vs A for both ATEC and ATBC are linear, being consistent with eq 5. This
indicates that the TSWC model well explains the solvent dependence of wormlike chain parameters.
However, the values of 4 of ATEC and ATBC are not identical both at fiya = 0 and 0.55, which implies
that the rigid and loose helical conformations are not only determined by fiya, but also the steric
hindrance due to the side chain.

On the other hand, the plot of % vs fnya for ATHC has much larger negative slope than that for ATBC
and ATEC. The & value obtained for amylose carbamates, that is, ATBC, ATPC, amylose tris(3,5-
dimethylphenylcarbamate), and amylose-2-acetyl-3,6-bis(phenylcarbamate), are in between 0.25 and
0.42 nm. 3313435 Therefore, if we apply the TSWC model to ATHC, fiya must be considerably larger
than 0, and Ar”! must be much larger than those for ATBC and ATEC. The bulky n-hexyl group on
ATHC may restrict the freedom of the internal rotation in the loose helical state, which can prevent the
internal rotational fluctuation from increasing with further decreasing the degree intramolecular H-
bonding from fiyar. Similar behavior was recently reported for ATPC that both the # and A" values
increase with increasing molar volume of the solvent having a C=O group (ketones and esters).>*
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Figure 6. Plots of /1 Vs fiyd (), Ak Vs faya (b), and 77! vs A (c) for ATEC (circles), ATHC (squares), and
ATBC [10,30,17] (triangles).

m Conclusions

Both ATEC and ATHC have rigid helical structure stabilized by intramolecular H-bonds in THF and
the chain stiffness significantly decreases with decreasing the H-bonds in alcohols as is the case with
ATBC, indicating that the helices of amylose alkyl carbamates are stiffened by the intramolecular H-
bond. However, while the o helical structure of polypeptides is irrespective of their side chain, the
helix pitch per residue of the helices of amylose alkyl carbamates in THF and alcohols depends
significantly on the alkyl chain length in a complex fashion. This indicates that the helical structure of
amylose alkyl carbamates is influenced not only by the main-chain internal rotation potential and
intramolecular H-bonds, but also by the side-chain bulkiness.

m Associated Content

Supporting Information

Raw light scattering data (Berry plots) and numerical results of Mw, <S%>;, and [7]. This material is
available free of charge via the Internet at http://pubs.acs.org.

m Author Information

Corresponding Author

*E-mail: kterao@chem.sci.osaka-u.ac.jp

Notes

The authors declare no competing financial interest.

m Acknowledgments

The synchrotron radiation experiments were performed at the BL40B2 in SPring-8 with the approval of

11



the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2007A1034, 2007B1296,
2008A1313, 2009A1049, and 2010A1587) and at the BL-10C in KEK-PF under the approval of the
Photon Factory Program Advisory Committee (No. 2010G080). The authors thank Prof. Yoji Inoko
(Osaka Univ.) for SAXS measurements in KEK-PF. This work was partially supported by Grant-in-
Aid for Young Scientists (#23750128) from Japan Society for the Promotion of Science (JSPS).

m REFERENCES

(1) (a) Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem. Rev. 2001, 101, 3893-
4011. (b) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173-180. (c¢) Yashima, E.; Maeda, K.; Iida, H.;
Furusho, Y.; Nagai, K. Chem. Rev. 2009, 109, 6102-6211.

(2) (a) Kadokawa, J.-1. Chem. Rev. 2011, 111, 4308-4345. (b) Kitamura, S.; Yunokawa, H.; Mitsuie,
S.; Kuge, T. Polym. J. 1982, 14, 93-99. (c) Waldmann, H.; Gygax, D.; Bednarski, M. D.; Shangraw, W.
R.; Whitesides, G. M. Carbohydr. Res. 1986, 157, c4-c7. (d) Kitamura, S. In The Polymeric Materials
Encyclopedia, Synthesis, Properties and Applications; Salamone, C., Ed.; CRC Press: New York, 1996;
Vol. 10, pp 7915-7922.

(3) (a) Popov, D.; Buléon, A.; Burghammer, H.; Chanzy, N.; Montesanti, N.; Putaux, J.-L.; Potocki-
Veronese, G.; Riekel, C. Macroolecules 2009, 42, 1167-1174. (b) Takahashi, Y.; Kumano, T.;
Nishikawa, S. Macromolecules 2004, 37, 6827-6832.

(4) Putseys, J. A.; Lambert, L.; Delcour, J. A. J. Cereal Sci. 2010, 51, 238-247.

(5) (a) Nishiyama, Y.; Mazeau, K. ; Morin, M.; Cardoso, M. B.; Chanzy, H.; Putaux, J.-L.
Macromolecules 2010, 43, 8628-8636. (b) Cardoso, M. B.; Putaux, J.-L.; Nishiyama, Y.; Helbert, W_;
Hytch, M.; Silveira, N. P.; Chanzy, H. Biomacromolecules 2007, 8, 1319-1326.

(6) (a) Nakanishi, Y.; Norisuye, T.; Teramoto, A.; Kitamura, S. Macromolecules 1993, 26, 4220-4225.
(b) Norisuye, T. Polym. J. 1994, 26, 1303-1307.

(7) Seger, B.; Aberle, T.; Burchard, W. Carbohydr. Polym. 1996, 31, 105-112.

(8) (a) W. Burchard, in Soft-Matter Characterization, eds. R. Borsali and R. Pecora, Springer, Berlin,
Germany, 2008, pp. 465-603. (b) Burchard, W. Makromol. Chem. 1965, 88, 11-28.

(9) Bittiger, H.; Keilich, G. Biopolymers 1969, 7, 539-556.

(10) Terao, K.; Murashima, M.; Sano, Y.; Arakawa, S.; Kitamura, S.; Norisuye, T. Macromolecules
2010, 43, 1061-1068.

(11) Kratky, O.; Porod, G. Recl. Trav. Chim. Pays-Bas 1949, 68, 1106-1122.

(12) (a) Yamakawa, H. Helical Wormlike Chains in Polymer Solutions; Springer: Berlin, 1997. (b)
Yamakawa, H. Polym. J. 1999, 31, 109-119.

(13) Terao, K.; Fujii, T.; Tsuda, M.; Kitamura, S.; Norisuye, T. Polym. J. 2009, 41, 201-207.

(14) Yamamoto, C.; Yashima, E.; Okamoto, Y. J. Am. Chem. Soc. 2002, 124, 12583-12589.

(15) Kasat, R. B.; Zvinevich, Y.; Hillhouse, H. W.; Thomson, K. T.; Wang, N.-H. L.; Franses, E. L. J.
Phys. Chem. B. 2006, 110, 14114-14122.

(16) Ikai, T.; Okamoto, Y. Chem. Rev. 2009, 109, 6077-6101.

(17) Arakawa, S.; Terao, K.; Kitamura, S.; Sato, T. Polym. Chem. 2012, 472-478.

(18) Norisuye, T.; Yanaki, T.; Fujita, H. J. Polym. Sci. Polym. Phys. Ed. 1980, 18, 547-558.

(19) Berry, G. C. J. Chem. Phys. 1966, 44, 4550-4564.

(20) Terao, K.; Mays, J. W. Eur. Polym. J. 2004, 40, 1623-1627.

(21) Holtzer, A. J. Polym. Sci. 1955, 17, 432-434.

(22) Nakamura, Y.; Norisuye, T. J. Polym. Sci., Part B: Polym. Phys. 2004, 42, 1398-1407.

(23) Benoit, H.; Doty, P. J. Phys. Chem. 1953, 57, 958-963.

(24) Domb, C.; Barrett, A. J. Polymer 1976, 17, 179-184.

(25) (a) Yamakawa, H.; Stockmayer, W. H. J. Chem. Phys. 1972, 57, 2843-2854. (b) Shimada, J.;
Yamakawa, H. J. Chem. Phys. 1986, 85, 591-599.

12



(26) Nakamura, Y.; Norisuye, T. In Soft-Matter Characterization; Borsali, R.; Pecora, R. Eds.; Springer:
Berlin, 2008; Vol. 1, p 236-286.

(27) Konishi, T.; Yoshizaki, T.; Saito, T.; Einaga, Y.; Yamakawa, H. Macromolecules 1990, 23, 290-
297.

(28) (a) Yamakawa, H.; Fujii, M. Macromolecules 1974, 7, 128-135. (b) Yamakawa, H.; Yoshizaki, T.
Macromolecules 1980, 13, 633-643.

(29) Barrett, A. J. Macromolecules 1984, 17, 1566-1572.

(30) Sano, Y.; Terao, K.; Arakawa, S.; Ohtoh, M.; Kitamura, S.; Norisuye, T. Polymer 2010, 51, 4243-
4248.

(31) Tsuda, M.; Terao, K.; Nakamura, Y.; Kita, Y.; Kitamura, S.; Sato, T. Macromolecules 2010, 43,
5779-5784.

(32) Ochiai, M.; Terao, K.; Nakamura, Y.; Yoshikawa, C.; Sato, T. Polymer 2012, 53, 3946-3950.

(33) Shimada, J.; Kaneko, H.; Takada, T.; Kitamura, S.; Kajiwara, K. J. Phys. Chem. B. 2000, 104,
2136-2147.

(34) Fujii, T.; Terao, K.; Tsuda, M.; Kitamura, S.; Norisuye, T. Biopolymers 2009, 91, 729-736.

(35) Tsuda, M.; Terao, K.; Kitamura, S.; Sato, T. Biopolymers 2012, 97, 1010-1017.

13



For Table of Contents Use Only

R
\ £
=(NH = R = C2H5 C4Hg CeHi3
o) ® O=—=0 3
- -
O g / \'—" n
0O © 045} [ _
o / ® 4
o O 04— § 035} —
NH HITI o ‘n ;— 03k =-—— /
R R 2 0.25

Side group

102

10
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