

Title	溶液中における直鎖および環状アミロース誘導体の分 子形態と分子間相互作用
Author(s)	Terao, Ken
Citation	熱測定. 2015, 42(2), p. 69-75
Version Type	АМ
URL	https://hdl.handle.net/11094/81838
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

溶液中における直鎖および環状アミロース誘導体の分子 形態と分子間相互作用

寺尾 憲 ^a ^a大阪大学大学院理学研究科

(受取日:0000年00月00日,受理日:0000年00月00日)

Molecular Structure and Intermolecular Interactions of Linear and Cyclic Amylose Derivatives in Solution

Ken Terao^a

^a Graduate School of Science, Osaka University

(Received ***. **, 201*; Accepted ***. **, 201*)

Abstract: Amylose carbamate derivatives are suitable to investigate the relationship between the global conformation and local (intra- and/or intermolecular) interactions because it has completely regular stereochemical structure. In this paper, we summarized our recent research for the global conformation influenced by intramolecular hydrogen bonds, packing of side groups, and intermolecular hydrogen bonds between the polymer and solvent molecules. Furthermore, isothermal calorimetry measurements were carried out for an amylose derivative in optically active solvents in which dimensional properties significantly change with enantiomer excess. Cyclic amylose derivative molecules which behave as rigid (or semiflexible) rings in solution were also reported. In some cases, the same helical structure and chain stiffness were found both for linear and cyclic chains in solution and significant topological interactions were observed for cyclic polymers as positive second virial coefficients in a theta solvent. In other cases, we observed appreciably different helical structures between linear and cyclic polymers. Moreover, intermolecular interactions between two segments are crucially different between linear and cyclic polymers. This is a characteristic feature for rigid cyclic polymers in solution.

Keywords: polysaccharide derivatives, chain stiffness, isothermal calorimetry, second virial coefficient, topological interactions

1

寺尾 憲 Ken Terao E-mail: kterao@chem.sci.osaka-u.ac.jp

1. はじめに

高分子の主鎖を構成する共有結合は一定の結合角と内部 回転ポテンシャルを有する。このため、それぞれの高分子 には最安定構造が存在し、その形態は、完全に同一の繰り 返し単位からなるものについては棒状となる。しかし、一 般に高分子の配置の数は極めて多く、溶液中室温付近では、 熱運動のため多くの形態を持つ高分子が混在する場合がほ とんどである。このような高分子の分子形態を特性化する ためには、1分子のスナップショットを議論するよりも、 熱力学的平均値を用いる方が有用である。この熱力学的平 均値を得る手法の一つとして、光散乱法や小角 X線(中性 子)散乱法がある。この手法は、高分子の分散状態、分子 形態(広がり)、そして高分子間の相互作用に関する熱力学 的平均量を同時に測定できるため、溶液中の高分子の解析 に多く用いられる。¹

高分子の分子形態に関して散乱法より得られる情報は,

分子の回転半径と局所の構造を連続的に含む散乱関数であ る。結晶の回折法と比べ,格段に低解像度の情報しか得ら れないが,回転半径をはじめとした分子全体の平均構造を 正確に決定できる。形態の時間揺らぎの大きな高分子の場 合,この回転半径を決定しているのは,高分子主鎖の結合 角,内部回転角の他に,高分子主鎖に沿って比較的離れた 位置にある原子間の相互作用である。このうち前二者のみ による高分子の広がりを,非摂動広がりといい,高分子の 化学構造からある程度の推定が可能である。後者は排除体 積効果といい,溶媒分子を媒介した高分子間の相互作用に 起因する。

低分子気体の第二ビリアル係数 A2 が消失するボイル温 度で、相互作用が相殺し理想気体のように振る舞うのと同 様に、高分子溶液の A2 が消失するシータ温度では、排除体 積効果が消失し、高分子の広がりは非摂動広がりに等しく なる。このため、高分子の化学構造と分子形態の相関を理 解する際に、シータ溶媒が良く用いられる。

シータ溶媒中での実験で決められる非摂動広がりは,主 に,高分子の内部回転の制限によって規定される。しかし, ビニルポリマーをはじめとした多くの高分子の主鎖には立 体不規則性があり,一般に議論が複雑になる。ただし実際 には,この不規則性によって溶解性が担保される場合も多 く,研究例は極めて多い。他方,セルロースやアミロース をはじめとした直鎖型の多糖は,立体規則性を含めその一 次構造が完全に制御された数少ないホモポリマーである。 多くは結晶性が高く,溶液研究には必ずしも適していない が,水酸基に適切な置換基を導入することにより,格段に 溶解性が向上する。特に,本稿で紹介するカルバメート誘 導体は,高分子溶液学の黎明期より調べられている高分子 ²⁾であり,剛直性高分子には珍しくシータ溶媒も確認され ている。³⁾

ここではまず、多糖のカルバメート誘導体を例にして、 置換基や溶媒が分子形態や分子間相互作用に及ぼす効果に ついて概説する。この高分子群は、溶媒分子との相互作用 の変化により、その形態が敏感に変化し、光学異性体であ る p-及び L-乳酸エチル中でもかなり分子形態が異なる。そ こで次に、これら光学活性溶媒中における分子形態の違い を明らかにするために行った、等温滴定カロリメトリー測 定について紹介する。さらに、高分子間の相互作用に関す る研究の例として、筆者らが最近取り組んでいる環状分子 間の特異な分子間相互作用を熱力学量である第二ビリアル 係数で観測した例についても述べる。

2. 直鎖アミロース誘導体の分子形態

前述したように多糖の誘導体は、完全な立体規則性をも つ主鎖を持ち、様々な溶媒に高い溶解性を示すため、高分 子の内部回転制限と高分子の形態の相関を調べるのに適し た高分子群である。ここでは、アミロースのカルバメート 誘導体を中心に解説する。本稿では、分子形態決定法の詳 細は省くが、既刊に解説があるのでご興味のある方には参 照されたい。⁴⁾

揺らぎのある高分子の非摂動広がりを特徴づけるために, みみず鎖⁵⁾や回転異性体近似モデルがある。多糖の誘導体 のように比較的剛直性の高いものについては前者が取り扱 いやすい。みみず鎖理論によれば,分子の広がりは残基あ たりのらせんのピッチ h,そして鎖の剛直性を表す Kuhn の統計セグメント長¹¹で特徴づけられる。^{1,6)} Fig. 1 に示す 化学構造を持つアミロース誘導体について得られた分子パ ラメータを Table 1 にまとめる。⁷⁻¹⁴⁾参考として表には当研 究室で決定されたセルロース¹⁵⁻¹⁷⁾及びカードラン¹⁸⁾のカ ルバメート誘導体の値を含む。

Table 1. Helix pitch per residue *h* and the Kuhn segment length λ^{-1} for polysaccharide carbamate derivatives.

Polymer	Solvent	<i>h</i> /nm	λ^{-1}/nm	Ref			
Amylose derivatives							
ATEC	tetrahydrofuran	cahydrofuran 0.36 33		7			
	D-ethyl lactate	0.35	27	7			
	L-ethyl lactate	0.38	15	7			
	2-methoxyethanol	0.38	14	7			
	methanol	0.38	9	7			
ATBC	tetrahydrofuran	0.26	75	8			
	D-ethyl lactate	0.26	49	10			
	2-butanol	0.25	40	9			
	2-ethoxyethanol	0.25	38	9			
	_{L-} ethyl lactate	0.26	32	10			
	1-propanol	0.28	25	9			
	2-propanol	0.29	20	9			
	methanol	0.32	11	8			
ATHC	tetrahydrofuran	0.29	75	7			
	1-propanol	0.39	30	7			
ATPC	4-methyl-2-pentanone	0.42	24	12			
	1,4-dioxane	0.34	22	11			
	2-butanone	0.39	18	13			
	ethyl acetate	0.39	17	12			
	2-ethoxyethanol	0.32	16	11			
	methyl acetate	0.37	15	12			
AAPC	1,4-dioxane	0.34	21	14			
	2-butanone	0.36	12	14			
	2-ethoxyethanol	0.35	11	14			
ADMPC	4-methyl-2-pentanone	0.36	73	13			
	2-butanone	0.38	41	13			
	methyl acetate	0.36	22	13			
Cellulose d	erivatives						
CTPC	tetrahydrofuran	0.50	21	15			
	1-methyl-2-pyrrolidone	0.49	16	16			
CDMPC	1-methyl-2-pyrrolidone	0.52	16	17			
Curdlan de	erivative						
CdTPC	tetrahydrofuran	0.39	57	18			
	4-methyl-2-pentanone	0.51	17	18			

表からわかるようにアミロースカルバメート誘導体の剛 直性 (λ^{-1}) はアミロース^{19,20}の4 nm に比較的近い9 nm から75 nm まで幅広く分布する。さらに、たいていの高分 子ではあまり変化しない h が 0.25 nm - 0.42 nm までかなり 大きく変化する。この h の変化はアミロース鎖のらせん構 造の変化を反映している。アミロース鎖が局所的にらせん 構造を取りやすく,主鎖軸方向には伸び切り鎖よりもかな り縮んでいるためと考えられる。たとえば THF 中の ATBC については Fig. 2 に示すようならせん構造が推察される。 すなわち,みみず鎖パラメータの変化より,主鎖の剛直性 の他に,主鎖のらせん構造変化に関する情報が得られたこ とになる。以下では置換基や溶媒の変化に伴う溶液中での らせん構造,剛直性の変化について考察してゆく。

Fig. 1. Chemical structures of polysaccharide carbamate derivatives.

Fig. 2. Possible helical structure of ATBC in THF.

2.1. 置換基と剛直らせん構造^{7,8,11)}

アミロースカルバメート誘導体の高い剛直性の起源の一 つは置換基のNH基とC=O基間の分子内水素結合である。 本研究で用いた溶媒の中で,極性の比較的低いテトラヒド ロフラン(THF)や 1,4-ジオキサン(DIOX)中でかなり剛直に なることがわかるが, h 及び¹共に置換基によりかなり異 なる。分子内水素結合により剛直になるポリペプチドのα-らせん構造が、構成するアミノ酸にはほとんどよらないの と対照的である。Fig.3にアミロース骨格について異なるh と6回対称性をもつ左巻きらせんを載せた。これらは内部 回転角の比較的小さな変化で表現できる。THF 中の ATEC に対応する h = 0.36 nm のらせんは ATHC の h = 0.29 nm や ATBC の 0.26 nm に比べて細い。h が小さくなるとアミロー スらせん内部の空孔も大きくなる。これらのアミロースの 2位と3位の二級水酸基がらせんの外側を向いているのに 対し、6位の水酸基は内側を向いている。主にこの6位の 置換基がらせん内部を充填して、らせん構造を安定化させ ていると考えると, ATBC の h が ATEC のそれに比べかな り小さいことの説明となる。なお ATBC の6 位の置換基が らせん空孔内部に充填可能であることは分子モデルを用い て確認した。また THF 中の ATBC の主鎖は ATEC のそれと 比べ二倍以上剛直である。らせんが巻き付く芯(6 位の置 換基)が剛直性に顕著な影響を与えているようである。で は、さらに置換基を大きくするとどのように変化するので あろうか。ATHC の h が ATBC のそれに比べて幾分大きい (0.29 nm)ことは、嵩高い6位の置換基がもはやらせん空孔 内部に収まりづらくなることによるのかもしれない。さら に嵩高い置換基を持つ ATPC の DIOX 中での h が 0.34 nm と長くなる (DIOX 中と THF 中で ATPC の固有粘度が変わ らないことは確認してある)。ATBC や ATHC と比べ剛直性 が低くなり、ATPC の 6 位の置換基がらせん内部には包接 されていないことを示唆する。

まとめると、分子内水素結合率が高くなる低極性溶媒中 において、アミロースカルバメート誘導体は剛直ならせん 構造を取る。アミロース独特の主鎖軸方向に伸び縮みしや すいらせん構造により生じる、置換基のらせん空孔内部へ のパッキングが、らせん構造および剛直性に顕著な影響を 及ぼす。そして最も太く剛直ならせんを形成するのは ATBC や ATHC であり、置換基がそれより大きくても小さ くてもこれらに比べ剛直ならせん構造とはならない。他方、 置換基をフェニルカルバメートに固定し、主鎖をアミロー ス、カードラン、セルロースと変化させた場合には、主鎖 がβ-1,3 グルカンからなるカードラントリス (フェニルカル バメート) CdTPC が高い剛直性をもつ。¹⁸⁾比較的低極性 の溶媒中における多糖のカルバメート誘導体の剛直性は、 主鎖と置換基の組み合わせに強く依存することがわかった。

Fig. 3. Schematic representation of the amylosic main chain for h = 0.36 nm (ATEC), 0.29 nm (ATHC), and 0.26 nm (ATBC) in THF.

2.2. 分子内水素結合数の変化に伴う,分子形態及びらせ ん構造の変化^{7-9,14)}

先に述べたように, THF 中でみられた剛直らせん構造は NH 基と C=O 基間の分子内水素結合による。Table 1 からも わかるように、溶媒の極性を高くすると分子形態が変化す る。実際に溶液の赤外吸収スペクトルより見積もったカル ボニル炭素の分子内水素結合率 fhyd は, ATBC の場合 THF 中の0.52からメタノール中の0まで変化する。ただし、こ の fhyd はポリペプチドとは異なり、高分子の分子量や溶液 の温度にはほとんどよらない。すなわち、α-らせんに見ら れた強い協同性はなく、水素結合の切断がランダムに起こ ると考えてよい。溶媒による分子形態の変化を定量的に評 価するため、次に示す二状態モデルを導入した。モデルで は高分子が Fig. 4 に示す剛直セグメントと、屈曲性セグメ ントからなるとする。水素結合を保持している剛直セグメ ントのh と λ をそれぞれhR と λ R,水素結合が切断された屈 曲セグメントのそれを hr とAr と仮定すると, 次式に表すよ うに h と λh の両方が fhyd の一次関数となることが予想され た。

$h = f h_{\rm p}$	$(1-f)h_{\rm E}$	(1))
	1 - J - F		

$$\lambda h = f \lambda_{\rm R} h_{\rm R} + (1 - f) \lambda_{\rm F} h_{\rm F} \tag{2}$$

$$f \propto f_{\rm hvd}$$
 (3)

f

ただし,式 (3) は繰り返し単位当たりの水素結合サイト が3対あり,剛直らせん中でもすべてが分子内水素結合に 関与することはできないことに基づく。実際に, f_{hyd} の測定 値の多い ATBC のh と λh を f_{hyd} に対してプロットすると直 線に従うことがわかった。同様の関係は ATEC にもみられ, これら誘導体の分子形態の溶媒依存性は f_{hyd} のみに依存す ること、その変化は式 (1)-(3) の二状態モデルで記述でき ることを見出した。また, f_{hyd} は溶媒や溶媒組成の変化に伴 い,緩やかに変化するため、75 nm までの剛直性を連続的 に調節できる。これらの関係は、同時に h^{-1} が λo —次関数 となることを示すが、実際、そのプロット [Fig. 5(c)] は後 に示す乳酸エチル中のデータを含め直線に従う。この関係 は赤外吸収法が分子内水素結合の検出に使えない溶媒中に おいても、水素結合率の見積もりを可能にする。

では、置換基が変わると分子内水素結合の切断の起こりや すさはどのように変わるのであろうか。置換基のアルキル 鎖長が異なる ATEC と ATBC の *f*_{hyd}の溶媒依存性は比較的 似ているため顕著な置換基依存性はみられない。これに対 し、ATPC の 2 位のフェニルカルバメート基をアセチル基 で置き換えた AAPC のみみず鎖パラメータと IR スペクト ルは、1,4-ジオキサン中で ATPC とほとんど変わらないのに 対し、2-エトキシエタノール中では AAPC の方がかなり小 さい*λ*⁻¹を持つ。2-エトキシエタノール中の AAPC の分子内 水素結合率も ATPC と比べて少なく、嵩高い置換基を持つ ATPC の水素結合の溶媒分子による切断能にはカルバメー ト基の密度も重要であることがわかった。

Fig. 4. Schematic representation of the two state model.

Fig. 5. Plots of *h* vs f_{hyd} (a), λh vs f_{hyd} (b), and h^{-1} vs λ (c) for ATEC (circles) and ATBC (triangles).

2.3. 溶媒分子との分子間水素結合に伴う,分子形態及び らせん構造の変化^{12,13)}

前節の議論より、アミロースカルバメート誘導体の分子 形態が分子内水素結合のみで決まる場合、異なる溶媒中で の ATBC の h⁻¹ が λの一次関数となることを示した。しかし もう一度 Table 1 を見てみると、ATPC の6つの溶媒中での h^{-1} と λ はこの関係にはなく、1,4-ジオキサン中と 4-メチル -2-ペンタノン中での*l*⁻¹があまり変わらないのに対し, h が 20%も違うことがわかる。先に述べた ATBC や ATEC と異 なり、ATPC の嵩高い置換基が原因であると考えられる。 実際, ATPC の NH 基に水素結合するであろうと考えられ るカルボニルを持つケトン,エステル中でのhは1,4-ジオ キサンや2-エトキシエタノールのものよりもかなり大きく、 また,ケトン,エステル中ではh, λ⁻¹共に溶媒のモル体積 𝗤 の単調増加関数となることが明らかとなった(Fig. 6の ●)。嵩高いフェニル基のさらに主鎖側の狭い部分にある NH 基と水素結合するために置換基間に入り込んだ溶媒分 子が、主鎖を押し広げ、かつ主鎖の内部回転を制限したた めにこのような現象が起こったと考えられる。さらに嵩高 い置換基を持つ ADMPC の場合には、h には顕著な v_M 依存 性は見られなかったが、λ⁻¹は ν_Mの増加と共に著しく増加 し、4-メチル-2-ペンタノン中では75 nm に達することがわ かった。ADMPCのh, すなわちらせん構造はATPCよりも 溶媒分子の水素結合によって変化しにくいこと、その反面 水素結合した溶媒分子による内部回転の制限はより顕著で あり、それが剛直性の著しい変化として現れたと考えられ る。この ADMPC は高いキラル分離能をもつ。^{21,22)} ここで 示した低分子との相互作用によってらせん構造を乱されに くい(すなわち h の溶媒変化が小さい)特徴は、キラル分 子を認識する、置換基周りのキラルな空孔の形状変化が小 さいことを示唆している。換言すれば、h の溶媒変化の小 さいアミロースカルバメート誘導体のキラル分離能が高い ことを予言しており、キラル分離担体の設計指針として利 用できることを示唆する。

Fig. 6. Dependences of (a) λ^{-1} and (b) *h* on the molar volume of the solvent (v_M) for ADMPC (open circles) and ATPC (filled circles) in ketones and esters.

キラル溶媒中における直鎖アミロース誘導体の 構造と溶媒との相互作用¹⁰

前節で述べたように、溶媒変化に伴う水素結合の切断能 は、アルコール中またはエーテル中では主に溶媒の極性の 増加と共に高くなる傾向が見られた。これは、溶媒分子の OH 基による分子内水素結合の切断能の違いに起因すると 考えられる。アミロース主鎖が完全な立体規則性をもつ光 学活性高分子であること、一部の誘導体がキラル分離に有 用であること、そのキラル分離能にはアミロース主鎖近傍 のNH基やC=O基とキラル分子の相互作用の違いが重要で あることを考えると, 高分子の形態に溶媒分子のキラリテ ィが影響しても不思議ではない。分子のキラリティが生体 中で非常に重要な役割を果たすことは周知の事実であるが, それが高分子の広がりに影響を与えるという実験事実はこ れまで示されていなかった。我々は、ATBC 及び ATEC の 乳酸エチル中での広がりがD体中とL体中で有意に異なる, すなわち D-乳酸エチル中でのλ⁻¹が L体中の1.5-1.8 倍とな ることを見出した。2.2 節での議論から ATBC の分子形態 は、分子内水素結合率のみによってほぼ決まることがわか っていることから、その違いが熱的な違いとして現れるこ とが期待された。

キラル溶媒を用いた場合、D体にL体を少量添加した場合とL体にD体を少量添加した場合とは熱的には等価であり、予め溶解させた高分子の寄与を容易に抽出できる。そこで本研究では、等温滴定カロリメトリーを用い、p-乳酸エチルにATBCのL乳酸エチル溶液を滴下したときの吸熱量 $q_{\text{D,soln}\rightarrow\text{L,dil}}$ 及びその逆の熱量 $q_{\text{L,soln}\rightarrow\text{D,dil}}$ ま求めた。Fig.7に得られたデータを示す。 $q_{\text{D,soln}\rightarrow\text{L,dil}}$, $q_{\text{L,soln}\rightarrow\text{D,dil}}$ 共に正と

なるのは, D-乳酸エチルと L-乳酸エチルの混合熱による。参考までに、ATBC の希釈熱 $q_{D,soln \rightarrow D,dil}$, $q_{L,soln \rightarrow L,dil}$ は無視で きるほど小さかった。2つの熱量の差を議論するために、 配位数 z の格子モデルを考える。ATBC に接している D-乳 酸エチル (L-乳酸エチル) と ATBC 繰り返し単位の引力ポ テンシャルを ε 'DP (ε 'LP)とすると、次式で測定結果と関係づ けることができる。

$N_{\rm A} z \left(\varepsilon_{\rm LP}' - \varepsilon_{\rm DP}' \right) =$	$(q_{\text{D,soln}\rightarrow\text{L,dil}} - q_{\text{D,soln}\rightarrow\text{D,dil}}) - (q_{\text{L,soln}\rightarrow\text{D,dil}} - q_{\text{L,soln}\rightarrow\text{L,dil}})$	(4)
	$2v_{\rm s}c/M_0$	

式中, N_A はアボガドロ定数, M_0 は ATBC 繰り返し単位の モル質量, cは滴下前の溶液の ATBC の質量濃度, v_s は滴 下溶液の体積であり,式の導出は文献¹⁰⁾を参照頂きたい。 得られた $N_{AZ}(\varepsilon'_{LP} - \varepsilon'_{DP})$ は 2.3 – 2.4 kJ mol⁻¹ であった。これ は ATBC と D-乳酸エチルの相互作用が, L-乳酸エチルとの 相互作用よりも高分子をより安定にすることに対応する。

他方,乳酸エチルのカルボニル基のため,ATBC の分子 内水素結合を赤外吸収より求めることはできないが,Fig. 5(c)に示した $h^{-1} \ge \lambda$ の関係には従う。そこで Fig. 5(b)を使 って f_{hyd} を求めると p.乳酸エチル中の ATBC について $f_{hyd,D}$ = 0.47 が得られた。この値は L 体中の $f_{hyd,L}$ = 0.41 よりも6 ポイント大きい。L 乳酸エチルの方が ATBC の極性基と相 互作用しやすく,D 体中と比べより多くの分子内水素結合 を切断したと考えられる。いま,先に求めた $N_{AZ}(\varepsilon'_{LP} - \varepsilon'_{DP})$ が ATBC の分子内水素結合数の変化のみによると仮定する と,13 kJ mol⁻¹と水素結合と矛盾のないエネルギーが見積 もられた。

Fig. 7. Isothermal titration calorimetric data for ATBC53K (a) and ATBC460K (b) in ethyl lactates at 25 °C. 2 μL solution was dropped at every 2 min.

4. アミロース誘導体の高い溶解性と液晶構造^{9,12,23)}

ここまで、アミロース誘導体の様々な溶媒中における分 子形態の変化を議論してきたが、このような研究が可能に なった背景の一つにアミロースカルバメート誘導体の高い 溶解性がある。たいていの剛直高分子には溶媒が無いか、 あっても種類が少ないことが多く、溶媒依存性を議論する ことは一般に容易ではなかった。また、高分子間の斥力と 引力が見かけ上釣り合うシータ溶媒は多糖のカルバメート 誘導体を除いてほとんど見つかっていない。これに対し、 ATBC では2種の、ATPC では3種のシータ溶媒が見つか っている。なぜ、このように高い溶解性を維持できるので あろうか。前節までにアミロース誘導体の h の値が溶媒に 敏感に変化することを示したが、このことは主鎖がらせん ばねのように伸び縮みしやすく、溶液中においても時々 刻々と伸び縮みを繰り返していることを推察させる。一般 に剛直性高分子の溶解性が低いのは、会合に伴うコンホメ ーションエントロピーの損失が少ないためであると考えら れている。内部回転が制限されている剛直鎖が溶解しても、 その内部回転の自由度にあまり変化は生じないためである。 剛直鎖の溶解性を向上させる手法として、主鎖の剛直性を 保ちつつ溶解のエントロピーを増大させることが挙げられ る。たとえば、コンホメーションの自由度が高く溶媒親和 性の高い側鎖を持つ高密度櫛形高分子の場合には、主鎖の 剛直性が高いにもかかわらずシータ溶媒にも溶解する。²⁴⁾ アミロース誘導体の場合には主鎖のらせん構造の揺らぎが この自由度に相当し、高い溶解性を維持していると考えら れる。このことは同時に結晶化が難しいことを示唆してお り、アミロースカルバメート誘導体の結晶構造解析の論文 が見つからないのもこの理由に依るのかもしれない。

剛直性高分子溶液のもう一つの特徴として高濃度領域に 見られるリオトロピック液晶性が挙げられる。25) 我々は, 3種のアミロースカルバメート誘導体 (ATBC, ATEC, ATHC) について THF 中でコレステリック液晶相(Fig. 8) を形成し、その相図は過去に佐藤らが報告した理論 いに Table 1 のみみず鎖パラメータを用いることによって、ほぼ 定量的に説明されることを示した。これに対し、乳酸エチ ル中ではより低濃度から白濁した液晶相が出現した。詳細 なX線回折実験より,高分子鎖長に対応する反射が見られ たため、コレステリック相よりも配向の秩序の高いスメク チック相と結論した。この原因として乳酸エチル中での高 分子末端間の特別な相互作用の存在が示唆されたが、棒状 高分子濃厚溶液系で溶媒の違いにより異なる液晶相が出現 するという報告はほとんど見当たらない。アミロースカル バメート誘導体の高い溶解性がこの発見につながったと考 えられる。

Fig. 8. Schematic representation of cholesteric (left) and smectic (right) mesophases.

5. 環状アミロースカルバメート誘導体²⁶⁻²⁸⁾

ここまではすべて直鎖アミロースについて述べてきたが, 他方で様々な分岐や閉環構造を持つアミロースの酵素合成 法が研究されている。ここでは環状鎖についてごく最近筆 者らが始めた研究について紹介する。自然界にはプラスミ ドをはじめとして、生体中にて環状高分子が重要な役割を 果たすことは古くから知られている。環状高分子を合成す る場合、まず直鎖の高分子の両末端に反応性官能基を持た せさらにそれらを化学的に結合する必要がある。このとき, 同一分子内の両末端が出会う確率が、ほかの高分子の末端 と出会う確率よりも十分に高くないと収率が下がってしま う。この両末端の接触確率は高分子鎖が剛直になると著し く低くなるため、環状高分子の合成はいわゆる屈曲性高分 子に限られているのが実情である。そこで筆者らは酵素合 成により調製される屈曲性の高い環状アミロース²⁹⁾(重合 度 24 - 300) を原料とし、カルバメート化して剛直な環状 鎖を得た。Fig.9 に化学構造を示す環状 ATPC (cATPC)の DIOX 及び 2-エトキシエタノール中, そして環状 ATBC (cATBC) のメタノール中, 2-プロパノール, THF 中では,

(CATBC) のメタクール中, 2-2 ロバクール, THF 中では, 環状みみず鎖の理論³⁰)に直鎖のみみず鎖パラメーターを適 用することにより,実験値をほぼ説明できた。すなわち, λ^{-1} で11 nmから75 nmに及ぶ異なる剛直性をもつ環状鎖の 調製に成功した。 λ^{-1} =75 nmとなる THF 中では cATBC の 液晶相も観測された。

直鎖高分子間の分子間相互作用が主に高分子を構成する モノマーユニット間の相互作用に帰着するのに対し,環状 高分子間では1つの環が他の環とつながってしまうような 配置(Fig. 10)をとることができず,これが溶液の熱力学 量である第二ビリアル係数 A2 に顕著な影響を与えること が知られている(トポロジカル相互作用)。この効果は直鎖 の A_2 が消失するシータ温度で顕著になり,実際,**Fig. 11** に示すように cATBC-2-プロパノール (2PrOH) 系,直鎖 ATBC のシータ温度で正の A_2 が観測された。図には屈曲性 の環状高分子である環状ポリスチレンのデータ³¹⁻³³⁾を含む。 ただし,図中のLは経路長, M_L は単位経路長あたりのモル 質量であり,Table 1 のみみず鎖パラメータから計算できる 量である。得られた正の A_2 は図中実線で示す井田ら³⁴⁾のシ ミュレーション結果より,かなり正確に再現されることか ら,この正の A_2 は主にトポロジカル相互作用に起因すると 結論された。

Fig. 9. Chemical structures of cyclic amylose tris(phenylcarbamate) (cATPC) and cyclic amylose tris(*n*-butylcarbamate) (cATBC).

Fig. 10. Schematic illustration of an impossible conformation of two rings.

Fig. 11. Reduced chain length λL dependence of reduced second virial coefficient $(A_2M_L^2/4\lambda^{-1}N_A)$ for cATBC in 2-propanol (unfilled circles), cATPC in methyl acetate (unfilled triangles), ethyl acetate (unfilled squares), and 4-methyl-2-pentanone (inverted triangles) at the corresponding Θ temperatures along with those for cyclic polystyrene in cyclohexane (filled symbols). Solid curve are results from Monte Carlo simulation by Ida et al.

これに対し、溶媒との水素結合により剛直化するケト ン・エステル中での環状 ATPC の h と λ⁻¹は vM にはほとん どよらず、直鎖のものよりも有意に小さくなるという一見 奇妙な現象が見られた (Fig. 12)。このような現象は屈曲性 の環状高分子鎖には考えにくい。しかし、剛直環状鎖の場 合、恒常的に主鎖に残る曲率により、溶媒分子との水素結 合状態が変わり、分子形態に影響することは十分に考えう る。さらに Fig.11 に示すように、この局所構造の違いは高 分子間の相互作用にも顕著な影響を及ぼし、cATPC の 4-メチル-2-ペンタノン中の A_2 は直鎖 ATPC のシータ温度で負 の値を取り、高分子セグメント間の相互作用が直鎖の場合 と比べ顕著に引力的になることが示された。

この結果をもとに,直鎖高分子についてもう一度考えて みよう。環状高分子と直鎖分子で高分子のセグメント間の 相互作用が異なるということは,高分子の比較的伸びた部 分と曲がった部分で相互作用が異なるということである。

一般に、溶液中での高分子間の相互作用を考える場合、分子の局所的な形態は考えないが、本研究での結果はこの考え方が必ずしも正しくないということを端的に示している。 一般に高分子の溶解性と 42 は一対一には対応しておらず、 42 から良溶媒とみなされる場合でも、溶解させるのが難し かったりゲル化したりするのは良く知られている現象であ り、高分子溶液学の分野では未解決の問題とされている。

今後,高分子の溶解性をも説明可能な,より高い精度の理 論構築の際には分子形態と分子間相互作用の相関を考慮に 入れる必要があることを,この実験結果は示している。

Fig. 12. Dependences of *h* and λ^{-1} on v_{M} for cATPC (unfilled circles and ATPC in ketones and esters (filled circles).

6. おわりに

本稿では、高分子の溶液研究の一例として、最近筆者らが 手掛けているアミロースのカルバメート誘導体の分子形態 がどのような相互作用によって決まっているかについて示 したのち、溶媒分子との相互作用を等温滴定カロリメトリ ーによって計測した例、そして環状のアミロース誘導体間 の特異な熱力学的性質について解説した。高分子溶液学の 理論では、みみず鎖など適切に粗視化されたモデルを用い ることによって、高分子の形態揺らぎを定量的に取り扱う ことがすでに可能になっているが、強くフォールディング した生体分子に含まれる糖鎖等の揺らぎについては、まだ まだ分かっていないことが多いように思われる。筆者らは 高分子溶液の知見からこうした生体関連分子の揺らぎにつ いても調べてゆきたいと考えている。

謝辞

本稿で述べたアミロース誘導体の研究は、大阪大学の則 末尚志名誉教授、佐藤尚弘教授、大阪府立大学の北村進一 教授、そして研究室の大学院生諸氏との共同研究として行 われた。またその一部は JSPS 科研費 23750128 の助成を受 けた。Table 1 に示したみみず鎖パラメータの決定と、環状 アミロース誘導体の分子形態決定には SPring-8 BL40B2(課 題番号 2007A1034, 2007B1296, 2008A1313, 2009A1049, 2011A1049, 2011A1925, 2011B1068) 及び KEK-PF BL-10C

(課題番号 2010G080, 2011G557) で行った小角 X 線散乱を 用いた。

文 献

1) 松下裕秀, 佐藤尚弘, 金谷利治, 伊藤耕三, 渡辺宏, 田 中敬二, 下村武史, 井上正志, 「高分子の構造と物性」, 講 談社サイエンティフィク, (2013).

2) W. Burchard. in *Soft matter characterization* (eds Redouane Borsali and Robert Pecora) Ch. 9, 463-603 Springer Netherlands, (2008).

3) W. Burchard. Polymer, 10, 467-475 (1969).

4) 柴山充弘, 佐藤尚弘, 岩井俊昭, 木村康之, 「光散乱法の 基礎と応用」, 講談社サイエンティフィク, (2014).

5) O. Kratky, G. Porod. Recl. Trav. Chim. Pays-Bas, 68, 1106-1122 (1949).

6) H. Yamakawa, *Helical wormlike chains in polymer solutions*. Springer, (1997).

7) K. Terao, F. Maeda, K. Oyamada, T. Ochiai, S. Kitamura, T. Sato. J. Phys. Chem. B, **116**, 12714-12720 (2012).

8) K. Terao, M. Murashima, Y. Sano, S. Arakawa, S. Kitamura, T. Norisuye. *Macromolecules*, **43**, 1061-1068 (2010).

9) Y. Sano, K. Terao, S. Arakawa, M. Ohtoh, S. Kitamura, T. Norisuye. *Polymer*, **51**, 4243-4248 (2010).

10) S. Arakawa, K. Terao, S. Kitamura, T. Sato. *Polym. Chem.*, **3**, 472-478 (2012).

11) K. Terao, T. Fujii, M. Tsuda, S. Kitamura, T. Norisuye. *Polym. J.*, **41**, 201-207 (2009).

12) T. Fujii, K. Terao, M. Tsuda, S. Kitamura, T. Norisuye. *Biopolymers*, **91**, 729-736 (2009).

13) M. Tsuda, K. Terao, Y. Nakamura, Y. Kita, S. Kitamura, T. Sato. *Macromolecules*, **43**, 5779-5784 (2010).

14) M. Tsuda, K. Terao, S. Kitamura, T. Sato. *Biopolymers*, **97**, 1010-1017 (2012).

15) F. Kasabo, T. Kanematsu, T. Nakagawa, T. Sato, A. Teramoto. *Macromolecules*, **33**, 2748-2756 (2000).

16) T. Norisuye, A. Tsuboi, T. Sato, A. Teramoto. *Macromol Symp*, **120**, 65-76 (1997).

17) A. Tsuboi, T. Norisuye, A. Teramoto. *Macromolecules*, **29**, 3597-3602 (1996).

18) T. Ochiai, K. Terao, Y. Nakamura, C. Yoshikawa, T. Sato. *Polymer*, **53**, 3946-3950 (2012).

19) Y. Nakanishi, T. Norisuye, A. Teramoto, S. Kitamura. *Macromolecules*, **26**, 4220-4225 (1993).

20) T. Norisuye. Polym. J., 26, 1303-1307 (1994).

21) T. Ikai, Y. Okamoto. Chem. Rev., 109, 6077-6101 (2009).

22) Y. Okamoto. Journal of Polymer Science Part a-Polymer Chemistry, 47, 1731-1739 (2009).

23) K. Oyamada, K. Terao, M. Suwa, S. Kitamura, T. Sato. *Macromolecules*, **46**, 4589-4595 (2013).

24) K. Terao, Y. Takeo, M. Tazaki, Y. Nakamura, T. Norisuye. *Polym. J.*, **31**, 193-198 (1999).

25) 寺尾憲, 佐藤尚弘. 液晶, 18, 108-117 (2014).

26) K. Terao, N. Asano, S. Kitamura, T. Sato. *ACS Macro Lett.*, **1**, 1291-1294 (2012).

27) K. Terao, K. Shigeuchi, K. Oyamada, S. Kitamura, T. Sato. *Macromolecules*, **46**, 5355-5362 (2013).

28) N. Asano, S. Kitamura, K. Terao. J. Phys. Chem. B, 117, 9576-9583 (2013).

29) Y. Nakata, K. Amitani, T. Norisuye, S. Kitamura. *Biopolymers*, **69**, 508-516 (2003).

30) J. Shimada, H. Yamakawa. *Biopolymers*, **27**, 657-673 (1988).

31) J. Roovers, P. M. Toporowski. *Macromolecules*, 16, 843-849 (1983).

32) J. X. Huang, J. Shen, C. R. Li, D. Z. Liu. Makromol. Chem. Macromol. Chem. Phys., **192**, 1249-1254 (1991).

33) A. Takano, Y. Kushida, Y. Ohta, K. Masuoka, Y. Matsushita. *Polymer*, **50**, 1300-1303 (2009).

34) D. Ida, D. Nakatomi, T. Yoshizaki. *Polym. J.*, **42**, 735-744 (2010).

解

説