

Title	The Levi problem in the blow-up
Author(s)	Colțoiu, Mihnea; Joița, Cezar
Citation	Osaka Journal of Mathematics. 2010, 47(4), p. 943-947
Version Type	VoR
URL	https://doi.org/10.18910/8189
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

THE LEVI PROBLEM IN THE BLOW-UP

MIHNEA COLȚOIU and CEZAR JOIȚA

(Received June 12, 2009)

Abstract

We prove that a locally Stein open subset of the blow-up of \mathbb{C}^n at a point is Stein if and only if it does not contain a subset of the form $U \setminus A$ where A is the exceptional divisor and U is an open neighborhood of A . We also study an analogous statement for locally Stein open subsets of line bundles over \mathbb{P}^n .

1. Introduction

Let $U \subset \mathbb{C}^n$ be an open set which is locally Stein. Then $-\log d$ is a plurisubharmonic function on U (d denotes here the distance to the boundary of U) and therefore by Oka's theorem (see [6]) U is Stein. A similar result holds (see Fujita [2]) if U is an open locally Stein subset of \mathbb{P}^n , $U \neq \mathbb{P}^n$.

If U is a locally Stein open subset of $\mathbb{P}^n \times \mathbb{C}$ (which can be identified with $\mathcal{O}(0)$ over \mathbb{P}^n) then it was proved in [1] that U is Stein if and only if U does not contain any compact fiber $\mathbb{P}^n \times \{x\}$ for some $x \in \mathbb{C}$.

On the other hand, S.Yu. Nemirovskii studied in [7] the Levi problem for open sets U in $\tilde{\mathbb{C}}^n$, the blow-up of \mathbb{C}^n at a point, in the particular case when the intersection of U with the exceptional set is strongly pseudoconvex. In this particular case he uses the fact that there exists a smooth strongly plurisubharmonic function in a neighborhood of \overline{U} and therefore one can apply a theorem of A. Takeuchi [8] to deduce that U is Stein. In this context let us remark that if $\pi: F \rightarrow C$ is a negative line bundle over a compact complex curve and $D \Subset F$ is a smoothly bounded domain then C (identified with the zero section of F) cannot be contained in ∂D , since otherwise F would be topologically trivial. Therefore if D , as above, is locally Stein it follows easily from this remark that it is Stein. It seems unknown what happens if D is locally Stein, ∂D is not smooth, $C \subset \partial D$ and the genus of C is greater or equal to 1.

In this paper we consider locally Stein open subsets of the blow-up $\tilde{\mathbb{C}}^n$ of \mathbb{C}^n at a point. However one can identify $\tilde{\mathbb{C}}^n$ with $\mathcal{O}(-1)$, the holomorphic line bundle of degree -1 over \mathbb{P}^{n-1} and one can consider the more general case $X = \mathcal{O}(r)$, for $r < 0$ or $r > 0$. We want to decide under what additional geometrical conditions a locally Stein open subset of X is Stein. In this direction we prove:

Theorem 1. *Let $X = \mathcal{O}(r)$ be the degree r line bundle on \mathbb{P}^n and let $\Omega \subset X$ be a locally Stein open subset of X .*

- 1) *If $r < 0$ then Ω is Stein if and only if it does not contain an open subset of the form $U \setminus A$ where $A = \mathbb{P}^n$ is the zero section and U is an open neighborhood of A .*
- 2) *If $r > 0$ then Ω is Stein if and only if it does not contain a neighborhood of the section at infinity.*

2. Proof of Theorem 1

The proof of the theorem is based on the Lemmas 1 and 2 below.

Lemma 1. *Let $F: Z \rightarrow Y$ be a holomorphic line bundle over a complex manifold Y and let Z_0 be its zero section. If $Z \setminus Z_0$ is Stein then Y is also Stein.*

This is a particular case of a more general result (see Theorem 5, p. 151 in [5]).

DEFINITION 1. Suppose that M is a complex manifold, A is an analytic subset of M , $\text{codim}(A) > 0$, and D is an open subset of $M \setminus A$. A point $z \in \partial D \cap A$ is called removable along A if there exists an open neighborhood U of z such that $U \setminus A \subset D$.

Lemma 2. *Let A be a closed analytic subset of a Stein manifold M , $\text{codim}(A) > 0$, and $D \subset M \setminus A$ be an open subset. If D is locally Stein at every point $z \in \partial D \setminus A$ and if no boundary point $z \in \partial D \cap A$ is removable along A then D is Stein.*

This lemma is due to Grauert and Remmert [3] (see also Ueda [9]).

We begin now the proof of Theorem 1 and we start with a few notations. Let $\pi: \mathcal{O}(r) \rightarrow \mathbb{P}^n$ be the vector bundle projection, z_0, z_1, \dots, z_n be the coordinate functions in \mathbb{C}^{n+1} , and, for $k = 0, \dots, n$, we let $U_k = \{[z] = [z_0 : z_1 : \dots : z_n] \in \mathbb{P}^n : z_k \neq 0\}$. We denote by $\psi_k: \pi^{-1}(U_k) \rightarrow U_k \times \mathbb{C}$ the local trivializations. It follows that

$$(1) \quad (\psi_j \circ \psi_k^{-1})([z], \lambda) = \left([z], \frac{z_k^r}{z_j^r} \lambda \right), \quad \forall [z] = [z_0 : z_1 : \dots : z_n] \in U_j \cap U_k.$$

We will define now a holomorphic map $F: (\mathbb{C}^{n+1} \setminus \{0\}) \times \mathbb{C} \rightarrow \mathcal{O}(r)$ as follows. We set $W_k = \{(z, \lambda) \in (\mathbb{C}^{n+1} \setminus \{0\}) \times \mathbb{C} : z_k \neq 0\}$ for $k = 0, \dots, n$ and we define

$$F(z, \lambda) = \psi_k^{-1} \left([z], \frac{\lambda}{z_k^r} \right), \quad \forall (z, \lambda) \in W_k.$$

We have to check of course that F is well defined. However it follows from (1) that $(\psi_j \circ \psi_k^{-1})([z], \lambda/z_k^r) = ([z], \lambda/z_j^r)$ and hence $\psi_k^{-1}([z], \lambda/z_k^r) = \psi_j^{-1}([z], \lambda/z_j^r)$. As the map $(z, \lambda) \in W_k \rightarrow ([z], \lambda/z_k^r) \in U_k \times \mathbb{C}$ is surjective, it follows that $F|_{W_k}: W_k \rightarrow \pi^{-1}(U_k)$ is surjective as well. We claim that F is a local trivial fibration with fiber

\mathbb{C}^* and the transition functions are linear on each fiber. In other words there exists a holomorphic line bundle $\tilde{F}: Z \rightarrow \mathcal{O}(r)$ such that if we denote by Z_0 its zero section, then $Z \setminus Z_0 = (\mathbb{C}^{n+1} \setminus \{0\}) \times \mathbb{C}$ and $F = \tilde{F}|_{(\mathbb{C}^{n+1} \setminus \{0\}) \times \mathbb{C}}$.

We define $\Phi_k: W_k \rightarrow \pi^{-1}(U_k) \times \mathbb{C}^*$, $\Phi(z, \lambda) = (F(z, \lambda), z_k)$. We will show that Φ_k is invertible and we will compute $\Phi_j \circ \Phi_k^{-1}$.

Note that if we set

$$\tilde{\Phi}_k: W_k \rightarrow (U_k \times \mathbb{C}) \times \mathbb{C}^*, \quad \tilde{\Phi}_k(z, \lambda) = \left(\left([z], \frac{1}{z_k} \lambda \right), z_k \right),$$

$$\chi_k: (U_k \times \mathbb{C}) \times \mathbb{C}^* \rightarrow \pi^{-1}(U_k) \times \mathbb{C}^*, \quad \chi_k((z, \lambda), \mu) = (\psi_k^{-1}(z, \lambda), \mu)$$

then $\Phi_k = \chi_k \circ \tilde{\Phi}_k$.

It is easy to see that $\tilde{\Phi}_k$ is invertible and its inverse is

$$(2) \quad \tilde{\Phi}_k^{-1}(([z], \lambda), \mu) = \left(\frac{\mu}{z_k} z, \lambda \mu^r \right).$$

Obviously χ_k is invertible and its inverse is

$$(3) \quad \chi_k^{-1}(\zeta, \mu) = (\psi_k(\zeta), \mu).$$

Therefore Φ_k is invertible and from (1), (2) and (3) we deduce that

$$\forall (\zeta, \mu) \in \pi^{-1}(U_j \cap U_k),$$

$$\text{if } \pi(\zeta) = [z] = [z_0 : \cdots : z_n] \text{ then } (\Phi_j \circ \Phi_k^{-1})(\zeta, \mu) = \left(\zeta, \frac{z_j}{z_k} \mu \right)$$

and our claim is proved.

Let Ω be an open subset of $\mathcal{O}(r)$ which is locally Stein but it is not Stein. It follows from Lemma 1 that, as an open subset of $\mathbb{C}^{n+1} \times \mathbb{C}$, $F^{-1}(\Omega)$ is locally Stein at every point of $(\partial F^{-1}(\Omega)) \setminus (\{0\} \times \mathbb{C})$ and is not Stein. From Lemma 2 we conclude that there exists $\lambda_0 \in \mathbb{C}$ such that $(0, \lambda_0) \in (\partial F^{-1}(\Omega)) \cap (\{0\} \times \mathbb{C}) \subset \mathbb{C}^{n+1} \times \mathbb{C}$ is removable along $\{0\} \times \mathbb{C}$ and therefore there exists $\epsilon > 0$ such that

$$F^{-1}(\Omega) \supset \{(z, \lambda) \in (\mathbb{C}^{n+1} \setminus \{0\}) \times \mathbb{C} : |z_j| < \epsilon, \forall j = \overline{0, n} \text{ and } |\lambda - \lambda_0| < \epsilon\}.$$

PART 1: $r > 0$.

We have to show that Ω contains a neighborhood of the section at infinity. This is the same thing as showing that for every $[z] \in \mathbb{P}^n$ and every $k \in \{0, 1, \dots, n\}$ such that $[z] \in U_k$ there exists an open set, V , in \mathbb{P}^n and $M \in (0, \infty)$ such that $[z] \in V$ and $\psi_k(\Omega \cap \pi^{-1}(U_k)) \supset V \times \{\lambda \in \mathbb{C} : |\lambda| > M\}$.

Let $[\tilde{z}]$ be a fixed point in U_k and let T be a real number such that $T > \max\{|\tilde{z}_j|/|\tilde{z}_k| : j = \overline{0, n}\}$ (in particular $T > 1$). We set $V := \{[z] \in U_k : |z_j|/|z_k| < T\}$ which is an open neighborhood of $[\tilde{z}]$. Let $\lambda_1 \in \mathbb{C}$ and $M \in \mathbb{R}$ be such that $\lambda_1 \neq 0$, $|\lambda_1 - \lambda_0| < \epsilon$ and $M > |\lambda_1|T^r/\epsilon^r$.

We claim that $\psi_k(\Omega \cap \pi^{-1}(U_k)) \supset V \times \{\lambda \in \mathbb{C} : |\lambda| > M\}$. Indeed, let $([w], v) \in V \times \{\lambda \in \mathbb{C} : |\lambda| > M\}$ and let μ be a complex number such that $\mu^r = \lambda_1/v$. We set $z := (\mu/w_k)w \in \mathbb{C}^{n+1} \setminus \{0\}$ (z depends only on $[w]$ and not on a representative of this class). In particular $z_k = \mu \neq 0$. We note that, for every $j \in \{0, \dots, n\}$, $|z_j| = |\mu| |w_j|/|w_k| < |\mu|T$. However $|\mu| = (|\lambda_1|/|v|)^{1/r} < (|\lambda_1|/M)^{1/r} < \epsilon/T$ and therefore $|z_j| < \epsilon$. It follows that $(z, \lambda_1) \in F^{-1}(\Omega)$ and hence $F(z, \lambda_1) \in \Omega$. As $(z, \lambda_1) \in W_k$ we have that $F(z, \lambda_1) = \psi_k^{-1}([z], \lambda_1/z_k^r)$ and hence $\psi_k(F(z, \lambda_1)) = ([z], \lambda_1/z_k^r) = ([w], v)$.

PART 2: $r < 0$.

We have to show that Ω contains an open subset of the form $U \setminus A$ where A is the zero section and U is an open neighborhood of A . That is, we must show that for every $[z] \in \mathbb{P}^n$ and every $k \in \{0, 1, \dots, n\}$ such that $[z] \in U_k$ there exists an open set, V , in \mathbb{P}^n and $\delta \in (0, \infty)$ such that $[z] \in V$ and $\psi_k(\Omega \cap \pi^{-1}(U_k)) \supset V \times \{\lambda \in \mathbb{C} : 0 < |\lambda| < \delta\}$.

Let $[\tilde{z}]$ be a fixed point in U_k and let T be a real number such that $T > \max\{|\tilde{z}_j|/|\tilde{z}_k| : j = \overline{0, n}\}$. Let $\lambda_1 \in \mathbb{C}$ and $\delta \in \mathbb{R}$ be such that $\lambda_1 \neq 0$, $|\lambda_1 - \lambda_0| < \epsilon$ and $\delta < (\epsilon/T)^{-r} |\lambda_1|$. We claim that $\psi_k(\Omega \cap \pi^{-1}(U_k)) \supset V \times \{\lambda \in \mathbb{C} : 0 < |\lambda| < \delta\}$. Indeed let $([w], v) \in V \times \{\lambda \in \mathbb{C} : 0 < |\lambda| < \delta\}$, and let μ be a complex number such that $\mu^{-r} = v/\lambda_1$ (hence $\mu \neq 0$). It follows that $|\mu|^{-r} < \delta/|\lambda_1| < (\epsilon/T)^{-r}$ and therefore $|\mu| < \epsilon/T$. Let $z = (\mu/w_k)w$. In particular $z_k = \mu$, hence $z_k \neq 0$ and therefore $(z, \lambda_1) \in W_k$. For every $j = 0, 1, \dots, n$, $|z_j| = |\mu \cdot w_j|/|w_k| \leq |\mu|T < \epsilon$. We deduce that $(z, \lambda_1) \in F^{-1}(\Omega) \cap W_k$. Therefore $F(z, \lambda_1) \in \Omega \cap \pi^{-1}(U_k)$ and $F(z, \lambda_1) = \psi_k^{-1}([z], \lambda_1/z_k^r)$, which implies that $\psi_k(F(z, \lambda_1)) = ([z], \lambda_1/z_k^r) = ([w], \lambda_1/\mu^r) = ([w], v)$.

REMARK. 1) We used in the proof the fact that the pull-back of $\mathcal{O}(r)$ on $\mathbb{C}^{n+1} \setminus \{0\}$ is trivial, but we had to work with a fixed trivialization in order to apply the Grauert–Remmert removability theorem (Lemma 2).

2) The blow-up of a Stein manifold at a point is not infinitesimally homogeneous and therefore the results in [4] cannot be applied in our situation.

ACKNOWLEDGMENTS. Both authors were partially supported by CNCSIS Grant 1185, contract 472/2009.

References

- [1] J. Brun: *Sur le problème de Levi dans certains fibres*, Manuscripta Math. **14** (1974), 217–222.
- [2] R. Fujita: *Domaines sans point critique intérieur sur l'espace projectif complexe*, J. Math. Soc. Japan **15** (1963), 443–473.
- [3] H. Grauert and R. Remmert: *Konvexität in der komplexen Analysis. Nicht-holomorph-konvexe Holomorphegebiete und Anwendungen auf die Abbildungstheorie*, Comment. Math. Helv. **31** (1956), 152–160, 161–183.
- [4] A. Hirschowitz: *Pseudoconvexité au-dessus d'espaces plus ou moins homogènes*, Invent. Math. **26** (1974), 303–322.

- [5] Y. Matsushima and A. Morimoto: *Sur certains espaces fibrés holomorphes sur une variété de Stein*, Bull. Soc. Math. France **88** (1960), 137–155.
- [6] K. Oka: *Sur les fonctions analytiques de plusieurs variables, IX. Domaines finis sans point critique intérieur*, Jap. J. Math. **23** (1953), 97–155 (1954).
- [7] S.Yu. Nemirovskii: *Complex analysis and differential topology on complex surfaces*, Uspekhi Mat. Nauk **54** (1999), 47–74, translation in Russian Math. Surveys **54** (1999), 729–752
- [8] A. Takeuchi: *Domaines pseudoconvexes infinis et la métrique riemannienne dans un espace projectif*, J. Math. Soc. Japan **16** (1964), 159–181.
- [9] T. Ueda: *Domains of holomorphy in Segre cones*, Publ. Res. Inst. Math. Sci. **22** (1986), 561–569.

Mihnea Colțoiu
 Institute of Mathematics of the Romanian Academy
 P.O. Box 1-764, Bucharest 014700
 Romania
 e-mail: Mihnea.Coltoiu@imar.ro

Cezar Joița
 Institute of Mathematics of the Romanian Academy
 P.O. Box 1-764, Bucharest 014700
 Romania
 e-mail: Cezar.Joita@imar.ro