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1. Introduction

In this work we study the formation of singularities in the solutions of the
following system of two first order partial differential equations

zt + azx •+ bwx — 0

wt + czx + dwx = 0.

We assume that the matrix A = has smooth entries depending on (z, w) and

L c ά\
moreover we suppose that, for (z,w) in a neighborhood of the origin, the matrix
A has two distinct real eigenvalues* i. e. the system is strictly hyperbolic. It is well
known that this system can be written in the following form

I ut + λ(τx, v)ux = 0

[vt + μ(u,υ)υx = 0,

where X(u,υ) < μ(u,v). The function u and υ are the Riemann invariants (see
[12, p. 94]). Supposing that u(x,0) and υ(x,0) are smooth functions, we ask if the
system (S) may have a nontrivίal solution which remains smooth for all time.

This question has an almost complete answer in the case of initial data with
compact support (see [10], [5, Ch. 1], [9] and [1, Ch. 4]). Also for N x N systems
the case of initial data with compact support has been widely studied (see [6], [11],
[5, Ch. 1] and [1, Ch. 4]). For N x N systems, but only in diagonal form, some
results are known when initial data have a limit for x —> +oo and for x —> —oo (see

[4])
Here we are interested in the case of periodic initial data. By the works of Lax

[10] and Glimm and Lax [3] we know that if the system (S) is genuinely nonlinear,
i. e. λu(0,0) φ 0 and μυ(0,0) Φ 0, then smooth nonconstant periodic initial data
which are "sufficiently small" give rise to the blow-up of the solution, i. e. the first
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derivatives of u or υ becomes infinite for certain (x, t) with t > 0. Consequently
there exists no nontrivial solution to (S) that remains smooth for all time if initial
data are "small" .

This paper is devoted to show a similar result when the genuine nonlinearity is
replaced by the following weaker condition: there exists a neighborhood W of the
origin such that λu is not identically equal to zero on any open subset of W and
λu doesn't assume both positive and negative values on W, and the same is true for
μv.

Our starting point has been the work of Klainerman and Majda [9] in which
the authors consider a particular system of type (S) obtained from the hyperbolic
equation

(E) wtt + k(wx)wxx = 0,

with fc(0) = — 1. They prove that if there exists a positive integer p > 1 such
that fcW)(0) = 0 for j = l , . . . ,p - 1 and k^p)(0) φ 0, then the blow-up of the
solution takes place for all nonconstant periodic initial data whose C1 norm is
sufficiently small. It is easy to see that in the system (S) obtained from (E) we have
—\(u,υ) = μ(u,v) = h(u — υ) where h is a certain function linked to k in such a
way that ft(0) = 1, h^(0) = 0 for j = 1,... ,p - 1 and /ι^(0) φ 0.

Our work improves Klainerman and Majda's result in the case of p odd, and
the main idea of our proof is a development of Klainerman and Majda's one. In
particular the formation of singularities is shown by the following "geometric"
argument (see also [8, p. 415]): we associate to the solution of (S) with initial data
(uo,vo) two families of characteristic curves defined by

dx~\
— = X(u,υ)(x1,t), x1(0,a)=a,

^ = μ(u,v)(x2,t), x2(0,β)=β.
at

Functions u and v are constant along xι and x<i respectively. Suppose that a G R.
and ur

Q(a) Φ 0. If there exists t > 0 such that ^ evaluated in (ί, a) is less than zero
then the characteristic curve xχ(α,ί) starting near a intersect each other before the
time f, and, as the function u is constant along these curves and assumes different
values on different curves, u ceases to be continuous before time t, i.e. blow-up
occurs.

It is interesting to remark that when the system is genuinely nonlinear the fact
that dxi/da will become less than zero on the x\— characteristic starting from a
depends only on the value of u'0(a)\ on the contrary, when the system is not genuinely
nonlinear the value of dxi/da along the x\— characteristic depends on the value of
the functions UQ and VQ on the whole domain R.

Let us end saying that as in the work of Klainerman and Majda, the blow—up
result for the system (S) can be used to deduce a similar result for the hyperbolic



FORMATION OF SINGULARITIES 845

equation (E), also in the case of the Dirichlet problem. This is the content of the
Corollaries 1 and 2. In particular we show that in the Dirichlet initial boundary
value problem for (E) with k monotone and nonconstant there are no solutions
which are time—periodic, if the initial data are sufficiently small and non zero.

Other results improving Klainerman and Majda's one can be found in [2].

2. Results and Remarks

Theorem. Consider the Cauchy problem for the following nonlinear hyper-
bolic 2 x 2 system of first order partial differential equations, written in terms of the
Riemann invariants,

ί ut + \{u,v)ux = 0
\υt+μ(u,υ)υx = 0

with C1 periodic initial data (u(x,0),υ(x,0)) = (ug(x),i;g(a;)) = (εuo(x),ευo(x)),
where UQ, VQ are both nonconstant and have period σ > 0; λ and μ are smooth
functions with λ(0,0) < μ(0,0).

Suppose that there exists an open neighborhood W of the origin of M2 such
that

λu is not identically zero on any open subset of W and

\u(u,υ) > 0 for all (u,v) G W or \u(u,v) < 0 for all (u,υ) G W,

(H) or

μv is not identically zero on any open subset of W and

μυ(u,υ) > 0 for all (u,υ) G W or μv(u,υ) < 0 for all (u,υ) G W.

Then there exists ε0 > 0 such that the C1 solution of {I) with initial data (wgĵ o)
develops a singularity in the first derivatives in finite time, for all ε G]0, εo]

REMARK 1. If one of the initial data is constant, e. g. VQ(X) = a, the system is
in fact reduced to the single equation ut + \(u, a)ux — 0; in this case if the function
u J—> λ(u, a) is nonconstant on every open interval then there is a development of
singularities in finite time for all nonconstant and periodic t̂ o (see [7, p. 4]).

REMARK 2. It is not necessary that the functions λ and μ are smooth functions;
actually only C1 regularity is needed.

REMARK 3. As it will be clear by the proof, the constant εo depends only on
the functions λ and μ, on the period σ and on the C1 norm of the initial data. It is
possible to give an estimate for the lifespan of the classical solution in term of the
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parameter ε. The result is the following: let ε G]0, εo] and consider the functions

L(ε) = min εuo(a) / λu(εuo(a),εvo(β))dβ

R(ε) = min ευf

0(β) / μv(εuo(a),εvo(β))da.
βφ,σ) JO

Easily L(ε) < 0, R(ε) < 0 and (L(ε))2 + {R(ε))2 > 0. Denoting by Tε the lifespan
of the classical solution with initial data (V>Q,VQ) we have

ε-maχ{-L(ε),-R(ε)}'

where C does not depend on ε.

The Theorem has an easy corollary in the case of a particular second order
nonlinear hyperbolic equation.

Corollary 1. Consider the Cauchy problem for the following wave equation

(2) uu + k(ux)uxx = 0

with periodic initial data u(x,0) = UQ(X) — εuo(x) and ut(x,0) = VQ(X) = εvo(x),
where (ito, ̂ o) £ C2 xC1 is nonconstant and has period σ > 0; k is a smooth function,
with fc(0) = - 1 .

Suppose that there exists an open neighborhood U of the origin ofR such that

k is not constant on any open interval contained in U,

(HO and

k is monotone in U

Then there exists εo > 0 such that the classical C2 solution of (2) with initial data
(UQ, vξ) develops a singularity in the second derivatives infinite time, for allε G]0, εo].

REMARK 4. The result of Corollary 1 when the function k' has a zero with
finite even order in 0 was already known by the work of Klainerman and Majda
([9, Th. 1]) in which the case of function k' with a zero with finite order in 0,
without any monotonicity condition, is treated. In that paper also an estimate of
the lifespan of the classical solution is given. It is possible to recover an estimate
similar to Klainerman and Majda's one in the case of finite even order zero for k'9
using the computation of Remark 3.

We can use Corollary 1 to prove a result on the Dirichlet problem for the
equation (2). This is the content of the following statement.
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Corollary 2. Consider the Dίrichlet initial boundary value problem in [0, L] x
[0, +oo[ for (2) with Dirichlet boundary condition u(0, t) = u(L, t) — 0 for t > 0 and
with non zero initial data u(x,0) = UQ(X) = εuo(x) and ut(x,0) = VQ(X) = εvo(x).
Let (UO,VQ) G C2([0,L]) x C1([0,L]) satisfy the following compatibility conditions

uo(0) = uo(L) = 0; vo(O) = υo(L) = 0; <(0) = <(L) = 0.

Suppose that the condition (H7) is satisfied.
Then there exists ε0 > 0 such that the classical C2 solution of this problem with

initial data (UQ, VQ) develops a singularity in the second derivatives in finite time, for
alls e]0,eo].

REMARK 5. We prove that given the function k and the value L there exists
<50 > 0 such that if the C1 norm of (u'Q,v0) is less than <S0 then there will be the
development of singularities in the second derivatives of the solution of the Dirichlet
initial boundary value problem considered in Corollary 2; as a consequence, there
exists a ball in C2([0,L] x [0,+oo[) such that the only solution to this Dirichlet
problem which is in the ball and it is time—periodic is the null function.

3. Proof of the Theorem

The proof of the Theorem is inspired to that one of Theorem 1/ in [9]. The
main difference is that in our case the initial data are periodic with the same period
σ and this will allow us to perform twice a cancellation of terms in the computation
of the quantities Ii(ao,tN) and hiβo.tjsf) (see Lemmas 1 and 2 below).

Without loss of generality we can suppose that λ(0,0) = —1 and μ(0,0) = 1.
Moreover there exist δ > 0 such that ] - 2<5,2<S[x] - 26,2δ[= W C W, and if |/|,
\r\ < δ then

~l<X(l,r)<~ and ^ < μ ( Z , r ) < J .

Let /o, 7*o be two real C1 functions defined on R, nonconstant and periodic with
period σ > 0, with ||/o||oo>||ro||oo < δ. Consider the Cauchy problem

(3)
rt +μ(l,r)rx =0

= ro (x).

We claim that there exists δr e]0,1[ such that if llZolloolkόlloo < ί7 then (3) cannot
have a C1 solution defined o n R x [0, -f oo[. We argue by contradiction. Let (Z, r) be
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a C1 solution to (3) on R x [0, +oo[. We introduce the characteristic curves xι(a,t)

and x2{β,t), relative to the solution (/,r); we have

(4)
y a;i(α,0) = α,

and

x2(β,0)=β.

Consequently l(xι(a,t),t) = lo(a) and r(x2(β,t),t) = ro(β) for all t > 0.

We define

(6) M*,Ό = Γ n

Xa{\$ λds, h2(l,r)= f μ ^ da,
Jo (λ-μ)(Z,s) Jo (μ-λ)(s , r)

) ( , r )

so that hi, J12 are smooth functions on W. Next we consider

eMJ0(α),r(xi(α,t),t)

(7)
e Λ i ( Z o ( α ) ϊ Γ o ( α ) ) ,

As for all (α,ί) G R x [0,+OO[ we have that (Z0(α),r(xi(cί,ί),ί)) G [-<5,<5] x [-*,*]

and for all (β,t) G R x [0, +oo[ we have that ( l ( x 2 ( f t ί ) , t ) , r 0 ^ ) ) G [-δ,δ] x[-δ,δ],

there exists o? > 1 such that

(8) ^<fci(M)<d, J<fc2(i9,ί)<d,

for all (α, ί) G R x [0, +oo[ and for all (β, t) eRx [0, +oo[ respectively.

A central role in the proof will be played by the following identities for the

waves infinitesimal compression ratio which can be obtained by an easy computation

(see [12, p. 102]),

(9) - ^ ( α , ί ) = fe1(α,ί)[l + Zi(α) / λι(lo(α),r(x1(α,s)1s))k^1(α,s)ds},
dα Jo

and

(10) ^(β,t) = [
dp Jo

Let us denote by Ji(α, £), hiβ.t) the quantities

(11)
ft

Jo
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and

(12) I2{β,t)=r'0(β) f μr(l(x2(β1s),s),r0(β))K1(β^)ds.
Jo

Next we define the functions f(a,β) and g(a,β) in the following way

(n - n -

and

μr(lo(a),ro(β))(14) 9(a,β) =
(μ - λ)(lo(a),ro(β))

For each a, β G R with α > /3 we denote by s(α,/3) the unique solution s to
the equation

(15) Xl(a,s)

The proof of the Theorem will be deduced by the following two lemmas.

Lemma 1. Let a0 be any real number. For every N £ N there exists t^ > 0
such that

[ petQ

N I f(ao,β)e~h2^ι°^^
J —

+N Γ f(ao,βyo(β) I*"*' (μre-hη(l(x2(β,s),s),r0(β))dsdβ
Ja.o—σ Jθ

' N n — 1
i\ n l pQ,Q z o o potQ

+ Σ Σ / f(ao,β)r'o(β) g{a,β%{a) /(α, 7)^(7)
n = l j = l α° σ α° σ ^

/
{μre~h<2){l(0:2(7? 5)? s),ro(ry))dsd'ydctdβ

-(αo—jσ,7—(n —l)σ) J

Lemma 2. Lei /30 6^ αwj' ^ α / number. For every N e N ίAere e^cis^ tjv > 0
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:,MJo(A>),ro(A))) N

*,βo)
+JV / g(a,βo)l'o(a) /

Jβo Jo

N n-1 rβ0+σ rβo+σ /»α

+ Σ Σ / 9(*,βo)ϊo(*) f(a,β)r'0(β) g(<γ,β)l'0{<y)
n = 1 j = 1 Jβo Jβo Jβo

/

s{Ί-(n-l)σ,β+{j-l)σ)

(\ιe-hl)(l0(a),r(x1(a,s),s))dsdjdβda
_(7-(n-l)σ,/30+jσ)

Let us show how from Lemma 1 and Lemma 2 we obtain the conclusion of the
Theorem, Suppose for instance that Xι is not identically zero on any open subset of
W and Xι < 0 on W; in this case only the result of Lemma 1 is needed. Keeping in
mind that a contradiction is obtained when dxι/da assumes the value 0, we start to
consider /i(αo,tjv): if there exist α 0 and t^ such that this quantity is less than — 1,
the Theorem is proved.

First we remark that if β < a and a — β < σ, then

(18) s(a,β)<\σ.

Similarly, using the fact that the solution (l,r) is periodic in x of period σ and
consequently the characteristic curves xι(a,t) and x2(β,t) are periodic in a and β
respectively, of period σ, we have that, for all α, β, 7 G R with β < 7 < a and
a — 7 < σ,

(19) s(α, /?) - 5(7, /3) < -σ.
3

Next we observe that there exist Mi, M2 > 0 such that

(20)

for all β G R,• ί > 0;

(21) |/(α,/3) |<M 2 , and |p(a,/?)| < M2,

for all α, /3 G R; moreover there exists c > max{l, σM2} such that

0?^ _ < p^i(/o(α),ro(α)) / ^ ^ /ι2(/o(o;),ro(α)) <

C ~ ~ C ~ ~
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for all α G R. It is worthy to say that, after having fixed <5, the constants c, Mi, M2

depends only on the functions λ and μ and on the value of σ.
Let ά be any real number and consider the function

ί
J δί

f(a,β)dβ;

this function is periodic of period σ, its value does not depend on ά and

j ϊo(a) f f(a,β)dβda = 0.
JO J δί—σ

Consequently

inf Ma) [ f(a,β)dβ= min ϊo(a) Γ f(a,β)dβ<0.

In fact if this infimum is > 0 then l'0(a) f*_σ / (α, β)dβ > 0 for all a. As /(α, β)<0
for all (α, /3), we get that if, for some α, /^(α) > 0, then /(ά, /3) = 0 for all β. As l'o
is a continuous function taking positive value for some ά, we obtain that f(a,β) is
zero on an open rectangle, and λ/ would be zero on an open rectangle of VK,against
the hypothesis.

We fix αo in such a way that this minimum is attained. We denote by a the the
value

a = l'0(a0) ί ° f(ao,β)dβ,
J cx.Q — σ

and we remark that \a\ < σM2 and

a= min Ma) ί f(a,β)dβ,
ctE[0,σ] Jά-σ

for all Q G R .

From (16) we have that

Na α°~σ———-

..

N n - 1

+« 2ΣΣ
n=lj=l

.σ 9(a, β)l'o(a)i;° /(α, 7)^0(7) J : μ^dsdΊdadβ

aC_σf(a0,β)dβ
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Now, from (22), we obtain

(23)
Γ_σf(ao,β)dβ

recalling (18), (20) and the fact that ||ro||oo < δ', we deduce

(24)
°-σf(

ao,β)r'o(β) fc*
 β (μre

 h2)(.. .)dsdβ
< -

We remark now that

Γ K(a)\ Γ \f(a,Ί)\dΊda < Γ \l'0(a)\ Γ° \f(a,Ί)\dΊda
J OίQ—σ Jβ J cxQ—σ J a.Q—σ

<? I i/' (

~ Jao-σ

From this, together with (19), (20) and (21), we have

(25)

- σ y\ai P)ί0\cx) Jβ Jl^Tj'OwJJ... rr

/
OίQ—<T

< -σ2M1M2(δ')2.

From (23), (24) and (25) we deduce that

h(ao,tN) < ̂ 4 + -cN\a\δ'σMι + -cN2a2(δ')2σ2MιM2.cz 3 3

Choose now TV such that Na/c2 G [-3, -2] if

δ' m i Π { 4M lC3 + iL^MxM^' 7 '

then /i(αo,ίAr) < — 1 and this is enough for concluding the proof of the Theorem.
To obtain the estimate in Remark 3 we note that if 7i(αo,ίjv) < — 1 then tjy is an
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upper bound for the lifespan of the solution. On the other hand tπ < 2Nσ/5 and
N < 3c2/|α|. Recalling that, by (13), there exists cλ, c2 > 0 such that

ciλz(Zo(α),ro(/ϊ)) < f(a,β) <

we conclude that

—.<C(- min ϊo(a) Γ ^
a\ α€[O,σ] Jo

To end we prove Lemma 1, the proof of Lemma 2 being similar. We start
computing I1(a0,tN). For a fixed α 0 we consider the function β \-> s(ao,β) and we
use β as a new variable in the integral in (11). Differentiating the identity (15) we
have

from this and (4), (5) we get

dβ(
a°>P) (λ-μ)(/ 0 (α 0 ),

the solution s of the equation xι(ao,s) = α;2(αo — Nσ,s), from (11) we
obtain

p A;(/o(a),ro(/3))
Jaa-Jaa-No

Using (10) and (13) we have

(26) /i(αo,tΛr)

°
oto-Nσ

+ Γ ° f(ao,βyo(β) fSa°' (μre-hη(l(x2(β,s),s),r0(β))dsdβ
Joto-Nσ JO

As the function /(αo,^)e~/ l2(/° (/3)' r° (/3)) is periodic in β with period σ, the former
term in (26) can be written as

(27)
Λ l ( ί o ( α o ) > r o ( α o ) ) / °

J OίQ—
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We consider the latter term in (26). Again using the periodicity of the functions
involved we can write

(28)

Γ° f(ao,β)r'o(β) ί
JotQ—Nσ Jθ

,αo-(n-l)σ

/ f(ao,β)r'o(β)
n=l Jcxnσ

N rθίQ-{n-ϊ)σ ps(ao-(n-l)σ,β)

Σ
N rθίQ-{n-ϊ)σ ps(ao-(n-l)σ,β)

= Σ f(ao,β)r'o(β) (μre-hη(l(x2(β,s),s),r0(β))dsdβ
n = l JOίo — nσ JO

N ^αo-(n-l)σ ps(ao,β)

+ Σ / f(<*o,β)r'o(β) / (μre-hη(l(x2(β,s),s)1r0(β))dsdβ
n=^J OLQ—nσ J s(ao — (n—l)σ,β)

rOLQ ps(aO,β)

= N f(ao,β)r'o(β) (μre-hη(l(x2(β,s),s),r0(β))dsdβ
J OLo—σ JO

σ rs(ao,β)

f(ao,β)r'o(β) / (μre-hη(l(x2(β,s),s),r0(β))dsdβ
Js(θί0 — (n— l)σ,/3)

a0-(n-l)σ

We work now on the last term of (28). Keeping β fixed we consider the function
a ^ s(a,β) and we use it to change the variable in the inner integral. As

we obtain

(29)

=Σ f(ao,β)r'o(β) / (μre-hη(l(x2(β,s),s),r0(β))dsdβ
n=\JOίQ—nσ J S{OLQ — (n — l)σ,/3)

μr(lo(a),ro(β)) %£(<*,*(<*,β))
-(n-i)σ(M-λ)(/o(α),ro(/3))

Suppose now that 0 < ίi < t2 from (9) we easily deduce that

(30) p(a,t2)=k^rT1

)p(a,t1)da /ci(α,ίi) da

(α, s), s))^1 (a, s)ds.
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We write (30) with t\ = s(α,α0 - (n — l)σ) and t2 = s(a,β), and we replace
(dxι/da)(a, s(α, β)) in the second term of (29) using (14) we have

(31)

— \n — l

itΓ U 7(«o,/?K(/3)/Ω° 9(a,β)l'0(a)

</s(α,αo- (n — 1
(λze-^)(/0(α),r(xi(α,s),5))dsί/α^.

interchanging the order of integration we see that the first term in (31) is zero. In
the second term we perform once again a change of variable in the inner integral,
obtaining

A = Σ Γ U /(«o,/?K(/?) Γ° g(a,β)l'0(a)
n = l JOLQ — nσ Jcx.Q — {n—\)σ

J 3Jβ (μ - λ)(io(α), ro(7))

N n—1 »cto-(n—l)σ pao-

= Σ Σ / f(<xo,βyo<β) /
n=l j = l ^o-nσ Jao-j

ao-(j-l)σ

A t ( f o ( α ) > r o ( 7 ) )

(μ - λ)(/o(α),ro(7))

Arguing as before we compute

dx2, , xx fc2(7js(α,7)) dx2f f . ,λ

-dβM*^ = k2(Ί,s(ao-Jσ,,))^βMa°-Jσn))

/

s(α,7)

μr{l{x2{l, s), s),
-(αo—jσ,7)

Replacing this in the second term of (32) we have
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N n-1 -αo-(n-l)σ pao-(j-l)σ
=ΣΈ f(ao,β)r'o(β) 9(a,β)ϊo(a)

n— i j—i JOLQ— nσ JoίQ—jσ

ra0-(n-l)σ

(«,7)
(33)

Σ Σ j f J f(ao>β)r°^£°_l 9(<*,β)l'0(<x)
a.o-{n-l)σ

The first term in (33) is zero : to see this it is sufficient to interchange the order
of integration between the variables 7 an a. From (27), (28) and (33), using the
periodicity we obtain (16) the proof is complete.
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