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On Principally Linear Elliptic Differential
Equations of the Second Ovrder.

By Mitio NAGUMO

§ 0 Introduction

2
We use the notations 9u or 9u for ou_ and 9’z or 9*u for _ou_ .
X3 t ax, XiXj iJ ax,,axj
We write x for x,,-,xn,, Su for Ou,--Ju, and 9’ for gzu
%, Xm

(i,j= 17 Tty m)-
In this note we shall consider principally linear partial differential
equation® of elliptic type

( 0 ) 2’:1: J=1 atj(x) iajzu :f(x) u, ?u) .

We assume once for all that the quadratic form 37 ,.,a.,(x)&E; is
positive definite. 'We denote by C[A] the set of all continuous func-
tions on A, and by C?[A] the set of all functions whose partial
derivatives up to the p-th order are all continuous on A. Under a
solution of (0) in the domain D we understand a function of C*[D]
which satisfies (0) for xe€ D.?> We say that a solution #(x) of (0) in
D takes the boundary value B(x), when u(x)eC[D] and u(x) = B(x)
for xe D.»

We say a function o(x) is a quasi-supersolution (-subsolution) of
(0) in a domain D, if for every point x,€ D, there exist a neighborhood
U of x, and a finite number of functions w,(x)cC} U] (v=1,---,n)
such that

0.1) o(x) = Min o,(x) ( Max o,(x)) for xeU
v 1<vgn

and

(0 2) Z;in, =1 a“(x)?jzw,, gf(x, @y, ?wv) (-_>=f(x> @y, ?wv)) .

1) We say that a partial differential equation is principally linear, if it is linear in the
terms of the highest derivatives with coeficients containing only independent variables.

2) D is a connected open set in the m-dimensional Euclidean space.

3) D means the closure of D, and D the boundary of D.
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The purpose of this note is to give an existence theorem for the
solution of the boundary value problem of the first kind regarding
the equation (0), under adequate supplementary conditions, in such
a way that the solution #(x) is limited by the inequalities

o(x) < u(x) < o(x),

where o(x) and o(x) are quasi-supersolution and quasi-subsolution of
(0) respectively. The main result of this note is given in §6.

The argument of this note is based on the work of J. SCHAUDER :
Uber lineare elliptische Differentialgleichungen zweiter Ordung.® We
define the distance of two points x and x’ by |x—a'|= (37, (x,—x,/))"2
We also define |9f| and |9°%f| by

1971 = G @) 19 1= (0,1 (@)
A function f(x) is said to be H,—continuous (0 < a < 1) on A, if there
exists a constant C such that

| f(x)—f(xh| < Clx—x'|* for all x,x'cA.

Then we define H%(f) (the Holder constant of f on A) as the least
value of such C. We also use the notation

(0.3) A4 =1\§33c|f(x)l +H%(f)
and, if fe C*A),
(0. 4) A2 = AL+ llof [la+ 2o f ||%.

Schauder proved the following theorems :

Theorem A. Let D be a bounded domain, and let a,(x) be H,, -
continuous in D and subjected to the condition

(0.5) det(a;) =1 and |layx)]|3*<A 0<<a<1, £6>0).

Then there exists a constant C, depending only on «, & and A such that,
for any compact set K in D and any solution u(x) of

(0.6) 230 51 845(%) 9'u = f ()
such that || u||%? <+ oo, holds the inequality
lu(2) [I%* < Cx87*(1f 115+ Max|u(x)]),
where § = dist (K, D).

4) Math. Zeit. 38 (1938), 257-282.
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Theorem B. Let D be a bounded domain whose boundary D is of
type Bh.> Let a,,(x) satisfy (0.5) and let B(x) be a function of C*[D]
such that ||B||32<+oco. Then there exists a solution u(x) of (0.6) in
D with the boundary value (B(x) such that

Nullz? < CALFND+I BT,
where C is a constant depending only on D, a, & and A.

REMARK. We can easily prove that there exists a constant A
depending only on A and L such that (0.5) holds, if a,,(x) satisfies

AP <3P aaux) €8, < A for D0, E=1(AL1])
and
S J=1 (a“(x’)—a”(x))z} V2 Lix'—x|*te,

where A and L are positive constants.

§1 Limitation of 2¢(x)

1. Theorem 1. Let o(x) be a quasi-supersolution (-subsolution) of the
equation

1.1 Dlu] =W -1a,x) §2u—F(x, ou)=10

in the domain D, and let v(x) be a function of C’[D] with the following
properties :

(1.2) ®[v] >0 (<0) for x such that v(x) > o(x) (< 0(x))
and
(1.3) lim {p(x)—w(*)} <0 (=0) for xeD.

Then o
(%) < o(x) (= (%)) for xeD.

Proof. If the conclusion was not true, there exist by (1.3) a posi-
tive constant « and a point x,€ D such that

(1.4) v(x,) = o(x,)+a and v(x) < w(x)+a in D.9

Then there exist a neighborhood U and a function o,(x) € C*[D] such
that

5) A [-dimentional manifold is said of type Bk, if it is locally representable in the
form x;=@;(sy,..., s1) in such way that Rank?((p)=l and 92(0 is Hg-continuous (0 <e <{1).
6) a =inf {A: w(x)+A>v(x) for all x€ D}.
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(1.5) 0y(%,) = o(%,), ©,(¥) = o(x) in U
and
(1. 6) Plo,]1<0 in U.
Thus,
(1.7) oy (x,) < v(x,)
and, as o,(x)—v(x) is minimum for x = x, by (1.4) and (1.5), we have
(1.8) Q0,(%,) = v(x,)
and
(1.9) 200 5=1 @ay(%0) Pou(%,) = 300 5a1 @us(%,) J0(X,) 7
Hence, from (1.8) and (1.9)
(1. 10) Plv],_,, = PLov],_ s, -

On the other hand, from (1.7), (1.2) and (1.6) we get
q)[v]x=xo>.0 > (I)[m‘“]x=x0’
which contradicts (1.10), q.e.d.

2. We say that a domain D has the property ((¢)), when there
exists a constant o >0 with the following property: To any point p
of D there corresponds a closed sphere S, with radius ¢ such that

Dr\sp = (ﬁ)

Lemma 1. Let D be a bounded domain with the property ((c)), and
let d be the diameter of D. Let a,;(x) be subjected to the condition

2.1 AT Z2Wamay® EE, <A for 3. E=1,

where A is a constant > 1. Then there exists a constant C,,,,, depending
only on m, A, o and d such that for the solution u(x) of

2.2) 200 51 Ay5(%) gzu =f(x)

with the boundary value uw =0 (x € D), where f(x) is bounded on D, holds
the inequality

(2.3) |#(2)| = Cayorq dist (x, D) sup| £(2)].

7) By a linear transformation of coordinates we can bring the matrix (a;;(x,)) into the
diagonal form (A9;;), where A;,>0. Then 3A; taizw(xo)gzzxi ?:u(xo), which is epuivalent
to (1.9).
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Proof. Let x, be any point of D and let » be a point of D such
that dist (x,, D)= |x,—p|. Let S, be the closed sphere with radius o

such that ﬁr\S,,=(p), and let ¢ be the center of S,. If we put
o(x) = ¢(r), where » = |x—c|, then

(2.4) 20 521 Agy(x) gzw = a(x) " +r {2 au—a(x)} ¢,
where a(x) = 772 200 51 @y (X) (X —C) (X, —Cy) .

Thus, if we define ¢(r) by
(2.5) go(r):(mA)“FS (d+ o)Ay —mAFL_ 1 gy

where F is a constant _>sup|f(x)|, and as ¢'(r) >0, ¢"(r)< 0 for
o <r<_8+d and

S au(x) <mA,  ax)=A"'  (by (2.1)),
we have

(2. 6) 2’?, j=1 a“(x) tajzw + F g 0 in D

and w(x) =0 for xeD.
On the other hand, as F >|f(x)] in D, we get from (2. 2)

(2.7) SV a1 @yy(x) tajzu+F> 0 in D
and #(x) =0 < o(x) for xeD Thus, by Theorem 1,
u(x) < w(x) = @(7) in D.
Then, as o(p) = p(¢) = 0 and @' <0,

u(xo) < ‘P’(O')lxo_ﬁ | )
or from (2.5)
u(x,) < Cy0,, dist (x,, D) F,

where Ciora = (MA) {(d+ o)W A1 _5}
Similarly we obtain

u(x,) = —Cy, ., . dist (x,, D) F.
Letting F tend to sup|f(x)] we get (2.3).

§2 Estimation of o«

3. Theorem 2. Let D be a bounded domain, whose diameter is d.
Let a,y(x) be subjected to the conditions (2.1) and
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(3.1) Oy {a(x)—ay(x)})* < L|x'—x|  for any x,x' €D,
I’ and f(x, u, p) (p = (p,, - ,Dm)) Satisfy the inequality

for x€D, o(x) <u < o(x) and |p|< +co. Let u(x) be any solution of
(0) such that

(3.3) lu(x)| < M in D, where 16 ABM <_1.

Then there exist constants C and C®, depending only on m, A, L, B, M
I’ and d, such that
[Qu(x)| < C®/p(x)"* Max {|u(x')|}+C®,
. [2" =2 | < pay
where p(x) = dist (x, D).

Proof. Let @ be any point of D, and let 37, be a closed sphere
defined by )

Sl={x; |[x—a|< edist (¢, D)} (0<rx<1).
We put also
(3.4) o= l\élazx {1oulp(x)},
where p,(x) = dist (x, >3,). Then there exists a point x, € 3", such that
(3.5) |2u(%,) | pl %) = o (%, €33 .

Now let Tx = &' be a linear transformation of coordinates such
that
Z;n' J=1 atj(xo) Qzu =>", iai?u/,tf)

where w'(x')y =wu(x) and f(x, u, ?u) =f’(x", u', g?u’) .
Then we have for (0)
(3. 6) Au' = 3 18y —a’ (")) Qzu’-’r—f'(x’, u', u').

Let S, be a closed sphere in T(D) = D' with the center x,/ = T (x,)
and the radius M\p,(x,), where A\ is a constant such that 0 < A< A™*/2
and S, C T(GL). Let G(«', &) be the Green’s function of the equation
Ay’ = 0 with respect to the domain S, so that from (3. 6)

8) Ou’ means O u’.
2 xt’
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!

U = —a);,;l SS)\ G(x,, E) {ZT, =1 (Stj—d;.,(f)) ’?JZuI(E)} dmgg)
o S s, O, O 1€ w(@), u'(E)) d™E+h(x")

where #(x') is the harmonic function which takes the same value as
#'(x") for ' €S,. Then

3.7) 19w/(x,)| < (D)+ (1) + (I1T)
where (1) = loq* | 26(x/, 871,
(ID) = oz [ 96/, &) Sy (G, —aiy()) Z'e) d7E1,

(I1I) = [h(x,) .

Since by T the distance will be changed by the ratio between
A2 and AY?, we have

(3.8) (X0 -1 {aiy(6)—84,})” < AVLIE—x)|, (24 (Daiy)")* < AL

As |Qu(x)| < (1=NAY?)"" pd%,)" ! pe in T7'S(C 2), we have, taking A
so small that (1—-AAY*)"2< 2,

(3.9) 12W(@) < V2 AV px) e for E€S,
and from (3. 2)
(3.10) [f(&, #'(§), Qu'(E))|=|f (%, u, Qu)| < 2Bp(x,)”" i+ 1.
Then regarding (3.8), (3.9), (3.10), |9G(x/, §)| < 2|E—x,'| ™" and

19;G(x/y &) | < (m+2)|E—x,| "™, we get

(3.11) (1) < 4np (%)~ Bul+20p,(x,) T,

) =<lox |, 26wy, 8 3, 6y —aiy(®) (@) cos &, n) do|*
+loat [, 260, B 3., 901, w4

#loa [ 0,96, £ (0 —aiy() we) a7,

or
(3.12) (II) < (m+6) /2 AL\g,

9) wn, means the surface measure of the m-dimensional unit sphere, and d™t = d¢,---d&p,.
10) do means the infinitesimal surface element of S\ and # is the normal of S,.
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and (IIT) < N 'pdx,) ™ Max {|u/(x)]; [/ —x)[ < Npol#,)},
hence
(3.13) (III) < N 'p(x,)"" sup |u(x)].
|Z—-ai<P(@)
As |ou(x)| = A™*|Ou(x,) | = A~ "*p (%) "t

and p,(x,) < 2p(a) < d, we get from (3.7), (3.11), (3.12) and (3. 13),

(3- 14) )\'Co/l’i—(l—kcl) /"x"-}'k_lcz = 0 ’
where C,=4A"B, C,=+/2(m+6)A*"’Ld
and C,= A" sup |u(x)|+8xrp(a)® AVI".

1z-aj<P(@)

Since C,C, <4ABM+8\d*ABI', by (3.3) we can take A >0,
depending only on m, A, L, B,I" and d, so small that

(3. 15) AC, < 1/2 and (1—AC,)*>4(\C,) A"'C,).
Let R, and R,(R, < R,) be the distinct real roots of the equation in X
(3.16) ACX*—(1—-AC) X+1'C,=0.
Then we have from (3. 14)
<R, or p =R, (R, <R,.

But we can easily see from (3.4) that p, depends on « continuously
for 0<«<'1 and limu,=0. Then we have only g < R,. And,
K0

letting « tend to 1, by the definition of g,
(3.17) |9u(a)| < R,p(a)".
As R, is the smaller root of (3.16) and \C, < 1/2,

4C,

R M2
<< 20:(1—xC))

< 4NC,.
Thus from (3. 17)
|ou(a)| < CPp(a)™* sup |u(x)|+C®,
12 -l <P(@)

where C® = 4\"*A"* and C®=16dA"" depend only on m, A, L, B, M,
I''and d, q.e.d,

Corollary. If we replace the condition (3.2) in Theorem 2 by
(3.19) [f(x,u,p)| <17,
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and omit (3.3), then there exists a constant C, ., depending only on
m, A, L and d, such that

|9u@) | < Canap(®)™ sup [u(x)] +8AYp(x) L.
where p(x) = dist (%, D).
Proof. We have instead of (3.14)

(1—C,) p < N°'C, .
Then, putting A = C,/2, we get

me < 2CTAY? sup  |u(x)| +8AYp(a) I'.

[B-ai<P@

Thus we have from (3.4), letting « tend to 1,

[Qu(@)| < Coropl@ sup |u(x)|+8AYp(a)T,

|z-a|<p@

where C,,;,,= /2 (m+6) A’Ld, q.e.d.

§ 3 Existence theorem for bounded f(x, %, p)

4. We say that f(x, u, p) is H,-continuous in the finite part of a
2m+1-dimensional domain D*, when there exists a constant H,,
depending on arbitrary positive numbers M and N such that

4.1) |f&, ', p)—f (%, u, p)| < Hy, v {| 2" — x| %+ |0/ —u|*+ | p'—p |}

for any (x,u,p), («/,u',p') with the restriction |u|, |#'|< M and
121, [p'|< N.

Theorem 3. Let D be a bounded domain with the diameter d, the
boundary D being a hypersurface of type Bh, and let a,,(x) be H,-

continuous in D. Let f(x,u,p) be H,—continuous (0 <_a< 1) in the
finite part of

D* = {(x,u,p); x€D, |u|< +oo, |p|< +o0}
and bounded :
4.2) | f(x, u, p)| < 1 in D¥*,

Then there exists a solution u(x) of (0) with the boundary value u =0
(x € D) such that || u(x)||%%< + oo.

Proof. For fixed positive constants N and A, let &y, , be the set
of functions »(x) € C'[D] with the following properties :
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4. 3) v(x)=0  for xeD,

4.4) [Qv(x)] <N in D,
and

(4.5) |§v(x')——§v(x)|gA|x’—x| for x,2'€D.
Then

(4. 6) lo(x)| < Nd for all v(x) € Fy, -

Ry, is a compact convex set in C'[D], where C'[D] is a Banach
space with the norm

| v || = Max |o(x)| +Max |9v(x)].

For convenience we write f,(¥)=f(x, v(x), 9v(x)), then f,, is H,-

continuous in D for v €%y,. Because, there exists a constant « > 1
such that any pair of points x and x' in D can be joined by a curve
in D with length < x|x—x'|, hence from (4. 4)

|v(x’)—v(x)|_£_ch|x'—x| for all v €y, -
Thus by (4.1), (4.5) and (4. 6)
4. 7) Hg(fr.w) < HNmN(l'*‘("N)“’*'Aw) .

Now by Schauder’s Theorem B, for any v € §y,, there exists the solu-
tion u(x) of

(4.8) 20 51 Ay 5(%) 22” = fi,(X)
with the boundary value z = 0 (x € D), which satisfies
(4.9) |9%u| + Hp(0"u) < CP{Max | fe, | +H(fe)} »
D

where C® depend only on D, A and L, as there exist constants A and
L such that (2.1) and (3.1) hold.

Since D has the property ((s)) for certain ¢ >0, we have by (4. 2)
and Lemma 1,

(4.10) |u(x)| < Cu0ra p(x)T', where p(x) = dist (x, D).
Then from Corollary in § 3, by (4. 10),
(4.11) |Qu(x)| < C*I',

where C* is a constant depending only on m, A, L, ¢ and d, Now we
put
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4.12) N=C*I'= N,.
Then from (4.7) and (4.9), for any v € ¥n,, 4,

|9%u| < CO{r+ Hy(1+(«N)*+A*}  (H,= HNy,N,) ,

hence
(4.13)  |Qu(x")—du(x)| < £CP L+ H,(1+ (cN,)*+ A%)} | ' —x|.
Since 0 < a < 1, we can choose A, so large that
kCP{I+ H(1+ («N)*+A5} < A,.
Then by (4.13)
(4.14) |Qu(x)—Bu(x)| < A, | %' —z|.

If we denote by & the transformation of ve%No’Ao into the
solution # of (4.8) with the boundary value » =0 (x €D):

u = d[v],
such that || #||%?< + o, then (4.11), (4.12) and (4. 14) show that
(4. 15) (B, 1) BN, 4,-

The mapping ® of %No: 4, into itself is continuous in C'[D]. Because,
if v, v’ E%NO,AO

(4.16) | fon—Soon| < H(|0'—0|* + [Q0'—0|%) < 2H (|| v —0 [])*.
And for u = ®[v] and # = P[v']
20 31 ay(%) 92(“_“’) = (%) —Sfror2(¥) in D

and #(x)—u'(x) =0 for x€D. Thus by Lemma 1 and Corollary in §2,
replacing I' by 2H,(]| v’—v||)* in (4.10) and (4.11), we get

lu(x)—u'(x)| < 2C,,,,, dH (|| v—0" ||)®
and |Qu—2u' | < 2C*H (|| v—v’ |))*.

These show the continuity of ®. Then from (4.15), by the fixed
point theorem in functional space,'® there exists a #, E%NO, 4 such that

Dlu,]=u,.

11) Tychonoff: Ueber einen Fixpuktsatz, Math, Ann. 111,
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Then #,(x) is a solution of (0) with the boundary value ¥« =0, qg.e.d.

§ 4 Existence theorem for regular boundary condition

5. Lemma 2. Let D be a bounded domain with the property ((c))
and the diameter d. Let a,)(x) be subjected to the conditions (2.1) and
3.1), and f(x, u, p) to the condition (3.2) Let u(x) be a solution
of (0) with the boundary value u =0 (x € D) and satisfy (3.3). Then

there exists a constant C% depending only on m, A, L, B, I', M, o and
d, such that

[Qu(x)| < C#.
Proof. First we shall prove the existence of a constant C¥*

depending only on m, A, L, B,I', M and o such that for the solution
of (0), which vanishes on D and satisfy (3. 3), holds the inequality

(5.1) lu(x)| < C* dist (x, D).

Let x, be any point of D and let p be a point of D such that
|x,—p|=dist (x,, D). Let S, be a closed sphere with the radius o
such that S,~ D = (p), and ¢ be the center of S,. Then the function

(5. 2) o(x) = Mlog [(r—d’)/(c—0")],
where r=lx—c|, d=(01A—-&)7,
satisfies the inequality
(5.3) <I>[co]E2;’5,=1aw(x)92w+3|§w12+1"gO
for ¢ <|x—c|< o(1+6), where IV >I'">0 (for example 1V =1I+1) and

(5. 4) &= Min {(2mA?) ", o (M/SAI")) .

In fact, as (r—o)r*<&<1/4 for e <r<o (1+6), 2ABM<1/2,
S ay < mA and

7P 200 g1 Aug(X) (=) (X, —c) =a(x) < A7

Plo]=M@r—o)*(r—o)r ' 2iau—1+@—c)r ') alx)}
+ BM*(r—q') 2 +1"

< M(r—o') *(emA—A~*+BM)+1"

<IV—M@1—2ABM)/2A(r —d’)?

<IV—M/8A&* <0  (by (5.4)).

We have also, as log (1+¢&7 ") >1logb>1,
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(5.5) w(x) >M for |[x—c|=(1+8) .
Let D, be the part of D defined by
D,={x; xeD, [x—c|<(1+8&)},

then w(x) is a quasi-supersolution of ® =0 in D,. But #(x) satisfies
the inequalities

P[u]<0 in D,, (%) < o(x) for xeD,.
Thus, by Theorem 1,
u(x) < w(x) = Mlog [(|x—c|—0")/(c—0")] for xeD,.
We get a similar inequality, if we replace #(x) by —u(x). Then
(5. 6) lu(x)| < Mlog [(|x—c| —0o’)/(c—0d")] for x€D,.

As log[(r—0o")/(c—0")] < (6—0') ' (r—0) = (¢&6*)"(r—0) for » >0c and
r—o = dist (x,, D) for x = x,, we get from (5.6)

lu(x,)| < (0% *Mdist (x,, D) for x,€D,.

But this inequality holds also tor x,€e D—D,. (5.1) is thus proved.
Now by Theorem 2 we have

5.7 |9u(x) | < CPp(x)™* Max |u(x')] +C?,

@/ — 2| < P(%)
where p(x) = dist (x, D), and C® and C® depend only on m, A, L, B, T,
M and d. And, as by (5.1)

lu(x) | < 2C*p(x)  for |¥'—x|< p(),
we get from (5.7)
[Ou(x)| < 2C*CP+C® =C#, q.e.d.

6. Theorem 4. Let D be a bounded domain with the boundary of
type Bh. Let a.,(x) be H,—continuous in D, and let f(x,u,p) be H,-
continuous (0 < a<C1) in the finite part of

D* = {(x,u,0); x€D, o) <u <o), |pl< +},

where o(x) and o(x) are quasi-supersolution and quasi-subsolution of (0)
respectively such that

lo(x) | =M, o)< M, o) <ol).
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And there is a finite set {U,}., such that (0.1) and (0.2) hold in each
U=U, and \J3., U; D D. Let a,(x) be also subjected to the condition
(2.1) and f(x,u,p) to the condition (3.2), where (3.3) holds. Then

there exists a solution of (0) with the boundary value B(x) (x € D) such
that

o(x) S ux) < olx) and ||u(x) || < +oo,
where B(x) is a given function of C)[D] such that
w(x) < Bx) w(x) inD.

Proof. Without loss of generality we can assume that B(x) = 0.
Then we put

(6.1) N, = Max {Max|9w,|, Max|9e,|, C#qp,,},”
U, U;

where C#+,,, is the constant given in Lemma 2 but I' is replaced by
I'+1. We define f*(x, u, p) by

f(x’u).p) if Ipl—gNO’

f(x,u, Ny|p|~'D) if |p|>N,,

and then f#(x, u, p) by

6.2) F¥xu,p) =

[f*(x, a(x),p)+1z—;§’(c—_j‘()—ﬂ for u > a(x),
(6.3) f#(x,u,p)=\S*2xu,p) for o(x) <u < w(x),
¥, o(x), D) +ﬂ%(—@;% for u < w(x) .

We can easily prove that f#(x, #, p) is bounded and H,-continuous in
Dt = {(x,u,p); €D, |u|< +oo, |p|< +oo}.
Then by Theorem 3 there exists a solution #(x) of
(6.4) 20 =1 @ay(%) 9w = FH(x, u, Ju)

vanishing on D such that ||u(x)||%%< +co. u(x) must satisfy the
inequality

(6.5) w(x) < u(x) < ().
In fact, as f#(x, 0,(%), J0,(x)) = f (¥, 0,(x), 9w,(x)) for x and » such that

o(x) = 0,(x), o(x) is a quasi-supersolution of the equation

12) We can assume that Uj are bounded and closed.
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D] =277 j-1 @uy(%) Q'u—f#(x, o(x), Ju) = 0.

But, as f#(x, o(x), p) = f*(x, o(x), p), u(x) satisfies

_ u—a(x)
Plu]= 1+u —Eo(x)>0

for x such that u(x) >a(x), and u(x) =0 < o(x) for x€D. Then by
Theorem 1 we get

u(x) < o(x) in D.

Similarly we obtain #(x) > w(x) in D.
Now f# satisfies the condition

|f#(x, u, p)| < B|p|*+1'+1,

and for #(x) holds |u(x)|< M, and 16ABM<1. Then by Lemma 2
we have

(6 6) I?u(x) | é C#(r‘+1) g No .
(6.5) and (6.6) show that #(x) is a solution of (0), g.e.d.

§5 Preparation for the general boundary condition.

7. Lemma 3. Let D be a bounded domain. Let a,,(x) be subjected
to the conditions (2.1) and (3.1), and f(x, u,p) to the conditions (3.2)
and (4.1) in

D* = {(x,u,$); x€D, olx) Su < o(x), [p[<+ oo},
where o(x) and w(x) are continuous functions on D such that
lo(x) | M, |ox)| <M and 16 ABM<1.
Let % be the set of all solutions u(x) of (0) such that
o) Zux) < o(x) and |ju||p*<+oo.

Then, for any closed sphere S in D, there exist constants Ci, C% and
Cit such that for all ue$

|Qu(x)| < G, |Qu(x)| < C§ for x€S
and HYyu) < Cit,
Proof. Let & be the distance between S and D. Then by Theorem 3
(7.1) |§u(x)|§,C<"M6"+C‘2’EC§ for xeS,
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Now let S’ be the sphere concentric with S such that rad(S’) = rad(S)
+68/2. We put

(7.2) p= l\feaf {| %u(x)|- p(x)*},

where p(x) = dist (, S") and k£ is a positive constant to be defined
afterwards. Then there exists a point x, €S such that

(7.3) |2u(x,) |- plx,)" = p

Let 3 be the closed sphere with the center x, and the radius p(x,)/2.
Then, as p(x) = p(x,)/2 for x €3>, we have from (7.2)

|9%u(x)| < 2*p(x,) *pp for xe>].
Hence
(7.4) |§u(x’)—§u(x) | < 2%p(x,) *plx’—x| for x, 2 €>).
From (7.1) we get also
(7.5) lu(x')—u(x)| < CL |2’ —x| for x, 2 e (CS).
Then by (4.1) we obtain for x, 2" €3]

|feo(®)—Fen(®) | = H (1 +(Cy)* +2%p, " p®) | ¥ — x| %,
where fi,.,(x) = f(x, u(x), Qu(x)), H, = HM,CiS, and p, = p(x,), or
(7. 6) HY(fe) < CP+CPp,~ % pe,
where C{ = H,(1+(Cy)*), CP = 2**H, .
By Schauder’s Theorem A we have
|90 | < Coalpa/2) {HY ) + Max | f o | +Max|u]}

< 16C, 1 po “{HY(frw) + B(Cy)* +1'+ M} .
Then by (7.6), putting £k =4(1—«a) !, we get

P51 2%u(x,)| < CPp*+Cu®,

where C{ and C§" are positive constants depending on S. Thus from
(7.3), as k<4 and p, < rad(S’),

(7.7) p < C rad(S)** +C{Pu”.

But, since 0<a< 1, we obtain from (7.7)
(7.8) p=C§,
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where C$® is a positive constant depending on S. Then, as p(x) = 6/2
for x €S, from (7.2) and (7. 8)

(7.9) |2%u(x)| < 2°CP8*=C§ in S for all u €.
Now we get easily from (4.1), (7.5) and (7.9), replacing S by 5,
(7.10) HS(fon) = HA{1+(Cs)" +(C5)°} .
But by Schauder’s Theorem A
Hi(Qu) < Cen n(8/2)" {H Y fru) + Max | fo, | +Max [ul}
< 16Ces, 87 {H, (few) + B(Cy)*+1'+ M} .
Thus by (7.10) there exists a constant C¥ such that
HY(9%) < C§ for all ued, q.e.d.

8. Now we assume the existence of a sequence of domains {D,}

such that D,_, < D,, \Ji.1 D, = D and D, is of type Bk. We can prove
the existence of such sequence {D,} for any open domain D, but we
will not enter into it here.

Theorem 5. Let a,;,(x) be H —continuous in each D, and satisfy (2.1)
in D. Let f(x, u, p) be H,—continuous (0 < a < 1) in the finite part of each

D¥ = {(x,u,p); €Dy, 0o(x) <u < o(x), |p|<+oo},
where o(x) and o(x) are bounded continuous functions such that

lox)| <M, |ox)|< M,
and
|f(x, u, p)| < BIp|*+1's in D},

where B and U, are positive constants such that 16 ABM< 1. Let
{oy(%)} and {w,(%)}(y € Q) be systems of quasi-supersolutions and quasi-
subsolutions of (0) respectively such that

o(%) < 0y(%) < wy(¥) L o(x) in D (y, ¥y €Q).
Then there exists a solution u(x) of (0) such that
sup wy(x) < u(x) < inf e, (x) in D.
YEQ YeQ

Proof. First we consider a fixed ye Q. Let S,(x) be a function
of C*[D] such that w,(x) < Ba(x) < ay(x) in D,. Then by Theorem 3
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there exists a solution #,(x) of (0) such that u,(x) = B.(¥) for xe€D,,
wy(%) < u4(x) < wy(x) in D,, and ||u, Ij‘,";;f <+oo.

Let S be any closed sphere in D, then S D, for sufficiently large i.
By Lemma 3 the sequences {u,(x)},{Ju.(x)} and {9%u.(x)} are all uni-

formly bounded and equi-continuous in S. Then, as S is an arbitrary
closed sphere in D, we can choose a sequence of natural numbers
{n(»)}(n(r+1) >n(v)) in such a way that the sequences

{un(v)(x)}’ {gun(v)(x)} and {?zun(v)(x)}

converge uniformly in D in the generalised sense. Then we can easily

see that
1M t4,,(%) = (%)

is also a solution of (0) such that
A o(x) < u(x) < wy(x) in D.
Now let ¥, be the set of all solutions of (0) such that
0y(x) Su(x) Soyx)  in D and [u |5 <+ oo

By Lemma 3 §, is compact in C’[D], where C*[D] is a linear topo-
logical space with the pseudo-norm

[| # ||, = Max|u(x)| +Max|9«| + Max |9 |.
D, Dy Dy,

If 4,, ..., vs» are any finite number of y€Q, we see easily that
Min {wy,(%)} = w4(¥) is a quasi-supersolution of (0)
1<ign
Max {wy(%)} = w4(x) is a quasi-subsolution of (0),
1gign

such that o(x) < wu(x) < 0x(*) < o(x) in D, and /N\;.. Fy is the set
of all solutions of (0) such that

0u(®) S u(x) < 0g(x) in D, Ju|2<+oo.
Then by the first part of the proof N\i., ¥y, is not empty. Thus
[\‘YGQ %’Y :*: 0 ’

by the intersection property of compact sets, q.e.d.

§6 Main existence theorem.

9. We say that a domain D satisfies the condition of Poincaré, if
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for each point ¢ of D there exists a cone of one nappe K with the
vertex ¢ such that, in a sufficiently small neighbourhood of ¢, K lies
outside of D. Now we shall prove the main existence theorem :

Theorem 6. Let D be a bounded domain satisfying the condition of
Poincaré. Let a,,(x) be H—continuous in D and satisfy

(9.1) A < 2T1=1atj(x)‘ftfj <A for 0. E=1(A=1).
Let f(x, u, p) be H,-continuous (0 <_a< 1) in the finite part of
D* = {(x, u,p); x€D, o(x) < u < &(x), [p|<+ oo},

where o(x) and o(x) are quasi-supersolution and quasi-subsolution of
(0) respectively such that

(9.2) lo(x) | <M, |o(x)| <M in D.
f(x, u, p) satisfies also
(9.3) |f(x,u,p)| < Blp|*+1'.

where B and I are positive constants such that
9.4) 16 ABM<1.
Then there exists a solution u(x) of (0) such that
lo(x) < w(x) < o(x) in D

with the boundary value B(x) (x € D), where B(x) is a given continuous
Sfunction on D such that o(x) < B(x) < o(x) in D.

Proof. Let ¢ be any point of D, and K be a cone of one nappe
with the vertex ¢, which lies outside of D for |x—c|< 6, (5, >0). By
a suitable linear transformation of coordinates, we can assume

20 J=1a“(c)gzu(c) =210 Qzu(c) .
But (9.3) must be replaced by
(9 3/) |f(x’ u)?”éABlplz_'—P'

We assume also that the axis of the cone K is the x,-axis with the
positive sence directed into D. Let us introduce the new coordinates

7,0, ..., & by
|x—c|=7, x,—c,=rcosl, x,—c,=7rsind-& (i=2).

And we assume that K is represented by
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(K) r—&<g9g=<nw (0<¢&<7/2).

Now we shall construct a quasi-supersolution w,(x) of (0) of the
form

(%) =1r"p(0)+ B(c)+¢& (€>0)
in a neighbourhood of ¢. Then we have
. = " (x,—Ci)p(6) +7"P09'(0) ,
Foe = 1" {(yly—2)r (=) (%, —¢;) +845)p
+ (y(xs =)0 + (%, —¢,;)00 +7*9°0)p" +7°96909"'}

where
{ —r7'siné if i=1,
20 = . .
¢ r~'cos 0. &, if 1>2,
r~2sin 260 if i=j=1,
920 = { —77%cos 20-&, if i=1,>=2,
r~*[cot 0-(8,;—&,£,)—sin20] if 4,7 =2.

Thus, assuming 0<y <1 and 0<8< 1, we get for » =|x—c|< 8

Aw, < 777 *{p" +(m—2) cot 0- @' +y(m—1)| + |p |},

9.5) { [Qo|*<r" (19" | +vl@])*,

230 1@y —8) 0. < k" {y|p| + (14 [cot 6|9’ |+ @” [},
where %k is a fixed constant. Then, assuming 0< 8 < Min{l, &'}, we
get from (9.5) for »<7$

(9. 6) q)[wc] = 2;': j=1atj(x)iajza’c +AB| azmclz + r
<" *{(p” +k8|9"|)+(m—2) cot 6- ¢’
+(2AB|p|+1+ [cot 8 )| ¢/ | +my|p] +81} .
Now we put

9.7)  (8) =\"'u|0] +(2AB)"* log {(1+)\*/2ABu)—eNol} +C,

where C=6M—(2AB) ' log (\*/2ABp),
9.8) A = 2((m—1) cot §,+12ABM+1),
and p =N (2AB) Y(1—e *43¥) (e —1)"1,

Then ¢(0) (€ C*[|0| < =]) satisfies, for |§]| < =, the inequalities
9.9) P'(0)-0 <0, ¢7(0)<0, 4M< p(0) <6M,
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(9. 10) @ +\| @ | +2ABgp" +p < 0.

Thus, assuming

{ 0 <8< Min {§,, 1, (2k)7*, u/4AT},
0 <y <Min {1, u#/24mM, log 2/log (1/8)} ,

from (9.6), (9.8), (9.9) and (9.10) we obtain

9.12) Pl <0 for 0<|x—c|=7r<3, || =—¢§,
and, as 8" >1/2, @) =4M and B(c)= —M,

(9. 13) w(x) >M for |x—c|=39, || =—6,.

(9.11)

Hence .= 7"¢(0)+B(c)+¢& is a quasi-supersolution of (0) in DA {x;
[x—c|<8}. Then

o(x) for |x—c|>¢,

O, o) = { Min{&(%), 0 x)} for |x—c|<3,

is a quasi-supersolution of (0) such that

a—)(c:s)(x)>18(x) in D ’

if we take &=26(6) >0 so small that (9. 11) and |B(x)—pB(c)|< & for
|x—c|< 3. Similarly

9(6:8)(x) = ’
Max{@(x) wc(x)} for Ix—"C| = 8 ’
where o, = —7'p(0)+B(c)—&, is a quasi-subsolution of (0) such that

o, (%)< B(x) in D.

Then by Theorem 5 there exists a solution #(x) of (0) such that,
for all ceD and &>0,

(9. 14) @, X)) L u(x) < o,,ox) in D.
Letting & tend to 0, we obtain from (9. 14)
1701_111 #w(x) = B(c) for any ceD
and ox) <u(x) <wlx) in D, q.e.d.

REMARK. The condition imposed on the boundary of D can be
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weakened for the case m = 2, while the calculations in the proof will
be much simplified.

10. Really we have the conjecture : the restriction (9.4) in Theorem 6
may be removed. But now we shall only show that the condition (9. 3)
can not be replaced by

|f(x, u, p)| < Blp|“+T

where « is any constant ™>2. For this, we consider the following
example :

(10.1) Au = —(m—1) 271290/ (7 29 +u {14+ 302(Qu)*) 1 (62>0),
and D is the domain
(D) @ <N, xlb (0<a<lh).

(10. 1) has the form Au = f(x, u, Ou), where f is strictly increasing with

u. Then, as we can easily prove, (10.1) has at most one solution under
the boundary condition

(10.2) u=0 for X3xi=a’, u=h (h>0) for Xjxi=10".

Since (10.1) is invariant under any orthogonal transformation of
independent variables (rotation about the origin), the unique solution
of (10.1) under (10.2) is a function of » = (3),™ x%)"* only: u = u(r).
Hence u(r) satisfies the ordinary differential equation

(10. 3) u’ =u(+u'?)re,
The solution # of (10. 3) satisfies
(1+u?)*=&C—u?) (C=const.).

Then 0<u*<C=¢* for a<x< b, and

— < &% —ur)*uw < 1.
Thus, as #(a) =0 and ub)=h<c,

sl/zss: (c*—u*)*du<b—a,
or (&) < b—a,
where v(&) =2V [(1/26 +1)*/T'(1/6 +2) .
Hence 0k < ey, (8)(0—a)/"®,
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where ¢,(€) is a constant depending only on é&.
Therefore, if

(10.4) h = q,(E)(b—a)¥r®,
there exists no solution of (10.1) under (10.2), although
o(2x) =M<h(C>0) and o(x)=0

are quasi-supersolution and quasi-subsolution of (10.1) respectively in
D. And for xe D and 0 < # < M holds the inequality

| f(%, u, p)| < B|p|* 2 +T,
only if B=(1+8&)%, and I' is sufficiently large. ABM = (1+&)%k* may
also be arbitrarily small, if 6—a is so small that (10.4) holds: -
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