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Abstract. In this thesis, I characterize PSLnR-Fuchsian representa-
tions in Hitchin components, using the Bonahon-Dreyer parameteriza-
tion.

The Hitchin component Hn(S) is the component of the PSLnR-
character variety of a closed surface S of negative Euler characteristic
which contains the discrete faithful representations π1(S) → PSL2R
via an irreducible representation. The images of discrete faithful rep-
resentations π1(S)→ PSL2R in Hn(S) are called PSLnR-Fuchsian rep-
resentations.

Bonahon-Dreyer ([BD14], [BD17]) gave a parameterization ofHn(S)
by the triangle invariants and the shearing-type invariants fixing an
arbitrary maximal geodesic lamination on S, so that the Hitchin com-
ponent is a cone in a Euclidean space.

During doctoral program, I first calculated the parameters of Bona-
hon and Dreyer for PSLnR-Fuchsian representations of a pair of pants.
In this calculation, I had an explicit parameterization of Fuchsian rep-
resentations of pants, and of PSLnR-Fuchsian representations via the
Bonahon-Dreyer parameterization.

Next, I generalized the result for a pair of pants, to more general
surfaces in my second paper. In particular, I proved that, for arbitrary
compact orientable surfaces of negative Euler characteristics, the tri-
angle invariants of PSLnR-Fuchsian representations are equal to zero
and the shearing-type invariants are equal to the shearing parameters
of hyperbolic structures. This explicit characterization implies the set
of the PSLnR-Fuchsian representations is an affine slice.

This thesis explains these two studies, the calculation for a pair of
pants, and the general properties of the Bonahon-Dreyer parameters
of PSLnR-Fuchsian representations.
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CHAPTER 1

Introduction

1. Motivation

Let S be a closed oriented surface of negative Euler characteristics.
The Hitchin component of S is a special connected component Hn(S)
of the PSLnR-character variety Xn(S) = Hom(π1(S),PSLnR)/PSLnR,
the space of conjugacy classes of representations. This component was
introduced by Hitchin in [Hi92]. When n = 2, the Hitchin component
H2(S) is the Teichmüller space T (S) of S, which is the deformation
space of hyperbolic structures on S. For general n ≥ 2, Hn(S) is, by
definition, the connected component of Xn(S) which contains elements
induced from holonomy representations of hyperbolic structures on S
via the irreducible representation ιn : PSL2R → PSLnR. The Hitchin
component has many properties which the Teichmüller space has, and
it is a higher dimensional analog of the Teichmüller space in the sense
of the rank of Lie groups. It is natural to consider the relation between
the Teichmüller space and the Hitchin component.

In this thesis, we characterize PSLnR-Fuchsian representations in
the Hitchin component. We call the elements of Hn(S) the Hitchin rep-
resentation, and call Hitchin representations induced from holonomy
representations of hyperbolic structures the PSLnR-Fuchsian repre-
sentation. The locus of PSLnR-Fuchsian representations in Hn(S) is
called the Fuchsian locus. To characterize PSLnR-Fuchsian represen-
tations, we use the parameterization of the Hitchin component given
by Bonahon and Dreyer ([BD14], [BD17]). The Hitchin component
is parameterized by two kinds of invariants, the triangle invariant and
the shearing-type invariant along maximal geodesic laminations on S.
Through an observation of the invariants of PSLnR-Fuchsian represen-
tations, we show that, a Hitchin representation is a PSLnR-Fuchsian
representation if and only if the triangle invariants are equal to zero,
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6 1. INTRODUCTION

and the shearing-type invariants are equal to the shearing parameters
of hyperbolic structures.

2. Main results

Let λ be an arbitrary maximal geodesic lamination on S, which
yields an ideal triangulations of S. Given a representation in Hn(S),
the triangle invariants are defined for ideal triangles of this triangula-
tion, and the shearing-type invariants are defined for leaves of λ.

The Bonahon-Dreyer parameterization is different depending on
whether λ consists of finitely many geodesics, or contains an irrational
sublamination. Although the triangle invariants are defined in the
same way, the shearing-type invariants are defined in different ways.
In particular, the former case is more combinatorial. In this thesis, we
characterize, indeed, the parameters for PSLnR-Fuchsian representa-
tions in the both cases.

When λ consists of finitely many leaves, letting χ(S) be the Euler
characteristic, we set λ = {C1, · · · , Ck, B1, · · · , B3|χ(S)|} where C1, · · · , Ck
is a closed geodesic (1 ≤ k ≤ 3g − 3), and Bi is a bi-infinite geodesic.
We denote the ideal triangles which are complementary regions of λ by
T1, · · · , T2|χ(S)|. Let si0, s

i
1, s

i
2 be the spikes of the ideal triangle Ti. In

this case, Bonahon and Dreyer introduced the invariants, called the tri-
angle invariants, the shearing invariants, and twist invariants to define
the parameterization of Hn(S). Given ρ ∈ Hn(S),

• the triangle invariant τpqr(s
i
j, ρ) is defined for spikes sij of the

ideal triangles Ti,

• the shearing invariant σb(Bi, ρ) is defined for the bi-infinite
leaves Bi,

• the twist invariant θc(Ci, ρ) is defined for the closed leaves Ci,

where the indices p, q, r, b, c are positive integers with p+q+r = n, and
1 ≤ b, c ≤ n−1. In this setting, the Bonahon-Dreyer parameterization
Φλ : Hn(S)→ RN is defined by

Φλ(ρ) = (τpqr(s
i
j, ρ), · · · , , σb(Bi, ρ), · · · , θc(Ci, ρ), · · · ),



2. MAIN RESULTS 7

where N = 6|χ(S)|
(
n−1
2

)
+ 3|χ(S)|(n− 1) +k(n− 1). The image of Φλ,

denoted by Pλ, is the interior of a certain polyhedron of RN ([BD14]).
The following is our main theorem.

Theorem 1.1. Let S be a closed oriented surface of negative Euler
characteristics, and λ be a maximal geodesic lamination on S consist-
ing of finitely many leaves. Then a Hitchin representation ρ ∈ Hn(S)
is PSLnR-Fuchsian if and only if all triangle invariants are zero, and
the shearing, and twist invariants are constants depending only on ρ,
i.e.

τpqr(s
i
j, ρ) = 0, σb(Bi, ρ) = σb′(Bi, ρ), θc(Ci, ρ) = θc′(Ci, ρ)

for all possible i, j, p, q, r, b, b′, c, c′. Moreover, the shearing invariant
of a PSLnR-Fuchsian representation is equal to the shearing param-
eter associated to the Fuchsian representation, i.e. for any Fuchsian
representation η ∈ T (S),

σb(Bi, ιn ◦ η) = ση(Bi)

for all b and i.

This theorem characterizes the PSLnR-Fuchsian representations in
the Hitchin component by the conditions of the triangle, shearing, and
twist invariants.

In the case of general laminations, we use the shearing classes
instead of shearing, and twist invariants. In [BD17], Bonahon and
Dreyer defined the twisted tangent cycle relative to slits for maximal
geodesic laminations, which was a vector valued cocycle defined on the
set of oriented arcs transverse to λ. The shearing class is a twisted
tangent cycle relative to slits defined by Hitchin representations. The
Bonahon-Dreyer parametrization in this case is a parameterization
defined by the triangle invariant and the shearing class. We denote

this parameterization by Φλ : Hn(S)→ Z(λ, slits;Rn−1)×R6|χ(S)|(n−1
2 ),

where Z(λ, slits;Rn−1) is the vector space of the twisted tangent cy-
cles relative to slits. The image Pλ of Φλ is the interior of a convex

polyhedron in Z(λ, slits;Rn−1)×R6|χ(S)|(n−1
2 ) ([BD17]). We show that

the shearing classes σιn◦ρ of PSLnR-Fuchsian representations ιn ◦ ρ are
determined only by the shearing cocycle σρ.
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Theorem 1.2. Suppose that λ is an arbitrary maximal geodesic
lamination. Then a Hitchin representation ρ ∈ Hn(S) is PSLnR-
Fuchsian if and only if all triangle invariants are equal to zero, and,
for any oriented arc k tightly transverse to λ, the shearing class is of
the form (σ(k), · · · , σ(k))t where σ is a transverse cocycle of λ, i.e.
σ ∈ Z(λ;R).

Theorem 1.2 generalizes Theorem 1.1, in the following sense. Let λ
be an oriented maximal geodesic lamination which consists of finitely
many leaves. For a bi-infinite leave Bi of λ, we pick an oriented
arc k transverse to Bi so that k intersects to Bi only once from left
to right. Then the shearing class σρ(k) associated to k is the vec-
tor whose entries are the shearing invariants σb(Bi, ρ), i.e. σρ(k) =
(σ1(Bi, ρ), · · · , σn−1(Bi, ρ)). Since Theorem 1.2 implies that all entries
of shearing classes are equal to each other for PSLnR-Fuchsian repre-
sentations, Theorem 1.2 proves the statement with bi-infinite leaves in
Theorem 1.1.

3. Structure of this paper

Chapter 2: We give a preliminaries. Section 1 explains the hyper-
bolic geometry on surfaces, the Teichmüller spaces, Shearing coordi-
nate of Teichmüller spaces. The Shearing coordinate is the origin of
the Bonahon-Dreyer parameterization. In Theorem 2.6, we give an im-
proved version of the shearing coordinate using train tracks. Section 2
explains the definition of Hitchin components. Hyperconvex curves in
Subsction 2.3 is essentially used in the computation of ratios. Section
3 explains the Bonahon-Dreyer parameterization.

Chapter 3: In this chapter, we calculate the ratios of Veronese
flag curves, which play an important role in the proof of the main
theorem. Section 1 gives an example of calculation. Using parameters
of Fuchsian representations of a pair of pants, we explicitly calculate
the ratios in the case of a pair of pants. In Section 2, we prove that
the triple ratio of Veronese flag curves is always equal to 1, and the
double ratio is reduced to the cross ratio.

Chapter 4: We show the main results of this paper. Theorem 4.1
and Theorem 4.3 give the sufficiency of the main theorems. Theo-
rem 4.1 and Theorem 4.3 characterize the triangle invariants and the
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shearing-type invariants of PSLnR-Fuchsian representations. Theo-
rem 4.2 and Theorem 4.4 imply the necessity of the main theorems.
In the proof of these theorems, for any parameters which satisfy the
condition for invariants, we construct PSLnR-Fuchsian representations
whose Bonahon-Dreyer parameters are equal to given parameters. We
remark the case of surfaces with boundary in Section 3.
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CHAPTER 2

Preliminaries

1. Hyperbolic geometry of surface

1.1. Hyperbolic structures on surfaces. Let S be a closed ori-
ented surface of negative Euler characteristics. A hyperbolic metric on
S is a complete Riemannian metric on S of constant curvature −1. A
hyperbolic structure on S is an isometric class of a hyperbolic metric
on S.

We denote, by H2, the hyperbolic plane of the upper-half plane
model with the orientation induced by the framing 〈e1, e2〉, where
e1 = (1, 0)t, e2 = (0, 1)t. The group of orientation-preserving isome-
tries Isom+(H2) is isomorphic to PSL2R, where PSL2R acts on H2 as
linear fractional transformations.

If S is endowed with a hyperbolic metric, we obtain an isometry

f : S̃ → H2 with respect to the metric on S̃ induced from the hyperbolic
structure on S. Then, there exists a representation ρ : π1(S)→ PSL2R
so that f is (π1(S), ρ)-equivariant, i.e. for any x ∈ S̃ and γ ∈ π1(S),
f(γ · x) = ρ(γ) · f(x). This representation ρ is discrete, faithful and
unique up to conjugacy of PSL2R. We call a discrete faithful repre-
sentation ρ : π1(S) → PSL2R a Fuchsian representation. The above

isometry f : S̃ → H2 with the equivariance for a Fuchsian representa-
tion ρ is called the developing map associated to ρ. In this paper, we
denote, by fρ, the developing map associated to ρ.

The correspondence between hyperbolic structures and conjugacy
classes of Fuchsian representations is one to one. In fact, for a Fuchsian
representation ρ, we have the universal covering H2 → S with the
covering transformation group ρ(π1(S)). This covering map defines
the hyperbolic metric on S, which is unique up to isometry.

11



12 2. PRELIMINARIES

1.2. Teichmüller space. The Teichmüller space T (S) of S is
defined by

T (S) = {ρ : π1(S)→ PSL2R | Fuchsian, fρ is orientation-pres.}/PSL2R

where the quotient is defined by the conjugate action of PSL2R. The
topology of T (S) is the quotient topology of the compact open topol-
ogy which is defined on the set of representations.

We remark an equivalent definition of the Teichmüller space via
hyperbolic structures of S. Let Hyp(S) be the set of hyperbolic metrics
on S, and Diff0(S) be the group of diffeomorphisms isotopic to the
identity. The group Diff0(S) acts on Hyp(S) by the pull-back. Then
the Teichmüller space is also defined by T (S) = Hyp(S)/Diff0(S).

Two definitions above are equivalent via the one to one correspon-
dence between hyperbolic structures and Fuchsian representations. There
are another equivalent definitions of T (S), see [IT].

1.3. Geodesic laminations. Fix a hyperbolic metric on S. A
geodesic lamination is a closed subset of S which is a disjoint union of
simple complete geodesics, called leaves. Geodesic laminations consist
of closed geodesic, called closed leaves, and bi-infinite geodesics, called
bi-infinite leaves.

The concept of geodesics depends on a hyperbolic metric on S. We
remark that, for different hyperbolic metrics g1 and g2 on S, there exists
a natural bijection between the set of g1-geodesic laminations and the
set of g2-geodesic laminations. In particular, for any hyperbolic metric
g and any simple curve c on S, there is a g-geodesic cg which is isotopic
to c.

The bi-infinite geodesics on the universal covering S̃ are character-
ized their ideal end points. Especially, there exists a bijection between

the space G(S̃) of bi-infinite geodesics on S̃ and (∂S̃ × ∂S̃ − ∆)/Z2,
where ∆ denotes the diagonal and where Z2 acts by exchanging the

two factors. The metric structure and the Hölder structure on G(S̃)
(used in Section 3.3.2 in this chapter) is given by an (arbitrary) metric

structure on (∂S̃ × ∂S̃ −∆)/Z2 via this bijection.
A geodesic lamination is oriented if each leaf is oriented. We may

choose the orientation of each leaf independently.
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For a geodesic lamination λ of S, the preimage λ̃ of λ in S̃ gives a
geodesic lamination of H2. A connected component of the closure of

H2 \ λ̃ is called a plaque.
A geodesic lamination is said to be maximal if it is properly con-

tained in no other geodesic lamination. This property is equivalent
to the condition that the complementary regions of λ consists of ideal
triangles. Hence, a maximal geodesic lamination induces an ideal tri-
angulation on S.

Given maximal oriented geodesic lamination λ with finitely many
leaves, we often use the bridge system for closed leaves as an additional
data, which is used in [SZ], [SWZ]. Let C be a (oriented) closed
leaf of λ. Since λ consists of finitely many leaves, in both sides of
C, some bi-infinite leaves and ideal triangles spiral to C. A bridge
JC along C is a pair of ideal triangles {TL, TR} where TL spirals to
C from left, and TR spirals to C from right. A bridge system of λ
is J = {JC | C is a closed leaf}, an association of bridges to closed
leaves. We denote, by λJ , the lamination λ with a bridge system J .
The bridge system in this paper plays a role of the system of short arcs
in [BD14].

1.4. Hyperbolic structures on surfaces with boundary. Let
S be a compact oriented surface of negative Euler characteristics, which
has non empty boundary. A hyperbolic metric on S is a complete Rie-
mannian metric of constant curvature −1 which makes the boundary
components totally geodesic. A hyperbolic structure on S is an iso-
metric class of hyperbolic metrics on S. Geodesic laminations on S
is similarly defined. In the case of compact surfaces with boundary,
we require that maximal geodesic laminations must contain all of the
boundary components as closed leaves. A hyperbolic structure on the
surface with boundary also uniquely corresponds, up to conjugacy, to
a representation with the following properties:

(i) ρ is a discrete and faithful representation, and
(ii) if γ ∈ π1(S) is the homotopy class of a boundary component,

then ρ(γ) is a hyperbolic element in PSL2R.
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In this paper, we call such a representation a hyperbolic Fuchsian
representation. We can associated to a hyperbolic Fuchsian represen-

tation ρ the developing map fρ : S̃ → H2. The image of fρ is a convex
domain of H2, which does not coincides with H2 in general.

We define the Teichmüller space T (S) of S by

T (S) = {ρ : π1(S)→ PSL2R | ρ is hyperbolic Fuchsian, fρ is orientation-pres. }

This Teichmüller space is also identified with the deformation space of
hyperbolic structures as in the case of closed surfaces.

1.5. Shearing parameterization of Teichmüller spaces.
1.5.1. The space of transverse cocycles. We recall transverse cocy-

cles. Let S be a compact oriented surface of negative Euler charac-
teristics, and λ be an (arbitrary) maximal geodesic lamination on S.
An (R-valued) transverse cocycle σ for λ is a map associating a real
number σ(k) ∈ R to each (unoriented) arc k transverse to λ which
satisfies that

(i) (Additivity) if k is cut into the union of two subarcs at an
interior point of k \λ so that k = k1∪k2, then σ(k) = σ(k1) +
σ(k2), and

(ii) (Homotopy invariance) if k and k′ are homotopic respecting
to λ, then σ(k) = σ(k′).

We denote the space of transverse cocycles for λ by Z(λ).
The space Z(λ) is parameterized by the train track neighborhood

([Bo97]). The train track neighborhood Nλ of λ is a family of finitely
many “long” rectangles e1, · · · , el, called edges, so that the union of ei
contains λ. Two rectangles intersect only along their short sides, and
every point of the short side of a rectangle is contained in another short
side of the rectangles. We require that the complementary region of
Nλ contains no component which is a disc with 0, 1, or 2 spikes, or an
annulus with no spikes. Transverse cocycles σ ∈ Z(λ) associate a real
number to each ei as follows. Each ei is foliated by the arcs parallel to
the short sides of ei. We call the leaves of this foliation ties. We pick
a tie ki for the edge ei, which is transverse to λ. Given σ ∈ Z(λ), we
define σ(ei) by the value σ(ki). The homotopy invariance of σ implies
that σ(ei) is independent of the choice of ki.
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switches

Figure 1. Train track neighborhood.

Theorem 2.1. ([Bo97, Theorem 11]) Let λ be a geodesic lamina-
tion, and let Nλ be an train track neighborhood of λ consisting of the
edges e1, · · · , e`. Then, the mapping Z(λ) → Rl, which sends trans-
verse cocycles σ to the point (σ(e1), · · · , σ(el)), is a bijection onto the
image. The image is defined by the switch relation.

Let us recall the switch relation. Switches of Nλ are ties, which are
short sides of edges. Suppose that eL1 , · · · , eLp and eR1 , · · · , eRq intersect

along a switch s such that eL1 , · · · , eLp are the edges adjacent to the one

side of s, and eR1 , · · · , eRq are the edges adjacent to the other side. The

switch relation at s is the equation eL1 + · · ·+ eLp = eR1 + · · ·+ eRq . All
possible switch relations define the range of the above parameterization
of Z(λ). The topology and the analytic structure of Z(λ) is defined by
the structure of the Euclidean space Rl via the mapping in Theorem
2.1.

1.5.2. shearing cocycles and a parameterization of Teichmüller spaces.
Given ρ ∈ T (S), we construct the shearing cocycle σρ ∈ Z(λ) of ρ,
which is the transverse cocycle associated to ρ. Fix a universal covering
H2 → S associated to ρ. To define σρ(k) for an arbitrary arc k trans-

verse to λ, we lift k to k̃, which is transverse to the preimage λ̃ ⊂ H2

of λ. Then the endpoints of k̃ are contained in different plaques. We
denote these plaques by P and Q, and consider the set P of plaques
which separate P and Q. Let g (resp. h) be the boundary leaf P
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(resp. Q) which is nearest to Q (resp. P ). On g (resp. h), there is
a canonical base point which is the orthogonal projection of the third
vertex of P (resp. Q). We call this point the base point of g (resp. h).
Each plaque in P is partially foliated by the horocyclic flow. Then,
we can construct a foliation which joins g and h. Along this foliation,
we carry the base point of g to a point in h.

We define σρ(k) by the signed length between the carried point
and the base point of h. Here the sign of the length is defined by the
parameterization of h by R as follows. The orientation of S defines
an orientation of the boundary of Q, so of h. Then we can take an
isometric parameterization R → h so that it is compatible with the
orientation of h and maps 0 to the base point of h. The value σρ(k) is

independent of the choice of k̃, and we finish the construction of the
shearing cocycle σρ of ρ.

For an arc k which is transverse to a bi-infinite leaf B of λ only
once, there is a simple formula of the value σρ(k). To explain this, we
recall the cross ratio on the boundary ∂H2.

Definition 2.2. Let a, b, c, d ∈ ∂H2 be a quadruple of distinct
points of the ideal boundary ∂H2. The cross ratio cr(a, b, c, d) is the
ratio

cr(a, b, c, d) =
(a− c)(b− d)

(a− d)(b− c)
.

We respectively lift k and B to k̃ and B̃ on the universal cover-
ing so that they intersect. There are two plaques P,Q which contains

the endpoints of k̃. In particular, since λ is maximal, these plaques

are adjacent ideal triangles along B̃. We denote, by x, y, zL, zR, the
ideal vertices of P,Q by the following rules : (i) x and y are the end-

points of B̃, (ii) x, zL, y, zR are in counterclockwise order. By direct
computations, we obtain the following relation. Let us write σρ(k) by
σρ(B).

Lemma 2.3.

σρ(B) = log[−cr(x, y, zL, zR)].

The shearing cocycle is applied to parameterize the Teichmüller
spaces.
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Theorem 2.4. ([Bo96, Theorem A]) There is a real analytic home-
omorphism φλ : T (S) → Z(λ) : ρ 7→ σρ onto an open convex cone
bounded by finitely many faces in Z(λ).

This parameterization is called the shearing parameterization. The
image of φλ is characterized by a certain intersection form on Z(λ),
defined along train tracks. A train track neighborhood is called generic
if all switches are trivalent as Figure 2.

Figure 2. A
generic
switch.

We can always choose a generic train
track neighborhood for all geodesic lam-
inations. Fix a generic train track Nλ of
λ. At each switch s of Nλ, a single edge
“comes” to the switch s, and two edges
“leave” the switch. We denote, by eLs ,
the edge which leaves to the left of the in-
coming edge, and, by eRs , the edge which
leaves to the right. For σ, η ∈ Z(λ), the
intersection form τ is defined by

τ(σ, η) =
1

2

∑
s

(
σ(eRs )η(eLs )− σ(eLs )η(eRs )

)
,

where s ranges over all switches of Nλ. The following theorem deter-
mines the image of φλ.

Theorem 2.5. ([Bo96, Theorem 20]) For every non-zero trans-
verse measures µ ∈ Z(λ) and for every shearing cocycles σρ, τ(µ, σρ) >
0.

Note that this theorem follows for all generic train track neighbor-
hoods of λ, hence the positivity of intersection numbers is independent
of the choice of Nλ.

1.5.3. Shearing parameterization along train tracks. We arrange
Theorem 2.4 by the weights on the edges of the train track neighbor-
hood and the twist parameters along closed leaves of λ. Let us define
the twist parameter. Let C1, · · · , Ck be closed leaves of λ, contained
in the interior of S. Under the ideal triangulation by λ, some ideal
triangles spiral to Ci from the both sides. Choose an ideal triangle TL

in the one side, and an ideal triangle TR in the other side.
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We respectively lift Ci, T
L, and TR to C̃i,

T̃L, and T̃R so that T̃L and T̃R have a com-

mon end point with C̃i. We denote, by x and
y, the endpoints of Ci so that x is on the left

from T̃L. Two edges of T̃L are asymptotic to

C̃i. In particular, one of these edges separates

S̃ so that C̃i, T̃
L, and T̃R are contained in the

same component. We denote, by zL, the end
point of the edge, which is different from x or

y. Similarly we take the ideal vertex zR for T̃R.
Note that the points x, zL, y, zR are in counterclockwise order. We de-
fine the twist parameter θρ(Ci) by log[−cr(fρ(x), fρ(y), fρ(z

L), fρ(z
R))].

We distinguish the edges of generic train track neighborhoods as
follows. We call that an edge is internal if the edge intersects to no
closed leaves, and we call the other edges non-internal. In addition, we
call that a switch is internal if it is a short side of three internal edges,
and we call other switches non-internal. In other words, the internal
switch is a switch which intersects to no closed leaves.

The following version of Theorem 2.4 is used in the proof of Theo-
rem 4.2.

Theorem 2.6. Let S be a compact oriented surface of negative Eu-
ler characteristics, and λ be an arbitrary maximal geodesic lamination
on S, which has closed leaves C1, · · · , Ck in the interior of S. Fix a
generic train track neighborhood Nλ. We denote, by e1, · · · , el, the in-
ternal edges of Nλ. Then, the following map is an analytic embedding
of the Teichmüller space T (S).

φ̃λ : T (S)→ Rl+k : ρ 7→ (σρ(e1), · · · , σρ(el), θρ(C1), · · · , θρ(Ck)).

To prove this, we determine the range of the mapping φ̃λ by three
conditions as follows.

(I) The parameters σρ(e1), · · · , σρ(el) satisfy the switch relations at
all internal switches by Theorem 2.1. This is the first condition which

defines the image of φ̃λ.
(II) Next, we focus on the spiraling of bi-infinite leaves along closed

leaves. Let us introduce the signature of the spiraling of bi-infinite
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leaves. When the spiraling occurs in the direction opposite to the
orientation of S, we call this spiraling positive spiraling. See Figure 3.
Similarly, we call the spiraling in Figure 4 negative spiraling.

Figure
3. Positive
spiraling.

Figure
4. Negative
spiraling.

We refer to the following proposition.

Proposition 2.7. ([Th, Proposition 3.4.21]) Let F be a compact
oriented surface of negative Euler characteristics with boundary. Fix
ρ ∈ T (F ), and a maximal geodesic lamination λ on F . Let B1, · · · , Bl

be the bi-infinite leaves of λ spiral to a boundary component C of F .
Then, if the spiraling of Bj is positive,

lρ(C) =
l∑

j=1

σρ(Bj),

and if the spiraling of Bj is negative,

lρ(C) = −
l∑

j=1

σρ(Bj).

For each Ci, let Bi,L
1 , · · · , Bi,L

lL
be bi-infinite leaves spiraling to Ci

from the one side, and Bi,R
1 , · · · , Bi,R

lR
be bi-infinite leaves spiraling to
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Ci from the other side. Then, Proposition 2.7 gives us the following
relation

sign ·
lL∑
k=1

σρ(Bi,L
k ) = sign ·

lR∑
k=1

σρ(Bi,R
k ) > 0 · · · (∗).

The symbol “sign” means the signature of each spiraling along Ci.
Similarly, for each boundary component C of S, letting BC

1 , · · · , BC
lC

be the bi-infinite leaves spiraling to C, it follows that

sign ·
lC∑
k=1

σρ(BC
k ) > 0 · · · (∗∗)

by Proposition 2.7, where “sign” also means the signature of the spi-
raling along C.

By definition of σρ(ei), (∗) and (∗∗) give the relation between the
parameters σρ(e1), · · · , σρ(el), which is the second condition.

(III) The final condition is given by Theorem 2.5, which implies that
τ(µ, σρ) > 0 for every non-zero transverse measure µ. For switches s,
set τs(µ, σ

ρ) = µ(eRs )σρ(eLs ) − µ(eLs )σρ(eRs ). The non-internal switches
correspond to the spiraling of bi-infinite leaves to closed leaves. De-
pending the signature of the spiraling, two types of the branches at
non-internal switches occur as the following figures.

a closed leaf

Figure
5. Positive
case.

a closed leaf

Figure
6. Negative
case.
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If s is given by the positive spiraling (Figure 5), then τs(µ, σ
ρ) =

µ(eRs )σρ(eLs ), since the support of µ contains no isolated bi-infinite
leaves, so µ(eLs ) = 0. Similarly if s is given by the negative spiraling
(Figure 6), then τs(µ, σ

ρ) = −µ(eLs )σρ(eRs ). Hence, τ(µ, σρ) > 0 implies
that ∑

s

τs(µ, σ
ρ) +

∑
s′

(
µ(eRs′)σ

ρ(eLs′)
)
−
∑
s′′

(
µ(eLs′′)σ

ρ(eRs′′)
)
> 0,

where s ranges over the internal switches, s′ (resp. s′′) ranges over the
non-internal switches which correspond to the positive (resp. negative)
spiraling.

If λ is uncountable, then we can take transverse measures µ such
that µ associates 0 to the non-internal edges. Hence, for all such µ,∑

s

τs(µ, σ
ρ) =

∑
s

(
µ(eRs )σρ(eLs )− µ(eLs )σρ(eRs )

)
> 0,

where s ranges only over internal switches. Note that eLs and eRs are
internal edges, and this inequality is a relation between the parameters
σρ(e1), · · · , σρ(e`).

If λ consists of finitely many leaves, all bi-infinite leaves are isolated.
Then µ(e1) = · · · = µ(e`) = 0 since the support of µ contains no
isolated bi-infinite leaves. Hence we obtain∑

s′

(
µ(eRs′)σ

ρ(eLs′)
)

+

(
−
∑
s′′

(
µ(eLs′′)σ

ρ(eRs′′)
))

> 0.

However this inequality follows from the condition (II) since µ(eRs′) and
µ(eLs′′) are positive, so it gives no new conditions.

We summarize these conditions (I), (II), and (III).

Proposition 2.8. The parameters σρ(e1), · · · , σρ(e`) satisfy the
following three conditions:

(I) The switch relations at all internal switches.
(II) The equality and inequality obtained from the condition (∗)

and (∗∗) along each closed leaf.
(III) The positivity

∑
s τs(µ, σ

ρ) > 0, where µ is an arbitrary trans-
verse measure which associates 0 to the non-internal edges,
and s ranges over the internal switches.



22 2. PRELIMINARIES

Now we prove Theorem 2.6. The analyticity is obtained from the
argument of [Bo96] and [BD14]. Hence it suffices to give an inverse

mapping of φ̃λ. In particular, we reconstruct a Fuchsian representation
of S from the parameters which satisfy the conditions (I), (II), and (III)
in Proposition 2.8.

Proof. (Theorem 2.6) Given parameter (x1, · · · , xl, y1, · · · , yk) where
xi is the σρ(ei)-entry and yi is the θρ(Ci)-entry , we construct a Fuch-
sian representation which has this parameter. To construct this, cut
the surface S along the closed leaves Ci of λ. Then S is separated to
finitely many (compact) surfaces with boundary.

First we construct a Fuchsian representation of each separated com-
ponent. Let F be a connected component which is obtained in the
above separation. Then the lamination λ (resp. the train track neigh-
borhood Nλ) are restricted to the lamination λF (resp. the train track
neighborhood NλF ) on F . We denote the internal edges of NλF by
eFi1 , · · · , e

F
ip , and denote the σρ(eFij)-parameter by xFij . The switch con-

dition (I) implies the existence of a transverse cocycle in Z(λF ) which
sends eFij to xFij (Theorem 2.1), and the condition (II) and (III) implies
that its transverse cocycle satisfies the positivity in Theorem 2.5 for
all non-zero transverse measures µ of λF . Thus, applying Theorem 2.4
to λF , we obtain a Fuchsian representation ρF ∈ T (F ).

We can glue these representations ρF on each component F to
obtain a Fuchsian representation ρ on S. Indeed, the condition (II)
implies that the glued boundaries have the same length. By the con-
struction, σρ(ei) of ρ is equal to the given parameter xi.

Now we deform the Fuchsian representation ρ to a representation
η by the twist deformation along each closed leaf Ci to realize that

θη(Ci) = yi. For the universal covering π : S̃ → S, we set Ci = π−1(Ci),
which is an geodesic lamination on the universal covering. In the defi-

nition of θρ(Ci), we fix a geodesic C̃i, ideal triangles T̃L, T̃R, and ideal

vertices x, y, zL, zR. We orient C̃i in the direction from y to x, and ori-

ent the leaves of Ci so that, for all ` ∈ Ci, π(`) and π(C̃i) are oriented
in the same direction.

Let fρ be the developing map associated to ρ. The twist deforma-
tion of ρ along Ci is lifted onto the universal covering as follows. Each
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leaf ` ∈ Ci cuts S̃ into two components P and Q, where P is on the left
of `. We consider these `, P,Q in the hyperbolic plane H2 via fρ. Let
h`t be the hyperbolic translation along ` whose translation length is t.
Here the direction of h`t is determined by the orientation of `. Then
we define a mapping g`t by h`t on P \ `, and the identity on Q. The
iteration of such an action via g`t for all ` ∈ Ci gives a new universal
covering of S, and the associated Fuchsian representation is a twist
deformation of ρ.

We consider the variation of θρ(Ci) under the twist deformation
along Ci. Let ` ∈ Ci, and let P (resp. Q) be the left (resp. right) side

of `. If ` is different from C̃i, the ideal verices x, y, zL, zR are in the
common side for `. Hence, in the both cases,

cr(g`t◦fρ(x), g`t◦fρ(y), g`t◦fρ(zL), g`t◦fρ(zR)) = cr(fρ(x), fρ(y), fρ(z
L), fρ(z

R)).

If ` = C̃i, z
L is on P and zR is on Q. Then, via the translation g`t ,

only zL moves on the interval between x and y, and the other vertices
x, y, zR are fixed. In particular, the point zL goes to x when t → ∞
and goes to y when t→ −∞. Hence, we obtain the following variation
of the cross ratio.

cr(g`t ◦ fρ(x), g`t ◦ fρ(y), g`t ◦ fρ(zL), g`t ◦ fρ(zR))

= cr(fρ(x), fρ(y), g`t ◦ fρ(zL), fρ(z
R))

→

{
0 (t→∞)

−∞ (t→ −∞).

This proves the next lemma.

Lemma 2.9. For any negative real numbers r < 0, there exists a
twist deformation ηi of ρ along Ci such that

cr(fηi(x), fηi(y), fηi(z
L), fηi(z

R)) = r.

Applying Lemma 2.9 as r = −eyi , we complete the twist defor-
mation ηi of ρ along the leaf Ci to obtain a Fuchsian representation
ηi such that θηi(Ci) = yi. We note that this twist deformation pre-
serves the other twist parameters θρ(Cj) for i 6= j. Since the closed
leaf Cj does not intersect to Ci, the geodesic laminations Ci and Cj

are disjoint. Moreover, Ci is asymptotic to some bi-infinite leaves, but
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does not intersect to bi-infinite leaves transversally. Thus the points
x, y, zL, zR, which define the twist parameter along Cj, belong to a
common plaque of Ci. Hence, under the twist deformation along Ci, it
holds that θρ(Cj) = θηi(Cj). Similarly, the twist deformation preserves
the shearing parameters, i.e. σρ(e1) = σηi(e1), · · · , σρ(e`) = σηi(e`).
Therefore, twisting ρ along all closed leaves C1, · · · , Ck, we obtain a
Fuchsian representation η of S such that θη(C1) = y1, · · · , θη(Ck) = yk.
For this η, the shearing parameter does not change from one of the
original representation ρ. We finish the reconstruction of Fuchsian
representations. �

Finally, we make remarks about the case of laminations λ consist-
ing of finitely many leaves. In this case, letting B1, · · · , B3|χ(S)| be
bi-infinite leaves of λ, and C1, · · · , Ck be closed leaves in the interior of
S, we can take a simple generic train track neighborhood Nλ which sat-
isfies that the internal edges of Nλ are only 3|χ(S)| edges e1, · · · , e3|χ(S)|
such that ei intersects only to Bi and has no intersections with other

leaves. Then the parameterization φ̃λ along Nλ is defined by

φ̃λ(ρ) = (σρ(e1), · · · , σρ(e3|χ(S)|), θρ(C1), · · · , θρ(Ck)).

Note that there are no internal switches of Nλ. Thus, Proposition 2.8

implies that the range of φ̃λ is determined only by the condition (II).
This parameterization is used in the proof of Theorem 4.2.

1.6. Example: the Teichmüller space of a
pair of pants. Let P be a pair of pants. We denote
the boundary components of P by A, B, and C as
the right figure. The hyperbolic structure of P is
uniquely determined by the boundary length.

Proposition 2.10. The following mapping is a
diffeomorphism.

T (P )→ R3
>0 : ρ 7→ (lρ(A), lρ(B), lρ(C)).

Proof. We construct an inverse mapping. Set a =
1

2
lρ(A), b =

1

2
lρ(B), c =

1

2
lρ(C). We refer the following fact.
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Lemma 2.11. ([Ra, Theorem 3.5.13]) Set the lengths of sides of a
right-angled hyperbolic convex hexagon V0V1V2V3V4V5 as V0V1 = a,
V2V3 = b, V4V5 = c, V1V2 = c′. Then

cosh c′ =
cosh a cosh b+ cosh c

sinh a sinh b
.

This lemma implies that a, b, c determine a unique right-angled hy-
perbolic convex hexagon Ha,b,c. (We can uniquely draw such a hexagon
in the hyperbolic plane.) Let H ′a,b,c be an isometric copy of Ha,b,c. Glue
these hexagonsHa,b,c, H

′
a,b,c along the opposite sides of a, b, c to obtain a

pair of pants P . Then the boundary lengths of P are equal to 2a, 2b, 2c,
and we obtain an inverse mapping. �

We parameterize Fuchsian representations of π1(P ). Let λ the
oriented maximal geodesic lamination λ = {hAB, hBC , hCA, A,B,C}
which is described in the previous figure . This lamination induces
an ideal triangulation of P and we denote by T0 and T1 two triangles
given by the triangulation. We fix a presentation of π1(P ) as

π1(P ) = 〈a, b, c | abc = 1〉
where a, b and c are the homotopy classes of A,B and C.

Proposition 2.12. Let (lA, lB, lC) be a triple of the hyperbolic
lengths of the boundary components A,B,C. Then we can take a rep-
resentative ρ in the conjugacy class of the Fuchsian representation as-
sociated to (lA, lB, lC) such that the developing map associated to ρ is
described as Figure 7 and Figure 8, and the attracting point of the
axis of ρ(b) equals to 0 in ∂∞H2. In particular, the biinfinite leaves

hAB, hBC and hCA can lift to the geodesics h̃AB, h̃BC and h̃CA in Fig-
ure 7 and Figure 8, whose terminal points are ∞, 1 and 0 in ∂∞H2

respectively. Moreover we can write such a representative ρ concretely
as follows.

ρ(a) =

[
α αβγ + α−1

0 α−1

]
, ρ(b) =

[
γ 0

−β−1 − γ−1 γ−1

]
,

where α, β, γ : R3
>0 → R>0 are defined by

α(lA, lB, lC) = elA/2, β(lA, lB, lC) = e(lC−lA)/2, γ(lA, lB, lC) = e−lB/2

with the conditions α > 1, 1 > γ > 0, β > 0.
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Figure
7. Upper half
plane model.

Figure
8. Poincaré
disk model.

Proof. The first assertion follows by the normalization of Fuch-
sian groups. See [IT]. We can set the Fuchsian representation ρ which
satisfies the condition of the fixed points of ρ(a) and ρ(b) by

ρ(a) =

[
α β
0 α−1

]
, ρ(b) =

[
γ 0
δ γ−1

]
.

We compute the parameter δ so that ρ(c) = ρ(b)−1ρ(a)−1 fixes 1 ∈
∂∞H2. Since

ρ(c) = ρ(b)−1ρ(a)−1 =

[
α−1γ−1 −βγ−1
−α−1δ βδ + αγ

]
,

the condition of the fixed points of ρ(c) implies that

ρ(c)(1) =
α−1γ−1 − βγ−1

−α−1δ + βδ + αγ
= 1.

Thus we can show that −α−1 + β 6= 0 and obtain

δ = −γ−1 +
−αγ

−α−1 + β
.

Replacing the parameter β with a parameter β′ satisfying β = αγβ′ +
α−1, we deform the equation above as

δ = −γ−1 − β′−1.
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We denote β′ by β again. The representation ρ is given by the following
form.

ρ(a) =

[
α αβγ + α−1

0 α−1

]
, ρ(b) =

[
γ 0

−β−1 − γ−1 γ−1

]
.

Note that ρ(a) and ρ(b) are elements in PSL2(R), so we can assume
α, γ > 0 by the multiple of −1. Since the attracting point of ρ(b) is
0 ∈ ∂∞H2, it holds that γ < 1.

Next we consider inequalities among parameters α, β and γ which
are given by positional relations of fixed points at infinity. We can
check the following easily:

Fix(ρ(a)) = {∞, α
2βγ + 1

1− α2
},

Fix(ρ(b)) = {0, γ − γ−1

−β−1 − γ−1
},

Fix(ρ(c)) = {1, αβ + α−1γ−1

α−1γ−1 + α−1β−1
}.

By Figure 6, the following inequalities hold:

α2βγ + 1

1− α2
< 0,(1)

0 <
γ − γ−1

−β−1 − γ−1
< 1,(2)

1 <
αβ + α−1γ−1

α−1γ−1 + α−1β−1
.(3)

Noting that 1 > γ > 0 which implies that γ < γ−1, these inequalities
are deformed as follows:

(2) ⇔ β−1 + γ−1 > 0, β−1 + γ > 0,(4)

(3), (4) ⇔ α2β > β−1,(5)

(1), (4) ⇔ α > 1.(6)
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We can deduce β > 0 from these inequalities since if β is negative,

(4) ⇔ β + γ < 0, β < −1

γ
,

(5) ⇔ − 1

α
< β <

1

α

and, by −1/γ < −1/α, a contradiction occurs.
In general, the hyperbolic length l of a simple closed geodesic which

is covered by the axis of a hyperbolic isometry M ∈ PSL2(R) is given
by the following formula:

|tr(M)| = 2 cosh(l/2).

Under the conditions above of α, β and γ, the data of the hyperbolic
lengths of A and B detect α and γ.

α = exp(lA/2), γ = exp(−lB/2).

We consider an equation

|tr(ρ(c))| = 2 cosh(lC/2)

which implies that

| − αβ − α−1β−1| = 2(cosh(lC/2))

⇔ αβ + α−1β−1 = 2 cosh(lC/2) (α, β > 0)

⇔ β =
cosh(lC/2)± sinh(lC/2)

α
.

The inequality (5) gives us the following condition

(5)⇔ α2β2 > 1

and then β is uniquely determined by

β =
cosh(lC/2) + sinh(lC/2)

α
.

�
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2. Hitchin representations, Anosov property, and flag curves

2.1. Representation varieties and Character varieties. Let
Γ be a finitely generated group, presented by Γ = 〈g1, · · · , gk | γλ (λ ∈
Λ)〉. The PSLnR-representation variety Rn(Γ) of Γ is the set of group
homomorphisms Rn(Γ) = Hom(Γ,PSLn(R)) with the compact open
topology. The representation variety Rn(Γ) has an algebraic structure
induced by the Lie group PSLnR. Through the following map,

Rn(Γ)→ (PSLnR)k : ρ 7→ (ρ(g1), ρ(g2), · · · , ρ(gk))

Rn(Γ) is embedded into (PSLnR)k. The image of this embedding is
detected by the relation of Γ. Indeed, ρ(γλ) is represented by a product
of ρ(g1), ρ(g2), · · · , ρ(gk), hence Rn(Γ) is identified with a subvariety
of (PSLnR)k. Note that the relative topology of Rn(Γ), induced from
(PSLnR)k, coincides with the compact open topology.

PSLnR acts on Rn(Γ) by conjugation. The quotient space Xn(Γ) =
Rn(Γ)/PSLn(R) is called the PSLn(R)-character variety. Character
varieties are often defined by the GIT quotient. We do not require
the algebraic property of them, so we define Xn(Γ) via the natural
quotient. Note that our character variety Xn(Γ) is not Hausdorff in
general. An example of non-separable orbits is given in [Go84]. Let Γ
be a fundamental group of the closed surface of genus 2, and let n = 2.
Then Γ is generated as Γ = 〈a1, b1, a2, b2 | [a1, b1][a2, b2]〉. We define a
representation ρg for g ∈ PSL2R by

ρg(a1) = ρ(b2) = g, ρ(a2) = ρ(b1) =

[
a 0
0 a−1

]
,

where a > 1. Set g1 =

[
1 0
1 1

]
, and g2 =

[
1 1
0 1

]
. Then, by a direct

computation, we can check that ρg1 , ρg2 are not conjugate. Hence, they
are projected to different points in X2(Γ).

Consider gn =

[
(1 + a−2n)

1
2 a−2n

1 (1 + a−2n)
1
2

]
. Since gn → g1 as n →

∞, ρgn converges to ρg1 . On the other hand, settingDa =

[
a 0
0 a−1

]
, the

conjugacy Dn
aρgnD

−n
a converges to ρg2 . In X2(Γ), ρgn and Dn

aρgnD
−n
a
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are the same point for each n, hence ρg1 , ρg2 are not separable since ρgn
is closed to both ρg1 , ρg2 if n is sufficiently large.

2.2. Hitchin components. Let S be a closed surface of genus
g ≥ 2. Set Xn(S) = Xn(π1(S)). We focus on the connected compo-
nents of Xn(S). First, we consider the case of n = 2. In this case,
the number of connected components was computed by Goldman us-
ing a certain characteristic class ([Go88]). Given ρ ∈ X2(S), we can

construct the associated flat bundle Pρ = S̃ ×R2/π1(S) over S, where
π1(S) acts on the first factor by the covering translations, and acts
on the second factor through ρ. Let e(ρ) ∈ Z be the Euler class of
Pρ. Through a computation of the upper and lower bound of e(ρ),
Goldman proved the following theorem.

Theorem 2.13. ([Go88]) The Euler class is bounded as |e(ρ)| 5
2g − 2, and there is a one-to-one correspondence between e(ρ) and
connected components of X2(S). Hence, the number of connected com-
ponents of X2(S) is equal to 4g − 3. Moreover |e(ρ)| = 2g − 2 if and
only if ρ is discrete.

This theorem implies that X2(S) contains two connected compo-
nents which diffeomorphic to T (S). The Teichmüller space is often
called the Teichmüller component of X2(S).

The case of n ≥ 3, Hitchin detected the number of connected com-
ponents of Xn(S). Using Higgs bundle techniques, he proved the fol-
lowing theorem.

Theorem 2.14. ([Hi92]) Let n ≥ 3. The number of connected
components of Xn(S) is equal to 3 if n is odd, and 6 if n is even.

In addition, He found the special component in Xn(S) associated
to T (S). Let us consider an irreducible representation SL2R→ SLnR
which is unique up to conjugacy. This representation is obtained by the
symmetric power of the natural representation (SL2R,R2). We denote
its projectivization PSL2R → PSLnR by ιn. The representation ιn
induces a map between character varieties (ιn)∗ : X2(S) → Xn(S) by
the correspondence ρ 7→ ιn ◦ ρ. Since ιn is a group homomorphism,
this induced map is well-defined.



2. HITCHIN REPRESENTATIONS 31

Definition 2.15. The (PSLnR-) Hitchin component Hn(S) is the
connected component of Xn(S) which contains the image Fn(S) =
(ιn)∗(T (S)).

We call the image Fn(S) of T (S) the Fuchsian locus of Hn(S).
Hitchin representations are representations ρ : π1(S) → PSLnR whose
conjugacy class belongs toHn(S). A Hitchin representation ρ is PSLnR-
Fuchsian if ρ is contained in Fn(S), i.e. there is a Fuchsian represen-
tation ρ0 : π1(S)→ PSL2R such that ρ = ιn ◦ ρ0.

The diffeomorphic type of Hitchin components is as follows.

Theorem 2.16 (Hitchin [Hi92]). The Hitchin component Hn(S)

is diffeomorphic to R(2g−2)(n2−1).

Moreover, Hn(S) consists of faithful discrete representations. This
fact was shown by Labourie [La06] from the Anosov property of Hitchin
representations, see Section 2.4 in this chapter.

2.3. Hyperconvex property. The projective special linear group
PSLnR acts on the projective space RPn−1 = P (Rn) by the projec-
tivization of the linear action of SLnR on Rn. We define the hyper-
convexity of projective linear representations of π1(S). Let ∂π1(S) be
the ideal boundary of π1(S) which is the visual boundary of a Cayley

graph of π1(S). Note that ∂π1(S) is homeomorphic to ∂S̃ through a
hyperbolic structure of S. Therefore, in this paper, we identify ∂π1(S)

with ∂S̃ by using the reference hyperbolic structure of S.

Definition 2.17. A representation ρ : π1(S) → PSLnR is said to
be hyperconvex if there exists a (π1(S), ρ)-equivariant continuous map
ξρ : ∂π1(S) → RPn−1 such that ξρ(x1) + · · · + ξρ(xn) is direct for any
pairwise distinct points x1, · · · , xn ∈ ∂π1(S).

The associated curve ξρ is called the hyperconvex curve of ρ. Labourie
showed that Hitchin representations are hyperconvex by the Anosov
property which is explained in the next subsection. The converse re-
sult was shown by Guichard in [Gu08], so

Theorem 2.18 (Guichard [Gu08], Labourie [La06]). A represen-
tation ρ : π1(S)→ PSLnR is Hitchin if and only if ρ is hyperconvex.

In addition, Labourie showed the following theorem.
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Theorem 2.19 ([La06]). Let ρ : π1(S)→ PSLnR be a hyperconvex
representation with the hyperconvex curve ξρ : ∂π1(S)→ RPn−1. Then
there exists a unique curve ξkρ : ∂π1(S) → Grk(Rn) with the properties
from (i) to (iv) below.

(i) ξp(x) ⊂ ξp+1(x) for any x ∈ ∂π1(S).
(ii) ξ1(x) = ξρ(x) for any x ∈ ∂π1(S).

(iii) If n1, · · · , nl are positive integers such that
∑
ni ≤ n, then

ξn1(x1) + · · ·+ ξnl(xl) is direct for any pairwise distinct points
x1, · · · , xl ∈ ∂π1(S).

(iv) If n1, · · · , nl are positive integers such that p =
∑
ni ≤ n,

then

lim
(y1,··· ,yl)→x; yidistinct

ξn1(y1) + · · ·+ ξnl(yl)→ ξp(x)

This theorem implies that any hyperconvex curves are extended
to curves in the flag manifold. (See Section 3.1 in this chapter for
the precise definition of flags.) The map (ξ1, · · · , ξn−1) : ∂π1(S) →
Flag(Rn) is called the (osculating) flag curve of the hyperconvex curve
ξρ.

We can explicitly describe the hyperconvex curve of PSLnR-Fuchsian
representations. Let ρn = ιn ◦ ρ be a PSLnR-Fuchsian representa-
tion. Recall that the irreducible representation ιn is defined by sym-
metric power of the representation (SL2R,R2). We identify Rn with
Symn−1(R2). Consider the Veronese embedding ν : RP1 → RPn−1 de-
fined by sending [a : b] to [an−1 : an−2b : · · · : bn−1]. Then the composi-
tion ν ◦ fρ of the Veronese embedding with the developing map gives
the hyperconvex curve of ρn. Using homogeneous polynomials, the flag
is also described explicitly. The symmetric power Symn−1(R2), which
is identified with Rn, is also identified with the vector space

Polyn(X, Y ) = {a1Xn−1 + a2X
n−2Y + · · ·+ anY

n−1 | ai ∈ R}
of homogeneous polynomials of degree n−1. If we denote the canonical
basis of Symn−1(R2) by en−11 , en−21 · e2, · · · , en−12 , where e1, e2 are the
canonical basis of R2, the identification is defined by mapping the
vector ei1·en−1−i2 to

(
n−1
i

)
X iY n−1−i. Then the one dimensional subspace

ν([a : b]) is equal to R{(aX+bY )n−1} in the vector space Polyn(X, Y ).
In addition, the d-dimensional subspace of the flag curve associated to
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ν, which is again denoted by ν, is defined by

{P (X, Y ) ∈ Polyn(X, Y ) | P (X, Y ) can be divided by (aX + bY )n−d}.
We call the flag curve ν the Veronese flag curve. The composition
ν ◦ fρ of the Veronese flag curve with the developing map is just the
flag curve of PSLnR-Fuchsian representations.

2.4. Anosov property. The existence of the flag curve of Hitchin
representations follows from the Anosov property. Let G be a semisim-
ple Lie group, and P be a parabolic subgroup, that is, the stabilizer
of a point of the visual boundary of the Riemannian symmetric space
G/K. A representation ρ : π1(S)→ G is said to be P -Anosov if there
exists a continuous ρ-equivariant map ξρ : ∂∞π1(S)→ G/P with a cer-
tain dynamical property with respect to the action of ρ(π1(S)). In
general case, the dynamical property is defined by the Cartan pro-
jection of G, and the definition is not short. However, in the case of
G = PSLnR, we can define the Anosov property more simply and more
explicitly. Let s1(A) ≥ s2(A) ≥ · · · ≥ sn(A) be the singular values of
A ∈ PSLnR. For 1 ≤ k ≤ n

2
, a representation ρ : π1(S) → PSLnR

is said to be Pk-Anosov if there exist constants A,C > 0 such that
sk(ρ(γ))/sk+1(ρ(γ)) ≥ A expC|γ|.

Especially, when ρ is Pk-Anosov for all k, ρ is called Borel-Anosov.
In [La06], Labourie showed Hitchin representations are Borel-Anosov.
Moreover it was also shown by the Borel-Anosov property that Hitchin
representations are faithful, discrete, irreducible and purely-loxodromic.

For a Borel-Anosov representation ρ, through the argument with
the action on the symmetric space G/K and its Furstenberg boundary
G/B, we obtain a continuous ρ-equivariant map ξ : ∂∞π1(S) → G/B,
called the boundary map of ρ. The boundary maps are the analog of
the limit set of discrete subgroups of rank 1. In particular, when G =
PSLnR, the boundary G/B is the (complete) flag manifold Flag(Rn).
Recall that Hitchin representations are hyperconvex, and they have
the osculating flag curves. These osculating flag curves are just equal
to the boundary maps of the Borel-Anosov property.

Remark 2.20. For general references of Anosov representations/
Anosov subgroups, see Guéritaud-Guichard-Kassel-Wienhard [GGKW17],
Kapovich-Leeb-Porti [KLP17]. The original definition was given by
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Labourie [La06] for surface groups, and by Guichard-Wienhard [GW12]
for Gromov hyperbolic groups.

3. The Bonahon-Dreyer parameterization

3.1. Projective invariants. We define projective invariants of
tuples of flags. A (complete) flag in Rn is a sequence of nested vector
subspaces of Rn

{0} = F 0 ⊂ F 1 ⊂ F 2 ⊂ · · · ⊂ F n = Rn,

where dim F d = d. The flag manifold of Rn is a set of flags in Rn.
We denoted the flag manifold by Flag(Rn). Note that Flag(Rn) is
diffeomorphic to a homogeneous space PSLnR/B, where B is a Borel
subgroup of PSLnR, and PSLnR naturally acts on the flag manifold.
A generic tuple of flags is a tuple (F1, F2, · · · , Fk) of a finite number of
flags F1, F2, · · · , Fk ∈ Flag(Rn) such that if n1, · · · , nk are nonnegative
integers satisfying n1 + · · ·+ nk = n, then F n1

1 ∩ · · · ∩ F
nk
k = {0}.

Let (E,F,G) be a generic triple of flags, and p, q, r ≥ 1 integers
with p + q + r = n. For each d = 1, · · · , n, choose a basis “ed, fd, gd”
of the wedge products “

∧dEd,
∧d F d,

∧dGd”, respectively. We fix an
identification between

∧nRn with R. Then we can regard ed1∧fd2∧gd3
as an element of R when d1 + d2 + d3 = n. In particular ed1 ∧ fd2 ∧ gd3
is not equal to 0 since (E,F,G) is generic.

Definition 2.21. The (p, q, r)-th triple ratio Tpqr(E,F,G) is de-
fined by

Tpqr(E,F,G) =
ep+1 ∧ f q ∧ gr−1 · ep ∧ f q−1 ∧ gr+1 · ep−1 ∧ f q+1 ∧ gr

ep−1 ∧ f q ∧ gr+1 · ep ∧ f q+1 ∧ gr−1 · ep+1 ∧ f q−1 ∧ gr
∈ R.

The value of Tpqr(E,F,G) is independent of the identification
∧nRn ∼=

R and the choice of elements ed, fd, gd. If one of exponents of ed, fd, gd

is equal to 0, then we ignore the corresponding terms. For example,
e0∧f q∧gn−q = f q∧gn−q. The triple ratio is invariant under the action
of PSLnR.

For permutations of (E,F,G), the triple ratio behaves as follows.

Proposition 2.22. For every generic triples (E,F,G) of flags,

Tpqr(E,F,G) = Tqrp(F,G,E) = Tqpr(F,E,G)−1.
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Let (E,F,G,G′) be a generic quadruple of flags, and b be an integer
with 1 ≤ b ≤ n − 1. We choose nonzero elements “ed, fd, gd, g′d” of
“
∧dEd,

∧d F d,
∧dGd,

∧dG′d” respectively. We fix an identification∧nRn ∼= R again. Then, ed1 ∧ fd2 ∧ gd3 and ed1 ∧ fd2 ∧ g′d3 are also
regarded as real values when d1 + d2 + d3 = n.

Definition 2.23. The b-th double ratio Db(E,F,G,G
′) is defined

by

Db(E,F,G,G
′) = −e

b ∧ fn−b−1 ∧ g1 · eb−1 ∧ fn−b ∧ g′1

eb ∧ fn−b−1 ∧ g′1 · eb−1 ∧ fn−b ∧ g1
∈ R.

This is well-defined since the ratio is independent of the choice of∧nRn ∼= R and ed, fd, gd, g′d. The double ratio is also invariant under
the action of PSLnR.

3.2. The Bonahon-Dreyer parameterization for finite lam-
inations.

3.2.1. Construction of invariants. We define three kinds of invari-
ants of Hitchin representations, triangle invariant, shearing invariant,
and twist invariant for an oriented maximal geodesic lamination which
consists of finitely many leaves with a bridge system. We fix a hy-
perbolic metric on S, and an oriented maximal geodesic lamination
λ on S. We suppose that λ consists only of closed leaves C1, · · · , Ck
and bi-infinite leaves B1, · · · , B3|χ(S)|. In addition, we fix a bridge
system J = {JCi

}i of λ. The lamination λ induces an ideal trian-
gulation of S by ideal triangles T1, · · · , T2|χ(S)|. Each ideal triangle
Ti has three spikes. We denote these spikes by si0, s

i
1, s

i
2 so that, in

a lift T̃i of Ti, their corresponding ideal vertices of T̃i are in clock-
wise order. Let ρ : π1(S) → PSLnR be a Hitchin representation and
ξρ : ∂π1(S)→ Flag(Rn) the associated flag curve.

Let Ti be an ideal triangle, and choose a spike sij of Ti. Fix a lift

T̃i of Ti. We denote the ideal vertex corresponding to sij by v. In

addition, we denote the other vertices of T̃i by v′, v′′ so that v, v′, v′′

are in clockwise order. Let p, q, r be integers such that p, q, r ≥ 1 and
p+ q + r = n.

Definition 2.24. The (p, q, r)-th triangle invariant τpqr(s
i
j, ρ) of a

Hitchin representation ρ associated to the spike sij of the ideal triangle
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Ti is defined by

τpqr(s
i
j, ρ) = log Tpqr(ξρ(v), ξρ(v

′), ξρ(v
′′)).

The triangle invariant is independent of a choice of the lift T̃i since
flag curves are ρ-equivariant and the triple ratio is invariant under
the PSLnR-action. By Proposition 2.22, we have the relation between
triangle invariants:

τpqr(s
i
0, ρ) = τqrp(s

i
1, ρ) = τrpq(s

i
2, ρ).

This relation is called the rotation condition, and is going to be used
to define the parameter space.

A bi-infinite leaf Bi ∈ λJ is a side of two ideal triangles. Let TL

(resp. TR) be the ideal triangle which is on the left (resp. right) side

with respect to the orientation of Bi. We lift Bi to a geodesic B̃i in S̃,

and we also lift TL and TR to two ideal triangles T̃L and T̃R so that

they are adjacent along B̃i. We denote the repelling point and the

attracting point of B̃i by y and x, and denote the other vertices of T̃L

(resp. T̃R) by zL (resp. zR). Let b be an integer with 1 ≤ b ≤ n− 1.

Definition 2.25. The b-th shearing invariant of a Hitchin repre-
sentation ρ along Bi is defined by

σb(Bi, ρ) = logDb(ξρ(x), ξρ(y), ξρ(z
L), ξρ(z

R)).

This invariant is also well-defined for a choice of lifts by the same
reason with the case of triangle invariants.

Consider a closed (oriented) leaf Ci ∈ λJ . By the bridge system
J , we have a bridge JCi

= {TLi , TRi } associated to Ci. Here TLi spirals
to Ci from the left, and TRi spirals to Ci from the right. Lift Ci, T

L
i

and TRi to C̃i, T̃
L
i and T̃Ri in the universal covering so that the ideal

triangles T̃Li , T̃Ri have a common ideal vertex with C̃i. We denote, by

x, the attracting point of C̃i and, by y, the repelling point of C̃i. Let

us define the vertex zL, zR of ideal triangles T̃Li , T̃
R
i as follows. Note

that two sides of T̃Li are asymptotic to C̃i. One of these sides cuts

the universal cover S̃ such that an ideal triangle T̃Li and the geodesic

C̃i is contained in the same connected component. The ideal vertex

zL is the end point of such a geodesic side of T̃Li other from the ideal
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point x or y. We define zR for T̃Ri similarly. Let c be an integer with
1 ≤ c ≤ n− 1.

Definition 2.26. The c-th twist invariant of a Hitchin represen-
tation ρ along Ci is defined by

θc(Ci, ρ) = logDc(ξρ(x), ξρ(y), ξρ(z
L), ξρ(z

R)).

The invariants above are well-defined on Hitchin components i.e.
these three invariants are independent of representatives of conjugacy
classes of Hitchin representations.

3.2.2. The Bonahon-Dreyer parameterization. SetN = 6|χ(S)|
(
n−1
2

)
+

3|χ(S)|(n−1)+k(n−1). Bonahon and Dreyer showed that Hitchin rep-
resentations are parameterized by the all triangle invariants, shearing
invariants, and twist invariants we can define.

Theorem 2.27 (Bonahon-Dreyer [BD14]). The map ΦλJ : Hn(S)→
RN defined by

ΦλJ (ρ) = (τpqr(s
i
j, ρ), · · · , σb(Bi, ρ), · · · , θc(Ci, ρ), · · · )

is an analytic homeomorphism onto the image. Moreover the image of
this map is the interior PλJ of a convex polyhedron.

We denote the coordinate of the image by

(τpqr(s
i
j), · · · , σb(Bi), · · · , θc(Ci), · · · ).

3.2.3. The parameter space PλJ . The range PλJ is defined by the
rotation condition referred after Definition 20, and the closed leaf con-
dition defined as follows. This condition is given by the equality and
the inequality of triangle, shearing invariants associated to closed leaves
C. Let C be a closed oriented leaf of the lamination λ. We focus on
the right side of C with respect to the orientation of C. Let B1, · · · , Bl

be the bi-infinite leaves spiraling to C from the right, and T1, · · · , Tl
be the ideal triangles spiraling to C from the right. Suppose that these
leaves and ideal triangles spiral to C in the direction (resp. the oppo-
site direction) of the orientation of C. Let si is the spike of Ti which is
asymptotic to C. Define σb(Bi) by σb(Bi) if Bi is oriented toward C,
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and by σn−b(Bi) otherwise. We define

Rb(C) =
l∑

i=1

σb(Bi) +
l∑

i=1

∑
q+r=n−b

τbqr(si)

in the former case, and

Rb(C) = −
l∑

i=1

σn−b(Bi)−
l∑

i=1

∑
q+r=b

τ(n−b)qr(si)

in the latter case.
When we focus on the left side of C, we can similarly define Lb(C)

by

Lb(C) = −
l∑

i=1

σb(Bi)−
l∑

i=1

∑
q+r=n−b

τbqr(si)

if the spiraling is in the direction, and

Lb(C) =
l∑

i=1

σn−b(Bi) +
l∑

i=1

∑
q+r=b

τ(n−b)qr(si)

if the spiraling is in the opposite direction.
The closed leaf equality for C is the equality Lb(C) = Rb(C), and

the closed leaf inequality for C is the inequality Lb(C), Rb(C) > 0.
The rotation condition for all spikes and the closed leaf condition for
all closed leaves define PλJ . See [BD14] for details.

3.3. The Bonahon-Dreyer parameterization for general lam-
inations. In the previous subsection, we recall the Bonahon-Dreyer
parameterization for laminations with finitely many leaves, which is a
higher dimensional analog of Theorem 2.6. In this subsection, we recall
the Bonahon-Dreyer parameterization for general laminations, which
is a higher dimensional analog of Theorem 2.4. In the following, we fix
a maximal geodesic lamination λ on S which may contain an irrational
lamination.
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3.3.1. Relative tangent cycles. A relative Rn−1-valued tangent cycle
is roughly a twisted transverse cocycle of λ, which is an association of
vectors in Rn−1 to oriented tightly transverse arcs. A tightly transverse
arc k of λ is an arc transverse to λ with the following properties:

(i) k is contained in a fixed small train track neighborhood of λ,
and

(ii) if a component d of k \ λ contains no end points of k, then d
cuts only one spike.

Here “spike” means a spike of an ideal triangle, which is a complemen-
tary region of λ. We denote the set of such spikes by sλ. The tightness
of a transverse arc k implies that every components of k \ λ, which
contains no end points of k, pass near a spike s ∈ sλ.

A relative Rn−1-valued tangent cycle α for λ is an assignment of a
vector α(k) ∈ Rn−1 to each oriented arc k tightly transverse to λ with
the homotopy invariance respecting λ, and the quasi-additivity defined
below.

Consider the splitting of k to k1 and k2 at an interior point of a
component d of k \ λ, where d has no end points of k. Let s ∈ sλ be
a spike, which corresponds to d. Then we require that there exists a
vector ∂α(s) ∈ Rn−1 such that

α(k) = α(k1) + α(k2)− ∂α(s)

if k passes in counterclockwise direction for s, and

α(k) = α(k1) + α(k2) + ∂α(s)

if k passes in clockwise direction for s. This property is called the quasi-
additivity. We call the correspondence ∂α : sλ → Rn−1 the boundary
of α. We denote the space of relative Rn−1-valued tangent cycles of λ
by Z(λ, slits;Rn−1) following [BD17]. We remark that, in this paper,
“slits” simply means sλ.

3.3.2. Slithering maps and shearing classes. Let ρ be a Hitchin rep-

resentation and ξρ be the associated flag curve. We denote, by λ̃, the
preimage of λ into the universal covering of S. The slithering map is

a family of elements Σgg′ ∈ SLnR associated to all pairs of leaves of λ̃
which is uniquely determined by the following conditions:
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(i) Σgg = IdRn ,Σg′g = Σ−1gg′ , and Σgg′′ = Σgg′ ◦ Σg′g′′ if g, g′, g′′ are

leaves of λ̃ such that g, g′′ are separated by g′,
(ii) Σgg′ depends locally Hölder continuously on g and g′,

(iii) if g and g′ have a common ideal vertex, then Σgg′ naturally
sends the associated line decomposition of g′ to the line de-
composition of g.

In the condition (iii), the line decomposition associated to a leaf g is
defined as follows. Fix an orientation of g. Let x be its attracting point,
and y be its repelling point. We set F+ = ξρ(x) and F− = ξρ(y). By
the hyperconvexity, the intersection Lb(g) = (F+)b∩(F−)n−b+1 are one
dimensional subspaces for every b = 1, · · · , n, and give a decomposition
of Rn = ⊕nb=1Lb(g). If two geodesics g, g′ have a common vertex x,
we orient g, g′ so that x is the attracting point with respect to the
orientation. The condition (iii) says that Σgg′ is a unipotent special
linear transformation which sends Lb(g

′) to Lb(g) for all b = 1, 2, · · · , n.
The shearing class σρ of a Hitchin representation ρ is one of relative

Rn−1-valued tangent cycles defined by the flag curve ξρ. Let k be a
tightly transverse oriented arc of λ. We define σρb (k) (1 ≤ b ≤ n − 1)
as follows. Consider two plaques which contains the endpoints of a lift

k̃ of k in the universal covering. Note that k̃ is also oriented from the
orientation of k. We denote the plaque containing the starting (resp.

terminal) point of k̃ by P (resp. Q). Let g (resp. g′) be the side of
P (resp. Q) which are nearest to Q (resp. P ). Let x, y, z be the ideal
vertices of P and z′ be the ideal vertex defined as Figure 4. Then, for
b = 1, 2, · · · , n− 1, we define

σρb (k) = log[Db(ξρ(x), ξρ(y), ξρ(z),Σgg′ξρ(z
′))].

Combining these, we define σρ(k) = (σρb (k))b ∈ Rn−1. We call this
vector valued cocycle σρ the shearing class of a Hitchin representation
ρ. The shearing class has the homotopy invariance respecting to λ,
and has the quasi-additivity, so this is a relative tangent cycle. For
more details, see [BD17, Section 5].

3.3.3. The Bonahon-Dreyer parameterization for general lamina-
tions. In general cases, the Hitchin components are parameterized by
the shearing classes and the triangle invariants. By the maximality, λ
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Figure 9. Ideal vertices x, y, z, z′.

induces an ideal triangulation of S. Let Ti be ideal triangles obtained
by the ideal triangulation of λ, and sij ∈ sλ be its spikes.

Theorem 2.28 ([BD17]). The map Φλ : Hn(S)→ Z(λ, slits;Rn−1)×
R6|χ(S)|(n−1

2 ) defined by Φλ(ρ) = (σρ, τpqr(s
i
j, ρ)) is a homeomorphism

onto the interior Pλ of a convex polyhedron.

3.3.4. The parameter space Pλ. The image of Φλ is determined by
three conditions, the rotation condition, the shearing cycle boundary
condition, and the positive intersection condition. The rotation condi-
tion is the same as the case of laminations with finitely many leaves.
The shearing cycle boundary condition is given by the following rela-
tion. For every spikes s ∈ sλ,

∂σρb (s) =
∑

q+r=n−b

τbqr(s, ρ),

where ∂σρb is the boundary of the b-th entry of the coordinate σρ.
The positive intersection condition is defined by a homological in-

terpretation of relative tangent cycles. Each entry σρb of relative tan-
gent cycles σρ of λ can be translated to relative homology classes de-
fined from train track neighborhoods of λ. The positive intersection
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condition is the inequality

µ · σρb > 0

for all non-trivial transverse measures µ. Here the intersection number
is defined in the homological sense.

These three conditions define the range Pλ of the Bonahon-Dreyer
parameterization. See [BD17, Section 8] for more details.



CHAPTER 3

The ratios of the Veronese flag curves

1. An observation of the Bonahon-Dreyer parameters of
PSLnR-Fuchsian representations for a pair of pants

1.1. Formulae. Here we try to calculate the triangle invariants
and shearing invariants of PSLnR-Fuchsian representations for a pair
of pants, using λ, and the parameter α, β, γ in Proposition 2.12. Let ρ
be a Fuchsian representation defined by

ρ(a) =

[
α αβγ + α−1

0 α−1

]
, ρ(b) =

[
γ 0

−β−1 − γ−1 γ−1

]
It suffices to calculate the following invariants.

• τ ρnpqr(T0,∞) = log Tpqr(ν(∞), ν(1), ν(0))
• τ ρnpqr(T1,∞) = log Tpqr(ν(∞), ν(0), ν(−βγ))
• σρnb (hAB) = logDb(ν(∞), ν(0), ν(βγ), ν(1))
• σρnb (hBC) = logDb(ν(0), ν(1), ν(β/β + γ), ν(∞))
• σρnb (hCA) = logDb(ν(1), ν(∞), ν(α2βγ + 1), ν(0))

The direct calculation, the above invariants are formulated as fol-
lows. See [In2] for the detail of computations.

• Shearing invariant σρnp (hAB)(1 ≤ p ≤ n− 1)

σρnp (hAB) = log−YhAB
(p)

Y ′hAB
(p)
·
Y ′hAB

(p− 1)

YhAB
(p− 1)

where

YhAB
(p) =

(
n− 1

p

)
(βγ)n−p−1,

Y ′hAB
(p) = (−1)n−p−1

(
n− 1

p

)
.

43
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• Shearing invariant σρnp (hBC)(1 ≤ p ≤ n− 1)

σρnp (hBC) = log−YhBC
(p)

Y ′hBC
(p)
·
Y ′hBC

(p− 1)

YhBC
(p− 1)

where

YhBC
(p) = (−1)(n−p)p

∣∣∣∣∣∣∣∣∣∣

(
p+1
0

)
· · ·

(
p+1

−n+p+2

) (
n−1
0

)
(

β

β + γ
)n−1

...
...

...(
p+1

n−p−1

)
· · ·

(
p+1
1

) (
n−1
n−p−1

)
(

β

β + γ
)p

∣∣∣∣∣∣∣∣∣∣
if p 6= n− 1 and YhBC

(n− 1) = (−1)n−1
(
n−1
0

)
(

β

β + γ
)n−1,

Y ′hBC
(p) = (−1)np+n+1

∣∣∣∣∣∣∣
(
p+1
1

)
· · ·

(
p+1

−n+p+3

)
...

...(
p+1

n−p−1

)
· · ·

(
p+1
1

)
∣∣∣∣∣∣∣

if p 6= n− 1 and Y ′hBC
(n− 1) = (−1)n−1.

• Shearing invariant σρnp (hCA)(1 ≤ p ≤ n− 1)

σρnp (hCA) = log−YhCA
(p)

Y ′hCA
(p)
·
Y ′hCA

(p− 1)

YhCA
(p− 1)

where

YhCA
(p) = (−1)np

∣∣∣∣∣∣∣
(
n−p
n−p−1

)
· · ·

(
n−p
n−2p

) (
n−1
n−p−1

)
(α2βγ + 1)p

...
...

...(
n−p
n−1

)
· · ·

(
n−p
n−p

) (
n−1
n−1

)
(α2βγ + 1)0

∣∣∣∣∣∣∣
if p 6= 0 and YhCA

(0) = 1,

Y ′hCA
(p) = (−1)np

∣∣∣∣∣∣∣
(
n−p
n−p−1

)
· · ·

(
n−p
n−2p

)
...

...
...(

n−p
n−2

)
· · ·

(
n−p
n−p−1

)
∣∣∣∣∣∣∣

if p 6= 0 and Y ′hCA
(0) = 1.
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• Triangle invariant τ ρnpqr(T̃0,∞)(p, q, r ≥ 1 s.t. p+ q + r = n)

τ ρnpqr(T̃0,∞) = log
XT0(p+ 1, q, r − 1)

XT0(p− 1, q, r + 1)
·XT0(p, q − 1, r + 1)

XT0(p, q + 1, r − 1)
·XT0(p− 1, q + 1, r)

XT0(p+ 1, q − 1, r)

where

XT0(p, q, r) =

∣∣∣∣∣∣∣
(
p+r
p

)
· · ·

(
p+r
p−q+1

)
...

...
...(

p+r
p+q−1

)
· · ·

(
p+r
p

)
∣∣∣∣∣∣∣

if q 6= 0 and XT0(p, 0, r) = 1 for all p, r.

• Triangle invariant τ ρnpqr(T̃1,∞)(p, q, r ≥ 1 s.t. p+ q + r = n)

τ ρnpqr(T̃1,∞) = log
XT1(p+ 1, q, r − 1)

XT1(p− 1, q, r + 1)
·XT1(p, q − 1, r + 1)

XT1(p, q + 1, r − 1)
·XT1(p− 1, q + 1, r)

XT1(p+ 1, q − 1, r)

where

XT1(p, q, r) = (−1)q(r+1)

∣∣∣∣∣∣∣
(
p+q
p

)
(−βγ)q · · ·

(
p+q
p−r+1

)
(−βγ)q+r−1

...
...

...(
p+q
p+r−1

)
(−βγ)q−r+1 · · ·

(
p+q
p

)
(−βγ)q

∣∣∣∣∣∣∣
if r 6= 0 and XT1(p, q, 0) = (−1)q for all p, q.

The shearing invariant σρnp (hAB) can be reduce to log(1/βγ). How-
ever, other invariants seem to be difficult to reduce into more simple
values.

1.2. Example. Let us apply the above formula in the cases n =
3, 4.

τ ρ3111(T0,∞)

X(2, 1, 0) =
(
2
2

)
= 1, X(0, 1, 2) =

(
2
0

)
= 1, X(1, 0, 2) = X(2, 0, 1) =

1, and

X(0, 2, 1) =

∣∣∣∣(10) (
1
−1

)(
1
1

) (
1
0

) ∣∣∣∣ =

∣∣∣∣1 0
1 1

∣∣∣∣ = 1

X(1, 2, 0) =

∣∣∣∣(11) (
1
0

)(
1
2

) (
1
1

)∣∣∣∣ =

∣∣∣∣1 1
0 1

∣∣∣∣ = 1
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Hence,

τ ρ3111(T0,∞) = log
XT0(2, 1, 0)

XT0(0, 1, 2)
· XT0(1, 0, 2)

XT0(1, 2, 0)
· XT0(0, 2, 1)

XT0(2, 0, 1)
= 0.

τ ρ4121(T1,∞)

X(2, 2, 0) = (−1)2 = 1, X(1, 3, 0) = (−1)3 = −1, X(0, 3, 1) =(
3
0

)
(−β3γ3) = −β3γ3, X(2, 1, 1) =

(
3
2

)
(−βγ) = −3βγ, and

X(1, 1, 2) = −
∣∣∣∣(21)(−βγ)

(
2
0

)
β2γ2(

2
2

) (
2
1

)
(−βγ)

∣∣∣∣ = −
∣∣∣∣−2βγ β2γ2

1 2βγ

∣∣∣∣ = −3β2γ2,

X(0, 2, 2) = −
∣∣∣∣ (20)β2γ2

(
2
−1

)
(−β3γ3(

2
1

)
(−βγ)

(
2
0

)
β2γ2

∣∣∣∣ = −
∣∣∣∣ β2γ2 0
−2βγ β2γ2

∣∣∣∣ = β4γ4

Hence,

τ ρ4121(T1,∞) = log
1 · (−3β2γ2) · (−β3γ3)

β4γ4 · (−1) · (−3βγ)
= 0.

In this way, we observe that the triangle invariants are always equal to
zero.

σρ31 (hCA) Y ′(1) = (−1)3
(
2
1

)
= −2, Y (0) = Y ′(0) = 1, and

Y (1) = −
∣∣∣∣(21) (

2
1

)
(α2βγ + 1)(

2
2

) (
2
2

) ∣∣∣∣ = −
∣∣∣∣2 2(α2βγ + 1)
1 1

∣∣∣∣ = 2α2βγ.

Hence.

σρ31 (hCA) = log−2α2βγ · 1
−2 · 1

= logα2βγ.

σρ32 (hCA) By the above computation, Y (1) = 2α2βγ and Y ′(1) = −2.

Moreover,

Y (2) =

∣∣∣∣∣∣
(
1
0

) (
1
−1

) (
2
0

)
(α2βγ + 1)2(

1
1

) (
1
0

) (
2
1

)
(α2βγ + 1)(

1
2

) (
1
1

) (
2
2

)
∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 0 (α2βγ + 1)2

1 1 2(α2βγ + 1)
0 1 1

∣∣∣∣∣∣
=

∣∣∣∣1 2(α2βγ + 1)
1 1

∣∣∣∣− ∣∣∣∣0 (α2βγ + 1)2

1 1

∣∣∣∣ = 1− 2(α2βγ + 1) + (α2βγ + 1)2 = α4β2γ2,

Y ′(2) =

∣∣∣∣(10) (
1
−1

)(
1
1

) (
1
0

) ∣∣∣∣ =

∣∣∣∣1 0
1 1

∣∣∣∣ = 1.
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Hence,

σρ32 (hCA) = log−α
4β2γ2 · (−2)

1 · 2α2βγ
= logα2βγ.

σρ41 (hBC), σρ42 (hBC), σρ43 (hBC) Calculate Y (p) and Y ′(p) as follows.

Y (0) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
1
0

) (
1
−1

) (
1
−2

) (
3
0

)( β

β + γ

)3

(
1
1

) (
1
0

) (
1
−1

) (
3
1

)( β

β + γ

)2

(
1
2

) (
1
1

) (
1
0

) (
3
2

)( β

β + γ

)
(
1
3

) (
1
2

) (
1
1

) (
3
3

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0

(
β

β + γ

)3

1 1 0 3

(
β

β + γ

)2

0 1 1 3

(
β

β + γ

)
0 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1 0 3

(
β

β + γ

)2

1 1 3

(
β

β + γ

)
0 1 1

∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣
0 0

(
β

β + γ

)3

1 1 3

(
β

β + γ

)
0 1 1

∣∣∣∣∣∣∣∣∣∣
=

(
1− β

β + γ

)3

=
γ3

(β + γ)3

Y ′(0) = −

∣∣∣∣∣∣
(
1
1

) (
1
0

) (
1
−1

)(
1
2

) (
1
1

) (
1
0

)(
1
3

) (
1
2

) (
1
1

)
∣∣∣∣∣∣ = −

∣∣∣∣∣∣
1 1 0
0 1 1
0 0 1

∣∣∣∣∣∣ = −1

Y (1) = −

∣∣∣∣∣∣∣∣∣∣∣∣

(
2
0

) (
2
−1

) (
3
0

)( β

β + γ

)3

(
2
1

) (
2
0

) (
3
1

)( β

β + γ

)2

(
2
2

) (
2
1

) (
3
2

)( β

β + γ

)

∣∣∣∣∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣∣∣∣∣

1 0

(
β

β + γ

)3

2 1 3

(
β

β + γ

)2

1 2 3

(
β

β + γ

)

∣∣∣∣∣∣∣∣∣∣∣∣
= − 3β

β + γ

(
β

β + γ
− 1

)2

= − 3βγ2

(β + γ)3

Y ′(1) = −
∣∣∣∣(21) (

2
0

)(
2
2

) (
2
1

)∣∣∣∣ = −
∣∣∣∣2 1
1 2

∣∣∣∣ = −3
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Y (2) =

∣∣∣∣∣∣∣∣
(
3
0

) (
3
0

)( β

β + γ

)3

(
3
1

) (
3
1

)( β

β + γ

)2

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1

(
β

β + γ

)3

3 3

(
β

β + γ

)2

∣∣∣∣∣∣∣∣ =
3β2γ

(β + γ)3

Y ′(2) = −
(

3

1

)
= −3

Y (3) = (−1)

(
β

β + γ

)3

Y ′(3) = −1

Hence

σρ41 (hBC) = log

[
−
(

3βγ2

(β + γ)3
· (−1)

)
/

(
−3 ·

(
− γ3

(β + γ)3

))]
= log

β

γ
,

σρ42 (hBC) = log

[
−
(

3β2γ

(β + γ)3
· (−3)

)
/

(
−3 ·

(
− 3βγ2

(β + γ)3

))]
= log

β

γ
,

σρ43 (hBC) = log

[
−

(
(−1)

(
β

β + γ

)3

· (−3)

)
/

(
−1 · 3β2γ

(β + γ)3

)]
= log

β

γ
.

The above computation gives the relation σρ31 (hCA) = σρ32 (hCA), and
σρ41 (hBC) = σρ42 (hBC) = σρ43 (hBC). In particular, these values are equal
to the shearing parameter of ρ. Therefore we expect that the shearing
invariants are independent of their indices, and equal to the shear
parameter of Fuchsian representations.

2. Computations of ratios for the Veronese flag curve

2.1. Triple ratios. In this section, we compute the triple ratio
and the double ratio of the Veronese flag curves. Let ν : RP1 → RPn−1
be the Veronese flag curve. First we show that all triple ratios of ν are
equal to 1.

Proposition 3.1. For any triples (x, y, z) of clockwise ordered
points in PR1, an integer n ≥ 2, and positive integers p, q, r with
p+ q + r = n, Tpqr(ν(x), ν(y), ν(z)) = 1.
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Proof. Given (x, y, z), we can take a transformation A ∈ PSL2R
such that A(x) = ∞, A(y) = 1, and A(z) = 0. Using this normaliza-
tion, we have

Tpqr(ν(x), ν(y), ν(z)) = Tpqr(ν(A−1(∞)), ν(A−1(1)), ν(A−1(0))

= Tpqr(ιn(A)−1ν(∞), ιn(A)−1ν(1), ιn(A)−1ν(0))

= Tpqr(ν(∞), ν(1), ν(0)).

Thus it is enough to consider the value Tpqr(ν(∞), ν(1), ν(0)).
Recall that the flag ν([a : b]) = {Vd}d for [a : b] ∈ RP1 consists of

the nested vector space Vd of dimension d = 0, 1, · · · , n defined by

Vd = {P (X, Y ) ∈ Polyn(X, Y ) | P (X, Y ) can be divided by (aX+bY )n−d}.

For example, the d-dimensional vector space ν(0)d is

ν(0)d = {P (X, Y ) | ∃Q(X, Y ) s.t. P (X, Y ) = Y n−dQ(X, Y )}
= {(k1Xd−1 + k2X

d−2Y + · · ·+ kdY
d−1)Y n−d | k1, · · · kd ∈ R}

= Span{Xd−1Y n−d, Xd−2Y n−d+1, · · · , Y n−1}.

Similarly,

ν(∞)d = Span{Xn−1, Xn−2Y, · · · , Xn−dY d−1},
ν(1)d = Span{(X + Y )n−dXd−1, (X + Y )n−dXd−2Y, · · · , (X + Y )n−dY d−1}.

To compute the triple ratio, first we choose a basis of
∧d ν(0)d,

∧d ν(1)d,
∧d ν(∞)d

as follows:

td0 = Xd−1Y n−d ∧Xd−2Y n−d+1 ∧ · · · ∧ Y n−1 ∈
d∧
ν(0)d,

td∞ = Xn−1 ∧Xn−2Y ∧ · · · ∧Xn−dY d−1 ∈
d∧
ν(∞)d,

td1 = (X + Y )n−dXd−1 ∧ (X + Y )n−dXd−2Y ∧ · · · ∧ (X + Y )n−dY d−1 ∈
d∧
ν(1)d.

Then Tpqr(ν(∞), ν(1), ν(0)) is precisely equal to

tp+1
∞ ∧ tq1 ∧ tr−10 · tp∞ ∧ t

q−1
1 ∧ tr+1

0 · tp−1∞ ∧ tq+1
1 ∧ tr0

tp−1∞ ∧ tq1 ∧ tr+1
0 · tp∞ ∧ tq+1

1 ∧ tr−10 · tp+1
∞ ∧ tq−11 ∧ tr0

,
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so we should verify the values of wedge products tp∞∧t
q
1∧tr0 for integers

p, q, r with 0 ≤ p, q, r ≤ n and p + q + r = n. (There is abuse of
notations p, q, r which appeared in the statement of Proposition 3.1.)
The following formula is shown by easy linear algebra.

Lemma 3.2. Let V be an n-dimensional vector space with a basis
{b1, · · · , bn} and {v1, · · · , vn} be arbitrary vectors in V . We set vi =∑n

i=1 vijbj with vij ∈ R. Then

v1 ∧ · · · ∧ vn = Det((vij))b1 ∧ · · · ∧ bn.

We fix a basis of Polyn(X, Y ) by b1 = Xn−1, b2 = Xn−2Y, · · · , bn =
Y n−1, and we may choose an identification

∧n Polyn(X, Y ) → R so
that b1 ∧ b2 ∧ · · · ∧ bn is identified with 1. Then, using this basis,

tp∞ ∧ t
q
1 ∧ tr0 = Xn−1 ∧Xn−2Y ∧ · · · ∧Xn−pY p−1∧

(X + Y )n−qXq−1 ∧ (X + Y )n−qXq−2Y ∧ · · · ∧ (X + Y )n−qY q−1∧
Xr−1Y n−r ∧Xr−2Y n−r+1 ∧ · · · ∧ Y n−1

= b1 ∧ b2 ∧ · · · bp∧
n−q∑
i=1

(
n− q
i

)
bi+1 ∧

n−q∑
i=1

(
n− q
i

)
bi+2 ∧ · · · ∧

n−q∑
i=1

(
n− q
i

)
bi+q∧

bn−r+1 ∧ bn−r+2 ∧ · · · ∧ bn.

By Lemma 3.2 and a computation of determinants of matrices, if q 6= 0,
then

tp∞ ∧ t
q
1 ∧ tr0 =

∣∣∣∣∣∣∣
(
p+r
p

)
· · ·

(
p+r
p−q+1

)
...

...
...(

p+r
p+q−1

)
· · ·

(
p+r
p

)
∣∣∣∣∣∣∣ ,

and if q = 0, then tp∞ ∧ t01 ∧ tr0 = 1. We may suppose q 6= 0. In
this determinant, we consider an extended binomial coefficient which
is defined by (

n

p

)
=


n!

p!(n− p)!
(0 ≤ p ≤ n)

0 (otherwise).

Hence many zero entries may appear in the determinant above.
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Lemma 3.3. The determinant∣∣∣∣∣∣∣
(
p+r
p

)
· · ·

(
p+r
p−q+1

)
...

...
...(

p+r
p+q−1

)
· · ·

(
p+r
p

)
∣∣∣∣∣∣∣

is equal to

(−1)
(q−1)q

2
(n− q)! (n− q + 1)! · · · (n− 1)! 1! 2! · · · (q − 1)!

(n− r − q)! (n− r − q + 1)! · · · (n− r − 1)! r! (r + 1)! · · · (r + q − 1)!
.

Proof of Lemma 3.3. The following formulae still hold for ex-
tended binomial coefficients. (

n

p

)
=

(
n

n− p

)
,(7) (

n

p

)
+

(
n

p+ 1

)
=

(
n+ 1

p+ 1

)
.(8)

By elemental transformations of matrices, adding the second row to
the first row, the third row to the second row, ... and then the qth row
to the (q − 1)th row, and applying the formula (8), we obtain

∣∣∣∣∣∣∣
(
p+r
p

)
· · ·

(
p+r
p−q+1

)
...

...
...(

p+r
p+q−1

)
· · ·

(
p+r
p

)
∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
p+r+1
p+1

)
· · ·

(
p+r+1
p−q+2

)(
p+r+1
p+2

)
· · ·

(
p+r+1
p−q+3

)(
p+r+1
p+3

)
· · ·

(
p+r+1
p−q+4

)
...

...
...(

p+r+1
p+q−2

)
· · ·

(
p+r+1
p−1

)(
p+r+1
p+q−1

)
· · ·

(
p+r+1
p

)(
p+r
p+q−1

)
· · ·

(
p+r
p

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Next, by adding the second row to the first row, the third row to the
second row, ... and then the (q − 1)th row to the (q − 2)th row and
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using (8), ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
p+r+1
p+1

)
· · ·

(
p+r+1
p−q+2

)(
p+r+1
p+2

)
· · ·

(
p+r+1
p−q+3

)(
p+r+1
p+3

)
· · ·

(
p+r+1
p−q+4

)
...

...
...(

p+r+1
p+q−2

)
· · ·

(
p+r+1
p−1

)(
p+r+1
p+q−1

)
· · ·

(
p+r+1
p

)(
p+r
p+q−1

)
· · ·

(
p+r
p

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
p+r+2
p+2

)
· · ·

(
p+r+2
p−q+3

)(
p+r+2
p+3

)
· · ·

(
p+r+2
p−q+4

)(
p+r+2
p+4

)
· · ·

(
p+r+2
p−q+5

)
...

...
...(

p+r+2
p+q−1

)
· · ·

(
p+r+2
p

)(
p+r+1
p+q−1

)
· · ·

(
p+r+1
p

)(
p+r
p+q−1

)
· · ·

(
p+r
p

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Iterating such a deformation, we get

∣∣∣∣∣∣∣
(
p+r
p

)
· · ·

(
p+r
p−q+1

)
...

...
...(

p+r
p+q−1

)
· · ·

(
p+r
p

)
∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
p+r+q−1
p+q−1

)
· · ·

(
p+r+q−1

p

)(
p+r+q−2
p+q−1

)
· · ·

(
p+r+q−2

p

)(
p+r+q−3
p+q−1

)
· · ·

(
p+r+q−3

p

)
...

...
...(

p+r+2
p+q−1

)
· · ·

(
p+r+2
p

)(
p+r+1
p+q−1

)
· · ·

(
p+r+1
p

)(
p+r
p+q−1

)
· · ·

(
p+r
p

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
n−1
p+q−1

)
· · ·

(
n−1
p

)(
n−2
p+q−1

)
· · ·

(
n−2
p

)(
n−3
p+q−1

)
· · ·

(
n−3
p

)
...

...
...(

n−q+2
p+q−1

)
· · ·

(
n−q+2

p

)(
n−q+1
p+q−1

)
· · ·

(
n−q+1

p

)(
n−q
p+q−1

)
· · ·

(
n−q
p

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Note that p + q + r = n for the last equality. We consider a similar
deformation for columns. By adding the second column to the first
column, the third column to the second column, ..., and the qth column
to the (q− 1)th column, and using the formula (8), the determinant is
deformed to∣∣∣∣∣∣∣

(
n

p+q−1

) (
n

p+q−2

) (
n

p+q−3

)
· · ·

(
n
p+2

) (
n
p+1

) (
n−1
p

)
...

...
...

...
...

...(
n−q+1
p+q−1

) (
n−q+1
p+q−2

) (
n−q+1
p+q−3

)
· · ·

(
n−q+1
p+2

) (
n−q+1
p+1

) (
n−q
p

)
∣∣∣∣∣∣∣ .

By adding the second column to the first column, the third column
to the second column, ..., and the (q − 1)th column to the (q − 2)th
column, and using the formula (8), the determinant is again deformed
to ∣∣∣∣∣∣∣

(
n+1
p+q−1

) (
n+1
p+q−2

) (
n+1
p+q−3

)
· · ·

(
n+1
p+2

) (
n
p+1

) (
n−1
p

)
...

...
...

...
...

...(
n−q+2
p+q−1

) (
n−q+2
p+q−2

) (
n−q+2
p+q−3

)
· · ·

(
n−q+2
p+2

) (
n−q+1
p+1

) (
n−q
p

)
∣∣∣∣∣∣∣ .
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By iterating such a deformation, the determinant is deformed to:∣∣∣∣∣∣∣
(
n+q−2
p+q−1

) (
n+q−3
p+q−2

) (
n+q−4
p+q−3

)
· · ·

(
n+1
p+2

) (
n
p+1

) (
n−1
p

)
...

...
...

...
...

...(
n−1
p+q−1

) (
n−2
p+q−2

) (
n−3
p+q−3

)
· · ·

(
n−q+2
p+2

) (
n−q+1
p+1

) (
n−q
p

)
∣∣∣∣∣∣∣ .

Using p+ q + r = n and replacing columns and rows, the determinant
is deformed as follows.

∣∣∣∣∣∣∣∣∣∣∣

(
n+q−2
p+q−1

) (
n+q−3
p+q−2

)
· · ·

(
n
p+1

) (
n−1
p

)(
n+q−3
p+q−1

) (
n+q−4
p+q−2

)
· · ·

(
n−1
p+1

) (
n−2
p

)
...

...
...

...
...(

n
p+q−1

) (
n−1
p+q−2

)
· · ·

(
n−q+2
p+1

) (
n−q+1

p

)(
n−1
p+q−1

) (
n−2
p+q−2

)
· · ·

(
n−q+1
p+1

) (
n−q
p

)

∣∣∣∣∣∣∣∣∣∣∣

= (−1)
q(q−1)

2

∣∣∣∣∣∣∣∣∣∣∣

(
n−1
p+q−1

) (
n−2
p+q−2

)
· · ·

(
n−q+1
p+1

) (
n−q
p

)(
n

p+q−1

) (
n−1
p+q−2

)
· · ·

(
n−q+2
p+1

) (
n−q+1

p

)
...

...
...

...
...(

n+q−3
p+q−1

) (
n+q−4
p+q−2

)
· · ·

(
n−1
p+1

) (
n−2
p

)(
n+q−2
p+q−1

) (
n+q−3
p+q−2

)
· · ·

(
n
p+1

) (
n−1
p

)

∣∣∣∣∣∣∣∣∣∣∣

= (−1)
q(q−1)

2 · (−1)
q(q−1)

2

∣∣∣∣∣∣∣∣∣∣∣

(
n−q
p

) (
n−q+1
p+1

)
· · ·

(
n−2
p+q−2

) (
n−1
p+q−1

)(
n−q+1

p

) (
n−q+2
p+1

)
· · ·

(
n−1
p+q−2

) (
n

p+q−1

)
...

...
...

...
...(

n−2
p

) (
n−1
p+1

)
· · ·

(
n+q−4
p+q−2

) (
n+q−3
p+q−1

)(
n−1
p

) (
n
p+1

)
· · ·

(
n+q−3
p+q−2

) (
n+q−2
p+q−1

)

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

(
n−q
n−r−q

) (
n−q+1
n−r−q+1

)
· · ·

(
n−2
n−r−2

) (
n−1
n−r−1

)(
n−q+1
n−r−q

) (
n−q+2
n−r−q+1

)
· · ·

(
n−1
n−r−2

) (
n

n−r−1

)
...

...
...

...
...(

n−2
n−r−q

) (
n−1

n−r−q+1

)
· · ·

(
n+q−4
n−r−2

) (
n+q−3
n−r−1

)(
n−1
n−r−q

) (
n

n−r−q+1

)
· · ·

(
n+q−3
n−r−2

) (
n+q−2
n−r−1

)

∣∣∣∣∣∣∣∣∣∣∣
. · · · (†)

Lemma 3.3 is obtained by applying the following lemma. The deter-
minant ♦(n, k, l) below corresponds to a rhombus in Pascal’s triangle.
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The entries of ♦(n, k, l) are usual binomial coefficients, so positive in-
tegers. We can apply the formula in Lemma 3.4 to compute (†) by
replacing n, k, l to n−q, n−r−q, q−1, and we obtain Lemma 3.3. �

Lemma 3.4. Let n, l ∈ N and 0 ≤ k ≤ n. The determinant

♦(n, k, l) =

∣∣∣∣∣∣∣∣∣

(
n
k

) (
n+1
k+1

)
· · ·

(
n+l
k+l

)(
n+1
k

) (
n+2
k+1

)
· · ·

(
n+l+1
k+l

)
...

...
...

...(
n+l
k

) (
n+l+1
k+1

)
· · ·

(
n+2l
k+l

)
∣∣∣∣∣∣∣∣∣

is equal to

n! (n+ 1)! · · · (n+ l)!

k! (k + 1)! · · · (k + l)! (n− k)! · · · (n− k + l)!
· (−1)

l(l+1)
2 1! · · · l!.

Proof of Lemma 3.4. First, we deform ♦(n, k, l) as follows.

♦(n, k, l) =

∣∣∣∣∣∣∣∣∣∣

n!
k!(n−k)!

(n+1)!
(k+1)!(n−k)! · · · (n+l)!

(k+l)!(n−k)!
(n+1)!

k!(n−k+1)!
(n+2)!

((k+1)!(n−k+1)!
· · · (n+l+1)!

(k+l)!(n−k+1)!
...

...
...

...
(n+l)!

k!(n−k+l)!
(n+l+1)!

(k+1)!(n−k+l)! · · · (n+2l)!
(k+l)!(n−k+l)!

∣∣∣∣∣∣∣∣∣∣
= C

∣∣∣∣∣∣∣∣
1 1 · · · 1

(n+ 1) (n+ 2) · · · (n+ l + 1)
...

...
...

...
(n+ 1) · · · (n+ l) (n+ 2) · · · (n+ l + 1) · · · (n+ l + 1) · · · (n+ 2l)

∣∣∣∣∣∣∣∣ ,
where

C =
n! (n+ 1)! · · · (n+ l)!

k! (k + 1)! · · · (k + l)! (n− k)! · · · (n− k + l)!
.

We add the (−l + 1) times of the l-th row to the (l + 1)-th row, the
(−l+ 2) times of the (l− 1)-th row to the l-th row, ..., and (−1) times
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of the second row to the third row:∣∣∣∣∣∣∣∣
1 1 · · · 1

(n+ 1) (n+ 2) · · · (n+ l + 1)
...

...
...

...
(n+ 1) · · · (n+ l) (n+ 2) · · · (n+ l + 1) · · · (n+ l + 1) · · · (n+ 2l)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 1 · · · 1

(n+ 1) (n+ 2) · · · (n+ l + 1)
...

...
...

...
(n+ 1)2 · · · (n+ l) (n+ 2)2 · · · (n+ l + 1) · · · (n+ l + 1)2 · · · (n+ 2l)

∣∣∣∣∣∣∣∣ .
The iteration of such a deformation gives us the following determinant:∣∣∣∣∣∣∣∣

1 1 · · · 1
(n+ 1) (n+ 2) · · · (n+ l + 1)

...
...

...
...

(n+ 1)l (n+ 2)l · · · (n+ l + 1)l

∣∣∣∣∣∣∣∣ .
Using the formula of Vandermonde’s determinant, we can expand this
as follows.∣∣∣∣∣∣∣∣

1 1 · · · 1
(n+ 1) (n+ 2) · · · (n+ l + 1)

...
...

...
...

(n+ 1)l (n+ 2)l · · · (n+ l + 1)l

∣∣∣∣∣∣∣∣ = (−1)ll! · (−1)l−1(l − 1)! · · · (−1)

= (−1)l+(l−1)+···+1l! (l − 1)! · · · 1

= (−1)
l(l+1)

2 1! · · · l!.

Thus

♦(n, k, l) =
n! (n+ 1)! · · · (n+ l)!

k! (k + 1)! · · · (k + l)! (n− k)! · · · (n− k + l)!
·(−1)

l(l+1)
2 1! · · · l!.

�

Finally, applying Lemma 3.3, we can check that the value of the
triple ratio Tpqr(ν(∞), ν(1),∞(0)) is equal to 1. We finish the proof of
Proposition 3.1. �
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2.2. Double ratios.

Proposition 3.5. Let (x, z, y, z′) be a quadruple of counterclock-
wise ordered points in RP1. The b-th double ratio Db(ν(x), ν(y), ν(z), ν(z′))
is equal to −r for all integers b with 1 ≤ b ≤ n−1, where r is the cross
ratio r = cr(x, y, z, z′).

Proof. Let A ∈ PSL2R be a transformation which sends x,y,z′

to ∞, 0, 1. Then the transformation A maps z to r−1, where r =
cr(x, y, z, z′). Then, by the same computation with the case of triple
ratio,

Db(ν(x), ν(y), ν(z), ν(z′)) = Db(ν(∞), ν(0), ν(r−1), ν(1)).

The flags ν(∞), ν(0), ν(r−1), ν(1) are defined by the following vector
spaces:

ν(∞)d = Span{b1, b2, · · · , bd},
ν(0)d = Span{bn−d+1, bn−d+2, · · · , bn},

ν(1)1 = R
n−1∑
i=0

(
n− 1

i

)
bi+1,

ν(r−1)1 = R
n−1∑
i=0

(
n− 1

i

)
r−(n−1−i)bi+1,

where b1, · · · , bn are the basis of Polyn(X, Y ) we used in the proof of

Proposition 3.1. We choose bases of
∧d ν(∞)d,

∧d ν(0)d, ν(1)1, ν(r−1)1

as follows:

td∞ = b1 ∧ b2 ∧ · · · ∧ bd ∈
d∧
ν(∞)d,

td0 = bn−d+1 ∧ bn−d+2 ∧ · · · ∧ bn ∈
d∧
ν(0)d,

t11 =
n−1∑
i=0

(
n− 1

i

)
bi+1 ∈ ν(1)1,

t1r−1 =
n−1∑
i=0

(
n− 1

i

)
r−(n−1−i)bi+1 ∈ ν(r−1)1.
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By the definition of the double ratio,

Db(ν(∞), ν(0), ν(r−1), ν(1)) = −
tb∞ ∧ tn−b−10 ∧ t1r−1 · tb−1∞ ∧ tn−b0 ∧ t11
tb∞ ∧ tn−b−10 ∧ t11 · tb−10 ∧ tn−b0 ∧ t1r−1

Compute each factor of this fraction.

tb∞ ∧ tn−b−10 ∧ t1r−1 =

∣∣∣∣∣∣∣∣∣∣
Idb 0 (

n−1
0

)
r−(n−1)(

n−1
1

)
r−(n−2)

...

0 Idn−b−1
(
n−1
n−1

)
(r−1)0

∣∣∣∣∣∣∣∣∣∣
= (−1)n−b−1

(
n− 1

b

)
r−(n−b−1),

tb∞ ∧ tn−b−10 ∧ t11 =

∣∣∣∣∣∣∣∣∣∣
Idb 0 (

n−1
0

)(
n−1
1

)
...

0 Idn−b−1
(
n−1
n−1

)

∣∣∣∣∣∣∣∣∣∣
= (−1)n−b−1

(
n− 1

b

)
.

Hence

Da(ν(∞), ν(0), ν(r−1), ν(1)) = −
(−1)n−b−1

(
n−1
b

)
r−(n−b−1) · (−1)n−(b+1)−1(n−1

b+1

)
(−1)n−b−1

(
n−1
b

)
· (−1)n−(b+1)−1

(
n−1
b+1

)
r−(n−(b+1)−1)

= −r
�





CHAPTER 4

A characterization of PSLnR-Fuchsian
representations.

1. The case of finite laminations

Let S be a closed oriented hyperbolic surface, and λ be an oriented
maximal geodesic lamination consisting of finitely many leaves. We
denote bi-infinite (resp. closed) leaves of λ by Bi (resp. Ci). The
maximal geodesic lamination λ gives an ideal triangulation of S. We
denote ideal triangles of the ideal triangulation by Ti. In addition, we
fix a bridge system system J for λ. Recall that the Bonahon-Dreyer
parameterization ΦλJ : Hn(S)→ RN associated to λJ is defined by

ΦλJ (ρ) = (τpqr(s
i
j, ρ), · · · , σb(Bi, ρ), · · · , θc(Ci, ρ), · · · )

and the coordinate of RN is represented by (τpqr(s
i
j), · · · , σb(Bi), · · · , θc(Ci), · · · ).

Set PλJ = Image(ΦλJ ), which is the interior of a convex polyhedron
in RN .

Theorem 4.1. If ρn = ιn ◦ ρ : π1(S) → PSLnR is a PSLnR-
Fuchsian representation, then

(i) all triangle invariants τpqr(s
i
j, ρn) are equal to 0, and

(ii) all shearing invariants σb(Bi, ρn), and all twist invariants θc(Ci, ρn)
are constants depending only on the Fuchsian representation
ρ, and are independent of their indices b, c.

Moreover, the shearing invariant of ρn along Bi is equal to the shearing
parameter of ρ along Bi, i.e. σb(Bi, ρn) = σρ(Bi)

Proof. (i) Recall the definition of triangle invariants. Fix a spike

sij of the ideal triangle Ti, and a lift T̃i of Ti. Let x, y, z ∈ ∂π1(S) be the

the vertices of T̃i, where x corresponds to sij and they are in clockwise

order. Then τpqr(s
i
j, ρn) = log[Tpqr(ξρn(x), ξρn(y), ξρn(z))]. Since ξρn is

59
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of the Veronese type, its triple ratio is equal to 1 by Proposition 3.1.
Hence τpqr(s

i
j, ρn) = 0.

(ii) Let B̃i be a lift of a bi-infinite leaf Bi. We denote the left

ideal triangle with the side B̃i by T̃Li , and the right ideal triangle by

T̃Ri . Respecting the orientation of B̃i, we label x, y, zL, zR on the ideal

vertices of T̃Li , T̃
R
i as in Section 3.2 in Chapter 2. Then the quadruple

(x, zL, y, zR) is counterclockwise ordered, so by Proposition 3.5,

σb(Bi, ρn) = logDb(ξρn(x), ξρn(y), ξρn(zL), ξρn(zR))

= log[−cr(fρ(x), fρ(y), fρ(z
L), fρ(z

R))].

Especially, the shearing invariant is independent of the index b, and is
equal to the shearing parameter of ρ by Lemma 2.9. We can similarly
show the case of twist invariants. The differences are only in the choice
of ideal triangles and a quadruple of ideal vertices which are used in
the definition of the twist invariants. �

We define an affine slice SλJ of PλJ by τpqr(s
i
j) = 0, σb(Bi) =

σb′(Bi), and θc(Ci) = θc′(Ci) for all possible indices.

Theorem 4.2. The restriction ΦλJ |Fn(S) : Fn(S) → SλJ is surjec-
tive.

Proof. A point x ∈ SλJ is represented by the following coordinate

(0, · · · , 0, z1, · · · , z1, · · · , z3|χ(S)|, · · · , z3|χ(S)|, w1, · · · , w1, · · · , wk, · · · , wk),

where 0 is the τpqr(s
i
j)-coordinate, zi is the σb(Bi)-coordinate, and wi

is the θc(Ci)-coordinate. It suffices to show that, for such zi, wi ∈ R,
there exists a Fuchsian representation ρ : π1(S)→ PSL2R such that the
associated PSLnR-Fuchsian representation satisfies that σb(Bi, ιn◦ρ) =
zi and θc(Ci, ιn ◦ ρ) = wi for all i.

We see that the closed leaf condition of the Bonahon-Dreyer pa-
rameterization implies that the parameter (z1, · · · , z3|χ(S)|, w1, · · · , wk)
is contained in the range of the shearing parameterization φ̃λ in Theo-

rem 2.6. Here we define φ̃λ along the simple train track neighborhood
Nλ (see the end of Section 1.5.3 in Chapter 2). To define the twist

parameter of φ̃λ, we require to choose two spiraling ideal triangles for
each closed leaf Ci on both sides. As these two ideal triangles, we
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choose the bridge JCi
= {TL, TR} from the bridge system J . Then

the parameterization φ̃λ : T (S)→ R3|χ(S)|+k is defined by

φ̃λ(ρ) = (σρ(e1), · · · , σρ(e3|χ(S)|), θρ(C1), · · · , θρ(Ck)).

Note that σρ(ei) is defined by σρ(Bi).
It is enough to check only the condition (II) of Proposition 2.8 by

the final remark in Chapter 2, Section 1.5.3. Let Bi,L
1 , · · · , Bi,L

lL
be bi-

infinite leaves spiraling to Ci from left and Bi,R
1 , · · · , Bi,R

lR
be bi-infinite

leaves spiraling to Ci from the right. We denote, by zi,Lj , the σb(B
i,L
j )-

coordinate of x. Since x ∈ SλJ , it satisfies the closed leaf condition.

Note that Bi,L
j spirals to Ci from the left with respect to the orientation

of Ci. In addition, we remark that Bi,L
j spirals to Ci in the direction

(resp. the opposite direction) of the orientation of Ci if and only if the
sign of this spiraling is negative (resp. positive). (See Figure 3 and
Figure 4.) Hence, using the condition that all τpqr(s

i
j)-coordinates are

equal to 0, the closed leaf inequality implies that

Lb(Ci) = −
lL∑
j=1

σb(B
i,L
j ) = −

lL∑
j=1

zi,Lj > 0

if the spiraling is negative, and

Lb(C) =

lL∑
j=1

σn−b(B
i,L
j ) =

lL∑
j=1

zi,Lj > 0

if the spiraling is positive. Thus, we have Lb(Ci) = sign ·
∑lL

j=1 z
i,L
j > 0.

We give a similar observation for the bi-infinite leaves Bi,R
j . Let

zi,Rj be the σb(B
i,R
j )-coordinate of x. Since Bi,R

j spiral to Ci from the

right, Bi,L
j spirals to Ci in the direction (resp. the opposite direction)

of the orientation of Ci if and only if the sign of this spiraling is positive
(resp. negative). Hence, the closed leaf inequality implies that

Rb(Ci) =

lR∑
j=1

σb(B
i,R
j ) =

lR∑
j=1

zi,Rj > 0
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if the spiraling is positive, and

Rb(Ci) = −
lR∑
j=1

σn−b(B
i,R
j ) = −

lR∑
j=1

zi,Rj > 0

if the spiraling is negative. Thus, we have Rb(Ci) = sign·
∑lR

j=1 z
i,R
j > 0.

Finally, the closed equality Lb(Ci) = Rb(Ci) gives us the following
condition

sign ·
lL∑
j=1

zi,Lj = sign ·
lR∑
j=1

zi,Rj > 0.

This implies that the parameters zi and wi satisfy the condition (II).

Hence, (z1, · · · , z|3χ(S)|, w1, · · · , wk) is contained in the range of φ̃λ.
Using the reconstruction of the Fuchsian representations in The-

orem 2.6, we obtain a Fuchsian representation ρ ∈ T (S) such that
σρ(Bi) = σρ(ei) = zi and θρ(Ci) = wi. For this Fuchsian representa-
tion ρ, we have θc(Ci, ιn ◦ ρ) = θρ(Ci) = wi by Proposition 3.5, and
σb(Bi, ιn ◦ ρ) = σρ(Bi) = zi by Theorem 4.1. Hence we finish the
proof. �

2. The case of general laminations

The Fuchsian locus is a slice even in the case of general laminations.
Let S be a closed oriented hyperbolic surface, and λ be an arbitrary
maximal geodesic lamination on S. In this case, the Bonahon-Dreyer

parameterization Φλ : Hn(S)→ Z(λ, slits;Rn)×R6|χ(S)|(n−1
2 ) is defined

by

Φλ(ρ) = (σρ, τpqr(s
i
j, ρ)).

Let ρn = ιn ◦ ρ ∈ Hn(S) be a PSLnR-Fuchsian representation.

Theorem 4.3. We denote, by σρnb , the b-th entry of σρn. Let k
be a tightly transverse arc of λ. Then, for all b = 1, 2, · · · , n − 1,
σρnb (k) = σρ(k), where σρ is the shearing cocycle associated to ρ.

Proof. Recall the definition of the shearing class. For a tightly
transverse arc k, we take the plaques P,Q, the ideal vertices x, y, z, z′,
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and the boundary leaves g, g′ as we prepared in Section 3.3.2 of Chapter
2. Then, the value of the shearing class σρnb (k) is defined by

σρnb (k) = log[Db(ν ◦ fρ(x), ν ◦ fρ(y), ν ◦ fρ(z),Σρn
gg′ν ◦ fρ(z

′))].

In the PSLnR-Fuchsian case, the slithering map Σρn
gg′ is equal to

ιn(Σρ
gg′) since the linear map ιn(Σρ

gg′) satisfies the properties which

define Σρn
gg′ . Indeed, the first property holds since Σgg′ is the slithering

map and ιn is a group homomorphism. The second property follows
since ιn is Hölder continuous with respect to the operator norm. In
particular, by definition of ιn, the image ιn(A) has entries which are
polynomials of the entries of A. In the definition of Σρn

gg′ , we consider
the flag curve of Veronese type. Since the Veronese flag curve ν is
ιn-equivariant, ιn(Σρ

gg′) satisfies the third property. Thus we obtain

Σρn
gg′ = ιn(Σρ

gg′) by the uniqueness.
Using this equality and Proposition 3.5, we can calculate the shear-

ing class as follows.

σρnb (k) = log[Db(ν ◦ fρ(x), ν ◦ fρ(y), ν ◦ fρ(z),Σρn
gg′ν ◦ fρ(z

′))]

= log[Db(ν ◦ fρ(x), ν ◦ fρ(y), ν ◦ fρ(z), ιn(Σρ
gg′)ν ◦ fρ(z

′))]

= log[Db(ν ◦ fρ(x), ν ◦ fρ(y), ν ◦ fρ(z), ν ◦ Σρ
gg′fρ(z

′))]

= log[−cr(fρ(x), fρ(y), fρ(z),Σρ
gg′fρ(z

′))].

We remark that the slithering map Σρ
gg′ is the extension of the horo-

cyclic flow onto the ideal boundary. Indeed, the slithering map Σρ
gg′ is

constructed by the ordered product of Σρ
T ∈ PSLnR as T ranges over

all ideal triangles of S̃ \ λ̃ separating g and g′ ([BD17, Proposition
5.1]). Here the ideal triangles T is ordered from g to g′. All triangles
T has two edges gT and g′T so that they separate g and g′, and gT
(resp. g′T ) are near to g (resp. g′). The element Σρ

T is defined by the
parabolic element which sends g′T to gT , and this implies that Σρ

gg′ is
obtained by the horocyclic flow. Hence the last quantity is just equal
to the value σρ(k) by the definition of the shearing cocycle. �

We construct an affine slice of Pλ. Let Sλ be the slice of Pλ so
that the first coordinate σρ consists of the same entry, i.e. σρ1 = · · · =
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σρn−1 = α where α is a R-valued relative tangent cycle of λ, and the
second coordinate is equal to 0. Let x = (σ, 0) be a point of Sλ,
and let σ = (α, · · · , α). By the shearing cycle boundary condition
for x, the boundary of the tangent cycle α is equal to zero since all
τpqr(s

i
j)-coordinates are 0. Then the quasi-additivity of α gives the

additivity, so the entries α is just a transverse cocycle. Moreover, the
positive intersection condition implies that, for any non-zero transverse
measure µ on λ, the intersection number µ · α is positive. Hence α is
a shearing cocycle, and there exists a Fuchsian representation which
defines σ by the shearing parameterization. This argument shows the
following conclusion.

Theorem 4.4. Let Sλ be the affine slice which is defined by the
conditions that all τpqr(s

i
j)-coordinates are equal to zero, and, for any

oriented arc k tightly transverse to λ, the shearing class is of the form
α(k) · (1, · · · , 1)t where α is a transverse cocycle of λ. The restriction
Φλ|Fn(S) : Fn(S)→ Sλ is surjective.

3. The case of surfaces with boundary

3.1. The Hitchin component of surfaces with boundary.
A representation ρ : π1(S) → PSLnR is said to be purely loxodromic
respecting boundary if the image of each boundary component via ρ is
conjugate to an element with pairwise distinct, only real eigenvalues.
We denote, by Rloxo

n (S), the space of representations which are purely
loxodromic respecting boundary. In addition, we define X loxo

n (S) =
Rloxo
n (S)/PSLnR, where the quotient is defined by the conjugate action.

Note that T (S) is contained in X loxo
2 (S), and (ιn)∗(T (S)) is con-

tained in X loxo
n (S). The (PSLnR-) Hitchin components Hn(S) is the

connected component of X loxo
n (S) which contains the image Fn(S) =

(ιn)∗(T (S)).

3.2. The main result for surfaces with boundary. To de-
fine the Bonahon-Dreyer parameterization for surfaces with boundary,
Bonahon and Dreyer used the result of Labourie and McShane.

Theorem 4.5. (Labourie-McShane [LaMc09, Theorem 9.1.]) Let
S be a compact hyperbolic oriented surface with nonempty boundary,
and ρ : π(S) → PSLnR be a Hitchin representation. Then there exists
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a unique Hitchin representation ρ̂ : π1(Ŝ)→ PSLnR of the fundamental

group of the double Ŝ of S such that the restriction ρ̂ to π1(S) is equal
to ρ.

The extension ρ̂ of ρ is called the Hitchin double. For the flag

curve ξ̂ρ̂ : ∂π1(Ŝ) → Flag(Rn), we set ξρ = ξ̂ρ̂|∂π1(S), the restriction
to the boundary of π1(S). We call this restriction the restricted flag
curve. In the parameterization of Hitchin representations in this case,
we can use this restricted flag curves instead of the usual flag curves.
(See [BD14, Section 7].) Then our results are extended to the case
of surfaces with boundary. To check this, we focus on the doubling
construction of PSLnR-Fuchsian representations. In the proof of the
existence of Hitchin doubles ([LaMc09, Theorem 9.1]), we can see
that the double of a PSLnR-Fuchsian representation ιn ◦ ρ is again
PSLnR-Fuchsian. Especially, the Hitchin double ι̂n ◦ ρ is equal to the
PSLnR-Fuchsian representation ιn◦ρ̂ induced by the hyperbolic double
ρ̂ of the Fuchsian representation ρ. Thus the restricted flag curve of
ιn◦ρ is the restriction of the Veronese flag curve of ιn◦ρ̂, and our results
are shown similarly in the case of compact surfaces with boundary.
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