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Abstract. In this thesis, I characterize PSL,R-Fuchsian representa-
tions in Hitchin components, using the Bonahon-Dreyer parameteriza-
tion.

The Hitchin component H,(S) is the component of the PSL,R-
character variety of a closed surface S of negative Euler characteristic
which contains the discrete faithful representations m;(S) — PSLoR
via an irreducible representation. The images of discrete faithful rep-
resentations m(S) — PSLyR in H,,(S) are called PSL,,R-Fuchsian rep-
resentations.

Bonahon-Dreyer ([BD14], [BD17]) gave a parameterization of H,,(S)
by the triangle invariants and the shearing-type invariants fixing an
arbitrary maximal geodesic lamination on .S, so that the Hitchin com-
ponent is a cone in a Euclidean space.

During doctoral program, I first calculated the parameters of Bona-
hon and Dreyer for PSL,,R-Fuchsian representations of a pair of pants.
In this calculation, I had an explicit parameterization of Fuchsian rep-
resentations of pants, and of PSL, R-Fuchsian representations via the
Bonahon-Dreyer parameterization.

Next, I generalized the result for a pair of pants, to more general
surfaces in my second paper. In particular, I proved that, for arbitrary
compact orientable surfaces of negative Euler characteristics, the tri-
angle invariants of PSL,R-Fuchsian representations are equal to zero
and the shearing-type invariants are equal to the shearing parameters
of hyperbolic structures. This explicit characterization implies the set
of the PSL,,R-Fuchsian representations is an affine slice.

This thesis explains these two studies, the calculation for a pair of
pants, and the general properties of the Bonahon-Dreyer parameters
of PSL,,R-Fuchsian representations.
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CHAPTER 1

Introduction

1. Motivation

Let S be a closed oriented surface of negative Euler characteristics.
The Hitchin component of S is a special connected component H,,(.S)
of the PSL,R-character variety X,,(S) = Hom(m(S5), PSL,R)/PSL,R,
the space of conjugacy classes of representations. This component was
introduced by Hitchin in [Hi92]. When n = 2, the Hitchin component
H,(S) is the Teichmiiller space .7 (S) of S, which is the deformation
space of hyperbolic structures on S. For general n > 2, H,(S) is, by
definition, the connected component of X,,(S) which contains elements
induced from holonomy representations of hyperbolic structures on S
via the irreducible representation ¢, : PSLyR — PSL,R. The Hitchin
component has many properties which the Teichmiiller space has, and
it is a higher dimensional analog of the Teichmiiller space in the sense
of the rank of Lie groups. It is natural to consider the relation between
the Teichmiiller space and the Hitchin component.

In this thesis, we characterize PSL,,R-Fuchsian representations in
the Hitchin component. We call the elements of H,,(S) the Hitchin rep-
resentation, and call Hitchin representations induced from holonomy
representations of hyperbolic structures the PSL,R-Fuchsian repre-
sentation. The locus of PSL,R-Fuchsian representations in H,(S) is
called the Fuchsian locus. To characterize PSL,R-Fuchsian represen-
tations, we use the parameterization of the Hitchin component given
by Bonahon and Dreyer ([BD14], [BD17]). The Hitchin component
is parameterized by two kinds of invariants, the triangle invariant and
the shearing-type invariant along maximal geodesic laminations on S.
Through an observation of the invariants of PSL,,R-Fuchsian represen-
tations, we show that, a Hitchin representation is a PSL, R-Fuchsian
representation if and only if the triangle invariants are equal to zero,

5



6 1. INTRODUCTION

and the shearing-type invariants are equal to the shearing parameters
of hyperbolic structures.

2. Main results

Let A be an arbitrary maximal geodesic lamination on S, which
yields an ideal triangulations of S. Given a representation in H,(5),
the triangle invariants are defined for ideal triangles of this triangula-
tion, and the shearing-type invariants are defined for leaves of .

The Bonahon-Dreyer parameterization is different depending on
whether \ consists of finitely many geodesics, or contains an irrational
sublamination. Although the triangle invariants are defined in the
same way, the shearing-type invariants are defined in different ways.
In particular, the former case is more combinatorial. In this thesis, we
characterize, indeed, the parameters for PSL,R-Fuchsian representa-
tions in the both cases.

When A consists of finitely many leaves, letting x(S) be the Euler
characteristic, weset A = {C, -+ ,Cy, By, -+ , Byjy(s)|} where Cy, -+, Cj,
is a closed geodesic (1 < k < 3g — 3), and B; is a bi-infinite geodesic.
We denote the ideal triangles which are complementary regions of A by
Ty, Topsy- Let sb, s, sh be the spikes of the ideal triangle T;. In
this case, Bonahon and Dreyer introduced the invariants, called the tri-
angle invariants, the shearing invariants, and twist invariants to define
the parameterization of H,(S). Given p € H,(95),

e the triangle invariant 7,4(s}, p) is defined for spikes s of the
ideal triangles Tj,

e the shearing invariant oy(B;, p) is defined for the bi-infinite
leaves B;,

e the twist invariant 0.(C;, p) is defined for the closed leaves C;,

where the indices p, ¢, r, b, ¢ are positive integers with p+qg+r = n, and
1 <b,c <n—1. In this setting, the Bonahon-Dreyer parameterization
®,: H,(S) — RY is defined by

(I))\<10) = (TPQT(S§'7p)7. o Ha-b(Bi’p)" o 790(Ci7p)7 o ‘)7
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where N = 6[x(9)[("5") +3[x(5)|(n — 1) + k(n — 1). The image of ®,,
denoted by Py, is the interior of a certain polyhedron of RY ([BD14]).
The following is our main theorem.

THEOREM 1.1. Let S be a closed oriented surface of negative Fuler
characteristics, and \ be a maximal geodesic lamination on S consist-
ing of finitely many leaves. Then a Hitchin representation p € H,(S)
1s PSL,R-Fuchsian if and only if all triangle invariants are zero, and
the shearing, and twist invariants are constants depending only on p,
i.e.

qu’r’(s‘é‘)p) - 07 O-b(Bia p) - O-b’<Bi7 p)a ec(cwp) - 90’(C’Z7p)

for all possible i,7,p,q,r,b,b,¢c,c. Moreover, the shearing invariant
of a PSL,R-Fuchsian representation is equal to the shearing param-
eter associated to the Fuchsian representation, i.e. for any Fuchsian
representation n € 7 (S),

op(Bi, tn 0m) = 0"(B;)
for all b and 1.

This theorem characterizes the PSL,R-Fuchsian representations in
the Hitchin component by the conditions of the triangle, shearing, and
twist invariants.

In the case of general laminations, we use the shearing classes
instead of shearing, and twist invariants. In [BD17], Bonahon and
Dreyer defined the twisted tangent cycle relative to slits for maximal
geodesic laminations, which was a vector valued cocycle defined on the
set of oriented arcs transverse to A. The shearing class is a twisted
tangent cycle relative to slits defined by Hitchin representations. The
Bonahon-Dreyer parametrization in this case is a parameterization
defined by the triangle invariant and the shearing class. We denote
this parameterization by ®y: H,(S) — Z(\,slits; R" 1) x RG‘X(S)l(ngl),
where Z(\, slits; R"™!) is the vector space of the twisted tangent cy-
cles relative to slits. The image Py of @, is the interior of a convex
polyhedron in Z (A, slits; R" 1) x REXSI("2") ([BD17]). We show that
the shearing classes o7°? of PSL, R-Fuchsian representations ¢, o p are
determined only by the shearing cocycle o”.
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THEOREM 1.2. Suppose that X is an arbitrary maximal geodesic
lamination. Then a Hitchin representation p € H,(S) is PSL,R-
Fuchsian if and only if all triangle invariants are equal to zero, and,
for any oriented arc k tightly transverse to A, the shearing class is of
the form (o(k),---,0(k))" where o is a transverse cocycle of X, i.e.

o€ Z(\R).

Theorem 1.2 generalizes Theorem 1.1, in the following sense. Let A
be an oriented maximal geodesic lamination which consists of finitely
many leaves. For a bi-infinite leave B; of A\, we pick an oriented
arc k transverse to B; so that k intersects to B; only once from left
to right. Then the shearing class o”(k) associated to k is the vec-
tor whose entries are the shearing invariants oy, (B;, p), i.e. o?(k) =
(01(Bi,p)s -+, 0n—1(Bi, p)). Since Theorem 1.2 implies that all entries
of shearing classes are equal to each other for PSL,,R-Fuchsian repre-
sentations, Theorem 1.2 proves the statement with bi-infinite leaves in
Theorem 1.1.

3. Structure of this paper

Chapter 2: We give a preliminaries. Section 1 explains the hyper-
bolic geometry on surfaces, the Teichmiiller spaces, Shearing coordi-
nate of Teichmiiller spaces. The Shearing coordinate is the origin of
the Bonahon-Dreyer parameterization. In Theorem 2.6, we give an im-
proved version of the shearing coordinate using train tracks. Section 2
explains the definition of Hitchin components. Hyperconvex curves in
Subsction 2.3 is essentially used in the computation of ratios. Section
3 explains the Bonahon-Dreyer parameterization.

Chapter 3: In this chapter, we calculate the ratios of Veronese
flag curves, which play an important role in the proof of the main
theorem. Section 1 gives an example of calculation. Using parameters
of Fuchsian representations of a pair of pants, we explicitly calculate
the ratios in the case of a pair of pants. In Section 2, we prove that
the triple ratio of Veronese flag curves is always equal to 1, and the
double ratio is reduced to the cross ratio.

Chapter 4: We show the main results of this paper. Theorem 4.1
and Theorem 4.3 give the sufficiency of the main theorems. Theo-
rem 4.1 and Theorem 4.3 characterize the triangle invariants and the
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shearing-type invariants of PSL,R-Fuchsian representations. Theo-
rem 4.2 and Theorem 4.4 imply the necessity of the main theorems.
In the proof of these theorems, for any parameters which satisfy the
condition for invariants, we construct PSL,R-Fuchsian representations
whose Bonahon-Dreyer parameters are equal to given parameters. We
remark the case of surfaces with boundary in Section 3.
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CHAPTER 2

Preliminaries

1. Hyperbolic geometry of surface

1.1. Hyperbolic structures on surfaces. Let S be a closed ori-
ented surface of negative Euler characteristics. A hyperbolic metric on
S is a complete Riemannian metric on S of constant curvature —1. A
hyperbolic structure on S is an isometric class of a hyperbolic metric
on S.

We denote, by H?, the hyperbolic plane of the upper-half plane
model with the orientation induced by the framing (e, es), where

= (1,0)",e5 = (0,1)". The group of orientation-preserving isome-
tries Isom™ (H?) is isomorphic to PSLyR, where PSLyR acts on H? as
linear fractional transformations.

If S is endowed with a hyperbolic metric, we obtain an isometry
f: S — H? with respect to the metric on S induced from the hyperbolic
structure on S. Then, there exists a representation p: m(S) — PSLoR
so that f is (m(95), p)-equivariant, i.e. for any = € S and v € m(9),
f(y-x) = p(v) - f(x). This representation p is discrete, faithful and
unique up to conjugacy of PSLsR. We call a discrete faithful repre-
sentation p: m(S) — PSLeR a Fuchsian representation. The above
isometry f: S — H? with the equivariance for a Fuchsian representa-
tion p is called the developing map associated to p. In this paper, we
denote, by f,, the developing map associated to p.

The correspondence between hyperbolic structures and conjugacy
classes of Fuchsian representations is one to one. In fact, for a Fuchsian
representation p, we have the universal covering H? — S with the
covering transformation group p(m(S)). This covering map defines
the hyperbolic metric on .S, which is unique up to isometry.

11



12 2. PRELIMINARIES

1.2. Teichmiiller space. The Teichmiiller space 7 (S) of S is
defined by

T (S) ={p: m(S) = PSLyR | Fuchsian, f, is orientation-pres.}/PSL;R

where the quotient is defined by the conjugate action of PSLy;R. The
topology of 7 (S) is the quotient topology of the compact open topol-
ogy which is defined on the set of representations.

We remark an equivalent definition of the Teichmiiller space via
hyperbolic structures of S. Let Hyp(S) be the set of hyperbolic metrics
on S, and Diffy(S) be the group of diffeomorphisms isotopic to the
identity. The group Diffy(.S) acts on Hyp(S) by the pull-back. Then
the Teichmiiller space is also defined by .7 (S) = Hyp(S)/Diffo(.5).

Two definitions above are equivalent via the one to one correspon-
dence between hyperbolic structures and Fuchsian representations. There
are another equivalent definitions of .7 (), see [IT].

1.3. Geodesic laminations. Fix a hyperbolic metric on S. A
geodesic lamination is a closed subset of S which is a disjoint union of
simple complete geodesics, called leaves. Geodesic laminations consist
of closed geodesic, called closed leaves, and bi-infinite geodesics, called
bi-infinite leaves.

The concept of geodesics depends on a hyperbolic metric on S. We
remark that, for different hyperbolic metrics g; and g, on S, there exists
a natural bijection between the set of g;-geodesic laminations and the
set of go-geodesic laminations. In particular, for any hyperbolic metric
g and any simple curve c on S, there is a g-geodesic ¢, which is isotopic
to c.

The bi-infinite geodesics on the universal covering S are character-
ized their ideal end points. Especially, there exists a bijection between
the space G(S) of bi-infinite geodesics on S and (95 x 95 — A)/Zs,
where A denotes the diagonal and where Z, acts by exchanging the
two factors. The metric structure and the Holder structure on G(S)
(used in Section 3.3.2 in this chapter) is given by an (arbitrary) metric
structure on (0S5 x 05 — A)/Zy via this bijection.

A geodesic lamination is oriented if each leaf is oriented. We may
choose the orientation of each leaf independently.
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For a geodesic lamination A of S, the preimage A of X in S gives a
geodesic lamination of H2. A connected component of the closure of
H? \ X is called a plaque.

A geodesic lamination is said to be maximal if it is properly con-
tained in no other geodesic lamination. This property is equivalent
to the condition that the complementary regions of \ consists of ideal
triangles. Hence, a maximal geodesic lamination induces an ideal tri-
angulation on S.

Given maximal oriented geodesic lamination A with finitely many
leaves, we often use the bridge system for closed leaves as an additional
data, which is used in [SZ], [SWZ]. Let C be a (oriented) closed
leaf of A\. Since A\ consists of finitely many leaves, in both sides of
C, some bi-infinite leaves and ideal triangles spiral to C. A bridge
Jo along C is a pair of ideal triangles {T'%, T%} where T* spirals to
C from left, and T spirals to C' from right. A bridge system of A
is J = {Jo | Cis a closed leaf}, an association of bridges to closed
leaves. We denote, by A7, the lamination A with a bridge system J.
The bridge system in this paper plays a role of the system of short arcs
in [BD14].

1.4. Hyperbolic structures on surfaces with boundary. Let
S be a compact oriented surface of negative Euler characteristics, which
has non empty boundary. A hyperbolic metric on S is a complete Rie-
mannian metric of constant curvature —1 which makes the boundary
components totally geodesic. A hyperbolic structure on S is an iso-
metric class of hyperbolic metrics on S. Geodesic laminations on S
is similarly defined. In the case of compact surfaces with boundary,
we require that maximal geodesic laminations must contain all of the
boundary components as closed leaves. A hyperbolic structure on the
surface with boundary also uniquely corresponds, up to conjugacy, to
a representation with the following properties:

(i) p is a discrete and faithful representation, and
(ii) if v € m(S) is the homotopy class of a boundary component,
then p(7) is a hyperbolic element in PSLyR.
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In this paper, we call such a representation a hyperbolic Fuchsian
representation. We can associated to a hyperbolic Fuchsian represen-
tation p the developing map f,: S — HZ2 The image of f, is a convex
domain of H?, which does not coincides with H? in general.

We define the Teichmiiller space .7 (S) of S by

T (S) = {p: m(S) = PSLaR | p is hyperbolic Fuchsian, f, is orientation-pres. }

This Teichmiiller space is also identified with the deformation space of
hyperbolic structures as in the case of closed surfaces.

1.5. Shearing parameterization of Teichmiiller spaces.

1.5.1. The space of transverse cocycles. We recall transverse cocy-
cles. Let S be a compact oriented surface of negative Euler charac-
teristics, and A be an (arbitrary) maximal geodesic lamination on S.
An (R-valued) transverse cocycle o for A is a map associating a real
number o(k) € R to each (unoriented) arc k transverse to A which
satisfies that

(i) (Additivity) if k is cut into the union of two subarcs at an
interior point of k\ A so that k = k; Uk, then o(k) = o(k;) +
o(ks), and

(ii) (Homotopy invariance) if k and k' are homotopic respecting
to A, then o(k) = o(K').

We denote the space of transverse cocycles for A by Z(\).

The space Z(\) is parameterized by the train track neighborhood
([Bo97]). The train track neighborhood Ny of X is a family of finitely
many “long” rectangles eq,--- , ¢, called edges, so that the union of ¢;
contains A\. Two rectangles intersect only along their short sides, and
every point of the short side of a rectangle is contained in another short
side of the rectangles. We require that the complementary region of
N, contains no component which is a disc with 0, 1, or 2 spikes, or an
annulus with no spikes. Transverse cocycles o € Z(\) associate a real
number to each e; as follows. Each e; is foliated by the arcs parallel to
the short sides of e;. We call the leaves of this foliation ties. We pick
a tie k; for the edge e;, which is transverse to A. Given o € Z(\), we
define o(e;) by the value o(k;). The homotopy invariance of o implies
that o(e;) is independent of the choice of k;.
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switches

N\

A
Y |
—

[

:

F1GURE 1. Train track neighborhood.

THEOREM 2.1. ([Bo97, Theorem 11]) Let A be a geodesic lamina-
tion, and let Ny be an train track neighborhood of \ consisting of the
edges ey, -+ ,eq. Then, the mapping Z(\) — R, which sends trans-
verse cocycles o to the point (o(e1),--- ,0(e))), is a bijection onto the
image. The image is defined by the switch relation.

Let us recall the switch relation. Switches of N, are ties, which are

short sides of edges. Suppose that ef,--- el and ef',-- -, el intersect
along a switch s such that ek, ... | ezf are the edges adjacent to the one
side of s, and ef, - - ,eqR are the edges adjacent to the other side. The

switch relation at s is the equation ef +--- + el =eff + ... +elf. All
possible switch relations define the range of the above parameterization
of Z(XA). The topology and the analytic structure of Z(\) is defined by
the structure of the Euclidean space R! via the mapping in Theorem
2.1.

1.5.2. shearing cocycles and a parameterization of Teichmiiller spaces.
Given p € 7 (S), we construct the shearing cocycle o? € Z(\) of p,
which is the transverse cocycle associated to p. Fix a universal covering
H? — S associated to p. To define o”(k) for an arbitrary arc k trans-
verse to A, we lift k to k, which is transverse to the preimage A C H?
of A\. Then the endpoints of k are contained in different plaques. We
denote these plaques by P and @, and consider the set & of plaques
which separate P and (. Let g (resp. h) be the boundary leaf P
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(resp. ) which is nearest to @ (resp. P). On g (resp. h), there is
a canonical base point which is the orthogonal projection of the third
vertex of P (resp. ). We call this point the base point of g (resp. h).
Each plaque in &7 is partially foliated by the horocyclic flow. Then,
we can construct a foliation which joins g and h. Along this foliation,
we carry the base point of g to a point in h.

We define o”(k) by the signed length between the carried point
and the base point of h. Here the sign of the length is defined by the
parameterization of h by R as follows. The orientation of S defines
an orientation of the boundary of (), so of h. Then we can take an
isometric parameterization R — h so that it is compatible with the
orientation of A and maps 0 to the base point of h. The value o”(k) is
independent of the choice of k, and we finish the construction of the
shearing cocycle o* of p.

For an arc k which is transverse to a bi-infinite leaf B of A\ only
once, there is a simple formula of the value ¢”(k). To explain this, we
recall the cross ratio on the boundary OH?.

DEFINITION 2.2. Let a,b,c,d € OH? be a quadruple of distinct
points of the ideal boundary OH?. The cross ratio cr(a,b,c,d) is the
ratio

(a—c)(b—d)

cr(a,b,c,d) = a— =0

We respectively lift k£ and B to k and B on the universal cover-
ing so that they intersect. There are two plaques P, Q) which contains
the endpoints of k. In particular, since \ is maximal, these plaques
are adjacent ideal triangles along B. We denote, by x,y, 2%, 2%, the
ideal vertices of P, @ by the following rules : (i)  and y are the end-
points of B, (ii) z, 2%, y, 2% are in counterclockwise order. By direct

computations, we obtain the following relation. Let us write o”(k) by
of(B).

LEMMA 2.3.
o’ (B) = log[—cr(z,y, 2", 2™)].

The shearing cocycle is applied to parameterize the Teichmiiller
spaces.
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THEOREM 2.4. ([B0o96, Theorem A|) There is a real analytic home-
omorphism ¢x: T (S) — Z(A) : p — o onto an open convex cone
bounded by finitely many faces in Z(\).

This parameterization is called the shearing parameterization. The
image of ¢, is characterized by a certain intersection form on Z(\),
defined along train tracks. A train track neighborhood is called generic
if all switches are trivalent as Figure 2.

We can always choose a generic train
track neighborhood for all geodesic lam-

inations. Fix a generic train track N of / )
A. At each switch s of N, a single edge <

“comes” to the switch s, and two edges —a
“leave” the switch. We denote, by el, T
the edge which leaves to the left of the in- FiGURE 2. A
coming edge, and, by eff, the edge which generic

leaves to the right. For o,n € Z(\), the switch.

intersection form 7 is defined by

r(om) = 5 3 (o(ePmlel) — olebm(el).

S

where s ranges over all switches of N). The following theorem deter-
mines the image of ¢,.

THEOREM 2.5. ([B096, Theorem 20]) For every non-zero trans-

verse measures |1 € Z () and for every shearing cocycles o”, T(u, 0?) >
0.

Note that this theorem follows for all generic train track neighbor-
hoods of A, hence the positivity of intersection numbers is independent
of the choice of N,.

1.5.3. Shearing parameterization along train tracks. We arrange
Theorem 2.4 by the weights on the edges of the train track neighbor-
hood and the twist parameters along closed leaves of \. Let us define
the twist parameter. Let Cq,--- ,C} be closed leaves of A, contained
in the interior of S. Under the ideal triangulation by A, some ideal
triangles spiral to C; from the both sides. Choose an ideal triangle T
in the one side, and an ideal triangle 7% in the other side.
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_ We respectively lift Cj, TLA,/ and T% to Cj,
T*, and T* so that T" and T" have a com-
mon end point with C;. We denote, by x and
y, the endpoints of C; so that x is on the left
from TE. Two edges of T* are asymptotic to
C;. In particular, one of these edges separates
S so that C;, T*, and T are contained in the
same component. We denote, by z¥, the end
point of the edge, which is different from z or
y. Similarly we take the ideal vertex 2z for T,
Note that the points =, 2, y, 2% are in counterclockwise order. We de-
fine the twist parameter 6°(C;) by log[—cr(f,(z), fo(v), f,(z5), f,(z5))].

We distinguish the edges of generic train track neighborhoods as
follows. We call that an edge is internal if the edge intersects to no
closed leaves, and we call the other edges non-internal. In addition, we
call that a switch is internal if it is a short side of three internal edges,
and we call other switches non-internal. In other words, the internal
switch is a switch which intersects to no closed leaves.

The following version of Theorem 2.4 is used in the proof of Theo-
rem 4.2.

THEOREM 2.6. Let S be a compact oriented surface of negative Eu-
ler characteristics, and \ be an arbitrary maximal geodesic lamination
on S, which has closed leaves C,--- ,Cy in the interior of S. Fix a
generic train track neighborhood Ny. We denote, by eq,--- , €, the in-
ternal edges of Ny. Then, the following map is an analytic embedding
of the Teichmiiller space T (S).

O T(S) = RT: pis (0(er), - ,0°(er),0°(CYL), - - ,0°(Cy)).

To prove this, we determine the range of the mapping ¢, by three
conditions as follows.

(I) The parameters o”(ey), - - -, 0”(e;) satisfy the switch relations at
all internal switches by Theorem 2.1. This is the first condition which
defines the image of ¢,.

(IT) Next, we focus on the spiraling of bi-infinite leaves along closed
leaves. Let us introduce the signature of the spiraling of bi-infinite
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leaves. When the spiraling occurs in the direction opposite to the
orientation of S, we call this spiraling positive spiraling. See Figure 3.
Similarly, we call the spiraling in Figure 4 negative spiraling.

FIGURE FIGURE
3. Positive 4. Negative
spiraling. spiraling.

We refer to the following proposition.

PropoSITION 2.7. ([Th, Proposition 3.4.21]) Let F' be a compact
oriented surface of negative Euler characteristics with boundary. Fix
p € T(F), and a maximal geodesic lamination A\ on F'. Let By,--- , B,
be the bi-infinite leaves of \ spiral to a boundary component C of F.
Then, if the spiraling of B; is positive,

!
L(C) =) o’(By),
j=1
and if the spiraling of B; is negative,
!
L,(C) == o*(By).
j=1

For each C;, let Bi’L, e ,Bli’LL be bi-infinite leaves spiraling to Cj
from the one side, and Bi’R o ,Bf}’f be bi-infinite leaves spiraling to
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C; from the other side. Then, Proposition 2.7 gives us the following
relation

The symbol “sign” means the signature of each spiraling along C;.
Similarly, for each boundary component C of S, letting BY, - - ,Bl%
be the bi-infinite leaves spiraling to C', it follows that

lo
sign - ZJ’)(B,f) >0 e (xx)
k=1

by Proposition 2.7, where “sign” also means the signature of the spi-
raling along C'.

By definition of o”(e;), (%) and (%) give the relation between the
parameters o”(eq1),- - ,0”(e;), which is the second condition.

(III) The final condition is given by Theorem 2.5, which implies that
T(p, 0”) > 0 for every non-zero transverse measure u. For switches s,
set 74(p,0?) = p(ef)or(el) — u(ek)or(ef). The non-internal switches
correspond to the spiraling of bi-infinite leaves to closed leaves. De-
pending the signature of the spiraling, two types of the branches at
non-internal switches occur as the following figures.

/ a closed leaf
S

*

® >

|

a closeh

FIGURE FIGURE
5. Positive 6. Negative
case. case.
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If s is given by the positive spiraling (Figure 5), then 74(u,o”) =
p(ef)oP(el), since the support of u contains no isolated bi-infinite
leaves, so u(ef) = 0. Similarly if s is given by the negative spiraling
(Figure 6), then 7,(u1, 0?) = —p(el)or(elt). Hence, 7(u,0”) > 0 implies
that

Yol o)+ (uled)o?(eh) = Y (ulem)o’(ef) > 0,

s//

where s ranges over the internal switches, s’ (resp. s”) ranges over the
non-internal switches which correspond to the positive (resp. negative)
spiraling.

If X\ is uncountable, then we can take transverse measures p such
that p associates 0 to the non-internal edges. Hence, for all such p,

S n(o?) =Y (u(ef)or(el) — p(el)o? () > o,

S

where s ranges only over internal switches. Note that eX and e are
internal edges, and this inequality is a relation between the parameters

If X consists of finitely many leaves, all bi-infinite leaves are isolated.
Then p(e;) = -+ = p(e,) = 0 since the support of p contains no

isolated bi-infinite leaves. Hence we obtain

S (el (eh) + (— > (u(eﬁ/)a”(ei))> -

8/ 8"

However this inequality follows from the condition (IT) since pu(eff) and
u(el,)) are positive, so it gives no new conditions.
We summarize these conditions (I), (II), and (III).

PROPOSITION 2.8. The parameters o(ey), - ,0"(es) satisfy the
following three conditions:

(I) The switch relations at all internal switches.
(IT) The equality and inequality obtained from the condition (%)
and (xx) along each closed leaf.
(III) The positivity Y 7s(p, 0”) > 0, where 1 is an arbitrary trans-
verse measure which associates 0 to the mon-internal edges,
and s ranges over the internal switches.
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Now we prove Theorem 2.6. The analyticity is obtained from the
argument of [Bo96] and [BD14|. Hence it suffices to give an inverse

mapping of ¢,. In particular, we reconstruct a Fuchsian representation
of S from the parameters which satisfy the conditions (I), (II), and (III)
in Proposition 2.8.

PROOF. (Theorem 2.6) Given parameter (1, -+ ,x;, 41, - , Yx) Where
x; is the o”(e;)-entry and y; is the 67(C;)-entry , we construct a Fuch-
sian representation which has this parameter. To construct this, cut
the surface S along the closed leaves C; of \. Then S is separated to
finitely many (compact) surfaces with boundary.

First we construct a Fuchsian representation of each separated com-
ponent. Let F' be a connected component which is obtained in the
above separation. Then the lamination A (resp. the train track neigh-
borhood N,) are restricted to the lamination Ap (resp. the train track
neighborhood N,,) on F. We denote the internal edges of Ny, by
65, e ,ei, and denote the ap(ef;)—parameter by xf; The switch con-
dition (T) implies the existence of a transverse cocycle in Z(Ag) which
sends ef; to a:f; (Theorem 2.1), and the condition (II) and (III) implies
that its transverse cocycle satisfies the positivity in Theorem 2.5 for
all non-zero transverse measures i of Ar. Thus, applying Theorem 2.4
to Ar, we obtain a Fuchsian representation pr € 7 (F).

We can glue these representations pr on each component F' to
obtain a Fuchsian representation p on S. Indeed, the condition (II)
implies that the glued boundaries have the same length. By the con-
struction, o”(e;) of p is equal to the given parameter z;.

Now we deform the Fuchsian representation p to a representation
n by the twist deformation along each closed leaf C; to realize that
6"(C;) = y;. For the universal covering 7: S — S, we set ¢, = 7 1(C}),
which is an geodesic lamination on the universal covering. In the defi-
nition of #7(C;), we fix a geodesic C;, ideal triangles 7, T®, and ideal
vertices x, v, 2", 2. We orient 5’, in the direction from y to x, and ori-
ent the leaves of %; so that, for all ¢ € €;, 7(¢) and 7(C;) are oriented
in the same direction.

Let f, be the developing map associated to p. The twist deforma-
tion of p along C; is lifted onto the universal covering as follows. Each
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leaf ¢ € €; cuts S into two components P and (), where P is on the left
of £. We consider these ¢, P, Q) in the hyperbolic plane H? via f,. Let
h{ be the hyperbolic translation along ¢ whose translation length is t.
Here the direction of h! is determined by the orientation of /. Then
we define a mapping ¢g¢ by hf on P\ ¢, and the identity on . The
iteration of such an action via g¢ for all £ € %; gives a new universal
covering of S, and the associated Fuchsian representation is a twist
deformation of p.

We consider the variation of 6°(C;) under the twist deformation
along C;. Let ¢ € €;, and let P (resp. @) be the left (resp. right) side
of £. If ¢ is different from C;, the ideal verices z,v, 2L, 2
common side for ¢. Hence, in the both cases,

Cr(gfofp(x), gfofp(y)7 gfofp(zL), gfofp(zR)) = cr(fp(2), fo(y), fp(ZL)> fp(ZR>>'

If ¢ = C;, 2% is on P and 2% is on Q. Then, via the translation ¢/,
only z¥ moves on the interval between x and y, and the other vertices
x,y, 2™ are fixed. In particular, the point z* goes to z when t — oo
and goes to y when t — —o0. Hence, we obtain the following variation
of the cross ratio.

cr(gy o fo(2), gt © fo(y), g¢ © fol25), gt 0 f(2"))
= Cr(fp(@a fp(y>7 gf © fp(ZL)a fp(ZR))

%{0 (t = 00)

—o0  (t = —o0).

are in the

This proves the next lemma.

LEMMA 2.9. For any negative real numbers r < 0, there exists a
twist deformation n; of p along C; such that

Cr(fm- (.77), f77i<y)7 fm(ZL)7 fm(’ZR>> =T.

Applying Lemma 2.9 as r = —e¥%, we complete the twist defor-
mation 7; of p along the leaf C; to obtain a Fuchsian representation
n; such that 0"(C;) = y;. We note that this twist deformation pre-
serves the other twist parameters 6°(C;) for ¢ # j. Since the closed
leaf C; does not intersect to C;, the geodesic laminations ¢; and %
are disjoint. Moreover, C; is asymptotic to some bi-infinite leaves, but
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does not intersect to bi-infinite leaves transversally. Thus the points
z,y, 2%, 2%, which define the twist parameter along Cj;, belong to a
common plaque of %;. Hence, under the twist deformation along C;, it
holds that 6°(C;) = 6"(C};). Similarly, the twist deformation preserves
the shearing parameters, i.e. o”(e;) = o™ (eq), - ,0"(er) = o™ (ey).
Therefore, twisting p along all closed leaves C',--- ,C), we obtain a
Fuchsian representation 1 of S such that 67(Cy) = y1,- -+ ,0"(Cy) = ys.
For this 7, the shearing parameter does not change from one of the
original representation p. We finish the reconstruction of Fuchsian
representations. O

Finally, we make remarks about the case of laminations A consist-
ing of finitely many leaves. In this case, letting By, -, By (s) be
bi-infinite leaves of A, and C, - - - , C) be closed leaves in the interior of
S, we can take a simple generic train track neighborhood N which sat-
isfies that the internal edges of Ny are only 3|x(5)| edges e1, - - , esy(9)|
such that e; intersects only to B; agd has no intersections with other
leaves. Then the parameterization ¢, along Ny is defined by

oa(p) = (0(e1), -+, 0" (es(s)). 0°(Ch), -+, 0°(Ch).

Note that there are no internal switches of Ny. Thus, Proposition 2.8
implies that the range of ¢, is determined only by the condition (II).
This parameterization is used in the proof of Theorem 4.2.

1.6. Example: the Teichmiiller space of a
pair of pants. Let P be a pair of pants. We denote

A
the boundary components of P by A, B, and C as 5
the right figure. The hyperbolic structure of P is  fm——

uniquely determined by the boundary length.
PROPOSITION 2.10. The following mapping is a \\ /
diffeomorphism. B

T(P) R  prr (L(A), L(B),1L,(0)).

1
PROOF. We construct an inverse mapping. Set a = §lp(A), b=

1 1
§lp(B), c= 5[,)(0). We refer the following fact.
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LeEmMMA 2.11. ([Ra, Theorem 3.5.13]) Set the lengths of sides of a
right-angled hyperbolic convex hexagon VoV1VoV3V4Vy as VoV, = a,
VQV3 = b, V4V5 = C, V1VQ =c. Then

L cosh acoshb + coshe
cosh¢ =

sinh @ sinh b

This lemma implies that a, b, ¢ determine a unique right-angled hy-
perbolic convex hexagon H,p .. (We can uniquely draw such a hexagon
in the hyperbolic plane.) Let Hy , . be an isometric copy of Hyp.. Glue
these hexagons H, ., H, {Lb’c along the opposite sides of a, b, ¢ to obtain a
pair of pants P. Then the boundary lengths of P are equal to 2a, 2b, 2c,
and we obtain an inverse mapping. O

We parameterize Fuchsian representations of m(P). Let A the
oriented maximal geodesic lamination A = {hap, hpc,hca, A, B,C}
which is described in the previous figure . This lamination induces
an ideal triangulation of P and we denote by Ty and T two triangles
given by the triangulation. We fix a presentation of m(P) as

m(P) = {(a,b,c | abc = 1)
where a,b and ¢ are the homotopy classes of A, B and C.

PROPOSITION 2.12. Let (la,lp,lc) be a triple of the hyperbolic
lengths of the boundary components A, B,C. Then we can take a rep-
resentative p in the conjugacy class of the Fuchsian representation as-
sociated to (14,lp,lc) such that the developing map associated to p is
described as Figure 7 and Figure 8, and the attracting point of the
axis of p(b) equals to 0 in O, H?. In particular, the biinfinite leaves
hag,hgc and hca can lift to the geodesics hag, hge and hoa in Fig-
ure 7 and Figure 8, whose terminal points are oo,1 and 0 in O H?>
respectively. Moreover we can write such a representative p concretely
as follows.

| afy+a? _ v 0
p(a) - |i0 a—l :| ) p(b) - |:_ﬁ—1 _,Y—l ,Y—l )
where a, B, : R2; — Ry are defined by
Of(lA, lBa ZC) = elA/27 B(ZAv lB) ZC) = e(lc_lA)/Qv ’Y(lAa le lC) = 6—13/2

with the conditions a > 1,1 >~v > 0,8 > 0.
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Py
B EB TO }~CA
T 5 (a)(T)
A pla)(Ly -
BC Ty _
50) (T ‘ hi
p(a)1(1) 0 @) 1T p(a)(0)
0
FIGURE
’7i Uploelfd | half FIGURE
plane model. 8. Poincaré
disk model.

PRrOOF. The first assertion follows by the normalization of Fuch-
sian groups. See [IT]. We can set the Fuchsian representation p which
satisfies the condition of the fixed points of p(a) and p(b) by

R R OR F

We compute the parameter § so that p(c) = p(b) 'p(a)™! fixes 1 €
O-oH?. Since

B St |
o) = ot ot = [ T ]

the condition of the fixed points of p(c) implies that

ploy(t) = S
—a 1+ B6+ ay
Thus we can show that —a~! + 3 # 0 and obtain
—a-! + 5
Replacing the parameter § with a parameter 5’ satisfying 5 = ayfg’ +
a~ !, we deform the equation above as

§ = _,yfl . ﬁlfl'

§=—y"+
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We denote 8’ by 8 again. The representation p is given by the following
form.

~1
=[5 T =

Note that p(a) and p(b) are elements in PSLy(R), so we can assume
a,7y > 0 by the multiple of —1. Since the attracting point of p(b) is
0 € O, H?, it holds that v < 1.

Next we consider inequalities among parameters «, § and v which
are given by positional relations of fixed points at infinity. We can
check the following easily:

2 1
R

S|
Fix(p(h) = {0. =5}

af+aty!

Fix(p(e)) = {1 2

a4 a—1571

By Figure 6, the following inequalities hold:

o’y +1
@ Toar <0
-1
Y=
(2) O<—pgm—= <1t
(3) e

a1yt 4+ a—15"1

Noting that 1 > v > 0 which implies that v < v~!, these inequalities
are deformed as follows:

(4) 2) & B l+y'>0,8"+9>0,
(5) 3),(4) & o8> p",
(6) (1),4) < a>1.
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We can deduce § > 0 from these inequalities since if 3 is negative,

(4) g 6+7<076<_%7

(5) & —l<ﬁ<l
« (0]

and, by —1/v < —1/a, a contradiction occurs.

In general, the hyperbolic length [ of a simple closed geodesic which
is covered by the axis of a hyperbolic isometry M € PSLy(R) is given
by the following formula:

|tr(M)| = 2cosh(l/2).

Under the conditions above of «, 8 and ~, the data of the hyperbolic
lengths of A and B detect o and 7.

a =exp(la/2), v = exp(—ip/2).

We consider an equation

[tr(p(c))| = 2cosh(lx/2)

which implies that

| —aB —a '8 =2(cosh(lg/2))
& af+a Bt =2cosh(lo/2) (a, 8> 0)
5= cosh(l/2) £ sinh(l¢/2)
a

The inequality (5) gives us the following condition
(5) & a?B? > 1
and then [ is uniquely determined by

5= cosh(lc/2) + sinh(l¢/2)
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2. Hitchin representations, Anosov property, and flag curves

2.1. Representation varieties and Character varieties. Let
[" be a finitely generated group, presented by I' = (g1, , gx | 7a (A €
A)). The PSL,R-representation variety R, (I') of I" is the set of group
homomorphisms R,(I') = Hom(I',PSL,(R)) with the compact open
topology. The representation variety R, (L") has an algebraic structure
induced by the Lie group PSL,R. Through the following map,

R,(T) = (PSL.R)*:  p (p(g1), p(g2), -+, p(gk))

R,(T) is embedded into (PSL,R)*. The image of this embedding is
detected by the relation of I'. Indeed, p(7y,) is represented by a product
of p(¢1),p(g2),- -, p(gk), hence R, (I') is identified with a subvariety
of (PSL,R)*. Note that the relative topology of R, (I'), induced from
(PSL,R)*, coincides with the compact open topology.

PSL,R acts on R, (I") by conjugation. The quotient space X, (I") =
R,(I')/PSL,(R) is called the PSL, (R)-character variety. Character
varieties are often defined by the GIT quotient. We do not require
the algebraic property of them, so we define X,,(I") via the natural
quotient. Note that our character variety X, (I') is not Hausdorff in
general. An example of non-separable orbits is given in [Go84]. Let T’
be a fundamental group of the closed surface of genus 2, and let n = 2.
Then T is generated as I' = (aq, by, ag, by | [a1, b1][az, bo]). We define a
representation p, for g € PSLoR by

py(ar) = pb2) =g, plas) = p(br) = [3 a(—)1:| :

11
0 1
computation, we can check that p,,, pg, are not conjugate. Hence, they
are projected to different points in Xo(I').

—2n\ 3 —2n
Consider g, = (14 a™)2 ¢ oy L
1 (14+a )2

where a > 1. Set g1 = E (1)} ,and gy = [ ] . Then, by a direct

1. Since g, — g1 as n —

a 0
0 at
converges to pg,. In Xo(I'), p,,. and Dlp, D"

00, pg, converges to pg, . On the other hand, setting D, = [ ] , the

n

conjugacy D7 pg. Do
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are the same point for each n, hence p,, , py, are not separable since p,,,
is closed to both p,,, pg, if n is sufficiently large.

2.2. Hitchin components. Let S be a closed surface of genus
g > 2. Set X,,(5) = X, (m(S5)). We focus on the connected compo-
nents of X,,(5). First, we consider the case of n = 2. In this case,
the number of connected components was computed by Goldman us-
ing a certain characteristic class ([Go88]). Given p € X5(S), we can
construct the associated flat bundle P, = S x R? /m1(S) over S, where
m(S) acts on the first factor by the covering translations, and acts
on the second factor through p. Let e(p) € Z be the Euler class of
P,. Through a computation of the upper and lower bound of e(p),
Goldman proved the following theorem.

THEOREM 2.13. ([Go88]) The Euler class is bounded as |e(p)| <
2g — 2, and there is a one-to-one correspondence between e(p) and
connected components of Xo(S). Hence, the number of connected com-
ponents of Xo(S) is equal to 4g — 3. Moreover |e(p)| = 29 — 2 if and
only if p is discrete.

This theorem implies that X5(S) contains two connected compo-
nents which diffeomorphic to .7 (S). The Teichmiiller space is often
called the Teichmiiller component of X5(S).

The case of n > 3, Hitchin detected the number of connected com-
ponents of X,,(5). Using Higgs bundle techniques, he proved the fol-
lowing theorem.

THEOREM 2.14. ([Hi92]) Let n > 3. The number of connected
components of X,,(S) is equal to 3 if n is odd, and 6 if n is even.

In addition, He found the special component in X,,(S) associated
to 7 (S). Let us consider an irreducible representation SLoR — SL,R
which is unique up to conjugacy. This representation is obtained by the
symmetric power of the natural representation (SLyR,R?). We denote
its projectivization PSLy;R — PSL,R by ¢,. The representation ¢,
induces a map between character varieties (i,).: X2(S) — X, (S) by
the correspondence p +— t, o p. Since ¢, is a group homomorphism,
this induced map is well-defined.
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DEFINITION 2.15. The (PSL,R-) Hitchin component H,(S) is the
connected component of X,(S) which contains the image F,(S) =
(tn)«(7(5)).

We call the image F,(S) of 7(S) the Fuchsian locus of H,(S).
Hitchin representations are representations p: m(S) — PSL,R whose
conjugacy class belongs to H,,(S). A Hitchin representation p is PSL, R-
Fuchsian if p is contained in F,,(5), i.e. there is a Fuchsian represen-
tation pg: m1(S) — PSLyR such that p = ¢, o po.

The diffeomorphic type of Hitchin components is as follows.

THEOREM 2.16 (Hitchin [Hi92]). The Hitchin component H,(S)
1s diffeomorphic to R(29=2)(n*~1)

Moreover, H,(S) consists of faithful discrete representations. This
fact was shown by Labourie [La06] from the Anosov property of Hitchin
representations, see Section 2.4 in this chapter.

2.3. Hyperconvex property. The projective special linear group
PSL,R acts on the projective space RP"™' = P(R") by the projec-
tivization of the linear action of SL,R on R™. We define the hyper-
convexity of projective linear representations of 7 (S). Let 0m(S) be
the ideal boundary of m;(S) which is the visual boundary of a Cayley
graph of m;(S). Note that 0m(S) is homeomorphic to dS through a
hyperbolic structure of S. Therefore, in this paper, we identify 0 (5)

with 85 by using the reference hyperbolic structure of S.

DEFINITION 2.17. A representation p: m(S) — PSL,R is said to
be hyperconvex if there exists a (w1(5), p)-equivariant continuous map
&0 Omi(S) — RP"' such that &,(1) + -+ + &,(wy,) 4s direct for any
pairwise distinct points xq,- -+ ,x, € 0m(9).

The associated curve &, is called the hyperconvex curve of p. Labourie
showed that Hitchin representations are hyperconvex by the Anosov
property which is explained in the next subsection. The converse re-
sult was shown by Guichard in [Gu08], so

THEOREM 2.18 (Guichard [Gu08|, Labourie [La06]). A represen-
tation p: m(S) — PSL,R is Hitchin if and only if p is hyperconver.

In addition, Labourie showed the following theorem.
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THEOREM 2.19 ([La06]). Let p: m(S) — PSL,R be a hyperconvex
representation with the hyperconvex curve ,: 0m(S) — RP"!. Then

there exists a unique curve & : Om (S) — Gr*(R") with the properties
from (i) to (iv) below.
(i) &(z) C &P (x) for any x € Om (S).
(ii) &H(x) = &,(x) for any x € Im (S).
(iii) If ny,--- ,ny are positive integers such that Y n; < n, then
EM(xy) + -+ & (xy) is direct for any pairwise distinct points
X1, ,2] € 87r1(S)
(iv) If ny,--- ,my are positive integers such that p = > n; < n,
then
hm M () A+ 6 () = € ()
(y1, 1) —x; y;distinct

This theorem implies that any hyperconvex curves are extended
to curves in the flag manifold. (See Section 3.1 in this chapter for
the precise definition of flags.) The map (¢!,---,&" 1) Om(S) —
Flag(R™) is called the (osculating) flag curve of the hyperconvex curve
&

We can explicitly describe the hyperconvex curve of PSL,,R-Fuchsian
representations. Let p, = ¢, o p be a PSL,R-Fuchsian representa-
tion. Recall that the irreducible representation ¢, is defined by sym-
metric power of the representation (SLoR,R?). We identify R™ with
Sym"™~1(R?). Consider the Veronese embedding v: RP' — RP"! de-
fined by sending [a : b] to [@a"™ : " 2b: --- : 0" ]. Then the composi-
tion v o f, of the Veronese embedding with the developing map gives
the hyperconvex curve of p,,. Using homogeneous polynomials, the flag
is also described explicitly. The symmetric power Sym™~!(R?), which
is identified with R”, is also identified with the vector space

Poly,(X,Y) = {1 X" + X" %Y + -+ a,Y"" | a; € R}

of homogeneous polynomials of degree n—1. If we denote the canonical
basis of Sym™ ' (R?) by e ', 7% ey, ---, el !, where ey, ey are the
canonical basis of R2, the identification is defined by mapping the
vector e -ef 1 ito( )X “y"=1="_ Then the one dimensional subspace

v([a : b)) is equal to R{(aX—i—bY)” 1 in the vector space Poly,, (X, Y).
In addition, the d-dimensional subspace of the flag curve associated to
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v, which is again denoted by v, is defined by
{P(X,Y) € Poly,(X,Y) | P(X,Y) can be divided by (aX + bY )" "}.

We call the flag curve v the Veronese flag curve. The composition
vo f, of the Veronese flag curve with the developing map is just the
flag curve of PSL, R-Fuchsian representations.

2.4. Anosov property. The existence of the flag curve of Hitchin
representations follows from the Anosov property. Let G be a semisim-
ple Lie group, and P be a parabolic subgroup, that is, the stabilizer
of a point of the visual boundary of the Riemannian symmetric space
G/K. A representation p: m(S) — G is said to be P-Anosov if there
exists a continuous p-equivariant map &,: Osm(S) — G/ P with a cer-
tain dynamical property with respect to the action of p(m(S)). In
general case, the dynamical property is defined by the Cartan pro-
jection of GG, and the definition is not short. However, in the case of
G = PSL, R, we can define the Anosov property more simply and more
explicitly. Let s1(A) > s9(A) > --- > s,(A) be the singular values of
A € PSL,R. For 1 < k < Z, a representation p: m(S) — PSL,R

27
is said to be Py-Anosov if there exist constants A,C' > 0 such that

sk(p(7))/sk+1(p(7)) = Aexp Clyl.

Especially, when p is P,-Anosov for all k, p is called Borel-Anosov.
In [La06], Labourie showed Hitchin representations are Borel-Anosov.
Moreover it was also shown by the Borel-Anosov property that Hitchin
representations are faithful, discrete, irreducible and purely-loxodromic.

For a Borel-Anosov representation p, through the argument with
the action on the symmetric space G/K and its Furstenberg boundary
G/ B, we obtain a continuous p-equivariant map &: dxm (S) — G/ B,
called the boundary map of p. The boundary maps are the analog of
the limit set of discrete subgroups of rank 1. In particular, when G =
PSL,R, the boundary G/B is the (complete) flag manifold Flag(R").
Recall that Hitchin representations are hyperconvex, and they have
the osculating flag curves. These osculating flag curves are just equal
to the boundary maps of the Borel-Anosov property.

REMARK 2.20. For general references of Anosov representations/
Anosov subgroups, see Guéritaud-Guichard-Kassel-Wienhard GGKW17],
Kapovich-Leeb-Porti [KLP17]. The original definition was given by
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Labourie [La06] for surface groups, and by Guichard- Wienhard GW12]
for Gromov hyperbolic groups.

3. The Bonahon-Dreyer parameterization

3.1. Projective invariants. We define projective invariants of
tuples of flags. A (complete) flag in R™ is a sequence of nested vector
subspaces of R"

{0y =F'cF'CcF’C.---C F"=R",

where dim F'? = d. The flag manifold of R™ is a set of flags in R™.
We denoted the flag manifold by Flag(R"™). Note that Flag(R"™) is
diffeomorphic to a homogeneous space PSL,R/B, where B is a Borel
subgroup of PSL,R, and PSL,R naturally acts on the flag manifold.
A generic tuple of flags is a tuple (F}, Fs, - - , F) of a finite number of
flags Fy, Fy, -+, F), € Flag(R™) such that if nq,- - , ny are nonnegative
integers satisfying ny + - -+ + ny = n, then Fy"* N---N F'* = {0}.

Let (E,F,G) be a generic triple of flags, and p,q,r > 1 integers
with p+ ¢+ r =n. For each d = 1,--- ,n, choose a basis “e?, f?, g9
of the wedge products “/\d E4, /\d F. /\d G? | respectively. We fix an
identification between A" R™ with R. Then we can regard e A f% A g%
as an element of R when d; + dy + d3 = n. In particular e® A f% A g%
is not equal to 0 since (E, F, G) is generic.

DEFINITION 2.21. The (p,q,r)-th triple ratio T,y (E, F,G) is de-
fined by

ep+1 A f'q /\g'r‘—l .eP A fq—l /\gT+1 . ep—l A fq+1 /\gr
ep—1 A fq A gr+1 .eP A fq+1 A grfl . ept1 A qul Agr

The value of Tp,-(E, F, G) is independent of the identification \" R™ =
R and the choice of elements e, f¢, g?. If one of exponents of e?, f¢, g¢
is equal to 0, then we ignore the corresponding terms. For example,
"N fING"1 = f1Ag" 9. The triple ratio is invariant under the action

of PSL,R.
For permutations of (E, F, ), the triple ratio behaves as follows.

Tpr(E,F,G) =

PROPOSITION 2.22. For every generic triples (E, F,G) of flags,
Tyo(E, F,G) = Typ(F,G,E) = Ty, (F,E,G)7".
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Let (E, F,G,G") be a generic quadruple of flags, and b be an integer
with 1 < b < n — 1. We choose nonzero elements “e?, f¢ g%, ¢'¥ of
“/\d E4, /\d Fe, /\d G4, /\d G'" respectively. We fix an identification
A" R™ = R again. Then, e®t A f% A g% and et A f%2 A g% are also
regarded as real values when d; + dy + d3 = n.

DEFINITION 2.23. The b-th double ratio Dy(E, F,G,G") is defined
by

eb /\ fnfbfl /\gl . ebfl /\ fnfb /\gll
€b A fn—b—l A gll . 6b—l A fn—b /\gl
This is well-defined since the ratio is independent of the choice of

A"R" = R and e?, f4 g% ¢'. The double ratio is also invariant under
the action of PSL, R.

e R.

Dy(E,F,G,G") =

3.2. The Bonahon-Dreyer parameterization for finite lam-
inations.

3.2.1. Construction of invariants. We define three kinds of invari-
ants of Hitchin representations, triangle invariant, shearing invariant,
and twist invariant for an oriented maximal geodesic lamination which
consists of finitely many leaves with a bridge system. We fix a hy-
perbolic metric on S, and an oriented maximal geodesic lamination
A on S. We suppose that A consists only of closed leaves Cy,-- -, Cy
and bi-infinite leaves Bi,--- , B3ys)- In addition, we fix a bridge
system J = {Jg }i of \. The lamination A induces an ideal trian-
gulation of S by ideal triangles Ti,--- T (s). Each ideal triangle
T; has three spikes. We denote these spikes by s}, s!, s} so that, in
a lift ﬁ of T;, their corresponding ideal vertices of ﬁ are in clock-
wise order. Let p: m(S) — PSL,R be a Hitchin representation and
£, Om(S) — Flag(R™) the associated flag curve.

Let T; be an ideal triangle, and choose a spike 33- of T;. Fix a lift

YN} of T;. We denote the ideal vertex corresponding to s;'- by v. In

addition, we denote the other vertices of T; by v',v” so that v, v, v"
are in clockwise order. Let p,q,r be integers such that p,q,7 > 1 and
p+q+r=n.

DEFINITION 2.24. The (p, q,7)-th triangle invariant Tpq (s, p) of a
Hitchin representation p associated to the spike 3;'- of the ideal triangle
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T, is defined by
TPQT(Séap) = 10g pqr(€p< ) fp(?]/),gp(/l}”)).

The triangle invariant is independent of a choice of the lift T, since
flag curves are p-equivariant and the triple ratio is invariant under
the PSL,R-action. By Proposition 2.22, we have the relation between
triangle invariants:

Tpgr(80: P) = Tarp(815 P) = Trpg(85, p).-
This relation is called the rotation condition, and is going to be used
to define the parameter space.

A bi-infinite leaf B; € \s is a side of two ideal triangles. Let T
(resp. TT) be the ideal triangle which is on the left (resp. right) side
with respect to the orientation of B;. We lift B; to a geodesic Ez in S ,
and we also lift 7% and T% to two ideal triangles T and TE so that
they are adjacent along B;. We denote the repelling point and the
attracting pomt of B; by y and z, and denote the other vertices of TE
(resp. TR) by 2L (resp. 2z%). Let b be an integer with 1 < b <n — 1.

DEFINITION 2.25. The b-th shearing invariant of a Hitchin repre-
sentation p along B; is defined by

ou(Bi, p) = log Dy(€p(w), &o(y), €p(27), §,(2")).

This invariant is also well-defined for a choice of lifts by the same
reason with the case of triangle invariants.
Consider a closed (oriented) leaf C; € A7. By the bridge system
J, we have a bridge Jo, = {TF, T2} associated to C;. Here T} spirals
to C; from the left, and T spirals to C; from the right. Lift C;, TF
and T to C;, TF and T in the universal covering so that the ideal
triangles X, T2 have a common ideal vertex with C;. We denote, by
x, the attracting point of 5 and, by y, the repelling point of 6’ Let
us define the vertex 2%, 2% of ideal triangles TL TZR as follows. Note
that two sides of TL are asymptotic to C’ One of these sides cuts
the universal cover S such that an ideal triangle TL and the geodesic
C’l is contained in the same connected component. The ideal vertex
L is the end point of such a geodesic side of T other from the ideal



3. THE BONAHON-DREYER PARAMETERIZATION 37

point = or . We define 2z for fiR similarly. Let ¢ be an integer with
1<e<n—1.

DEFINITION 2.26. The c-th twist invariant of a Hitchin represen-
tation p along C; is defined by

0.(Ci, p) = log De(&p(), &,(y), fp(ZL)a gp(zR))-

The invariants above are well-defined on Hitchin components i.e.
these three invariants are independent of representatives of conjugacy
classes of Hitchin representations.

3.2.2. The Bonahon-Dreyer parameterization. Set N = 6|x(S)|(",")+
3|x(S)|(n—1)+k(n—1). Bonahon and Dreyer showed that Hitchin rep-
resentations are parameterized by the all triangle invariants, shearing

invariants, and twist invariants we can define.

THEOREM 2.27 (Bonahon-Dreyer [BD14]). The map ®»,,: H,(S) —
RY defined by

(I)Aj(p) = (quT(S;"’p)a T 7Ub(Biap)7' o ,QC(C’i,p), T )

1s an analytic homeomorphism onto the image. Moreover the image of
this map 1is the interior Py, of a convex polyhedron.

We denote the coordinate of the image by
(Togr(50), -+, 0b(Bi), -+, 0:(Ch), -+ -).

3.2.3. The parameter space Py,. The range Py, is defined by the
rotation condition referred after Definition 20, and the closed leaf con-
dition defined as follows. This condition is given by the equality and
the inequality of triangle, shearing invariants associated to closed leaves
C. Let C be a closed oriented leaf of the lamination A. We focus on
the right side of C' with respect to the orientation of C'. Let By,--- , B,
be the bi-infinite leaves spiraling to C' from the right, and T3,--- ,7;
be the ideal triangles spiraling to C' from the right. Suppose that these
leaves and ideal triangles spiral to C' in the direction (resp. the oppo-
site direction) of the orientation of C. Let s; is the spike of T; which is
asymptotic to C. Define @,(B;) by o,(B;) if B; is oriented toward C,
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and by o,_(B;) otherwise. We define

l l

Ry(C)=> "B+ Y > Togrlsi)

i=1 i=1 g+r=n—b
in the former case, and

l

Ry(C) = - Z@fb(Bi) =D D Tvar(s)

i=1 g+r=b

in the latter case.
When we focus on the left side of C, we can similarly define Ly(C')
by
l

L(C)== T(B) =) Y Turlsi)

=1 =1 g+r=n—>b

if the spiraling is in the direction, and

Ly(C) = Zﬁnfb(Bi) +D 0 Tbar(s)

i1=1 g+r=b

if the spiraling is in the opposite direction.

The closed leaf equality for C' is the equality L,(C) = R,(C'), and
the closed leaf inequality for C' is the inequality L,(C), Ry(C) > 0.
The rotation condition for all spikes and the closed leaf condition for
all closed leaves define P, . See [BD14] for details.

3.3. The Bonahon-Dreyer parameterization for general lam-
inations. In the previous subsection, we recall the Bonahon-Dreyer
parameterization for laminations with finitely many leaves, which is a
higher dimensional analog of Theorem 2.6. In this subsection, we recall
the Bonahon-Dreyer parameterization for general laminations, which
is a higher dimensional analog of Theorem 2.4. In the following, we fix
a maximal geodesic lamination A on S which may contain an irrational
lamination.
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3.3.1. Relative tangent cycles. A relative R"!-valued tangent cycle
is roughly a twisted transverse cocycle of A\, which is an association of
vectors in R"~! to oriented tightly transverse arcs. A tightly transverse
arc k of A is an arc transverse to A with the following properties:

(i) k is contained in a fixed small train track neighborhood of A,
and

(ii) if a component d of k \ A contains no end points of k, then d
cuts only one spike.

Here “spike” means a spike of an ideal triangle, which is a complemen-
tary region of \. We denote the set of such spikes by s,. The tightness
of a transverse arc k implies that every components of k£ \ A, which
contains no end points of k, pass near a spike s € s,.

A relative R"!-valued tangent cycle o for \ is an assignment of a
vector a(k) € R"™! to each oriented arc k tightly transverse to A with
the homotopy invariance respecting A, and the quasi-additivity defined
below.

Consider the splitting of k to k; and ko at an interior point of a
component d of k\ A, where d has no end points of k. Let s € s, be
a spike, which corresponds to d. Then we require that there exists a
vector da(s) € R"™! such that

a(k) = a(k) + a(ks) — 0a(s)
if k£ passes in counterclockwise direction for s, and
a(k) = a(k) + a(ks) + 0a(s)

if k passes in clockwise direction for s. This property is called the quasi-
additivity. We call the correspondence da: 5 — R"™! the boundary
of a. We denote the space of relative R*!-valued tangent cycles of \
by Z(\,slits; R"™1) following [BD17]. We remark that, in this paper,
“slits” simply means s.

3.3.2. Slithering maps and shearing classes. Let p be a Hitchin rep-
resentation and £, be the associated flag curve. We denote, by A, the
preimage of A into the universal covering of S. The slithering map is
a family of elements ¥, € SL,R associated to all pairs of leaves of \
which is uniquely determined by the following conditions:
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(i) Xgg = Idpn, Xgrg = B, and Bggr = Sgg 0 Sy if g,9', g are
leaves of A such that g, ¢” are separated by ¢/,
(ii) ¥4y depends locally Holder continuously on g and ¢/,
(iii) if g and ¢’ have a common ideal vertex, then ¥,, naturally
sends the associated line decomposition of ¢’ to the line de-
composition of g.

In the condition (iii), the line decomposition associated to a leaf g is
defined as follows. Fix an orientation of g. Let x be its attracting point,
and y be its repelling point. We set F™ = £,(z) and F'~ = ,(y). By
the hyperconvexity, the intersection Ly(g) = (F7)’N(F~)" " are one
dimensional subspaces for every b = 1, -- | n, and give a decomposition
of R* = &}, Ly(g). If two geodesics g, ¢’ have a common vertex z,
we orient ¢, ¢ so that z is the attracting point with respect to the
orientation. The condition (iii) says that g, is a unipotent special
linear transformation which sends Ly(¢') to Ly(g) forallb = 1,2,--- ,n.

The shearing class o” of a Hitchin representation p is one of relative
R™ valued tangent cycles defined by the flag curve £,. Let k be a
tightly transverse oriented arc of \. We define of (k) (1 <b<mn —1)
as follows. Consider two plaques which contains the endpoints of a lift
k of k in the universal covering. Note that k is also oriented from the
orientation of k. We denote the plaque containing the starting (resp.
terminal) point of k by P (resp. Q). Let g (resp. ¢') be the side of
P (resp. @) which are nearest to @ (resp. P). Let x,y, z be the ideal
vertices of P and 2’ be the ideal vertex defined as Figure 4. Then, for
b=1,2,--- ,n—1, we define

oy (k) = log[Dy(&,(7), §,(y), &p(2), 299’€p<2/>)]~

Combining these, we define 0”(k) = (0f(k)), € R"'. We call this
vector valued cocycle o the shearing class of a Hitchin representation
p. The shearing class has the homotopy invariance respecting to A,
and has the quasi-additivity, so this is a relative tangent cycle. For
more details, see [BD17, Section 5.

3.3.3. The Bonahon-Dreyer parameterization for general lamina-
tions. In general cases, the Hitchin components are parameterized by
the shearing classes and the triangle invariants. By the maximality, A
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FIGURE 9. Ideal vertices x,v, z, 2.

induces an ideal triangulation of S. Let T; be ideal triangles obtained
by the ideal triangulation of A, and s € s, be its spikes.

THEOREM 2.28 ([BD17]). The map ®y: H,(S) — Z(\,slits; R 1) x

REXSI("2") defined by ®x(p) = (07, Tpgr (%, p)) is a homeomorphism
onto the interior Py of a convex polyhedron.

3.3.4. The parameter space Py. The image of ®, is determined by
three conditions, the rotation condition, the shearing cycle boundary
condition, and the positive intersection condition. The rotation condi-
tion is the same as the case of laminations with finitely many leaves.
The shearing cycle boundary condition is given by the following rela-
tion. For every spikes s € s,

dof(s) =Y, Tur(s,0),

qg+r=n—>b

where 0o} is the boundary of the b-th entry of the coordinate o”.
The positive intersection condition is defined by a homological in-
terpretation of relative tangent cycles. Each entry o} of relative tan-
gent cycles o” of A can be translated to relative homology classes de-
fined from train track neighborhoods of A. The positive intersection



42 2. PRELIMINARIES

condition is the inequality

w-op >0
for all non-trivial transverse measures p. Here the intersection number
is defined in the homological sense.

These three conditions define the range P, of the Bonahon-Dreyer
parameterization. See [BD17, Section 8] for more details.



CHAPTER 3

The ratios of the Veronese flag curves

1. An observation of the Bonahon-Dreyer parameters of
PSL,R-Fuchsian representations for a pair of pants

1.1. Formulae. Here we try to calculate the triangle invariants
and shearing invariants of PSL,R-Fuchsian representations for a pair
of pants, using A, and the parameter «, 3, in Proposition 2.12. Let p
be a Fuchsian representation defined by

-1
pla) = {(g by T104 ] , p(b) = {_517_ A 91

(67

It suffices to calculate the following invariants.

Thir (L0, 00) = log Tygr (v(00), v(1),¥(0))
Thar (T1,00) = log Tpgr (v(00), v(0), ¥(=57))
0’5"(hAB) log Dy (v(0), v(0), v(57), ¥(1))
»" (hpo) = log Dy(v(0),v(1), ¥(B/8 +7),v(c0))
0y (hca) = log Dy(v(1),v(o0), v(a?By + 1),v(0))

The direct calculation, the above invariants are formulated as fol-
lows. See [In2] for the detail of computations.

e Shearing invariant /" (hap)(1 <p <n—1)

YhAB(p) . Y];AB(p - 1)
Yh{AB(p) YhAB(p - 1)

0" (hag) = log —
where
n—1
p

Vo) = 1y (M),

O e [

43
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e Shearing invariant /" (hpc)(1 <p <n —1)

Yipo(®) Yipe (P —1)

Yio(0) Yige(p—1)

where

CF () (G

0 —n+p+2 o N3,
Yipe(p) = (=1)"7PP | : s
p+1 . p+1 n—1 6 p
(n—p—l) ( 1 (n—p—l)(ﬁ 4 fy)
ifp#n—1andY,,.(n—1)=(-1)""! (”al)(%)”l,
") (Lripes)

Yo (p) = (=)

(755

ifp#n—1landy, (n—1)=(-1)""
e Shearing invariant /" (hca)(1 <p <n—1)

o)

Viea(p) Vi, (p—1
Pr(hy — Jog — —fca . CcA
0-17 ( CA) Og YFZCA (p) thA (p . 1
where
(i) INREEI G A I i
YhCA (p) - <_1)np
() (v h)
if p# 0 and Y}, ,(0) =1,
(u2p20) (v 3)
Vi ()= (=1)"| :

if p#0and Yy  (0)=1.
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e Triangle invariant ng’;r(fo, )(p,q,r >1st.p+q+r=n)

XTO(p+ 17Q7T - 1) XT0<p7q_ 17T+ 1) XTO(p_ 17q_'_ 1,T)

TP T,oo =lo : '
qu‘( 0 ) gXTo(p_la%r"i‘l) XTo(p>q+17r_1) XTO(p—i_l’q_l’r)

where
(P50 IR )
Xn(p,q,r) =] : :
Grar) o ()0

if ¢ # 0 and X7, (p,0,r) =1 for all p,r.

e Triangle invariant 70 (T1,00)(p,q,7 > 1 s.t. p+q+1 =n)

XTl(p+17q7T_ 1) XT1(p7q_ 1,T+1) XTl(p_ 1,q+1,7“)

o (fb OO) - log

par Xn(p—1,¢,7+1) Xp,(p,q+ Lr —1) Xp,(p+ 1,4 — 1,7)
where
"IN (=BT - () (=BT
X1, (p,q,7) = (—1)2*Y : : :
(At ) (=)t (") (=B7)¢

if r # 0 and X7, (p,q,0) = (—1)7 for all p, q.

The shearing invariant o/ (h4p) can be reduce to log(1/87). How-
ever, other invariants seem to be difficult to reduce into more simple
values.

1.2. Example. Let us apply the above formula in the cases n =
3,4.

7—lpfl (TOv OO)

X(2,1,0)=(3) =1, X(0,1,2) = (}) =1, X(1,0,2) = X(2,0,1)

1, and
xozn =i | -[p -
xazo=[i) 4|l 1l




46 3. THE RATIOS OF THE VERONESE FLAG CURVES

Hence,

8 (Ty, 00) = log

7—1[)241 (Tb OO)

X(2,2,0) = (-1)* = 1, X(1,3,0) = (-1 = -1, X(0,3,1) =

() (=F%) = =5, X(2,1,1) = ()(=B7) = =357, and
O =8 ()8 __‘—267 B2 e
ALY == gy T 7] 1 2py| T
@B G2 B 0]
R (GG R R ~25y g7 =70
Hence,

1-(=35%%) - (=8%9°)

piyt-(=1) - (=367)
In this way, we observe that the triangle invariants are always equal to
ZEro.

ot?(hoa) | Y'(1) = (—1)3(3) = =2, Y(0) = Y'(0) = 1, and

=0.

i (Th, 00) = log

2 2\ 2 2
Y(1) = — 8 () (Oéé)V + 1)‘ _ E 2(a 517 | 29028y,
Hence. )
U'los(hcA) = log —206_57 ! = log QQﬁ’V

0%?(hca) | By the above computation, Y (1) = 2a?8y and Y'(1) = —2.
Moreover,

() Co @By +17% |1 0 (a?8y+1)?
v - () @ Bt en| =11 et e
) ) () 0 1 !
=[p H O ) Y st 4 2y 1 =t
/ o) Col_ [t o _
ver=[@ @)= -
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- (=2) 2
L2025y log o* 7.

oty

follows.

nd Y'(p) as

o5 (hca) = log —

o), 05" (hpe) | Calculate Y (p) a

oi*(hpc), 05 (hp
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vor-|® 0GR e

SIEN A

Y(3) = (-1) 5%7)
Y'(3) = -1
Hence

e v [ (2250) (5 ()
|

The above computation gives the relation of*(hga) = 05*(hca), and
ot*(hpce) = o5*(hpe) = 05*(hpe). In particular, these values are equal
to the shearing parameter of p. Therefore we expect that the shearing
invariants are independent of their indices, and equal to the shear
parameter of Fuchsian representations.

2. Computations of ratios for the Veronese flag curve

2.1. Triple ratios. In this section, we compute the triple ratio
and the double ratio of the Veronese flag curves. Let v : RP* — RP" !
be the Veronese flag curve. First we show that all triple ratios of v are
equal to 1.

PROPOSITION 3.1. For any triples (z,y,z) of clockwise ordered
points in PR, an integer n > 2, and positive integers p,q,r with
pt+q+r=mn, quT(l/(.I), V(y>7 V(’Z)) =1
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PROOF. Given (z,¥, z), we can take a transformation A € PSL,R
such that A(z) = o0, A(y) = 1, and A(z) = 0. Using this normaliza-
tion, we have

Tor (V(@), v(y), ¥(2)) = Tpar (v(A7(00)), (A7 (1)), (A7(0))
= Tpor (tn(A)"'0(00), 1a(A) " 'v(1), 1n(A)"'1(0))

= Tpqr(v(20), v(1),¥(0)).

Thus it is enough to consider the value 7, (v(c0), (1), v(0)).
Recall that the flag v([a : b]) = {Vy}q for [a : b] € RP* consists of
the nested vector space V; of dimension d = 0,1, --- ,n defined by

Vy={P(X,Y) € Poly,(X,Y) | P(X,Y) can be divided by (aX+bY)"?}.

For example, the d-dimensional vector space v(0)? is
v(0) ={P(X,Y) | 3Q(X,Y) s.t. P(X,Y) =Y"Q(X,Y)}
= {(b X 4 ko XY o kYY" | k- kg € R}
= Span{ X 1y"~d X2y ot Lyl
Similarly,
v(00)® = Span{ X" X"?y, ... Xndydly
v(1)? = Span{(X + V)" X (X + V)" IX?Y, ... (X 4+ Y)Y O]
To compute the triple ratio, first we choose a basis of A v(0)%, A v(1)%, A% v(o0)
as follows:

d
tg — delynfd /\Xd72yn7d+1 A /\Ynfl c /\V(O)d,

d
tl =X""AXY A AXTY T e A\ w(oo)!
d

= (X +Y) XA +Y)IXTY A A X Y)Y e Av(n)h
Then T, (v(00), v(1),v(0)) is precisely equal to

VAL AT AT AT AT At

-1 1 +1 -1 +1 -1 ’
B AN B AT AT T AT A
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so we should verify the values of wedge products t£ At] At] for integers
p,q, 7 with 0 < p,gq,r < n and p+ ¢+ r = n. (There is abuse of
notations p, ¢, which appeared in the statement of Proposition 3.1.)
The following formula is shown by easy linear algebra.

LEMMA 3.2. Let V' be an n-dimensional vector space with a basis
{b1,--+,b,} and {vy,--- ,v,} be arbitrary vectors in V. We set v; =
> or, iib; with v;; € R. Then

A AN, = Det((vij))bl VANRREIVAY bn

We fix a basis of Poly, (X,Y) by by = X" 1 by = X2V ... b, =
Y"1 and we may choose an identification A" Poly, (X,Y) — R so
that by A by A --- Ab, is identified with 1. Then, using this basis,

AN = X"EAXTEY A AXTTPYPTIA
(X +Y)"IXTIA (X HY)IXTEY A A (X Y)Y A
Xr—lyn—r A Xr—2Yn—r+1 Ao A Yn—l
=by Aby A---byA

n—q n—q n—q
n—yq n—q n—yq
bi1 A )by Ao A ) i
bn—r+1/\bn—r+2/\"'/\bn'

By Lemma 3.2 and a computation of determinants of matrices, if ¢ # 0,

then
(G40 IR (R
o NN =1 : S
Grar) ()

and if ¢ = 0, then 2, At At = 1. We may suppose ¢ # 0. In
this determinant, we consider an extended binomial coefficient which
is defined by

n!

(n)— on—py O=sp=n)

p 0 (otherwise).

Hence many zero entries may appear in the determinant above.



2. COMPUTATIONS OF RATIOS FOR THE VERONESE FLAG CURVE 51

LEMMA 3.3. The determinant

o) ()
(2 e ()

15 equal to

m=—g)! n—qg+ D! (n=1"112-- (¢ —1)!
m—r—gq)!n—r—q+1)---n—r—=!'71 (r+ 1) (r+q—1)"

(g—1)q
2

(=1)

ProoF oF LEMMA 3.3. The following formulae still hold for ex-
tended binomial coefficients.

n n
7 = ,
" ()= (2)
n n n+1
8 + = _
® (p> <p+ 1) <p+ 1>
By elemental transformations of matrices, adding the second row to

the first row, the third row to the second row, ... and then the gth row
to the (¢ — 1)th row, and applying the formula (8), we obtain

(P-i-r-i—l) (p+r+1)

(Pﬁﬂr}rl) . (51?1%)

() () (piﬁl) (5131‘;’)
D p—q+1 p+3 p—q+4
Grar) (0 [CE) g
() e

(pram) "))

Next, by adding the second row to the first row, the third row to the

second row, ...

and then the (¢ — 1)th row to the (¢ — 2)th row and
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using (8),
p+r+1 p+r+1 p+r—+2 L. p+r+2
orh) )| (e T
o bt pirds bt
( p+3 ) T (p—q+4) ( p+4 ) (P—Q+5)
e I e R
(P+r+1) . p+r+1 (P+r+1> . p+r+1
e phr P P
(p+q—1) T ( p ) (p—i—q—l) T ( p )
[terating such a deformation, we get
ptr+g—1 p+r+q—1 n—1
Ep-ﬁ)—ii;l?; (p-&-r-lij—q—? Ep;gglg
(erT) . ( p+r ) (p-;?-—ri’_-lil-gli’)) . (p-&—r-]ij-q—?:) p:ggl)
P p—q+1 p+q—1 P p+q—1
Grt) - () (o t) (Gt
(p+r+1) . p+r+1 (n—q—H)
p+q—1 P p+q—1
(il I I O [
ptg—1 P p+q—1

Note that p + ¢ + r = n for the last equality. We consider a similar
deformation for columns. By adding the second column to the first
column, the third column to the second column, ..., and the gth column
to the (¢ — 1)th column, and using the formula (8), the determinant is
deformed to

() ()

(p-i-;—l) (p+;l—2) (p+;l—3) (p-?Q)

Gra) Gras) Grals) - (5D (580 (9
By adding the second column to the first column, the third column
to the second column, ..., and the (¢ — 1)th column to the (¢ — 2)th
column, and using the formula (8), the determinant is again deformed

to
(pi;ril) (pi;ri2) (;ﬁi:&) U (ZI%) (p—?—l) (n;1>

Geat) Gogla) G - (559 (58 (59
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By iterating such a deformation, the determinant is deformed to:
n—1

(1) () ) )
) ) () e () oy ()|

p+2 p+1
Using p + ¢ + r = n and replacing columns and rows, the determinant
is deformed as follows.

(rig1)  (oigo)

n

bt (i1
p

pt+q—1

n+q—3

S n+q—4)

. (n+1

p+2

n—3

e <p+q—3

e <p+q—2

(p+q—1

n+q—2
ptq—1

n+q—3
p+q—2

G Gamd) o Ga) o

() () e (o

(rass)  (rg2a) (et B )
(ot () (" ()
() (o) (") (Y

p+1

%{i":%) hii-s (Z;) (Z’Ej)
(p+371) (erZ]]fQ) (p+1) ( p )
n—q n—q+1 n—2
U o) a2
( ) ( p+1 ) (p+q72

a(g—1)

(_1y‘7*.

(n—g— ) (717—L7“z +1) ( ! n— —1)
q q

- (1)

n—2 n—1 n+q—4 n+q—3

(72) () e e ey
Gy (TR LR (e

Lemma 3.3 is obtained by applying the following lemma. The deter-
minant {(n, k, ) below corresponds to a rhombus in Pascal’s triangle.

() e ()
(o I Y () (

n—+q—3
ptq—1
n+q—2
ptq—1

)
)
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The entries of O(n, k,[) are usual binomial coefficients, so positive in-
tegers. We can apply the formula in Lemma 3.4 to compute (f) by
replacing n, k,l ton—q,n—r—q,q—1, and we obtain Lemma 3.3. [

LEMMA 3.4. Letn,l € N and 0 < k <n. The determinant

®)  Gh) - G5

NI (CORN R G

s equal to

n! (n+ 1) (n+1)!
Kk+10) - (k+D) (n—k) - (n—k+0!

1(1+1)
2

(1) 1l

PROOF OF LEMMA 3.4. First, we deform ((n, k,[) as follows.

n! (nt 1! ce. (Dl
El(n—k)! R+ 1)!(n—k)! (kD) (n—F)!
(n+1)! (n+2)! o (n+1+1)!
O(n L l) _ [Fn=k+D (R+D)!(n—k+1)! (k+0)!(n—k+1)!
(n—;-l)! (n+l'+1)! . : . (n—i—'2l)!
El(n—k+0)!  (k+1)!(n—k=+1)! (k+)!(n—k+1)!
1 1 ce 1
(n+1) (n+2) (n+1+1)
n+1l)---(n+l) n+2)---(n+1+1) -+ (n+l+1)---(n+20)

where

n! (n+ 1) (n+1)!

CTRE D G A RO

We add the (= + 1) times of the [-th row to the (I + 1)-th row, the
(=0 +2) times of the (I — 1)-th row to the I-th row, ..., and (—1) times

Y
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of the second row to the third row:

1 1 1
(n+1) (n+2) (n+1+1)
(n+1)-5--(n—|—l) (n+2)~--z(n~|—l+1) (n+l+1)s---(n—|—21)
|y Y Y
(n+1)2~5~(n+l) (n+2)2'--z(n+l+1) (n+l+1)25--~(n—|—2l)

The iteration of such a deformation gives us the following determinant:

1 1 1
n+1) (n+2) -+ (n+1+1)
(n—lz—l)l (n—|:—2)l (n—l—l:—irl)l

Using the formula of Vandermonde’s determinant, we can expand this
as follows.

1 1 1
(n‘+1) (n‘+2) (n+{+1) (1) (D)= 1)1 (1)
(n+1) (n42) - (tl41)
= (—D)HFEDE 1)
= (—1) T,
Thus

nl (n+ 1) (n+1)!
kuk+nL~w+wwn—mLum—k+wﬂ_)

1(141)
2

O(n, k, 1) = n...0

O

Finally, applying Lemma 3.3, we can check that the value of the
triple ratio T}, (v(00), v(1),00(0)) is equal to 1. We finish the proof of
Proposition 3.1. 0
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2.2. Double ratios.

PROPOSITION 3.5. Let (x,z,y,2") be a quadruple of counterclock-
wise ordered points in RP*. The b-th double ratio Dy(v(z), v(y), v(2), v(2'))
15 equal to —r for all integers b with 1 < b < n—1, where r s the cross
ratio r = cr(x,y, z,2').

PROOF. Let A € PSLyR be a transformation which sends x,y,2’
to 00,0,1. Then the transformation A maps z to r~!, where r =
cr(z,y,z,2"). Then, by the same computation with the case of triple
ratio,

Dy(v(2),v(y), v(2), v(2) = Dy(r(00), v(0),v(r~"), v(1)).
The flags v(00),v(0),v(r7!),v(1) are defined by the following vector
spaces:
v(co)! = Span{bi, by, -, ba},

’/(O)d = Span{bn—d—i-la bp—dy2," ,bn},

n—1
n—1
v(1)' = R; ( ; )bi+17
n—1 n—1
v(ir )t = RZ; ( ; )T_(n_l_l)bz‘ﬂy

where by, - -+, b, are the basis of Poly, (X,Y) we used in the proof of
Proposition 3.1. We choose bases of A” v/(c0)?, A?v(0)?, v(1)!, v(r—1)!
as follows:
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By the definition of the double ratio,
—b— - —b
AT A T AT A
—-b—1 b—1 —b
tho Aty At -ty AT AL

Compute each factor of this fraction.

Dy(v(00), v(0), v(r~), (1)) =

i, 0 (g

tho ANt AL, =

0 Iy (2HE1)P

1

_ (_1)n—b—1 (’I”L - 1> T—(n—b—l)
b )

Hence

(—1) b (77 )b (e o)

Dy (v(00),v(0), v(r~),v(1)) = —

(_l)n—b—l(ngl) . (_1)n—(b+1)—1 (Z;ll)r—(n—(b-i-l)—l)
= —r

O






CHAPTER 4

A characterization of PSL, R-Fuchsian
representations.

1. The case of finite laminations

Let S be a closed oriented hyperbolic surface, and A be an oriented
maximal geodesic lamination consisting of finitely many leaves. We
denote bi-infinite (resp. closed) leaves of A by B; (resp. C;). The
maximal geodesic lamination A gives an ideal triangulation of S. We
denote ideal triangles of the ideal triangulation by T;. In addition, we
fix a bridge system system J for A. Recall that the Bonahon-Dreyer
parameterization @, : H,(S) — RY associated to A7 is defined by

CI))\J(p) = (qur(séﬁp)? T vab(Biap>7"' 760(Ciap)a ’ )

and the coordinate of R is represented by (7pq,(s%), - -+, 0u(B;), - -+ ,0(C), -+ ).

Set Py, = Image(®, ), which is the interior of a convex polyhedron
in RV,

THEOREM 4.1. If p, = 1, 0 p: m(S) — PSL,R is a PSL,R-
Fuchsian representation, then

(i) all triangle invariants Tpe (s}, pn) are equal to 0, and

(ii) all shearing invariants op(B;, prn), and all twist invariants 0.(C;, py,)
are constants depending only on the Fuchsian representation
p, and are independent of their indices b, c.

Moreover, the shearing invariant of p, along B; is equal to the shearing
parameter of p along B;, i.e. oy(B;, pn) = o?(B;)

PROOF. (i) Recall the definition of triangle invariants. Fix a spike
sé- of the ideal triangle T}, and a lift T; of T;. Let x,y, z € dm(S) be the
the vertices of T}, where x corresponds to sj and they are in clockwise
order. Then Ty (s%, prn) = 108[Tpqr (&, (), &, (1), &, (2))]. Since &, is

59
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of the Veronese type, its triple ratio is equal to 1 by Proposition 3.1.
Hence Ty (5%, pn) = 0.

(ii) Let B; be a lift of a bi-infinite leaf B;. We denote the left
ideal triangle with the side EZ by ﬁL , and the right ideal triangle by
TZR. Respecting the orientation of Ez-, we label z,y, z¥, 2% on the ideal

vertices of TZ»L, T}R as in Section 3.2 in Chapter 2. Then the quadruple
(z, 2L, y, 2%) is counterclockwise ordered, so by Proposition 3.5,

ou(Bi, pn) = log Dy(&,, (), 6, (Y), Epn (ZL)7 Epn (ZR))
= log[—cr(f,(2), f,(y), fo(z"), fo(27))].

Especially, the shearing invariant is independent of the index b, and is
equal to the shearing parameter of p by Lemma 2.9. We can similarly
show the case of twist invariants. The differences are only in the choice
of ideal triangles and a quadruple of ideal vertices which are used in
the definition of the twist invariants. 0

We define an affine slice Sy, of Py, by Tper(st) = 0, op(B;) =
oy (B;), and 6.(C;) = 0.(C;) for all possible indices.

THEOREM 4.2. The restriction @y, |p,(s): Fn(S) = Sx, is surjec-
tive.

PROOF. A point x € S, is represented by the following coordinate

(07 707Z17"' y 21yt 5 B3I (S)] T s R3Ix(S)|y Wyttt Wyttt Wyt 7wk)7

where 0 is the qur(sé)—coordinate, z; is the oy(B;)-coordinate, and w;
is the 0.(C;)-coordinate. It suffices to show that, for such z;, w; € R,
there exists a Fuchsian representation p: 7 (S) — PSLoR such that the
associated PSL,R-Fuchsian representation satisfies that oy,(B;, t,0p) =
z; and 0.(C;, 1, 0 p) = w; for all 4.

We see that the closed leaf condition of the Bonahon-Dreyer pa-
rameterization implies that the parameter (z1,- -, 23/ (s)|, W1, - -, Wk)
is contained in the range of the shearing parameterization ¢, in Theo-
rem 2.6. Here we define ¢, along the simple train track neighborhood
N, (see the end of Section 1.5.3 in Chapter 2). To define the twist
parameter of ¢,, we require to choose two spiraling ideal triangles for
each closed leaf C; on both sides. As these two ideal triangles, we
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choose the bridge Jo, = {T*, TE} from the bridge system J. Then
the parameterization ¢y: .7 (S) — R3XSI+E ig defined by

on(p) = (0”(e1), - ;0P (esps))), 0°(Ch), -+ ,07(Ch)).

Note that o”(e;) is defined by o”(B;).

It is enough to check only the condition (II) of Proposition 2.8 by
the final remark in Chapter 2, Section 1.5.3. Let Bi’L, e ,Bli’LL be bi-
infinite leaves spiraling to C; from left and Bi’R, cee BZ{R be bi-infinite
leaves spiraling to C; from the right. We denote, by z;’L, the ab(B;’L)—
coordinate of x. Since x € Sy, it satisfies the closed leaf condition.
Note that B;-’L spirals to C; from the left with respect to the orientation
of C;. In addition, we remark that B;-’L spirals to C; in the direction
(resp. the opposite direction) of the orientation of C; if and only if the
sign of this spiraling is negative (resp. positive). (See Figure 3 and
Figure 4.) Hence, using the condition that all 7,4, (s%)-coordinates are
equal to 0, the closed leaf inequality implies that

lL lL
Ly(Ci) ==Y a(Bj") == 2 >0
j=1 j=1
if the spiraling is negative, and
IL ‘ o
Ly(C) =) Fus(Bi) =D 2F >0
j=1 j=1
if the spiraling is positive. Thus, we have Ly(C;) = sign-Z;Lzl z;L > 0.

We give a similar observation for the bi-infinite leaves B;’R . Let
z;-’R be the Jb(B;’R)—coordinate of x. Since B;’R spiral to C; from the
right, BjﬁL spirals to C; in the direction (resp. the opposite direction)
of the orientation of C; if and only if the sign of this spiraling is positive
(resp. negative). Hence, the closed leaf inequality implies that

lr

lr
Ry(Ci) = a(B;T) =) 2% >0
j=1

Jj=1
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if the spiraling is positive, and

lR lR
Rb(CZ) = — Zﬁn_b(B]’.’R) = — Z Z;’R >0
P =1
if the spiraling is negative. Thus, we have R,(C;) = sign~2§i 1 z;-’R > 0.

Finally, the closed equality L,(C;) = R,(C;) gives us the following
condition

lr lr
. WL . iR
sign - E z;" = sign E z;" > 0.
Jj=1 J=1

This implies that the parameters z; and w; satisfy the condition (IT).
Hence, (21, -+, 2j3y(s), W1, - - , wy) is contained in the range of ¢j.
Using the reconstruction of the Fuchsian representations in The-
orem 2.6, we obtain a Fuchsian representation p € .7(S) such that
o?(B;) = o”(e;) = z and 0°(C;) = w;. For this Fuchsian representa-
tion p, we have 6.(Cj, ¢, o p) = 0°(C;) = w; by Proposition 3.5, and
op(Bi,tn 0 p) = 0”(B;) = z by Theorem 4.1. Hence we finish the
proof. O

2. The case of general laminations

The Fuchsian locus is a slice even in the case of general laminations.
Let S be a closed oriented hyperbolic surface, and A be an arbitrary
maximal geodesic lamination on S. In this case, the Bonahon-Dreyer

n—1

parameterization ®y: H,(S) — Z (A, slits; R") x REXSI("2") is defined
by

Dr(p) = (0°, Tpar (5, ).
Let p, = t, 0 p € H,(S) be a PSL,R-Fuchsian representation.

THEOREM 4.3. We denote, by o, the b-th entry of o’*. Let k

be a tightly transverse arc of \. Then, for all b = 1,2,--- ,n — 1,
ot (k) = o”(k), where o” is the shearing cocycle associated to p.
PROOF. Recall the definition of the shearing class. For a tightly

transverse arc k, we take the plaques P, ), the ideal vertices z,y, z, 2/,
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and the boundary leaves g, ¢’ as we prepared in Section 3.3.2 of Chapter
2. Then, the value of the shearing class 0" (k) is defined by

ay" (k) = log[Dy(v o fo(x),v 0 fo(y), v o f,(2), Zggv o f,(2))]-

In the PSL,R-Fuchsian case, the slithering map E’;Z, is equal to
tn(2,) since the linear map ¢, (X7 ) satisfies the properties which
define Egg,. Indeed, the first property holds since Y,y is the slithering
map and ¢, is a group homomorphism. The second property follows
since ¢, is Holder continuous with respect to the operator norm. In
particular, by definition of ¢,, the image ¢,(A) has entries which are
polynomials of the entries of A. In the definition of ZSZ,, we consider
the flag curve of Veronese type. Since the Veronese flag curve v is
Lp-equivariant, Ln(Egg/) satisfies the third property. Thus we obtain
Mt = tn(20,,) by the uniqueness.

Using this equality and Proposition 3.5, we can calculate the shear-
ing class as follows.

oy (k) = log[Dy(v o f,(x),v 0 f,(y
= log[Dy(v o fy(z), v o foly
=log[Dy(v o f,(x),v o f,(y
= log[—cr(fp(@), fo(y), fo(

v o fo(2), Bv o fr(2'))]
Vo fo(2), tn(Ehg )V 0 fo(2'))]
vo fo(2),vo Xl f(2))]
X0y fo(2))]-

~— — —

z

We remark that the slithering map EZ o, 1s the extension of the horo-
cyclic flow onto the ideal boundary. Indeed, the slithering map ES o 18
constructed by the ordered product of ¥ € PSL,R as T ranges over
all ideal triangles of S \ A separating ¢ and ¢’ ([BD17, Proposition
5.1]). Here the ideal triangles T" is ordered from ¢ to ¢’. All triangles
T has two edges gr and g/} so that they separate ¢ and ¢', and gr
(resp. ¢4) are near to g (resp. ¢’). The element ¥ is defined by the
parabolic element which sends ¢/- to g, and this implies that ZZ g 18
obtained by the horocyclic flow. Hence the last quantity is just equal
to the value o”(k) by the definition of the shearing cocycle. O

We construct an affine slice of Py. Let Sy be the slice of PA SO

that the first coordinate o” consists of the same entry, i.e. of =--- =
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ol | = a where « is a R-valued relative tangent cycle of A, and the

second coordinate is equal to 0. Let z = (0,0) be a point of Sy,
and let ¢ = («,---,a). By the shearing cycle boundary condition
for z, the boundary of the tangent cycle « is equal to zero since all
Tpgr (85)-coordinates are 0. Then the quasi-additivity of o gives the
additivity, so the entries « is just a transverse cocycle. Moreover, the
positive intersection condition implies that, for any non-zero transverse
measure g on A, the intersection number p - « is positive. Hence « is
a shearing cocycle, and there exists a Fuchsian representation which
defines o by the shearing parameterization. This argument shows the
following conclusion.

THEOREM 4.4. Let Sy be the affine slice which is defined by the
conditions that all qur(sz-)—coordinates are equal to zero, and, for any
oriented arc k tightly transverse to X\, the shearing class is of the form
a(k) - (1,---,1)" where a is a transverse cocycle of \. The restriction
Qi py(s): Fu(S) = Sy is surjective.

3. The case of surfaces with boundary

3.1. The Hitchin component of surfaces with boundary.
A representation p: m(S) — PSL,R is said to be purely loxodromic
respecting boundary if the image of each boundary component via p is
conjugate to an element with pairwise distinct, only real eigenvalues.
We denote, by RI°*°(S), the space of representations which are purely
loxodromic respecting boundary. In addition, we define X'°*°(S) =
Rx°(S) /PSL,R, where the quotient is defined by the conjugate action.

Note that .7 (S) is contained in X}*°(S), and (1,).(Z7(S)) is con-
tained in X!*°(S). The (PSL,R-) Hitchin components H,(S) is the
connected component of X!°°(S) which contains the image F,(S) =

(tn)«(Z(5))-

3.2. The main result for surfaces with boundary. To de-
fine the Bonahon-Dreyer parameterization for surfaces with boundary,
Bonahon and Dreyer used the result of Labourie and McShane.

THEOREM 4.5. (Labourie-McShane [LaMc09, Theorem 9.1.]) Let
S be a compact hyperbolic oriented surface with nonempty boundary,
and p: w(S) — PSL,R be a Hitchin representation. Then there exists
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-~

a unique Hitchin representation p: m (S) — PSL,R of the fundamental

group of the double S of S such that the restriction p to m(S) is equal
to p.

The extension p of p is called the Hitchin double. For the flag
curve &5 01 (S) — Flag(R"), we set £, = &5|0mi(S), the restriction
to the boundary of m1(S). We call this restriction the restricted flag
curve. In the parameterization of Hitchin representations in this case,
we can use this restricted flag curves instead of the usual flag curves.
(See [BD14, Section 7].) Then our results are extended to the case
of surfaces with boundary. To check this, we focus on the doubling
construction of PSL,R-Fuchsian representations. In the proof of the
existence of Hitchin doubles ([LaMc09, Theorem 9.1]), we can see
that the double of a PSL,R-Fuchsian representation ¢, o p is again
PSL,R-Fuchsian. Especially, the Hitchin double i, o p is equal to the
PSL, R-Fuchsian representation ¢,, 0 p induced by the hyperbolic double
p of the Fuchsian representation p. Thus the restricted flag curve of
L,0p is the restriction of the Veronese flag curve of ¢,,0p, and our results
are shown similarly in the case of compact surfaces with boundary.
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