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Introduction

A large part of the study of the geometry of projective varieties is concerned with
the study of line bundles on them, which may be called the geometry of line bundles in
short. Line bundles on varieties have a lot of information of the geometric properties
of the varieties. For studying algebraic varieties, it is important to understand regular
functions on them. In fact, the structure of an affine variety is completely determined by
the ring of regular functions on the variety. On the other hand, any function defined on
the whole of a projective variety is just a constant map. However, a global section of a
line bundle on a variety gives a collection of nontrivial regular functions on open subsets
which cover the variety, and hence we can study projective varieties by observing line
bundles on them. A manifestation of this idea is the fact that, any morphism between
projective varieties is given by a linear system associated to a line bundle on the source
of the morphism. It is also quite important that the positivity of line bundles on an
algebraic variety is deeply related to the global geometric structure of the variety. This
thesis is a contribution to the geometry of line bundles in this sense. We discuss two
topics in this direction separately in Chapter 1 and 2, respectively, as we explain below.

Chapter 1 is about a class of morphisms of algebraic varieties which we call Mori
dream morphisms (MDM for short). We explain the motivation for studying this class
of morphisms. The minimal model program (MMP), which is the central method of the
birational classification of algebraic varieties, is the process of killing the loci along which
the canonical line bundle is negative. Though the original MMP is about the canonical
line bundle, there are many situation in which it is also meaningful to consider an MMP
with respect to an arbitrary divisor D (we call it a D-MMP) on a variety, which kills the
negative loci along the line bundle associated to D. We refer to [KM98] for more details
of MMP. There is a class of varieties called Mori dream spaces (MDS), introduced by Hu
and Keel in the seminal paper [HK00], on which a D-MMP works in the strongest sense;
i.e., it exists and terminates either in a Mori fibre space or a good minimal model. On the
other hand, it is quite important to consider the theory of MMP in the relative settings,
where the varieties in each step of MMP admits a morphism to the fixed base variety
that commutes with the contraction killing the negative loci with respect to the relative
canonical line bundle. Hence it is natural to consider a class of morphisms π : X → U on
which the relative D-MMP works for any divisor D on X. Furthermore, there have been
many morphisms studied in various contexts (for example, toric morphisms, extremal
contractions, and flat deformations of Fano varieties as studied in [dFH12] and [dFH11])
which have been vaguely recognized as “something like MDS over the base”. We prove
that some of them are actually MDMs in our sense in Section 1.6. In particular, by
applying Theorem 0.0.2 below, we show that varieties relatively of Fano type over the
bases are MDMs as in the non-relative case in Example 1.6.1.

The definition and some early examples of MDM, the relative version of MDS, are
given in [AW14] (our definition of MDM is given in a slightly more general setting
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than that of the paper). It is a class of projective morphisms between normal quasi-
projective varieties satisfying a few nice conditions on the relative cone of divisors (see
Definition 1.2.1), which is the generalization of MDS in the sense that an MDM is an
MDS if the target is a point. In the paper [AW14], they prove that a 4-dimensional
local symplectic contraction is an MDM and study explicitly the structure of its relative
movable cone for a concrete example. However, foundational properties of MDMs gener-
alizing those of MDSs proved in [HK00], including the existence of the relative D-MMP
for any divisor D, remained to be established. This is settled in this thesis.

We first show that the natural generalization of the results in [HK00, 1.11.PROPO-
SITION] holds. In particular, we have the following theorem.

Theorem 0.0.1 (= Theorem 1.4.6). Let π : X → U be an MDM and D a divisor on X.
Then there exists an MMP for D over U and it terminates either in a Mori fibre space
or a good minimal model (i.e., a model on which the strict transform of the divisor D is
semiample over U).

There is another important result on MDSs which should be generalized to MDMs. It
is a characterization of MDS via Cox ring [HK00, 2.9. Proposition], which says that the
Q-factorial variety X such that Pic(X)Q ' N1(X)Q is an MDS if and only if its Cox ring
is finitely generated, as an application of the theory of VGIT (Variation of Geometric
Invariant Theory quotients). Many interesting examples of MDSs such as varieties of
Fano type in characteristic 0, and K3 surfaces with only finitely many automorphisms
are proved to be MDSs by applying the above characterization, hence it is worth to
generalize it to the relative case.

We handle this problem in Section 1.5 and obtain the Theorem 0.0.2 below.

Theorem 0.0.2. Let π : X → U be an algebraic fibre space between normal quasi-
projective varieties. Assume that X is Q-factorial and Pic(X/U)Q ' N1(X/U)Q. Then
X is an MDM if and only if its Cox sheaf is a finitely generated OU -algebra.

The only if part, which is proved in Proposition 1.5.10, is an easy consequence of
the Mori chamber decomposition of the relative effective cone (see Corollary 1.4.8) and
the finite generation of the section algebras (see Corollary 1.4.7). To prove the if part,
we study a version of VGIT for affine morphisms and show that some GIT quotients of
affine morphisms are MDMs in Theorem 1.5.7, which is the generalization of [HK00,
2.3.THEOREM]. Moreover, we show in Proposition 1.5.11 that π : X → U is a GIT
quotient of the relative spectrum of a Cox sheaf of X over U if the Cox sheaf is a
finitely generated OU -algebra. Finally we obtain the if part of Theorem 0.0.2 by combing
Theorem 1.5.7 and Corollary 1.5.13.

In Section 1.6, we give various examples of MDMs and study the functorial natures
of MDMs, in particular with respect to compositions and base changes. In general the
composition of two MDMs is not necessary an MDM. A typical example is the blowing
up of P2 in nine general points (see Example 1.6.3). On the other hand we will show the
following theorem, which says that if the composition of two algebraic fibre spaces is an
MDM, then both of them are also MDMs.

Theorem 0.0.3. Let f : X → Y be an algebraic fibre space between normal Q-factorial
quasi-projective varieties. Suppose that π1 : X → U and π2 : Y → U are algebraic fi-
bre spaces to a quasi-projective normal variety U satisfying the following commutative
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diagram.

U

X

π1 ��?
??

??
f // Y

π2����
��
�

(0.0.1)

If π1 is an MDM, then both π2 and f are MDMs.

Theorem 0.0.3 follows from Proposition 1.6.5 and Proposition 1.6.8, which is the
generalization of [Oka16, Theorem 1.1].

In the final part of Chapter 1, we study base changes of MDMs. In general a base
change of an MDM is not necessarily an MDM. In Example 1.6.12, we see this by consid-
ering a one parameter family of K3 surfaces such that the special fibre has infinitely many
automorphisms. However, under a few reasonably strong conditions as in the following
theorem, we can show that the base change of an MDM is also an MDM.

Theorem 0.0.4. Let f : X → U be an MDM and g : T → U be a morphism between
quasi-projective varieties. Let W := X ×U T , and consider the following diagram.

W
p / /

q
��

X

f
��

T
g // U

(0.0.2)

p and q denote the natural projections. Assume the following three conditions:

(1) W is normal and Q-factorial.
(2) The natural map p∗ : Pic(X/U)→ Pic(W/T ) is surjective.
(3) N1(W/T )Q ' Pic(W/T )Q and the natural map g∗f∗L → q∗p

∗L is surjective for
any line bundle L on X.

Then q is an MDM.

The proof of this theorem is given as an application of Theorem 0.0.2. We see that
the finite generation of the Cox sheaf of f implies the same for q under the conditions
(2) and (3).

When the conditions (1) and (2) of Theorem 0.0.4 hold, we can check that the condi-
tion (3) holds if g is a flat proper morphism. Hence we have the following corollary.

Corollary 0.0.5. Let f : X → U be an MDM and g : T → U be a morphism between
quasi-projective varieties. Let W := X ×U T as in (0.0.2). Assume the condition (1) and
(2) in Theorem 0.0.4 and the following (3′).

(3’) g is flat and proper.

Then q is an MDM.

We also give another proof of this corollary, where we directly investigate the geometry
of W and confirm that q satisfies the conditions of Definition 1.2.1. The flatness of g is
used to show that the small Q-factorial modifications of X can be lifted to those of W .

The foundational results on MDMs obtained in this thesis should be useful for further
investigations of MDM in nature, such as some families of moduli spaces over a base.

Chapter 2 is concerned with the Seshadri constants of polarized abelian varieties. The
Seshadri constant is introduced in [Dem92] inspired by the Seshadri’s characterization
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of ampleness, which measures the positivity of a line bundle at a point on a projective
variety (see Section 2.1 for details). It is closely related to various geometric notions
such as separation of jets, very ampleness of adjoint bundles, and the symplectic packing
problem. We recommend [Laz04, Chapter 5] for details. For a polarized abelian variety
(A,L), the Seshadri constant ε(A,L;x) does not depend on the choice of a point x ∈ A,
and hence we denote it by ε(A,L). An important problem is to understand how ε(A,L)
reflects the global structure of (A,L).

For example, it is known that there exists a close relationship between the Seshadri
constants and minimal period lengths (also called the Bauer-Sarnak invariants) of polar-
ized complex tori. For details, see [Laz96], [Bau98] or [Laz04, Chapter 5]. Apart from
this, Nakamaye [Nak96] proved the following very interesting result.

Theorem 0.0.6 (=[Nak96, Theorem 1.1]). Let (A,L) be a polarized abelian variety of
dimension n. Then ε(A,L) ≥ 1. Moreover, ε(A,L) = 1 if and only if (A,L) is isomorphic
to (E,L1) × (B,L2), where L1 is a line bundle of degree 1 on an elliptic curve E and
(B,L2) is a polarized abelian variety of dimension n− 1.

Another interesting result [Nak96, Lemma 3.3] from the same paper says that if there
exists a curve C on A such that

εC(L) :=
C.L

mult0(C)
<

n
√
Ln

n
, (0.0.3)

then C is contained in a proper abelian subvariety of A.
In view of this, it is natural to ask wether there exists a proper abelian subvariety B

which computes the Seshadri constant (i.e., ε(A,L) = ε(B,L|B)) under the assumption
of [Nak96, Lemma 3.3]. In general there exist infinitely many abelian subvarieties of a
fixed abelian variety. Hence, for a sequence of curves {0 ∈ Cn}n such that {εCn(L)}n
converges to ε(A,L), it is not clear whether we can take a subsequence such that all
Cn are contained in the same proper abelian subvariety of A. Our first result gives an
affirmative answer to this question.

Theorem 0.0.7 (=Theorem 2.2.3). Assume that

ε(A,L) <
n
√
Ln

n
. (0.0.4)

Then there exists a proper abelian subvariety B of A such that ε(A,L) = ε(B,L|B).
We prove Theorem 0.0.7 by combining [Nak96, Lemma 3.3] and some finiteness

theorems for abelian varieties.
Applying Theorem 2.2.3 repeatedly, we obtain the following corollary.

Corollary 0.0.8. For a polarized abelian variety (A,L), there exists an abelian subvariety
B ⊂ A of dimension k (possibly A = B) such that

ε(A,L) = ε(B,L|B) ≥
k
√

(L|B)k
k

. (0.0.5)

We also prove the following theorem.

Theorem 0.0.9 (= Corollary 2.2.9). Let (A,L) be a polarized abelian variety of dimen-
sion n. Fix a positive real number a. Let D be an abelian divisor in A such that

n
√
Ln ≥ n−1

√
a(L|D)n−1. (0.0.6)

If ε(A,L) < a n
√
Ln/n holds, then ε(A,L) = ε(D,L|D). Moreover, if one can take a >

( n
√
n)n−1, the upper bound ε(A,L) < a n

√
Ln/n automatically holds.
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We prove Theorem 0.0.7 and Theorem 0.0.9 in Section 2.2.
We discuss various applications of Theorem 0.0.7 and Theorem 0.0.9 in Section 2.3.

By the argument in the proof of Theorem 0.0.9, we obtain an interesting relationship
between the set of curves C with sufficiently small εC(L) compered to Ln and the set
of abelian divisors satisfying (0.0.6) (see Proposition 2.2.7 and (2.3.3) for details). For
abelian surfaces, we obtain the following corollaries.

Corollary 0.0.10 (= Proposition 2.3.1). Let (S, L) be a polarized abelian surface. As-
sume that there exists a curve C 3 0 such that

εC(S, L) <

√
L2

2
. (0.0.7)

Then C is elliptic, and it is the unique curve satisfying (0.0.7) and containing 0 ∈ S.

Theorem 0.0.7 and Theorem 0.0.9 mentioned above mean that the computation of the
Seshadri constant of an abelian variety can be reduced to that of its abelian subvariety
in some cases. There exist many results which compute the Seshadri constants on con-
crete low-dimensional abelian varieties. [Ste98] and [Kon03] (respectively, [BS01] and
[Deb04]) handle the case of the Theta divisors on Jacobian varieties of curves (resp. prin-
cipally polarized abelian varieties). The Seshadri constants of abelian surfaces have been
studied in further detail. For example, it is known that the Seshadri constants of abelian
surfaces are rational (for more results, see Appendix of [Bau98], [BS08], [BGS18], etc).
In the latter part of Section 2.3, keeping these previous works in mind, we give some
applications of our theorems. In particular, we show Corollary 2.3.6 below. Note that
this results is interesting in the sense that it gives an example such that the conditions
for the Seshadri constant greatly affects the geometric structure of a polarized abelian
variety.

Corollary 0.0.11. Let (A,L) be a polarized abelian threefold. Assume L3 ≤ 174 and

ε(A,L) <
3
√
L3/3. Then ε(A,L) = 1 or 4/3. Moreover, if ε(A,L) = 4/3, A contains the

Jacobian variety J of a genus two curve such that any curve satisfying εC(L) < 21
3
√
L3/8

is contained in J and A ' J × E for some elliptic curve E. If L3 ≤ 60, we obtain
ε(A,L) = 1.

The assumption L3 ≤ 60 is optimal for ε(A,L) = 1. In fact, for any n ∈ 6Z satisfying

n > 60, we can construct examples of (A,L) satisfying ε(A,L) <
3
√
L3/3, L3 = n, and

ε(A,L) 6= 1 (see Example 2.3.8 for this).

Acknowledgements. The author would like to appreciate his advisor Professor Shin-
nosuke Okawa for a lot of useful discussions and warm encouragement.
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CHAPTER 1

On relative version of Mori dream spaces

This chapter devoted to the study of Mori dream morphisms, which is the general-
ization of the definition of Mori dream space to the relative setting in that a Mori dream
space is precisely a Mori dream morphism whose target is a point.

Throughout this chapter, we assume that any varieties are normal and quasi-projective
over the base field C unless otherwise stated.

1.1. Preliminaries

We use the following notations and definitions.

Definition 1.1.1. Let π : X → U be a projective morphism between varieties.

(1) Pic(X/U) := Pic(X)/π∗(Pic(U)) and Pic(X/U)Q := Pic(X/U)⊗Q.
(2) N1(X/U)Q := Pic(X/U)Q/ ≡, where D ≡ D′ if D.C = D′.C for any complete

curve contracted by π.
(3) For a Q-divisor D on X, we define the stable base locus of D over U as

B(D/U) :=
⋂

0≤D′∼π,QD

Supp(D′). (1.1.1)

(4) We define the augmented base loci of D as

B+(D/U) := B(D − εA/U), (1.1.2)

where A is π-ample divisor and ε is a sufficiently small positive rational number.
(5) For a Cartier divisorD onX, the rational map associated to the following natural

map

αD/U : π
∗π∗O(D)→ O(D) (1.1.3)

is denoted by ΦD/U : X 99K ProjU(Sym(π∗OX(D))). We often write αD (respec-
tively, ΦD) instead of αD/U (resp., ΦD/U) if no confusion is possible.

(6) We say that a Q-divisor D is π-semiample (or relatively semiample over U) if
there exists a morphism X → Y over U such that D on X is a pull-back of a
Q-divisor on Y ample over U . This is equivalent to the condition that αmD is
surjective for some positive integer m.

(7) We say that a Q-divisor D is π-movable (or movable over U) if

codim(Supp(coker(αmD))) ≥ 2 (1.1.4)

for some positive integer m. Since X is assumed to be normal this is equivalent
to that there exists an open subset V ⊂ X such that codim(X\V ) ≥ 2 and D|V
is π|V -semiample.

Remark 1.1.2. In [Kaw88, Section 2], π-movable means the condition

codim(Supp(coker(αD))) ≥ 2. (1.1.5)

Our definition is slightly different but more convenient for our purposes.
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Proposition 1.1.3. Let π : X → U be as in Definition 1.1.1. Then a divisor D on X is
π-semiample if and only if there exists an ample divisor A on U and a positive integer m
such that mD+ π∗A is semiample over C. Similarly, D is π-movable if and only if there
exists an ample divisor A on U and a positive integer m such that mD+ π∗A is movable
over C.

Proof. We prove the proposition only in the case which D is π-semiample since the
other case obviously follows by the almost same argument. If mD+ π∗A is generated by
global sections for some m > 0 and a divisor A on U , it is obvious that D is π-semiample.
Hence we prove the other implication. Since D is π-semiample, we have the following
commutative diagram

U

X

π ��?
??

??
f // Y

π′����
��
�

(1.1.6)

and a π′-ample divisor A on Y such that f ∗(A) = D. Since U is quasi-projective, there
exists an ample divisor H on U such that A+π′∗H is ample. Hence, for sufficiently large
m, the divisor mA+mπ′∗H is very ample, and so it is generated by global sections. Then
we obtain that

mD + π∗(mH) = f ∗(mA+mπ′∗H), (1.1.7)

and it is also generated by global sections. �

Corollary 1.1.4. Under the same assumptions as in Proposition 1.1.3, D is π-movable
if and only if codim(B(D/U)) ≥ 2.

Proof. If D is π-movable, then it follows that codim(B(D/U)) ≥ 2 by Proposi-
tion 1.1.3. The other implication follows from [BCHM10, Proposition 3.5.4] �

Lemma 1.1.5. Let D be a π-effective divisor on X. Then we obtain an effective divisor
F and a π-movable divisor M such that D =M + F and π∗OX(D) ' π∗OX(M).

Proof. Let Z be a closed subscheme of X corresponding to the ideal sheaf on X
defined by the image of the map α′

D := αD ⊗ OX(−D), whose support coincides with
Supp(coker(αD)). For any prime divisor Fi ⊂ Z , we denote ki := ordFi

(Z). Then let
F := ΣikiFi and M := D−F . We will check that M and F satisfy the desired condition
locally over U . Consider an affine covering U =

⋃r
j=1 Uj of U . We denote π−1(Uj) by Vj.

Let us consider

α′
D|Vj : H0(Vj,OVj(D))⊗OVj(−D)→ OVj . (1.1.8)

Then obviously the closed subscheme defined by the image of α′
D is Z∩Vj and ordFi∩Vj(Z∩

Vj) = ki if Fi ∩ Vj 6= ∅. This implies that any section in H0(Vj,OVj(D)) vanishes along

the subscheme Σ
nj

i=1ki(Fli ∩ Vj), where Fl1 , . . . , Flnj
are all the components of F which

have nonempty intersections with Vj.
Then the natural injective map

H0(Vj,OVj(D − F )) = H0(Vj,OVj(D − Σ
nj

i=1kliFli)) ↪→ H0(Vj,O(D)), (1.1.9)

12



is an isomorphism since the following map

H0(Vj,OVj(D))→ H0(

nj⋃
i=1

kliFli ,O∪nj
i=1 kliFli

,(D)
) (1.1.10)

is the zero map. Hence we obtain π∗OX(D) ' π∗OX(M). Moreover, for each i = 1, . . . nj,
we have a section

si ∈ H0(Vj,OVj(D − F )) (1.1.11)

which does not vanish along Fli . This implies that the closed subscheme defined by the
image of α′

(D−F )|Vj has codimension at least two since it does not containing any Fli by

the above argument. Since Supp(coker(α′
D−F )) = Supp(coker(αD−F )), it follows that

M = D − F is π-movable. �
From now on we assume that π : X → U is an algebraic fibre space (i.e., a projective

morphism satisfying OU = f∗OX) and X is Q-factorial.

Lemma 1.1.6. Let f : X → Y be an algebraic fibre space over U . Then f induces a
natural injection

f ∗ : Pic(Y/U) ↪→ Pic(X/U). (1.1.12)

Proof. Let L be a line bundle on Y . Note that f∗(f
∗L) ' L since f is an algebraic

fibre space. This implies that if [f ∗L] = 0 in Pic(X/U), then L comes from a line bundle
on U . �

1.1.1. Rational maps. Let us consider a dominant rational map f : X 99K Y over U .

Lemma 1.1.7. f induces a natural map f ∗ : Pic(Y/U) → Pic(X/U). Moreover, If a
divisor D on X satisfies D ≡U 0, then f ∗D ≡U 0. The induced map f ∗ : N1(Y/U)Q →
N1(X/U)Q is injective if f is birational.

Proof. Consider the following diagram.

X̃
µ

����
��
�� f ′

��?
??

??
?

Y

π′����
��
��

X

π ��?
??

??
?

f //______

U

(1.1.13)

where µ is a resolution of f and X̃ is nonsingular and projective over U . We can easily
check that the morphism

f ∗ : Pic(Y/U)→ Pic(X/U); [D] 7→ [µ∗(f
′∗(D))] (1.1.14)

does not depend on the choice of a resolution. Let us assume D ≡U 0. Consider the
divisor E := µ∗(f ∗(D)) − f ′∗(D). Obviously, E is µ-exceptional, and E ≡U µ∗(f ∗(D))
since f ′∗(D) ≡U 0. Take any curve C on X̃ such that µ(C) = {pt}. We have

C.E = C.µ∗(f ∗(D))− C.f ′∗(D) = µ∗(C).f
∗(D) = 0. (1.1.15)

By applying [KM98, Lemma 3.39] to µ, we obtain E = 0. Hence µ∗(f ∗(D)) ≡U 0, and
the projection formula implies f ∗(D) ≡U 0.
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Let us prove the second assertion. Assume that f is birational and f ∗(D) ≡U 0. Take
a curve on C such that f ′(C) = {pt}. Then we have

C.E = C.µ∗(f ∗(D))− C.f ′∗(D) = µ∗(C).f
∗(D) = 0, (1.1.16)

where the last equality follows from that f ∗(D) ≡U 0 and that µ(C) is contracted by π.
By applying [KM98, Lemma 3.39] to the birational morphism f ′, we obtain that E = 0.
Then for any curve C on Y such that π′(C) = {pt}, we obtain

D.C = f ′∗(D).C̃ = µ∗(f ∗(D)).C̃ = f ∗(D).µ∗(C̃) = 0, (1.1.17)

where C̃ is the strict transform of C in X̃. �
We recall the definition of rational contractions (see also [HK00]).

Definition 1.1.8. A rational map f : X 99K Y over U is a rational contraction if for
some resolution (equivalently, for any resolution) (p, q) : W → X×Y of f such that W is
nonsingular and projective over U , every p-exceptional effective divisor E on W satisfies

q∗(OW (E)) = OY . (1.1.18)

An effective divisor F on X is f -fixed if any effective divisor D on W whose support
is contained in the union of p-exceptional divisors and strict transform of F satisfies

q∗(OW (D)) = OY . (1.1.19)

Remark 1.1.9. Consider the following diagram.

U

X

π1 ��?
??

??
f //_____ Y

π2����
��
�

(1.1.20)

If f is a rational contraction and π1 is an algebraic fibre space, we can check that π2 is
also an algebraic fibre space by [Laz04, Example 2.1.12].

Lemma 1.1.10. Let πi : Xi → U (i = 1, 2) be an algebraic fibre space and f : X1 99K X2

be a rational contraction over U . Then, for a Cartier divisor A on X2 and an f -fixed
divisor F on X1, we obtain

π1∗(f
∗(A) + F ) ' π2∗(A). (1.1.21)

Proof. Consider the resolution (p, q) : W → X1×X2 of f as in the Definition 1.1.8.
Then p∗(f ∗(A))− q∗A is p-exceptional, hence there exists effective p-exceptional divisors
E1 and E2 such that

p∗(f ∗(A)) + E1 = q∗A+ E2. (1.1.22)

Then we obtain

π1∗(f
∗(A) + F ) (1.1.23)

' π1∗p∗(p
∗(f ∗(A)) + p∗(F ) + E1) (1.1.24)

= π2∗q∗(q
∗A+ E2 + p∗(F )) (1.1.25)

' π2∗(A), (1.1.26)

where the finial equality follows from the projection formula and the assumption that F
is f -fixed. �
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Definition 1.1.11. For a line bundle L on X, we define the section algebra over U as

Rπ(X,L) :=
⊕
m∈Z≥0

π∗(L
m). (1.1.27)

If Rπ(X,L) is a finitely generated OU -algebra, we obtain the following rational map
to the variety which is projective over U

ϕL/U : X 99K ProjU(Rπ(X,L)). (1.1.28)

Note that ProjU(Rπ(X,L)) is determined by the class of L in Pic(X/U) up to iso-
morphism over U (see [Har77, Chapter 2, lemma 7.9)]). We often denote ϕL/U by ϕL if
no confusion is possible.

Remark 1.1.12. ϕL has the following properties.

(1) For any m > 0 there exists a natural isomorphism

ProjU(Rπ(X,L)) ' ProjU(Rπ(X,L
m)), (1.1.29)

which commutes with the rational maps ϕL and ϕLm .
(2) For a sufficiently divisible m > 0, there exists the natural closed immersion

ProjU(Rπ(X,L
m)) ↪→ ProjU(Sym(π∗(L

m))), (1.1.30)

which commutes with ϕLm and ΦLm . This follows from [HK00, 1.5. LEMMA].

The following proposition is the relative version of [HK00, 1.6. LEMMA]

Proposition 1.1.13. If Rπ(X,L) is finitely generated, then ϕL : X 99K Y is a rational
contraction and L ∼Q,U ϕ∗

L(A) + E for some relatively ample Q-divisor A on Y over U
and ϕL-fixed divisor E. Conversely, consider a rational contraction f : X 99K Y over U ,
and take a Cartier divisor A on Y which is relatively ample over U . Then

(1) for any f -fixed divisor F , the map f is equal to ϕf∗(A)+F up to isomorphisms
over U , and

(2) f is regular if and only if f ∗(A) is π-semiample.

Proof. The arguments of the proof of [HK00, 1.6. LEMMA] can be easily general-
ized for the relative case by applying Lemma 1.1.5, Remark 1.1.12, and Lemma 1.1.10. �
Definition 1.1.14. Take D1, D2 ∈ Pic(X/U)Q with finitely generated section algebras
over U . ThenD1 andD2 areMori equivalent if ϕD1 coincides with ϕD2 up to isomorphism.

Assume Pic(X/U)Q ' N1(X/U)Q. A Mori chamber is the closure of a Mori equivalent
class with non-empty interior in Pic(X/U)Q.

Definition 1.1.15. A birational contraction f : X 99K Y over U is a small Q-factorial
modification (SQM for short) over U if f is isomorphic in codimension one and Y is
Q-factorial.

We can easily show the following properties of SQMs over U .

Remark 1.1.16. Let g : X 99K Y be an SQM over U . Then

(1) g induces an isomorphism g∗ : N1(Y/U)Q → N1(X/U)Q.
(2) g∗(Eff(Y/U)) = Eff(X/U).
(3) g∗(Mov(Y/U)) = Mov(X/U).
(4) Let f : Y 99K Z be a rational contraction, and h := f ◦g. For any Cartier divisor

D on Z such that f ∗D is Cartier, it follows that h∗(D) = g∗(f ∗(D)).
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1.2. Definition of Mori dream morphisms

Let π : X → U be as in Definition 1.1.1 and assume that it is an algebraic fibre space.

Definition 1.2.1. π is said to be a Mori dream morphism (MDM) if it satisfies the
following conditions.

(1) X is Q-factorial.
(2) Pic(X/U)Q ' N1(X/U)Q
(3) Nef(X/U) is a rational polyhedral cone generated by finitely many π-semiample

divisors.
(4) There exists a finite collection of SQMs gi : X 99K Xi (i = 1 . . . r) over U such

that every Xi satisfies (1), (2), (3), and

Mov(X/U) =
r⋃
i=1

g∗i (Nef(Xi/U)). (1.2.1)

We can replace some of the conditions in the definition of MDM as follows.

Proposition 1.2.2. In Definition 1.2.1, we can replace (2) and (3) with the following
(2′) and (3′).

(2′) Every π-nef divisor is π-semiample.
(3′) Nef(X/U) is a rational polyhedral cone.

Proof. Obviously, (2) and (3) imply (2′) and (3′), so that it is sufficient to show
that (2′) implies (2). We prove that the natural surjection Pic(X/U)Q → N1(X/U)Q is
injective. Take [D] ∈ Pic(X/U)Q such that D ≡U 0. Since D is π-semiample, we obtain
a morphism Φ: X → Y over U such that D = Φ∗(A) for some relatively ample Q-divisor
A on Y over U . Then by the numericall condition of D, any curve contracted by π is
also contracted by Φ. Hence, by the normality of U , there exists a morphism g : U → Y
which satisfies the following diagram.

U
g

??�����

X

π ��?
??

??
Φ // Y

(1.2.2)

Hence we obtain that D = Φ∗(A) = π∗(g∗(A)), and so [D] = 0 ∈ Pic(X/U). �

Remark 1.2.3. Let π : X → U be an MDM. For an algebraic fibre space f : X → Y over
U , the cone f ∗Nef(Y/U) is a face of Nef(X/U). Indeed, we can check f ∗Nef(Y/U) =
Nef(X/U)∩NE(f)⊥ by the argument as in the proof of Proposition 1.2.2, where NE(f) ⊂
N1(X/U) is the cone generated by the curves that are contracted by f .

1.3. Fan structure on Mov(X/U)

Throughout this section, let π : X → U be an MDM and Y be a normal quasi-
projective variety which is projective over U .

Proposition 1.3.1. Let f : X 99K Y be a rational contraction over U . Then there exists
an SQM gi : X 99K Xi as in Definition 1.2.1 such that h := f ◦ g−1

i is an algebraic fibre
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space.

X
gi //___

f   A
A

A
A Xi

h
��
Y

(1.3.1)

Proof. We can prove this as in the last paragraph of the proof of [HK00, 1.11
Proposition] by applying Proposition 1.1.13. �
Corollary 1.3.2. Under the assumptions in Proposition 1.3.1, the map

f ∗ : N1(Y/U)Q → N1(X/U)Q (1.3.2)

is injective.

Proof. By Proposition 1.3.1 and Remark 1.1.16, we may assume that f is a mor-
phism over U . Then f ∗(D) ≡U 0 implies f ∗(D) ∼Q,U 0, and hence D ∼Q,U 0 since f is
an algebraic fibre space over U . �

The following corollary also immediately follows from Proposition 1.3.1.

Corollary 1.3.3. There is no SQM of X over U other than g1, . . . , gr which appear in
Definition 1.2.1.

LetMX/U be the set of all faces of the cones g∗i (Nef(Xi/U)) (i = 1 . . . r ). Then the
following theorem gives the generalization of [HK00, 1.11 Proposition (3)].

Theorem 1.3.4. The above setMX/U is a fan whose support is Mov(X/U). Moreover,
there is a natural bijection α between the set of cones ofMX/U and the set of all rational
contractions f : X 99K Y with Y projective over U , given by

α : f 7→ f ∗(Nef(Y/U)). (1.3.3)

Proof. We first prove that MX/U is a fan. For this it is sufficient to show that
g∗i (Nef(Xi/U)) and g∗j (Nef(Xj/U)) intersect along a common face for any i, j = 1, . . . r
since this implies that σ∩τ is a common face of σ and τ for any σ, τ ∈MX by elementary
arguments of convex geometry. We may assume that Xi = X and gi = idX without loss
of generality.

Take any [D] ∈ Nef(X/U) ∩ g∗j (Nef(Xj/U)). By replacing with a multiple, we may
assume that D is an integral Cartier divisor and there exists a Cartier divisor Dj in
Nef(Xj/U) such that [D] = g∗j [Dj]. Then we obtain the commutative diagram

X
gj //___

φD   @
@@

@@
@@

@ Xj

φDj

��
YD

(1.3.4)

such that [D] and [g∗j (Dj)] are the pullbacks of some π-ample divisor on YD. This implies
that ϕ∗

D(Nef(YD/U)) is a common face of Nef(X/U) and g∗j (Nef(Xj/U)) containing D in
its relative interior by Remark 1.2.3.

Let A1, A2 ∈ Nef(X/U) be Q-divisors such that A1+A2 ∈ Nef(X/U)∩g∗j (Nef(Xj/U)).
Applying the above argument to D := A1 + A2, we obtain Ai ∈ Nef(X/U) (i = 1, 2), to
conclude that Nef(X/U)∩g∗j (Nef(Xj/U)) is a face of Nef(X/U). Indeed, our assumption
that D ∈ ϕ∗

D(Nef(YD/U)) implies

A1, A2 ∈ ϕ∗
D(Nef(YD/U)) ⊂ Nef(X/U) ∩ g∗j (Nef(Xj/U)) (1.3.5)
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since ϕ∗
D(Nef(YD/U)) is a face of Nef(X/U). The same argument implies that Nef(X/U)∩

g∗j (Nef(Xj/U)) is also a face of Nef(Xj/U).
For the second part, we define the inverse map β of α as follows. For any cone

σ ∈ MX/U , take a line bundle L whose class is contained in the relative interior of σ.
Then set β(σ) := ϕL. It follows that β does not depend on the choice of L, and it is the
inverse map of α by the fact that the relative interiors of two different faces of a convex
cone do not intersect each other and Proposition 1.1.13. �
Remark 1.3.5. Let f : X 99K Y be a rational contraction with Y projective over U (as
in the following diagram) and σ := f ∗(Nef(Y/U)).

U

X

π ��?
??

??
f //_____ Y

π′����
��
�

(1.3.6)

Then

(1) dimσ = ρ(Y/U).
(2) f ◦ (gi)−1 is regular if and only if σ ⊂ g∗i Nef(Xi/U).
(3) f is birational if and only if σ ⊈ ∂(Eff(X/U)).

Proof. (1) and (2) follow from Corollary 1.3.2 and the proof of Proposition 1.3.1.
For (3), note that f is birational if and only if the relative interior of f ∗(σ) is contained
in the big cone of X over U . This implies (3). �

To prove Proposition 1.3.7 below, we need the following lemma.

Lemma 1.3.6. Let f : X → Y be a birational morphism between projective varieties over
U . For any π′-ample Q-divisor D on Y, we obtain

B+(f
∗(D)/U) ⊂ Exc(f) (1.3.7)

Proof. We mimic the argument in the proof of [BBP13, Proposition 2.3].
Take x /∈ Exc(f) and a π-ample divisor H on X such that x /∈ H (we can take

such H because X is quasi-projective). Since f is an isomorphism around x, we obtain
f(x) ⊈ Z(I) for the ideal sheaf I := f∗(OX(−H)) ⊂ OY . Take an ample divisor A on U
such that D′ := D + π′∗A is ample on Y . Then for k � 0, OY (kD′)⊗ I is generated by
global sections. Hence there exists a section

s̃ ∈ H0(Y,O(kD′)⊗ I) (1.3.8)

such that s̃(f(x)) 6= 0. Let s ∈ H0(X, k(f ∗D + π∗A) −H) be the section corresponding
to s̃ via the following isomorphism

H0(X, k(f ∗D + π∗A)−H) ' H0(Y,O(kD′)⊗ I), (1.3.9)

which is induced by the projection formula.
Then s(x) 6= 0 for k � 0, and hence x /∈ B+(f

∗D/U). �
Proposition 1.3.7. Under the same assumptions as in Remark 1.3.5, if f is birational
and codimExc(f) ≥ 2, then σ ⊈ ∂(Mov(X/U)).

Proof. After replacing X to some SQM of X, we may assume that f is a birational
morphism by Proposition 1.3.1. Take a divisor B whose class [B] in N1(X/U) is in the

18



relative interior of σ. Then it follows that B = f ∗(D) for some π′-ample Q-line bundle
D on Y . For a π-ample divisor H and sufficiently small ε ∈ Q>0, we obtain

B(B − εH/U) ⊂ Exc(f) (1.3.10)

by Lemma 1.3.6. Then by the assumption and Corollary 1.1.4, we have [B − εH] ∈
Mov(X/U). This implies [B] is contained in the interior of Mov(X/U) since [B] =
[B − εH] + [εH] and [H] is contained in the interior of Mov(X/U). �

1.4. Minimal model program

Throughout this section, let π : X → U be a Mori dream morphism unless otherwise
stated.

Definition 1.4.1. Let f : X → Y be an algebraic fibre space over U .

(1) f is an elementary contraction if ρ(X/U)− ρ(Y/U) = 1.
(2) f is a divisorial contraction if it is a birational morphism which contracts divisors.
(3) f is of fibre type (or a Mori fibre space) if dim(X) > dim(Y ).
(4) Assume f is small and D is a divisor on X such that −D is f -ample. Then an

SQM ϕ : X 99K X ′ is a D-flip of f if f ′ := f ◦ ϕ−1 : X ′ → Y is a morphism and
ϕ∗(D) on X ′ is f ′-ample. If f is elementary, we sometimes simply call it the flip
of f .

Remark 1.4.2. It is well-known that any elementary contraction is either divisorial, of
fibre type, or small (for example, see [KM98, Proposition 2.5]). We remark the following
facts.

(1) For an elementary divisorial contraction f , the exceptional locus Exc(f) is a
prime divisor(for details, see [KM98, Proposition 2.5]).

(2) Assume that there exists a D-flip of f . Then Rf (X,D) is finitely generated
and the D-flip X ′ is isomorphic to ProjY (Rf (X,D)). Furthermore, if f is an
elementary contraction, the flip of f does not depend on the choice of a divisor
D (for details, see [KM98, Corollary 6.4]).

Proposition 1.4.3. Let f : X → Y be a small elementary contraction over U . Then
there exists an SQM gi : X 99K Xi as in Definition 1.2.1 (4) which is a flip of f .

Proof. Consider σ := f ∗(Nef(Y/U)), which is a facet of Nef(X/U) not contained
in ∂(Mov(X/U)) by Remark 1.3.5 and Proposition 1.3.7. Hence by the fan structure
in Theorem 1.3.4, there exists an SQM gi : X → Xi such that σ is a common facet
of Nef(X/U) and g∗i (Nef(Xi/U)). Consider the composition f ′ := f ◦ gi−1 : Xi 99K Y
and the hyperplane Hσ := f ∗(N1(Y/U)Q) containing σ, which coincides with NE(f)⊥ =
g∗i (NE(f

′)⊥) by Remark 1.2.3. If a divisor D on X satisfies D.NE(f) < 0, then D lies in
the same side as gi

∗(Nef(Xi/U)) of the hyperplane Hσ, and this implies gi∗(D).NE(f ′) >
0. Hence gi is the flip of f . �
Proposition 1.4.4. Consider an elementary divisorial contraction f over U as follows

U

X

π ��?
??

??
f // Y

π′����
��
�

(1.4.1)

Then π′ is also an MDM.
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Proof. By Remark 1.2.3, it follows that f ∗(N1(Y/U)Q) = NE(f)⊥. Then we can
prove that Y is Q-factorial as in the proof of [KM98, Proposition 3.36].

If L ∈ Nef(Y/U), the pull back f ∗L is also π-nef and π-semiample. Since f is an
algebraic fibre space, we obtain π∗π∗(f

∗L) ' f ∗(π′∗π′
∗(L)) by the projection formula,

and αf∗(L) : π
∗π∗(f

∗L) → f ∗L coincides with f ∗αL : f
∗(π′∗π′

∗(L)) → f ∗(L) via this iso-
morphism. Hence the π-semiampleness of f ∗L implies the π′-semiampleness of L. Since
f ∗(Nef(Y/U)) is a face of Nef(X/U), obviously Nef(Y/U) is a polyhedral cone. These
arguments show that π′ : Y → U satisfies the conditions (2′) and (3′) in Proposition 1.2.2.

Let E be the exceptional divisor of f . We will show that Y satisfies the condition
(4) in Definition 1.2.1. Let gi : X 99K Xi (for i = 1, . . . , r ) be the SQMs of X over U .
Consider all the elementary divisorial contractions of Xi over U (for i = 1, . . . , r) such
that each exceptional divisor is the strict transform of E. We denote them as

fj : Xij → Yj (1.4.2)

for j = 1, . . . ,m. Note that each Yj satisfies the conditions (1), (2), and (3) in Defini-
tion 1.2.1 as above. Let ϕj := fj ◦ gij ◦ f−1. Then we obtain the following diagram.

X
gij //___

f

��

Xij

fj
��

Y
φj //___ Yj

(1.4.3)

Since each ϕj is an SQM of Y , it is sufficient to show that

Mov(Y/U) =
m⋃
j=1

(ϕ∗
j(Nef(Yj/U))). (1.4.4)

Take D ∈ Mov(Y/U), then we can find a ∈ Q≥0 such that

M := f ∗D − aE ∈ ∂Mov(X/U). (1.4.5)

Indeed, if f ∗(D) ∈ Mov(X/U), we can easily check f ∗(D) + εE /∈ Mov(X/U) for
any positive rational number ε, and so f ∗(D) ∈ ∂Mov(X/U). Then assume that
f ∗(D) /∈ Mov(X/U). Since D is π-movable, there exists a positive integer n such that
codim(Supp(coker(αnD))) ≥ 2. Then we obtain Supp(coker(αf∗(nD))) = E holds in codi-
mension one since αf∗(nD) coincides with f

∗αnD and it follows that

Supp(coker(f ∗(αnD/U))) = f−1(Supp(coker(αnD/U))) (1.4.6)

by applying Nakayama’s lemma to each stalk of the sheaves. By the proof of Lemma 1.1.5,
there exists a0 > 0 such that f ∗(nD) − a0E is π-movable, and hence we can take a > 0
such that f ∗D − aE ∈ ∂Mov(X/U).

Take τ ∈ MX/U such that [M ] ∈ τ , dim τ = ρ(X/U) − 1, and the hyperplane Hτ

containing τ separates Mov(X/U) and [E]. Let ϕτ : X 99K Z be a rational contraction
corresponding to τ via Theorem 1.3.4. Then there exists an SQM g : X 99K Xk such
that h = ϕτ ◦ g−1 : Xk → Z is an algebraic fibre space. Let Ek be the strict transform
of E on Xk. Note that Ek.NE(h) < 0 by the choice of τ , and hence h is birational and
Exc(h) ⊂ Ek. Since τ ⊂ ∂(Mov(X/U)), the morphism h is divisorial by Proposition 1.3.7.
Therefore there exists some j ∈ {1, . . . ,m} such that h coincide with fj : Xij → Yj, where
ij = k. Moreover, there exists a relatively nef Q-divisor Mj on Yj over U such that
M ∼Q,U g∗ij(h

∗Mj) = g∗ij(f
∗
j (Mj)). This implies that D ∼Q,U ϕ∗

j(Mj), and so we obtain

[D] ∈ ϕ∗
j(Nef(Yj/U)). �
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Lemma 1.4.5. Let D be a divisor on X which is not π-nef. Then there exists a D-
negative elementary contraction f : X → Y over U .

Proof. Take a facet σ ≺ Nef(X/U) ⊂ N1(X/U)Q such that [D] lies on the other
side of Nef(X/U) with respect to the hyperplane Hσ containing σ. Let f : X → Y be the
morphism corresponding to σ. Then f is an elementary contraction and it follows that
(D.NE(f)) < 0 since Hσ = NE(f)⊥. �

Theorem 1.4.6. Let D be a divisor on X. Then there exists an MMP for D over U
and it terminates either in a Mori fibre space or a good minimal model (i.e., a model on
which the strict transform of the divisor D is semiample over U).

Proof. We use an induction on ρ(X/U). If ρ(X/U) = 1, then either D is π-nef or
−D is π-ample. When D is π-nef, it is π-semiample by the definition of MDM. If −D is
π-ample, then a D-negative contraction f contracts all the curves that is contracted by
π. This implies that f coincides with π. Hence if π is a divisorial contraction, the divisor
f∗(D) is a Q-Cartier divisor by Proposition 1.4.4, and it is nef and semiample over U since
f∗(D) ≡Q,U 0. If π is a small contraction, we have a flip such that the strict transform of
D is nef over U by Proposition 1.4.3. Finally, π is of fibre type if dimX > dimU .

Now assume that ρ(X/U) ≥ 2 and D is not π-nef. Then consider a D-negative
contraction f : X → Y . If f is of fibre type, it is done. If f is a divisorial contraction,
then the assumption of the induction and Proposition 1.4.4 implies the assertion. Assume
that f is small. Then by Proposition 1.4.3, we only have to show that there does not
exists an infinite sequence of D-negative flips. Since we know that there are only finitely
many SQMs of X over U , it is sufficient to show that for any sequence of D-negative
flips

X = X0
ψ0 //___ X1

ψ1 //___ · · ·
ψs−2 //___ Xs−1

ψs−1 //___ Xs, (1.4.7)

ψ0 ◦ · · · ◦ ψs−1 is not an isomorphism. However, if we take a divisor E over X such that
f is not isomorphic above the generic point of centerY (E), it follows that ordE(Di) ≤
ordE(Di+1) and ordE(D) < ordE(D1) as in the proof of [KM98, Lemma 3.38], where
Di is the strict transform of D in Xi and ordE(Di) is the coefficient of E in the divisor
µ∗(Di) for a resolution µ : X̃i → Xi such that E is a divisor on X̃. This shows that
ordE(D) < ordE(Ds), and hence ψs−1 ◦ · · · ◦ ψ0 is not an isomorphism. �

Corollary 1.4.7. For any divisor D on X, the OU -algebra Rπ(X,D) is finitely generated.

Proof. We may assume that [D] ∈ Eff(X/U). Then Theorem 1.4.6 implies that
there exists a birational contraction f : X 99K Y over U and semiample divisor DY :=
f∗(D) on Y since [D] ∈ Eff(X/U). By Lemma 1.1.10, we obtain Rπ(X,D) ' Rπ′(Y,DY )
since D ' f ∗(DY )+E, where π

′ : Y → U is a natural map and E is an f -fixed divisor. �

Corollary 1.4.8. There are finitely many birational contractions hi : X 99K Yi over U
such that each πi : Yi → U (i = 1, . . . , k) is also an MDM, and there is a chamber
decomposition of Eff(X/U) :

Eff(X/U) =
r⋃
i=1

(h∗i (Nef(Yi/U))× Exc(hi)) (1.4.8)

such that the interiors of the chambers do not intersect each other. Moreover, the cones
h∗i (Nef(Yi/U))× Exc(hi) in Eff(X/U) are precisely Mori chambers.
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Proof. For any divisor D ∈ Eff(X/U), we obtain a birational contraction h : X 99K
Y ′ over U such that Y ′ is also an MDM and D = h∗(D′)+E for the relatively nef divisor
D′ := h∗(D) on Y ′ over U and effective h-exceptional divisor h by running a D-MMP as in
Theorem 1.4.6. By Theorem 1.3.4, there exists only finitely many rational contractions
over U . Hence we obtain a finite collection of birational contractions hi : X 99K Yi
satisfying (1.4.8).

The disjointness and the second assertion easily follow from Proposition 1.1.13 (1)
and that each effective exceptional divisor of hi is hi-fixed. �

Corollary 1.4.9. Eff(X/U) is a rational polyhedral cone.

1.5. Characterization via Cox Sheaf

1.5.1. VGIT for affine morphisms. In this subsection we introduce the relative version
of VGIT and prove that certain relative GIT quotients of affine morphisms are MDMs.
First, we review VGIT for affine varieties. We refer to [MFK94] and Section 3 of [AH09]
for details.

Let G be a connected reductive group over C. χ(G)Q := χ(G) ⊗ Q be the space of
rational characters. Note that it is a finite dimensional vector space. Assume that G
acts on a normal affine variety V . Let Ow be the trivial line bundle of V twisted by the
character w ∈ χ(G). The weight cone of V will be denoted by

ΩG(V ) := cone{w ∈ χ(G)|H0(V,Ow)G 6= 0} ⊂ χ(G)Q. (1.5.1)

Note that, for each w ∈ χ(G), w ∈ ΩG(V ) ∩M holds if and only if the semi-stable
locus V ss

w with respect to Ow is non-empty.
Combing results from [AH09, Theorem 3.2], we obtain the following proposition.

Proposition 1.5.1. There is a chamber decomposition

ΩG(V ) =
r⋃
j=1

σj (1.5.2)

satisfying the following properties.

(1) Each σj is a full dimensional rational polyhedral cone in χ(G)Q.
(2) w,w′ ∈ int(σj) ∩ χ(G) holds for some j if and only if w,w′ ∈

⋃r
j=1 int(σj) and

V ss
w = V ss

w′ .
(3) If w ∈ σj, then V ss

w′ ⊂ V ss
w for any w′ ∈ int(σj).

We use the following lemma in the proof of Theorem 1.5.7 below.

Lemma 1.5.2. The restriction map

H0(V,Ow)G → H0(V ss
w ,Ow)G (1.5.3)

is an isomorphism.

Proof. Let D1 . . . , Dr be the codimension one components of V \V ss
w and Vk :=

V \(
⋃k
i=1Di). To see (1.5.3), we may assume that V \V ss

w =
⋃r
i=1Di since V is normal.

Now it is sufficient to show that

H0(Vk−1,Ow)G ' H0(Vk,Ow)G (1.5.4)
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for all k = 0, . . . , r, where we assume that V−1 = V0 = V for the sake of convenience. We
prove this by induction on k. Obviously (1.5.4) holds for k = 0, and so assume that it
holds for any 0 ≤ l < k. Note that the restriction map

H0(Vk−1,Ow)G ↪→ H0(Vk,Ow)G (1.5.5)

is injective for any k. Let

mk := min{ordDk
(s)|s ∈ H0(Vk−1,O⊗n

w )G for some n ∈ Z>0}. (1.5.6)

Then we have mk > 0 since s(Dk) = 0 for any s ∈ H0(Vk−1,O⊗n
w )G ' H0(V,O⊗n

w )G,
where the last isomorphism follows from the assumption of the induction. Fix s ∈
H0(Vk−1,Ow)G such that ordDk

(s) = mk. Assume that (1.5.4) does not hold. Let us
take any t ∈ H0(Vk,Ow)G\H0(Vk−1,Ow)G. Then there exists n > 0 such that t · sn ∈
H0(Vk−1,O⊗n+1

w )G. Let n0 be the minimal positive number satisfying this condition. By
the choice of mk, we obtain ordDk

(t · sn0) ≥ mk. This implies that ordDk
(t · sn0−1) ≥ 0,

and hence t · sn0−1 ∈ H0(Vk−1,O⊗n0
w )G since V is normal. This contradicts the choice of

n0, and so we obtain the desired equation (1.5.4).
�

Now let us consider the relative case. Let π : V → U be a G-invariant affine morphism
of finite type, where we assume that U is a quasi-projective normal variety and V is also
normal. For χ ∈ χ(G), we define the semi-stable (respectively, stable) locus of V with
respect to Oχ over U as follows.

Definition 1.5.3. Let U =
⋃
i Ui be an affine covering of U . For a character χ, we define

the semi-stable locus of Oχ over U as

V ss
χ/U :=

⋃
i

(Vi)
ss
χ , (1.5.7)

where Vi := π−1(Ui).
Similarly, we define the sable locus as

V s
χ/U :=

⋃
i

(Vi)
s
χ. (1.5.8)

This definition does not depend on the choice of an affine covering of U by the lemma
below. We say χ1, χ2 ∈M are GIT equivalent if they have the same semi-stable locus.

Lemma 1.5.4. Suppose that U is an affine variety and χ ∈ χ(G). For any affine open
subset U ′ ⊂ U , let V ′ := π−1(U ′). Then we obtain V ′ss

χ = V ss
χ ∩ V ′.

Proof. It is obvious that V ′ss
χ ⊃ V ss

χ ∩ V ′ by the definition of semi-stable locus of
affine varieties. To prove the other inclusion, take any point p ∈ V ′ss

χ and a section

s ∈ Γ(V ′,O⊗m
χ )G such that s(p) 6= 0. Let f ∈ H0(U,OU) be a regular function on U

such that p ∈ D(f) ⊂ U ′. Since Γ(V ′,O⊗m
χ ) = Γ(U ′, π∗O⊗m

χ ) and the pull back of f is a

G-invariant function on V , there is some positive number N > 0 such that fNs extends
to a section s̃ ∈ Γ(V,O⊗m

χ )G by [Har77, Chapter 2, Lemma 5.3]. Obviously we obtain
s̃(p) 6= 0 by the construction, so that p ∈ V ss

χ ∩ V ′. �

For each i in Definition 1.5.3, it is known that there exists the good quotient

qiχ : (Vi)
ss
χ → Qiχ := (Vi)

ss
χ //G, (1.5.9)
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which admits natural morphism to Ui ⊂ U . The universality of categorical quotients and
Lemma 1.5.4 imply that they can be glued, and we obtain the good quotient

qχ : V
ss
χ/U → Qχ := V ss

χ/U//G (1.5.10)

and similarly the geometric quotient

qχ : V
s
χ/U → V s

χ/U/G, (1.5.11)

both of which are morphisms over U . Moreover we obtain that

Qχ ' ProjU(
⊕
n∈Z≥0

(π∗O⊗n
χ ))G, (1.5.12)

which can also be checked locally over U . Let πχ : Qχ → U denote the canonical morphism
induced by the universality of the quotient.

Remark 1.5.5. Note that
⊕

n≥0(π∗O⊗n
χ ) is finitely generated over U , and hence finitely

generated over C since U is of finite type over C. Therefore by applying the Nagata the-
orem (see, for example, [Dol03, Theorem 3.3]),

⊕
n≥0(π∗O⊗n

χ )G is also finitely generated
over U .

Let ΩG(V/U) be the convex cone in χ(G)Q generated by w ∈ χ(G) such that V ss
w/U 6= ∅.

Then we can easily generalize Proposition 1.5.1 to the relative case.

Corollary 1.5.6. There is a chamber decomposition

ΩG(V/U) =
r⋃
j=1

σj (1.5.13)

satisfying the following properties.

(1) σj is a full dimensional rational polyhedral cone in χ(G)Q.
(2) w,w′ ∈ int(σj) ∩ χ(G) holds for some j if and only if w,w′ ∈

⋃r
j=1 int(σj) and

V ss
w/U = V ss

w′/U .

(3) If w ∈ σj, then V ss
w′/U ⊂ V ss

w/U holds for any w′ ∈ int(σj).

Proof. Let U =
⋃
i Ui be a finite affine covering. Note that ΩG(V/U) = ΩG(Vi) for

any i by Lemma 1.5.4. Then we obtain the proposition by taking intersections of the
chambers appeared in Proposition 1.5.1 for all i whose interiors are non-empty. �

We call each σj a GIT chamber of V over U .

Theorem 1.5.7. Take χ ∈ χ(G) such that Qχ is a normal and πχ : Qχ → U is an alge-
braic fibre space satisfying Pic(Qχ/U)Q ' N1(Qχ/U)Q. Assume the following properties.

(1) V ss
χ/U = V s

χ/U , and codimV (V \V ss
χ/U) ≥ 2.

(2) Qχ is Q-factorial.
(3) Both of the following maps are isomorphisms.

χ(G)Q −→
α

(Pic(V )G/Pic(U))Q
(1)
' (Pic(V ss

χ/U)
G/Pic(U))Q ←−

q∗χ
Pic(Qχ/U)Q, (1.5.14)

where we define α(χ) := [Oχ] ∈ Pic(V )G/Pic(U).

Then πχ is an MDM.

Remark 1.5.8. Under the assumptions of the above theorem, we can check that there
exists L ∈ Pic(Qχ) such that q∗χL ∼Q Oy for any y ∈ χ(G). We write it as Ly. In the
following proof V ss

y denotes V ss
y/U for simplicity.
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Proof of Theorem 1.5.7. Let y ∈ χ(G) be a character. Then for any sufficiently
divisible n > 0 we obtain the canonical identification

π∗(Oy⊗n)G = π∗(O⊗n
y |V ss

χ
)G = πy∗(L

⊗n
y ), (1.5.15)

where the first equality follows from that codim(V \V ss
χ ) ≥ 2 and the second equality

follows from the descent. This implies that the isomorphism induced by (1.5.14)

ψ : χ(G)Q → Pic(Qχ/U)Q (1.5.16)

identifies Ω(V/U) with Eff(Qχ/U)Q.
As in Remark 1.5.5, theOU -algebra

⊕
n≥0(π∗O⊗n

χ )G is finitely generated. Then for any
y ∈ χ(G), we obtain that Rπχ(Qχ, Ly) is finitely generated by (1.5.15). Let fy : Qχ 99K Qy

be the canonical rational map between the quotients. Then we can check that fy coincides
with ϕLy by (1.5.15). Moreover, by Proposition 1.1.13, there is a πy-ample divisor Ay
and a fy-fixed divisor Ey such that

Ly ∼Q f
∗
y (Ay) + Ey. (1.5.17)

Now we compare the GIT chamber decomposition of Ω(V/U) and the Mori chamber
decomposition of Eff(Qχ/U)Q via ψ. It is obvious that if two character y and y′ are GIT
equivalent, obviously Ly and Ly′ are Mori equivalent. This implies that GIT chamber
decomposition is finer than Mori chamber decomposition. Hence there are only finitely
many Mori chambers, and each of them is a rational polyhedral cone by Corollary 1.5.6.

Let us show that the Mori chambers coincide with the GIT chambers. Take y, z ∈
χ(G) such that Ly and Lz are in the interior of the same Mori chamber. Note that fz = fy
is a birational contraction since they are in the interior of Eff1(Qχ/U). Considering the
decomposition (1.5.17), Ey and Ez have the same support, which are the full divisorial
exceptional locus of fy, and the number of the component of Ey is ρ(Qχ/U)− ρ(Qy/U).
This follows from Lemma 1.1.7, Proposition 1.1.13, and the assumption that Lz and Ly
are in the interior of the Mori chamber. By considering the dimension, we obtain

Pic(Qχ/U)Q = f ∗
y (N

1(Qy/U))× 〈exceptional divisors of fy〉Q. (1.5.18)

Let D be a prime divisor on Qy and D̄ ⊂ Qχ be its strict transform. We can write D̄ as
D̄ = f ∗A + E + π∗

χB, where A ∈ Pic(Qy), B ∈ Pic(U), and fy∗E = 0. Hence we have
Supp(D) = Supp(A+π∗

yB), and this implies that the Weil divisor D is linearly equivalent
to the Cartier divisor A+ π∗

yB after multiplying both divisors by some positive integers.
Therefore D is Q-Cartier, and so Qy is Q-factorial.

Let us prove V ss
y = V ss

z . For this it is sufficient to show that V ss
z ⊂ V ss

y . Furthermore,
we may assume that U is an affine variety since the problem is local over U . Let pz ∈ V ss

z

be a point. Note that there exists a very ample divisorA′
y onQz = Qy such thatO⊗n

y |V ss
y

=
q∗yA

′
y by the GIT construction (this follows from (1.5.12) or [MFK94, Theorem 1.10]).

There exists σ′ ∈ H0(Qy, A
′
y) such that σ′(qz(pz)) 6= 0, and we obtain σ ∈ H0(V,O⊗n

y )G

satisfying σ|V ss
y

= q∗y(σ
′) by Lemma 1.5.2. We claim that

O⊗n
y |V ss

z
= q∗zA

′
y and σ|V ss

z
= q∗zσ

′. (1.5.19)

Consider the decomposition (1.5.17). We may assume that Ay is base point free over U
by multiplying it by some positive integer. Then we obtain

H0(Qy, Ay) ' H0(Qχ, f
∗
yAy)

∼−−→
+Ey

H0(Qχ, f
∗
yAy + Ey) (1.5.20)

= H0(Qχ, Ly)
∼−→
q∗χ

H0(V ss
χ ,O⊗n

y )G = H0(V,O⊗n
y )G, (1.5.21)
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where the first isomorphism follows from Lemma 1.1.10. Since Ay is base point free, this
implies that V ss

χ \(V ss
χ ∩ V ss

y ) = q−1
χ (Supp(Ey)) up to codimension one. Similarly we can

check that V ss
χ \(V ss

χ ∩ V ss
z ) = q−1

χ (Supp(Ez)). However, since Supp(Ez) = Supp(Ey) and
codim(V \V ss

χ ) ≥ 2, we obtain that V ss
z = V ss

y in codimension one, and so we have (1.5.19)
by considering the restriction to V ss

z ∩ V ss
y . Then by (1.5.19), it follows that pz ∈ V ss

y

since σ(pz) 6= 0.
Now we know that Mori and GIT chambers coincide and each chamber is of the

form f ∗
z (Ample(Qz/U)) × excep(fz) such that fz is birational and Qz is Q-factorial. In

particular, Mov(Qχ/U) is the union of the chambers such that fz is small. To conclude
the proof, it is sufficient to show that Nef(Qz/U) is generated by πz-semiample divisors
for such z. There exists the canonical identification NE1(Qz/U) = NE1(Qχ/U) since fz
is small. Let Cz = fz

∗Nef(Qz/U) be a Mori chamber containing z. The same argument
of the proof of (1.5.19) implies that V ss

χ = V ss
z in codimension one, and hence

(π∗Oy|Uχ)
G = (π∗Oy)G = (π∗Oy|Uz)

G. (1.5.22)

Take any y ∈ ∂Cz. We prove that Ly ∈ Pic(Qz) is πz-semiample. We can check this
locally over U , and hence we assume that U is affine. Take any p ∈ Qz. It is sufficient
to show that there exists some s ∈ H0(Qz, L

⊗n
y ) such that s(p) 6= 0. To see this, take

p′ ∈ V ss
z such that qz(p

′) = p. It follows that p′ ∈ V ss
z ⊂ V ss

y by Corollary 1.5.6 since

y ∈ ∂Cz. Then there exists s′ ∈ H0(V,O⊗n
y )G such that s′(p′) 6= 0 by the definition of

the semi-stable locus. Note that we have the following diagram:

H0(V,O⊗n
y )G

∼

��
H0(V ss

z ,O⊗n
y )G

∼ // H0(V ss
χ ,O⊗n

y )G

H0(Qz, L
⊗n
y )

q∗z

OO

∼ // H0(Qχ, L
⊗n
y ),

q∗χ

∼

OO

(1.5.23)

where the horizontal isomorphisms follow from that V ss
χ = V ss

z and Qy = Qχ up to
codimension one.

By the commutativity of the diagram, q∗z is also an isomorphism, and hence there
exists s ∈ H0(Qz, L

⊗n
y ) such that

s(p) = q∗zs(p
′) = s′(p′) 6= 0. (1.5.24)

�

1.5.2. Cox sheaf and MDM. Let πX : X → U be an algebraic fibre space such that
X is Q-factorial and Pic(X/U)Q ' N1(X/U)Q. For a collection of line bundles L :=
(L1, . . . , Lr) on X, we define the following OU algebra:

R(X/U,L) :=
⊕
m∈Zr

πX∗(Lm), (1.5.25)

where Lm :=
⊗

i L
⊗mi for m = (m1, . . . ,mr). Similarly, we define

R(X/U,L)+ :=
⊕

m∈(Z≥0)r

πX∗(Lm). (1.5.26)
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We call R(X/U,L) a Cox sheaf of X/U if ([L1] . . . , [Lr]) is a basis of Pic(X/U)Q.
Note that the finite generation as an OU -algebra of a Cox sheaf does not depend on the
choice of L. We often take L such that ([L1] . . . , [Lr]) is a basis of Pic(X/U)free.

Proposition 1.5.9. SpecU(R(X/U,L)) is normal.

Proof. Without loss generality, we may assume that U is an affine variety Spec(A),
and hence it is sufficient to show that the A-algebra R :=

⊕
m∈Zr H0(X,Lm) is normal.

Consider the OX-algebra R :=
⊕

m∈Zr OX(Lm) and the corresponding affine morphism
ϕ : P := SpecX(R)→ X. Then we obtain the natural identification

R = H0(X,R) = H0(P,OP ). (1.5.27)

Take an open local trivialization W ⊂ X of L1, . . . Lr. Then ϕ−1(W ) ' W × (C∗)r.
Since W and (C∗)r are normal, ϕ−1(W ) is also normal, and hence P is. In particular, for
each affine open subset Vi ⊂ P , we obtain that Γ(Vi,OP ) is normal. This implies that
H0(P,OP ) is also normal. �

Proposition 1.5.10. If π is an MDM, then a Cox sheaf R(X/U,L) is finitely generated
over OU .

Proof. Let {Ci} be the set of all Mori chambers. Then by Corollary 1.4.8, R(X/U,L) =⋃
RCi

. where

RCi
:=

⊕
Lm∈Ci

π∗(Lm). (1.5.28)

is subring of R(X/U,L). Then it is sufficient to show that each RCi
is finitely gener-

ated. We will prove it for i = 1. Take line bundles J1, . . . , Jd such that their classes
in Pic(X/U) generate the cone C1. Let J := (J1, . . . , Jd). Obviously, if R+(X/U,J )
is finitely generated, then RC1 is finitely generated. Hence it is sufficient to show that
R+(X/U,J ) is finitely generated. By Corollary 1.4.8, there exists a birational contraction
h1 : X → Y1, a relatively semiample divisor Aj on Y over U , and a h1-fixed divisor Ej
such that Jj = h∗1Aj+Ej for each j. Let A := (A1, . . . , Ad) Hence R+(X/U,J ) is finitely
generated if and only if R+(X/U,A) by Lemma 1.1.10. However, R+(X/U,A) is finitely
generated by the relative version of Zariski lemma (see [HK00, 2.8 Lemma]). �

In the rest of this section, as an application of Theorem 1.5.7, we prove that the
finite generation of a Cox sheaf implies that π is an MDM Consider the algebraic torus
T := Hom(Pic(X/U)free,C∗) of dimension r. Then we have

χ(T )Q ' Pic(X/U)Q '
⊕

QLi. (1.5.29)

L(y) denotes the line bundle on X corresponding to a character y ∈ χ(T ) via the above
isomorphism.

Let V := SpecU(R(X/U,L)) and π : V → U be the natural morphism. We have the
action of T on V which corresponds to the grading of R(X/U,L) by Zr as follows.

T × πX∗(L(y))→ πX∗(L(y)) : (t, s) 7→ y(t)s. (1.5.30)

Note that π is G-invriant with respect to this action.

Proposition 1.5.11. Under the above notation, assume that V is of finite type over
U . If we take a character χ ∈ χ(T ) which corresponds to a π-ample line bundle, then
V ss
χ/U = V s

χ/U , the quotient Qχ is isomorphic to X, and codimV (V \V ss
χ/U) ≥ 2.
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Proof. Note that (OV/U,χ)T = πX∗(L(y)) for any character y ∈ χ(T ) by definition.
Then by (1.5.12) and Remark 1.5.5, we obtain that RπX (X,L(y)) is finitely generated over
OU and

Qy = ProjU(RπX (X,L(y))). (1.5.31)

In particular, if we take χ ∈ χ(T ) corresponding to a π-ample divisor L(χ), then Qχ = X.
Let χ1, χ2 ∈ χ(T ) be any two characters corresponding to πX-ample line bundles.

We prove that V ss
χ1/U

= V ss
χ2/U

. If we take sufficiently large number N > 0, then A :=

NL(χ1) − L(χ2) is πX-ample. By the relative version of [Laz04, Example 1.2.22], the
natural map

πX∗(nA)⊗ πX∗(nL(χ2))→ πX∗(nNL(χ1)) (1.5.32)

is surjective for any sufficiently large n > 0. This implies that

V ss
χ1/U

= V ss
χ2/U
∩ V ss

χA
, (1.5.33)

where χA is the character corresponding to A. In particular, V ss
χ1/U

⊂ V ss
χ2/U

and the other
inclusion follows by the same argument. W denotes the semi-stable locus for a character
corresponding to a πX-ample divisor.

For h ∈ V , let Th ⊂ T be the isotropy group of h. We can easily check that if
t ∈ Th, then y(t) = 1 for any y ∈ χ(V ) such that there exists an affine open subset
U ′ ⊂ U containing π(h) and s ∈ Γ(π−1

X (U ′), L(y)) = Γ(U ′, π∗Oy)T satisfying s(h) 6= 0.
Take characters χ1, . . . , χr ∈ χ(T ) which generate χ(T ) as a group, and assume that
each χi corresponds to a πX-ample divisor L(χi). There exists a number Ni > 0 such
that χi(t

Ni) = χi
Ni(t) = 1 when t ∈ Th for some h ∈ V ss

χi/U
by the above argument

and the definition of the semi-stable locus. Since {χi}i generate χ(T ), we obtain that
y(gN) = yN(g) = 1 for any y ∈ χ(T ) by taking N :=

∏r
i=1Ni. This implies that the

isotropy group of any h ∈ W is finite.
To prove W is the stable locus of χ ∈ χ(T ), it is sufficient to show that the orbit of

each h ∈ W is closed. However, this follows from the fact that the isotropy group of any
h′ ∈ W is finite since if there exists a point p ∈ o(h)\o(h), it follows that dimTp > 0.
Finally we show that codim(V \W ) ≥ 2. Since the problem is local over U , we may assume
that U is affine. Let L be a πX-ample divisor on X. Take σ, τ ∈ H0(X,L) = H0(V,OχL

)T

such that the zero divisors on X have no common components, where χL denotes the
character corresponding to L via (1.5.29). Let I ⊂ H0(V,OV ) be the ideal corresponding
to the closed subset V \W with reduced structure. Then by the definition of the semi-
stable locus, we obtain σ, τ ∈ I. This implies that codimV (V \W ) ≥ 2 by the same
argument as in [HK00, Lemma 2.7]. �
Remark 1.5.12. In the proof of the above proposition, we proved that the isotropy
group Th has order N for any h ∈ V s

χ/U .

Corollary 1.5.13. Under the same assumptions as in Proposition 1.5.11, π : V → U
satisfies the conditions (1),(2),(3) in Theorem 1.5.7. Hence π is an MDM.

Proof. The condition (1) and (2) follow from Proposition 1.5.11. Let us check (3)

Note that there exists the natural isomorphism Pic(V s
χ/U)

T
Q

∼←−
q∗χ

Pic(X)Q by the Kempf

descent Lemma [DN89, Theorem 2.3], Remark 1.5.12, and Proposition 1.5.11. Since
qχ is a morphism over U and codim(V \V s

χ/U) ≥ 2, this induces the isomorphism q∗χ in

(1.5.14). Moreover, α is obviously injective and dimQ χ(T )Q = dimQ(Pic(X/U)Q) by the
construction. Hence α is also an isomorphism. �

28



1.6. On conservation of Mori dreamness and some examples

In this section, we give various examples of MDMs and study the categorical properties
of MDMs, in particular concerning compositions and base changes.

Example 1.6.1. Let π : X → U be an algebraic fibre space between normal quasi-
projective varieties. Suppose that X is Q-factorial and KX + ∆ is Kawamata log ter-
minal for a Q-divisor ∆ on X. If −(KX + ∆) is π-ample, then π is an MDM. Birkar,
Cascini, Hacon, and Mckernan proved under these assumptions the finite generation of
Cox sheaves (see [BCHM10, Corollary 1.1.9] and also [BCHM10, Corollary 1.3.2]).
The isomorphism N1(X/U)Q ' Pic(X/U)Q follows from the assumption and the base
point free theorem applied to π. Hence the morphism π is an MDM in the sense of this
paper by Theorem 1.2.

Example 1.6.2. As in [dFH12, Section 4], let us consider a flat projective morphism
f : X → T to a smooth curve T such that the fibre X0 of 0 ∈ T is a Fano variety with Q-
factorial terminal singularities. After restricting T to a neighborhood of 0, the morphism
f is a relative Fano variety over T with Q-factorial terminal singularities by applying
Corollary 3.2 and Proposition 3.5 in [dFH11]. It is an MDM by Example 1.6.1. In this
case, as stated in [dFH12, Proposition 4.1], each fibre Xt of t ∈ T is a Fano variety with
Q-factorial terminal singularities, which is an MDS by [BCHM10, Corollary 1.3.2].

Note that after taking a suitable étale base change of T , the following diagram

Xt
� � p //

q

��

X

f

��
{t} � � g // T

(1.6.1)

satisfies the assumptions of Theorem 1.6.9 below for any t ∈ T (see Theorem 4.2, Theorem
4.3, and Corollary 4.7 in [dFH12] for details).

Below are examples of a pair of morphisms which are MDMs but their composition
is not.

Example 1.6.3. Let U be a smooth variety and π : X → U be a blow-up at a point
u ∈ U . Then we can easily see that Pic(X/U) = Q[E] ' N1(X/U) and Nef(X/U) =
Mov(X/U) = Q≤0[E], where E is the exceptional divisor. This implies that π is an MDM
(we can also deduce this from Example 1.6.1). On the other hand, it is known that the
blow-up of P2 in very general nine points is not a Mori dream space, although the blow-up
in eight points is always an MDS.

Example 1.6.4. For any Q-factorial variety X and locally free sheaf F on X, we can
easily check that the projective bundle π : PX(F )→ X is an MDM. However, [GHPS12,
Theorem 1.1] implies that there exist a smooth toric variety X and a vector bundle F on
X such that PX(F ) is not an MDS.

On the other hand, Proposition 1.6.5 and Proposition 1.6.8 below imply that if the
composition of two algebraic fibre spaces is an MDM, both of them are also MDMs.
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Proposition 1.6.5. Let X be an MDM over U and f be an algebraic fibre space from X
to a variety Y as in the following commutative diagram.

U

X

π1 ��?
??

??
f // Y

π2����
��
�

(1.6.2)

Then f is an MDM.

Proof. Let [D] ∈ Pic(X/Y ) be an f -nef divisor on X. Take a π2-ample divisor A on
Y . Then for sufficiently large m� 0, the divisor D+mf ∗A is π1-nef since NE1(X/U) is
a finitely generated cone and we can take m such that the generators of NE1(X/U) have
non-negative intersection numbers with D +mf ∗A. Hence D +mf ∗A is π1-semiample,
in particular it is f -semiample by Proposition 1.1.3. Note that the above argument also
implies that any f -nef class in N1(X/Y )Q comes from nef class in N1(X/U)Q, and hence
Nef(X/Y ) is a polyhedral cone since Nef(X/U) is. These argument shows that f satisfies
(2′) and (3′) of Proposition 1.2.2.

We prove that f satisfies the condition (4) in Definition 1.2.1. Let σ := f ∗(Nef(Y/U))
be the cone corresponding to the map f and {gi}r

′
i=1 be the subset of the all SQMs of X

such that σ is a face of each g∗i (Nef(Xi/U)). For each i = 1, . . . r′, let fi be the morphism
corresponding to σ ≺ Nef(Xi/U). There exists the following commutative diagram over
U .

Y

X

f ��?
??

??
?

gi //_____ Xi

fi����
��
�

(1.6.3)

Then it is sufficient to prove

Mov(X/Y ) =
r′⋃
i=1

g∗i (Nef(Xi/Y )). (1.6.4)

For this, it is sufficient to show that the natural map

r′⋃
i=1

(Nef(Xi/U))→ Mov(X/Y ) (1.6.5)

is surjective since we know that Nef(Xi/U) → Nef(Xi/Y ) is surjective. Take any [D] ∈
Mov(X/Y ). By applying Proposition 1.1.3, we may assume that D ∈ Mov(X/U). Take a
π2-ample divisor A on Y . Then f ∗(A) is in the relative interior of σ. Let R := Q≥0f

∗(A) ⊂
Mov(X/U). Then we can take a cone V in Mov(X) which is open in Mov(X), contains
R, and satisfies

V ⊂
r′⋃
i=1

g∗i (Nef(Xi/U)) (1.6.6)

since {Nef(Xi/U)}r
′
i=1 is the set of all the full dimensional cones inMX containing σ. On

the other hand, if we take sufficiently large m� 0, the divisor D+mf ∗(A) get closer to
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R, and so D +mf ∗(A) ∈ V . Hence (1.6.6) implies

D +mf ∗(A) ∈
r′⋃
i=1

g∗i (Nef(Xi/U)), (1.6.7)

and so the map (1.6.5) is surjective. �
Remark 1.6.6. From the above proof we deduce that the fan MX/Y coincides with
the fan Star(σ) associated to σ = f ∗(Nef(Y/U)) ∈ MX/U , where Star(σ) is the star of
σ ∈MX/Y defined as in [CLS11, Section 3.2].

Corollary 1.6.7. Let π : X → U be an MDM.

(1) The map α in Theorem 1.3.4 (see (1.3.3)) induces the bijection between the set
of all faces of Nef(X/U) and the set of MDMs f : X → Y over U .

(2) Let σi (i = 1, 2) be two faces of Nef(X/U) and MDM fi : X → Yi be the corre-
sponding MDMs. Then σ2 ≺ σ1 holds if and only if there exists an algebraic fibre
space h : Y1 → Y2 making the following diagram commutative.

X
f1 //

f2
��

Y1
h

~~~~
~~
~~
~

π1
��

Y2 π2
// U

(1.6.8)

Proof. Theorem 1.3.4 and Proposition 1.6.5 immediately imply (1). Let us prove
(2). If there is an algebraic fibre space h making the commutative diagram (1.6.8), we
obtain σ2 = f ∗

2 Nef(Y2/U) ⊂ f ∗
1 Nef(Y1/U) = σ1. Since σ1 and σ2 are faces of the cone

Nef(X/U), it follows that σ2 ≺ σ1. To show the converse, assume that σ2 ≺ σ1. It is
sufficient to show that any curve C contracted by f1 is also contracted by f2. Take a π2-
ample divisor A on Y2. Then there exists a π1-nef divisor B on Y1 such that f ∗

1 (B) = f ∗
2 (A)

in N1(X/U)Q since σ2 ≺ σ1. Then we see

f2∗(C).A = C.f2
∗A = C.f1

∗B = f1∗(C).B = 0. (1.6.9)

Since A is π2-ample, we obtain from (1.6.9) that f2(C) = {pt}. �
The following Proposition 1.6.8 generalizes [Oka16, Theorem 1.1].

Proposition 1.6.8. Let X be an MDM over U and Y be a Q-factorial variety which
is projective over U . Suppose that f is a surjective morphism from X to Y as in the
following commutative diagram.

U

X

π1 ��?
??

??
f // Y

π2����
��
�

(1.6.10)

Then π2 is also an MDM.

Proof. We may assume that f is an algebraic fibre space or a finite morphism by the
Stein factorization. In both cases, there is a natural injection f ∗ : Pic(Y )Q ↪→ Pic(X)Q
and f ∗ : Pic(Y/U)Q ↪→ Pic(X/U)Q. First, we show that Pic(Y/U)Q ' N1(Y/U)Q. For
this, take a divisor D on Y such that D ≡U 0. Then there exists A ∈ Pic(U)Q such
that f ∗D ∼Q π

∗
1(A) = f ∗(π∗

2(A)) since we already know that Pic(X/U)Q ' N1(X/U)Q by
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the assumption that π1 is an MDM. This implies that π∗
2(A) ∼Q D, and hence we have

Pic(Y/U)Q ' N1(Y/U)Q.
To conclude the proof, it is sufficient to show that a Cox sheaf of Y/U is finitely

generated by Corollary 1.5.13. Let L1, L2, . . . , Lr ∈ Pic(Y ) such that {[Li]}i is a Z-basis
of the free part of Pic(Y/U), and we write the free abelian group generated by Li (i =
1, . . . , r) as ΓY . Take line bundles M1 . . .Mr′ such that {[f ∗L1], . . . , [f

∗Lr], [M1] . . . [Mr′ ]}
is a basis of Pic(Y/U)Q. Let M be the free abelian group generated by {Mj} and ΓX :=
f ∗ΓY ⊕M . Let T be a torus whose character group is isomorphic to M , and consider the
natural action of T on R :=

⊕
L∈ΓX

π1∗L which corresponds to the grading with respect to

M . Then it follows that RT =
⊕

L∈f∗ΓY
π1∗L, and so it is finitely generated over U since

R is finitely generated by the assumption that π1 is an MDM (see Proposition 1.5.10).
If f is an algebraic fibre space it is obvious that

RT '
⊕
L∈ΓY

π2∗L, (1.6.11)

and this concludes the proof. In the case where f is finite, the finite generation of RT is
equivalent to that of

⊕
L∈ΓY

π2∗L by the same argument in Section 3.3 in [Oka16]. �
Next, we consider base changes of MDMs.

Theorem 1.6.9. Let f : X → U be an MDM and g : T → U be a morphism between
normal quasi-projective varieties. Let W := X×U T , and consider the following diagram.

W
p / /

q
��

X

f
��

T
g // U

(1.6.12)

p and q denote the natural projections. Assume the following three conditions:

(1) W is normal and Q-factorial.
(2) The natural map p∗ : Pic(X/U)Q → Pic(W/T )Q is surjective.
(3) N1(W/T )Q ' Pic(W/T )Q and the natural map g∗f∗L → q∗p

∗L is surjective for
any line bundle L on X.

Then q is an MDM.

Proof. Since f is an algebraic fibre space, we can easily check that each fibre of q is
connected. Hence q is also an algebraic fibre space by considering the Stein factorization
of q since T is normal and q is projective.

Let L := (L1, . . . , Lr) be a collection of line bundles such that ([L1], . . . , [Lr]) is a basis
of Pic(X/U)Q. Then a Cox sheaf of X/U is

⊕
m∈Zr f∗(Lm). By the assumption (3), we

obtain the surjection

g∗(
⊕
m∈Zr

f∗(Lm))→
⊕
m∈Zr

q∗(p
∗Lm). (1.6.13)

Note that (p∗L1, . . . , p
∗Lr) generates Pic(W/T )Q since p∗ is surjective, and so we may

assume that L′ := (p∗L1, . . . , p
∗Lr′ ) is a basis of Pic(W/T )Q for some 1 ≤ r′ ≤ r. Let us

consider the action of the torus T := Hom(Zr−r′ ,C∗) on
⊕

m∈Zr q∗(p
∗Lm) which corre-

sponds the grading with respect to (p∗Lr′+1, . . . , p
∗Lr). Then we obtain

(
⊕
m∈Zr

(q∗p
∗Lm))T =

⊕
m∈Zr′

q∗L′m. (1.6.14)
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By the assumption that f is an MDM and the surjection (1.6.13),
⊕

m∈Zr q∗(p
∗Lm)

is finitely generated, and its T -invariant sheaf is also finitely generated. By (1.6.14),
we obtain that

⊕
m∈Zr′ q∗L′m is finitely generated over T . Therefore q is an MDM by

Corollary 1.5.13. �
As an application of Theorem 1.6.9, we obtain the following corollary.

Corollary 1.6.10. Let f : X → U be an MDM and g : T → U be a morphism between
quasi-projective varieties. Let W := X ×U T as in (1.6.12). Assume the condition (1)
and (2) in Theorem 1.6.9 and the following (3′).

(3’) g is flat and proper.

Then q is an MDM.

Proof. By the assumption, we have the following diagram.

Pic(W/T )Q

φ
����

Pic(X/U)Q
p∗oooo

∼

��

N1(W/T )Q N1(X/U)Q
p∗oooo

(1.6.15)

The horizontal map p∗ is the natural surjection induced by p∗. To see ϕ is an isomorphism,
we claim that p∗ is an isomorphism. For this, take [L] ∈ N1(X/U)Q such that p∗([L]) = 0.
Let C be a curve on X such that f(C) = u ∈ U , and t ∈ g−1(u) ⊂ T . Then the curve
C × {t} is contained in W . We have L.C = p∗1(L).(C × {t}) = 0. This implies that
L ≡U 0, and hence p∗ is injective. Then by the diagram, ϕ is an isomorphism. The
second condition of (3) easily follows from the flatness of g. In fact, the natural map
g∗f∗L→ q∗p

∗L is an isomorphism for any line bundles L under the assumption. �
We give another proof of Corollary 1.6.10. It is given by investigating the geometry

of W , and we prove that q satisfies the conditions of Definition 1.2.1. In the second proof
of Corollary 1.6.10 below, we show that the relative movable cone of W/T coincides with
that of X/U under the isomorphism p∗ in (1.6.15).

The second proof of Corollary 1.6.10. First we prove that all the maps in
(1.6.15) are isomorphisms as in the first proof. Now we consider the nef cones and
movable cones. We can easily see that a line bundle L on X is f -nef if and only if p∗L
is q-nef as in the same argument of the proof of the injectivity of p∗ in the first proof.
Then Nef(W/T ) = Nef(X/U) via the isomorphism ϕ. Moreover, we show that L is f -
semiample (respectively, f -movable) if and only if p∗(L) is q-semiample (resp., q-movable)
as follows. Consider the following map

αp∗(L)/T : q
∗q∗(p

∗(L))→ p∗L. (1.6.16)

By the flat base change theorem, we have the natural isomorphism q∗q∗(p
∗(L)) ' p∗(f ∗f∗(L)).

This implies that αp∗(L)/T coincides with the map p∗(αL/U), and hence

Supp(coker(αp∗(L)/T )) = Supp(coker(p∗(αL/U)) = p−1(Supp(coker(αL/U))), (1.6.17)

where we can check the second equality applying Nakayama’s lemma to each stalk of the
sheaves. Then we obtain codimX(Supp(coker(αL/U))) = codimW (Supp(coker(αp∗(L)/T )))
by the flatness of p, and hence we conclude that L is f -semiample (resp., f -movable) if and
only if p∗(L) is q-semiample (resp., q-movable). Note that since Nef(X/U) is a polyhedral
cone generated by finitely many f -semiample divisors, Nef(W/T ) = p∗(Nef(X/U)) is also
generated by finitely many q-semiample divisors.
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For an SQM r : X 99K X ′ over U , we show that r̃ : X ×U T 99K W ′ := X ′ ×U T
is an SQM over T . First, we prove that r̃ is small. Let F ⊂ X be a closed subset of
codimX(F ) ≥ 2 such that r is isomorphic in X/F . Then r̃ is an isomorphism outside
the closed subset F̃ := F ×U T ⊂ W . Moreover, we obtain that codimW (F̃ ) ≥ 2 by
considering the dimension of the fibre of the natural map F̃ → F since p is surjective
and flat. Next we check that W ′ is Q-factorial. Let D′ be a Weil divisor on W ′. Then
D := r̃∗(D′) is a Q-Cartier divisor since W is Q-factorial. Then by the assumption (2),
there exist Q-divisors DX ∈ Pic(X)Q and DT ∈ Pic(T )Q such that

D + q∗(DT ) ∼Q p
∗(DX). (1.6.18)

This implies that

D′ ∼Q p
′∗(r∗(DX))− q′∗(DT ), (1.6.19)

where p′ : W ′ → X ′ and q′ : W ′ → T are the natural projections. Since the right side of
(1.6.19) is Q-Cartier, D′ is also Q-Cartier.

Let ri : X 99K Xi (i = 1 . . . k) be the all SQMs of X over U . Then r̃i : W 99K Wi :=
Xi ×U T are SQMs of W over T . Combining the above arguments, we have

Mov(W/T ) ' p∗(Mov(X/U)) (1.6.20)

=
⋃
i

p∗(r∗i (Nef(Xi/U))) (1.6.21)

=
⋃
i

r̃i
∗(pi

∗(Nef(Xi/U))) (1.6.22)

'
⋃
i

r̃i
∗(Nef(Wi/T )). (1.6.23)

Thus we conclude that q is an MDM. �
Remark 1.6.11. In Theorem 1.6.9 if U = Spec(C), so that X is an MDS, then the
condition (2) is automatically satisfied by [Har77, III EXERCISE 12.6].

On the other hand, there exists an MDM whose special fibre is not an MDS as in
the following example. Hence not an arbitrary base change of MDM is an MDM. The
example violates (2) and the flatness of (3′) of Corollary 1.6.10.

Example 1.6.12. By [MM64, Theorem 4], there exists a smooth hypersurface SF ⊂ P3

defined by a homogeneous quartic polynomial F (x, y, z, w) such that #Aut(SF ) = ∞.
Then SF is not an MDS by [AHL10].

Take sufficiently general quartic polynomial G(x, y, z, w) such that SF∩SG is a smooth
curve. Let µ : X → P3 be the blow up of P3 along SF ∩SG. Then X is smooth and there
is a morphism f : X → P1 such that the fibre of a point [a : b] ∈ P1 is the hypersurface
SaF−bG ⊂ P3.

We show that f is an MDM. To see this, it is sufficient to show that X is an MDS
because of Proposition 1.6.5. Let E be the µ-exceptional divisor. Then Pic(X) =
µ∗(Pic(P3))⊕ZE, and we can check that Nef(X) is generated by µ∗(OP3(1)) and µ∗(OP3(1))−
(1/4)E. Note that some positive multiple of the second generator is the class of the fibre
of f . In particular, Nef(X) is generated by semiample divisors. If ε ∈ Q>0, it is obvious
that µ∗(OP3(1)) + εE is not movable. On the other hand, µ∗(OP3(1)) − (1/4)E is not
big since its self intersection number is zero, and so a divisor D in the outside of Nef(X)
with respect to the ray generated by µ∗(OP3(1))− (1/4)E is not peseudo-effective. Then
we obtain Nef(X) = Mov(X), and so X is an MDS.
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Below is an example of a birational contraction which is not an MDM.

Example 1.6.13. Let X be the projective cone over a smooth plane cubic curve C
defined by an equation F (x, y, z) ∈ C[x, y, z]. By considering the blowing up at the
vertex of the cone, we obtain the following birational contraction.

f : X̃ := PC (OC ⊕OC(1))→ X. (1.6.24)

Note that Pic(X̃)Q is not countable since Pic(X̃) ' OX̃(1) ⊕ π∗ Pic(C) and C is an

elliptic curve, where π : X̃ → C is the canonical projection and OX̃(1) is the tautological
line bundle. On the other hand, Pic(X) ' Z. Indeed, we can see that f ∗(Pic(X)) '
Ker(s∗) ' Z for the section s : C → X̃ of π such that s(C) is contracted by f and the
induced map s∗ : Pic(X̃)→ Pic(C). Hence Pic(X̃/X)Q is not countable, and so it is not

isomorphic to N1(X̃/X)Q ' Q. Therefore f is not an MDM.
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CHAPTER 2

On Seshadri constants of non-simple abelian varieties

In this chapter, we investigate the Seshadri constants of polarized abelian varieties.
First we introduce some notations used in this chapter.

A polarized abelian variety is a pair (A,L) of an abelian variety A (i.e., smooth
projective group scheme over C) and an ample line bundle L on A. The identity of A is
denoted by 0 ∈ A. An irreducible closed subvariety B ⊂ A is an abelian subvariety of A if
B is a group subscheme of A by the inclusion. An abelian subvariety of A of codimension
one is called an abelian divisor of A. A curve is a projective and integral scheme over
C of dimension one. We say a curve in A generates an abelian subvariety B if B is the
minimal abelian subvariety containing the curve.

2.1. Preliminaries

In this section, we recall some fundamental definitions and facts about the Seshadri
constants. We recommend [Laz04, Chapter 5] and [BDRH+09] for more details and
overview of the Seshadri constants.

Let L be an ample line bundle on a smooth projective variety X of dimension n. For
a point x ∈ X and a curve C passing through x, we write

εC,x(L) :=
L.C

multxC
, (2.1.1)

where multxC is the multiplicity of C at x.

Definition 2.1.1. The Seshadri constant of L at x is defined by

ε(X,L;x) := inf
x∈C
{εC,x(L)}, (2.1.2)

where the infimum is taken over all curves passing through x.

Note that the definition immediately implies that ε(X,L;x) is determined by the
numerical class of L.

There is another equivalent definition of the Seshadri constant. Let µ be the blow-up
of X at a point x and E be the exceptional divisor. Then

ε(X,L;x) = sup{t ∈ R>0| µ∗L− tE is ample}. (2.1.3)

This gives the well-known upper bound

ε(X,L;x) ≤ n
√
Ln. (2.1.4)

Definition 2.1.2. We say that a curve C is a Seshadri curve at x with respect to L if
εC,x(L) = ε(X,L;x).

Remark 2.1.3. In general Seshadri curves do not always exist. However, it is known
that if X is a surface and ε(X,L;x) <

√
L2, then there exists a Seshadri curve at x with

respect to L.
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If (A,L) is a polarized abelian variety, the Seshadri constant ε(A,L;x) does not
depend on the choice of a point x ∈ A, and hence we denote it by ε(A,L). We also
denote εC,0(L) simply by εC(L). Moreover, we say that a curve C is a Seshadri curve of
(A,L) if C is a Seshadri curve at 0 ∈ A with respect to L.

2.2. Main results

The main results of this section are Theorem 2.2.3 and Corollary 2.2.9 below.

2.2.1. Proof of Theorem 2.2.3. The key ingredient of the proof is Lemma 2.2.2, which
asserts the existence of the minimal element in the set of the Seshadri constants of polar-
ized abelian subvarieties of (A,L) of bounded degree. We begin with some preparation.

Definition 2.2.1. Let A be an abelian variety of dimension n. Fix a positive real number
r. We define the following sets.

(1) For a fixed abelian variety B of dimension k,

SB,r := {[L′] ∈ NS(B) | L′ is an ample line bundle on B satisfying L′k < r }/ ∼,
(2.2.1)

where we define [L1] ∼ [L2] if there exists an automorphism f of B such that
[f ∗L1] = [L2] in NS(B).

(2) For an ample line bundle L on A,

SLk,r := {B | B is an abelian subvariety of A of dimension k such that (L|B)k < r }.
(2.2.2)

Consider the following maps.

ε : SLk,r → R≥0; B 7→ ε(B,L|B). (2.2.3)

Then we define the following sets.

EL
k,r := Im(ε) = {ε(B,L|B) ∈ R>0 | B ∈ SLk,r}. (2.2.4)

Lemma 2.2.2. Let L be an ample line bundle on A. Then EL
k,r is a finite set for any

1 ≤ k ≤ n and r.

Proof. Assume SLk,r 6= ∅. By [LOZ96, Theorem], there exist only finitely many
isomorphism classes of abelian subvarieties of A of dimension k. Let B1, B2 . . . , Bt be
representatives. Then we obtain the following map.

α : SLk,r ↪→
t⋃
i=1

SBi,r; B 7→ [ϕ∗
B(L|B)], (2.2.5)

where ϕB : Bi → B is an isomorphism for some Bi.
Hence it is sufficient to show that SB,r is a finite set for a fixed k-dimensional abelian

variety B since we can easily see that ε(B,L|B) = ε(B′, L|B′) if α(B) = α(B′) . However,
this follows from the geometric finiteness theorem (for example, see [Mil86, Theorem
18.1]), which says that there exist only finitely many classes of ample line bundles of
fixed degree in NS(A) up to the action of the group of automorphisms of A. �

Now we are ready to prove the theorem.
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Theorem 2.2.3. Assume that

ε(A,L) <
n
√
Ln

n
. (2.2.6)

Then there exists a proper abelian subvariety B of A such that ε(A,L) = ε(B,L|B).

Proof. Let k be the maximal dimension of the proper abelian subvarieties of A.
Note that 1 ≤ k < n by [Nak96, Lemma 3.3]. For each natural number 1 ≤ i ≤ k, we
write

ri :=

(
i n
√
Ln

n

)i

. (2.2.7)

Let

ak+1 :=
n
√
Ln

n
. (2.2.8)

For each 1 ≤ i ≤ k, starting with i = k, we define ai inductively as ai := min{min(EL
i,ri

), ai+1},
where EL

k,ri
is defined in (2.2.4). Obviously, the definition of ai implies

ε(A,L) ≤ a1 ≤ a2 ≤ · · · ≤ ak ≤ ak+1 =
n
√
Ln

n
. (2.2.9)

Now for the proof of the theorem, consider the following conditions for each i.

(1i) ε(A,L) < ai, and any curve C satisfying ε(A,L) ≤ εC(L) < ai generates an
abelian subvariety of dimension at most (i− 1).

(2i) ε(A,L) = ε(B,L|B) for some i-dimensional abelian subvariety B.

Note that our assumption (2.2.6) and [Nak96, Lemma 3.3] imply (1k+1). To prove the
theorem, it is sufficient to show that there exists some i, for which the condition (2i)
holds. However, this follows from the following Claim 2.2.4. �

Claim 2.2.4. Under the above notation, (1i) implies either (1i−1) or (2i−1) for any 2 ≤
i ≤ k + 1.

Proof of the Claim. Assume that (1i) holds. Note that it follows that ε(A,L) ≤
min(EL

i−1,ri−1
) by the definition of the Seshadri constant. The equality implies the condi-

tion (2i−1), so let us assume that the inequality is strict. In this case there exists a curve
C satisfying

ε(A,L) ≤ εC(L) < ai−1. (2.2.10)

If all the curves satisfying (2.2.10) generates abelian subvarieties of dimension at most
i − 2, then this implies (1i−1), so that the proof is done. Hence, for the contradiction,
suppose that there exists a curve C which satisfies (2.2.10) and generates an abelian
subvariety B of dimension i− 1 since we already know that dimB ≤ i− 1 by (1i).

First assume that
n
√
Ln

n
≤

i−1
√

(L|B)i−1

i− 1
. (2.2.11)

In this case, we obtain that

εC(L) <
n
√
Ln

n
≤

i−1
√

(L|B)i−1

i− 1
, (2.2.12)
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where the first inequality follows from (2.2.9). Then [Nak96, Lemma 3.3] implies that
C is contained in a proper abelian subvariety of B. However, this contradicts that C
generates B.

Hence, let us assume that
n
√
Ln

n
>

i−1
√

(L|B)i−1

i− 1
. (2.2.13)

Then it follows that B ∈ SLi−1,ri−1
by the Definition 2.2.1. Then we obtain the inequality

min(EL
i−1,ri−1

) ≤ εC(L). (2.2.14)

However, this contradicts our assumption εC(L) < ai−1 ≤ min(EL
i−1,ri−1

). Hence C can
not generate an i− 1 dimensional abelian subvariety and this concludes the proof. �
2.2.2. Proof of the Corollary 2.2.9. For the proof, we define the nef threshold of a
divisor D on an n-dimensional polarized abelian variety (A,L) as

σ(L,D) := sup{t ∈ R | L− tD is ample} ∈ R>0 ∪ {∞}. (2.2.15)

The following lemma is crucial for the proof of Corollary 2.2.9.

Lemma 2.2.5. Let D be an abelian divisor of A. Then σ(L,D)(L|D)n−1 = Ln/n.

Proof. For any x ∈ A \ D, it follows that (D + x) ∩ (D) = φ. Hence we obtain
D2 = 0 in the Chow ring A2(A) since (D + x) and D are in the same numerically class.
By [Bau08, Proposition 1.1], σ(L,D) is the multiplicative inverse of the maximal root
of the polynomial

χ(uL−M) =
1

n!
(uL−D)n =

1

n!
(Lnun − n(L|D)n−1un−1) ∈ Q[u]. (2.2.16)

Then the straightforward computation implies the assertion. �
Remark 2.2.6. We can also prove this lemma by applying the methods of the Okounkov
body. For details, see the proof of [Loz18, Corollary 4.12].

Proposition 2.2.7. Let D be an abelian divisor of A. Suppose that
n
√
Ln > (respectively, ≥) n−1

√
a(L|D)n−1 (2.2.17)

for a positive real number a. Then any curve C satisfying

εC(L) ≤ (resp. <)
a n
√
Ln

n
(2.2.18)

is contained in D.

Proof. By Lemma 2.2.5 and the assumption (2.2.17), we obtain that

σ(L,D) > (resp. ≥)a
n
√
Ln

n
. (2.2.19)

This implies that L− (a n√Ln)
n

D is ample (resp. nef). Hence it follows that

L.C > (resp. ≥)a
n
√
Ln(D.C)

n
. (2.2.20)

Then, by the assumption (2.2.18) and (2.2.20), we have

a n
√
Ln

n
≥ (resp. >)

L.C

mult0(C)
> (resp. ≥)a

n
√
Ln(D.C)

nmult0(C)
, (2.2.21)
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so that

1 >
D.C

mult0C
. (2.2.22)

Now for a contradiction, we assume that C is not contained in D. Then we obtain

D.C ≥ mult0(C)mult0(D) = mult0(C), (2.2.23)

a contradiction. �
Lemma 2.2.8. Let X be a smooth variety of dimension n, and D be a divisor containing
a point x ∈ X. Assume

n
√
Ln ≥ n−1

√
a(L|D)n−1 (2.2.24)

for a > n

√
nn−1

multx(D)
. Then we have the upper bound ε(X,L;x) < a n

√
Ln/n.

Proof. Suppose that ε(X,L;x) ≥ a n
√
Ln/n.

a n−1
√
a(L|D)n−1

n
≤ a n
√
Ln

n
≤ ε(X,L;x) ≤ n−1

√
(L|D)n−1

multx(D)
. (2.2.25)

This contradicts to the assumption that a > n

√
nn−1

multx(D)
. �

Combining Proposition 2.2.7 and Lemma 2.2.8, we obtain the following result.

Corollary 2.2.9. Let (A,L) be a polarized abelian variety of dimension n. Fix a positive
real number a. Let D be an abelian divisor in A such that

n
√
Ln ≥ n−1

√
a(L|D)n−1. (2.2.26)

If ε(A,L) < a n
√
Ln/n holds, then ε(A,L) = ε(D,L|D). Moreover, if one can take a >

( n
√
n)n−1, the upper bound ε(A,L) < a n

√
Ln/n automatically holds.

2.3. Applications

In this section, we give some applications of our theorems. First, we show some results
about the uniqueness of Seshadri curves by applying Proposition 2.2.7.

Let (A,L) be a polarized abelian variety of dimension n. For any a ∈ R>0, we denote
the set of all curves satisfying

εC(L) <
a n
√
Ln

n
(2.3.1)

by Ca. Moreover, we define

Da := {D ⊂ A | D is an abelian divisor satisfying the following (2.3.2)}.

n
√
Ln ≥ n−1

√
a(L|D)n−1. (2.3.2)

Then, by Proposition 2.2.7, it follows that⋃
C∈Ca

C ⊂
⋂
D∈Da

D. (2.3.3)

This observation implies the following Proposition 2.3.1 and Proposition 2.3.3.

41



Proposition 2.3.1. Let (S, L) be a polarized abelian surface. Assume that there exists a
curve C 3 0 such that

εC(L) <

√
L2

2
. (2.3.4)

Then C is elliptic and it is the unique curve satisfying (2.3.4) and containing 0 ∈ S.

Proof. The definition of the Seshadri constant implies that ε(S, L) <
√

L2

2
. Then,

by Lemma 2.3.4 below, there exists an elliptic curve C0 such that εC0(L) = ε(S, L).
However, applying Proposition 2.2.7 as a =

√
2, we conclude that C0 is the unique curve

satisfies (2.3.4). �
Remark 2.3.2. If

√
L2 is irrational, it is already known that there are at most only a

finitely many submaximal curves. In fact, by the proof of [Bau98, Theorem A.1.(a)],

there exists an integer k > 0 and D ∈ |kL| such that any curve satisfying εC(L) <
√
L2

is an irreducible component of D by [Bau99, Lemma 5.2]. However, Proposition 2.3.1
implies that the Seshadri curve is unique and elliptic under the assumption (2.3.4).

Proposition 2.3.3. Let (A,L) be a polarized abelian threefold. For any a ∈ R>0, if there
exist at least two abelian divisors in Da, then there is at most only one curve in Ca and it

is an elliptic curve. Moreover, if one can take a > ( 3
√
3)

2
, there exists exactly one curve

in Ca.
Proof. Let D1 and D2 be different abelian divisors in Da. Then D1 ∩ D2 with

induced reduced structure is a reduced algebraic group of dimension one. Hence the
identity component is an elliptic curve. Therefore we obtain the assertion since any curve
in Ca is contained in the identity component of D1 ∩D2 by (2.3.3). For the latter part,
it is sufficient to show Ca 6= ∅. However, this follows from Lemma 2.2.8. �

Next, we consider the polarized abelian threefolds such that ε(A,L) <
3
√
L3. We use

the following fact from [Bau98, Theorem A.1.(b)] to show Corollary 2.3.5 below.

Lemma 2.3.4 (=[Bau98, Theorem A.1.(b)]). Let (S, L) be a polarized abelian surface.
Then one has a lower bound

ε(S, L) ≥ min

{
ε0,

√
14L2

4

}
, (2.3.5)

where ε0 is the minimal degree of the elliptic curves in S with respect to L.

Then Theorem 2.2.3, Corollary 2.2.9 and Lemma 2.3.4 imply the following corollary.

Corollary 2.3.5. Let (A,L) be a polarized abelian threefold. Assume that ε(A,L) <
3
√
L3/3.

(1) If there exists an abelian surface S which satisfies

3
√
L3 >

3
√

14(L|S)2
4

, (2.3.6)

then ε(A,L) = ε(S, L|S).
(2) Otherwise, ε(A,L) is computed by an elliptic curve.

Proof. First, we prove (2). By Theorem 2.2.3, we may assume that there exists an
abelian surface S ′ such that

ε(S ′, L|S′) = ε(A,L) <
3
√
L3

3
≤
√

14(L|S′)2

4
(2.3.7)
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since if A does not contains an abelian surface, (2) obviously follows by [Nak96, Lemma
3.3].

Hence, applying Lemma 2.3.4, ε(A,L) is the minimal degree of the elliptic curves in
S ′ with respect to L.

On the other hand, the assumption of (1) implies

3
√
L3 >

3
√

14(L|S)2
4

. (2.3.8)

Then we conclude the proof by Corollary 2.2.9. �

Corollary 2.3.6. Let (A,L) be a polarized abelian threefold. Assume L3 ≤ 174 and

ε(A,L) <
3
√
L3/3. Then ε(A,L) = 1 or 4/3. Moreover if ε(A,L) = 4/3, A contains the

Jacobian variety J of a genus two curve such that any curve satisfying εC(L) < 21
3
√
L3/8

is contained in J and A ' J × E for some elliptic curve E. If L3 ≤ 60, we obtain
ε(A,L) = 1.

Proof. Note that an ample line bundle on an abelian surface has the positive and
even degree. Since L3 ≤ 174, if there exists an abelian surface S such that

3
√
L3 >

3
√

14(L|S)2
4

, (2.3.9)

it must be (L|S)2 = 2. Hence, by Corollary 2.3.5, it follows that either

(1) ε(A,L) is computed by an elliptic curve C, or
(2) A contains a principally polarized abelian surface (S, L|S) and ε(A,L) = ε(S, L|S).

If the first case occurs, we obtain C.L = ε(A,L) = 1 since ε(A,L) <
3
√
L3/3 < 2.

Moreover, A is isomorphic to C × B for some abelian surface B by [DH07, Lemma 1].
In the second case, again by [DH07, Lemma 1], it follows that there exists an elliptic
curve E such that A ' S × E. Furthermore, ε(A,L) = 1 or 4/3 since it is known that
a principally polarized abelian surface is isomorphic to either the product of two elliptic
curves with the product of line bundles of degree one or the Jacobian variety of a genus
two curve with the Theta divisor, where its Seshadri constant is 4/3 as proved in [Ste98,
Proposition 2]. In the case ε(A,L) = 4/3, then S is the Jacobian variety of a genus

two curve and any curve satisfying εC(L) < 21
3
√
L3/8 is contained in S by (2.3.9) and

Proposition 2.2.7.
Finally, it is obvious that ε(A,L) = 1 if L3 ≤ 60 since 3

√
60/3 < 4/3. �

Remark 2.3.7. It is known that any polarized abelian surface (S, L) satisfies ε(S, L) ≥
4/3 if it is not one (see [Nak96, Theorem 1.2]). Hence, in fact, the last assertion in
Corollary 2.3.6 can be proven also directly from Nakamaye’s [Nak96, Lemma 3.3] or

Theorem 2.2.3. Indeed, if L3 ≤ 60, then ε(A,L) <
3
√
L3/3 implies ε(A,L) < 4/3.

However, Theorem 2.2.3 implies that ε(B,L|B) = ε(A,L) < 4/3 where B is an abelian
surface or an elliptic curve. Hence ε(A,L) must be one.

In Corollary 2.3.6, the assumption L3 ≤ 60 is optimal for ε(A,L) to be one. In the
following example, we construct polarized abelian threefolds (A,L) satisfying ε(A,L) <
3
√
L3/3, L3 = n, and ε(A,L) 6= 1 for any n ∈ 6Z such that n > 60.

Example 2.3.8. Let (J, θ) be a pair of the Jacobian variety of a genus two curve and
its Theta divisor. Then it follows that ε(J, θ) = 4/3 by [Ste98, Proposition 2]. Assume
(E,Mk) is a polarized elliptic curve with degMk = k > 0. Consider A := J × E and the
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ample line bundle Lk := pr∗1θ ⊗ pr∗2Mk on it. Then straightforward computation implies
L3
k = 6k. Then we obtain

ε(A,Lk) = min{ε(J, θ), ε(E,Mk)} = min{4/3, k}. (2.3.10)

Hence, if 2 ≤ k ≤ 10, we obtain ε(A,Lk) = 4/3 and ε(A,Lk) >
3
√
L3
k/3. If 11 ≤ k, we

have ε(A,Lk) = 4/3, L3 = 6k > 60 and ε(A,Lk) <
3
√
L3
k/3.
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[AW14] Marco Andreatta and Jaros law A. Wísniewski, 4-dimensional symplectic contractions,
Geom. Dedicata 168 (2014), 311–337. MR 3158045

[Bau98] Thomas Bauer, Seshadri constants and periods of polarized abelian varieties, Math. Ann.
312 (1998), no. 4, 607–623, With an appendix by the author and Tomasz Szemberg.
MR 1660259

[Bau99] , Seshadri constants on algebraic surfaces, Math. Ann. 313 (1999), no. 3, 547–583.
MR 1678549

[Bau08] , A criterion for an abelian variety to be simple, Arch. Math. (Basel) 90 (2008),
no. 4, 317–321. MR 2390296

[BBP13] Sébastien Boucksom, Amaël Broustet, and Gianluca Pacienza, Uniruledness of stable base
loci of adjoint linear systems via Mori theory, Math. Z. 275 (2013), no. 1-2, 499–507.
MR 3101817

[BCHM10] Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan, Existence of
minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2,
405–468. MR 2601039

[BDRH+09] Thomas Bauer, Sandra Di Rocco, Brian Harbourne, Micha lKapustka, Andreas Knutsen,
Wioletta Syzdek, and Tomasz Szemberg, A primer on Seshadri constants, Interactions of
classical and numerical algebraic geometry, Contemp. Math., vol. 496, Amer. Math. Soc.,
Providence, RI, 2009, pp. 33–70. MR 2555949

[BGS18] Thomas Bauer, Felix Fritz Grimm, and Maximilian Schmidt, On the integrality of seshadri
constants of abelian surfaces, arXiv:1805.05413 (2018).

[BS01] Thomas Bauer and Tomasz Szemberg, Local positivity of principally polarized abelian three-
folds, J. Reine Angew. Math. 531 (2001), 191–200. MR 1810121

[BS08] Thomas Bauer and Christoph Schulz, Seshadri constants on the self-product of an elliptic
curve, J. Algebra 320 (2008), no. 7, 2981–3005. MR 2442006

[CLS11] David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in
Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR 2810322

[Deb04] Olivier Debarre, Seshadri constants of abelian varieties, The Fano Conference, Univ. Torino,
Turin, 2004, pp. 379–394. MR 2112583

[Dem92] Jean-Pierre Demailly, Singular Hermitian metrics on positive line bundles, Complex alge-
braic varieties (Bayreuth, 1990), Lecture Notes in Math., vol. 1507, Springer, Berlin, 1992,
pp. 87–104. MR 1178721

[dFH11] Tommaso de Fernex and Christopher D. Hacon, Deformations of canonical pairs and Fano
varieties, J. Reine Angew. Math. 651 (2011), 97–126. MR 2774312

[dFH12] , Rigidity properties of Fano varieties, Current developments in algebraic geometry,
Math. Sci. Res. Inst. Publ., vol. 59, Cambridge Univ. Press, Cambridge, 2012, pp. 113–127.
MR 2931867

[DH07] Olivier Debarre and Christopher D. Hacon, Singularities of divisors of low degree on abelian
varieties, manuscripta mathematica 122 (2007), no. 2, 217–228.

[DN89] J.-M. Drezet and M. S. Narasimhan, Groupe de Picard des variétés de modules de fibrés
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