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1 Introduction

Singularities are one of the most important themes in algebraic geometry. Quo-
tient singularities, which appear when dividing a nonsingular variety by a finite
group action, form a fundamental class of singularities. In characteristic zero,
quotient singularities have good behavior. For example, they are log terminal
singularities, which are a class of singularities used in minimal model program.
Moreover, they have resolutions, in particular, Gorenstein quotient singularities
of dimension ≤ 3 have crepant resolutions [4],[5],[6],[9],[10].

On the other hand, in positive characteristic, there are many pathological
phenomena about quotient singularities. For instance, quotient singularities in
positive characteristic are not log terminal in general (for instance see [16]).
Whether quotient singularities have resolutions or not is not known, and there
exist three-dimensional Gorenstein quotient singularities not having crepant res-
olution.
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One of the natural questions is when quotient singularities are log termi-
nal or belong to other classes of singularities appearing in the minimal model
program. In characteristic zero, there is the Reid–Shepherd-Barron–Tai cri-
terion [7, Theorem 3.21], which determines whether a quotient singularity is
terminal/canonical by looking at elements of the finite group in question indi-
vidually. But, in positive characteristic, this is no longer true, as was proved
in the auther’s master thesis. More precisely, there exist quotient singularities
which are not log canonical such that the quotient by every cyclic subgroup
of the total group is canonical. This illustrates how difficult it is to determine
which classes given quotient singularities belong to. Our first main result below
gives a partial answer to this problem.

Theorem 1.1 (Theorem 2.3,[21]). Let k be an algebraic closed field of char-
acteristic three. Let G be a group acting on A3 = A3

k faithfull and linearly.
Suppose that G has no pseudo-reflection. Then A3/G is log terminal if and only
if ]G 6∈ 9Z. Moreover, if ]G ∈ 9Z, then A3/G is not log canonical.

Note that from [16], wild quotient singularities by linear actions without
pseudo-reflection in dimension three and characteristic p > 3 are not log ter-
minal. Any three dimensional wild representation in characteristic two has
pseudo-reflection. These are the reasons why we consider in dimension three
and characteristic three.

Next we consider the question, when quotient singularities have crepant
resolutions. As mentioned above, Gorenstein quotient singularities in dimension
≤ 3 have crepant resolutions in characteristic zero. When crepant resolution
exists, we also ask whether the following theorem of Batyrev [1, Theorem 1.10]
holds in positive characteristic:

Theorem 1.2. Let G ⊂ SLd(C) be a finite group. If the quotient variety AdC/G
has a crepant resolution Y → AdC/G, then the topological Euler characteristic
e(Y ) is equal to the number of the conjugacy classes of G:

e(Y ) = ]Conj(G).

Let χ be the l-adic Euler characteristic, which is defined as the alternating
sum of dimensions of l-adic cohomology. It coincides with the topological Euler
characteristic in characteristic zero. We consider the equation of Batyrev’s
theorem using χ instead of e in positive characteristic.

In [8] and [2], it is shown that the quotient singularity of the canonical action
of the symmetric group Sn on A2n has a crepant resolution. In this case, the
equation of Batyrev’s theorem holds. In [16], there are some examples of quo-
tient varieties associated to Z/pZ-representations which have crepant resolutions
in characteristic p. Also in this case, the equation of Batyrev’s theorem holds.
However, in positive characteristic, there exist counterexamples of Batyrev’s
theorem.

Theorem 1.3 (Theorem 3.1). Let k be an algebraically closed field of charac-
teristic three. Let G ⊂ SL3(k) be a small finite subgroup. If G ∼= H oG′ where
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H is a tame Abelian group and G′ is Z/3Z or S3, then A3/G has a crepant
resolution Y → A3/G and

χ(Y ) =

{
]Conj(G) (G′ = Z/3Z)

]Conj(G) + 3 (G′ = S3)

The case when H is trivial or the Klein four-group was treated in the author’s
master thesis [20]. In particular, the last theorem gives infinitely many examples
of wild quotient singularities having crepant resolutions and infinitely many
counterexamples to Batyrev’s theorem in positive characteristic.

To prove Theorem 1.3, we explicitly construct crepant resolutions of quotient
varieties. Since G has the normal subgroup H, we firstly construct a crepant
resolution Ỹ → A3/H using the theory of toric varieties. Next, we construct

a crepant resolution X̃ → Ỹ /G′ which gives a crepant resolution of A3/G by

composing Ỹ /G′ → A3/G. We compute its Euler characteristic from the explicit
structure of crepant resolutions.

We also compute, in an alternative way, the Euler characteristics of crepant
resolutions in Theorem 1.3 using the wild McKay correspondence. The wild
McKay correspondence was proved in [19]:

Theorem 1.4 ([19],Corollary 16.3). Let G be a finite group. Suppose that G
acts on V = Ad linearly. Suppose that G has no pseudo-reflection. Then

Mst(X) =

∫
G-Cov(D)

Ld−vV

for X = V/G.

Here Mst(X) is the stringy-motive of X, G-Cov(D) is the moduli space of
G-covers of D, L = [A1] in the Grothendieck ring, and vV is a function on
G-Cov(D) defined from the representation. The stringy-motive is an element
of the Grothendieck ring of k-varieties localized and completed in some way.
It has a lot of information of singularity of X. In particular, if there exists a
crepant resolution Y → X, then we have Mst(X) = [Y ]. The stringy-motive is
generalization of the stringy E-function in characteristic zero defined by Batyrev
[1]. This theorem is generalization of the motivic McKay correspondence in
characteristic zero proved by Batyrev [1] and Denef-Loeser [3]. In this paper,
we use the stringy-point count, which is regarded as a realization of the wild
McKay correspondence.

Theorem 1.5 ([17]). Let G be a finite group. Let K = Fq((t)) where q is a
power of a prime number. Suppose that G acts on V = AdOK linealy and that G
has no pseudo-reflection. Then

]stV/G =
∑

M∈G-Ét(K)

qd−vV (M)

]CG(HM )
.
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Here G-Ét(K) is the set of G-étale K-algebras, which are étale K-algebras
M of dimK(M) = ]G endowed with G-action such that MG = K, HM is the
stabilizer subgroup of a connected component of Spec (M) when we write as
M = L⊕n by a Galois extension L/K, and CG(HM ) is the centralizer ofHM . We
compute the right hand side of this equality directly in some of cases considered
in Theorem 1.3.

Theorem 1.6 (Theorem 4.3,4.5,4.7). We follow the notation of Theorem 1.3
except that k now denote the finite field Fq. Let l 6= 3 be a prime. We suppose
that q− 1 is divisible by l if G′ = Z/3Z. We suppose that q− 1 is divisible by 2l
if G′ = S3. Then we have the following formulas:

]stA3/G =


q3 +

(
2 + l−1

6

)
q2 + l−1

6 q (H = Z/lZ, G′ = Z/3Z)

q3 +
(

2 + (l−1)(l+4)
6

)
q2 + (l−1)(l−2)

6 q (H = (Z/lZ)2, G′ = Z/3Z)

q3 + (l+5)(l+7)
12 q2 + (l+1)(l+5)

12 q (l 6= 2, H = (Z/lZ)2, G′ = S3)
q3 + 6q2 + q (H = (Z/2Z)2, G′ = S3)

.

In [17], the Serre-Bhargava mass formula is proved using the stringy-point
count of the quotient variety. So the fomulas in Theorem 1.6 can be regarded
as other versions of mass formula.

This theorem together with the Weil conjecture gives the Euler characteris-
tics of crepant resolution.

Corollary 1.7. In the situation of Theorem 1.6, if Y → A3/G is a crepant
resolution, then

χ(Y ) =


3 + l−1

3 (H = Z/lZ, G′ = Z/3Z)

3 + l2−1
3 (H = (Z/lZ)2, G′ = Z/3Z)

(l−1)(l−2)
6 + 2l + 4 (H = (Z/lZ)2, G′ = S3)

.

Corollary 1.7 coincides with the equality in Theorem 1.3.
To compute right hand side of equality in the wild McKay correspondence

(Theorem 1.4), a key is computation of v-function. However, computing v-
function is generally very difficult. Below are some examples of previously known
computation:

• We consider the case when the n-th symmetric group Sn acts on A2n =
(A2)n canonically. Then the v-function is the same as the Artin conductor
[13], which is used in the number theory.

• [12, Theorem 3.11] In characteristic p > 0, we consider the d-dimensional
indecomposable representation V of G = Z/pnZ where d ≤ pn. For a
Galois extension L/K whose Galois group is G with ramification jumps

l0 ≤ l1 ≤ l2 ≤ · · · ≤ ln−1,

we have

vV (L) =
∑

0≤i0+i1p+···+in−1p
n−1<d,

0≤i0,...,in−1<p

⌈
i0l0p

n−1 + i1l1p
n−2 + · · ·+ in−1ln−1

pn

⌉
.
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In all the known cases, the v-functions are determined from the ramification
filtration of the extension L/K, as the last example indicates. We give an
example where this is not the case:

Theorem 1.8. There exist a finite group G and a G-representation whose v-
fucntion is not determined by the ramification filtration of G.

Therefore, for the computation of v-function, we need to use information of
extension L/K more than the ramification filtration in general.

The outline of the paper is as follows. We prove Theorem 1.1 in section two.
In section three, we construct counterexamples to Batyrev’s theorem in positive
characteristic. In section four, we give proofs of 1.6 and 1.7. Lastly, in section
five, we illustrate the example that the v-function is not computed only from
ramification filtration only.

2 A criterion for log terminal quotient singular-
ities

Let k be an algebraic closed field. For a normal variety X with Q-Cartier
canonical divisor KX , if there exists a proper birational map π : Y → X and
hold the equation

KY = π∗KX +
∑

E:prime

aEE,

we call E is an exceptional divisor of X and aE is discrepancy of E. We call
X is terminal (resp. canonical, log terminal, log canonical) if discrepancies > 0
(resp. ≥ 0, > −1, ≥ −1) for any prime exceptional divisors.

We already have the following result.

Theorem 2.1 ([20]). Let k be an algebraic closed field of characteristic three.
If the group G = (Z/3Z)2 acts on A3

k linearly without pseudo-reflection, then
the quotient variety A3

k/G is not log canonical.

The proof of this theorem is given by direct computation of a resolution.
This theorem gives a counterexample of the equivalence of the first condition
and the second one in the Reid–Shepherd-Barron–Tai criterion below. Let a
finite group G acts on Cd linearly. For g ∈ G, we define the age age(g) of g by

age(g) =
1

n

d∑
i=1

ai

if the representation matrix of g is diagonalized as
e

2a1πi
n

e
2a2πi
n

. . .

e
2adπi

n

 .
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Proposition 2.2 (The Reid–Shepherd-Barron–Tai criterion,[7],Theorem 3.21).
Suppose that a finite group G acts on Cd linearly without pseudo-reflection.
Then the following three conditions are equivalent:

• the quotient variety Cd/G is canonical (resp. terminal),

• the quotient variety Cd/C is canonical (resp. terminal) for any cyclic
subgroup C of G,

• age(g) ≥ 1 (resp.> 1) for any g ∈ G− {1}.

Let G = (Z/3Z)2. Any nontrivial cyclic subgroup C of G is Z/3Z. By [15],
the quotient variety A3/C is canonical. If the first and second condition of
Reid–Shepherd-Barron–Tai criterion were equivalent in positive characteristic,
A3/G would be also canonical. But Theorem 2.1 says A3/G is not log canonical.
Hence these conditions are not equivalent in positive characteristic.

As an application of Theorem 2.1, we get the following criterion for quotients
of A3 in characteristic three.

Theorem 2.3. Let k be an algebraic field of characteristic three. Let G be a
finite group. Suppose that G acts on A3 faithfully and linearly without pseudo-
reflection. Then A3/G is log terminal if and only if ]G 6∈ 9Z. Moreover, if
A3/G is not log terminal, then it is not log canonical.

We first prove auxiliary results which will be used in the proof of the theorem.

Lemma 2.4. Let π : X ′ → X be a finite dominant morphism of varieties. Then,
for any divisor E′ over X ′, there exists a commutative diagram

Y ′

ρ

��

f ′ // X ′

π

��
Y

f
// X

satisfying the following conditions:

• Y and Y ′ are normal varieties.

• f ′ and f are birational.

• ρ is a morphism.

• The center of E′ on Y ′ has codimension one.

• The closure of ρ(centY ′(E
′)) has codimension one.

Proof. First, we take a birational morphism ϕ : Y ′0 → X ′ from a normal variety
Y ′0 such that E′ is a divisor on Y ′0 . Let φ : X ′′ → X ′ be the Galois closure of π.
Thus the coordinate ring OX′′ of X ′′ is the integral closure of the one OX′ of X ′
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in a Galois closure L of K(X ′)/K(X). Let G be the Galois group of L/K(X),
and we put

G = {g1, g2, . . . , gd}.

The group G acts on X ′′ naturally.
Let Y ′′0 be the component of Y ′0×X′X ′′ such that the morphism ϕ′ : Y ′′0 → X ′′

is dominant. We denote a copy of Y ′′0 endowed with the morphism

σ(g) : Y ′′0
ϕ′−→ X ′′

g−→ X ′′

by Y ′′0,g. We consider the variety Y ′′ given by the fiber product of all the Y ′′0,g
over X ′′:

Y ′′ = (· · · ((Y ′′0,g1 ×σ(g1),X′′,σ(g2) Y
′′
0,g2)×X′′,σ(g3) Y

′′
0,g3) · · · )×X′′,σ(gd) Y

′′
0,gd

.

The G-action on Y ′′ is defined by the morphism h : Y ′′ → Y ′′ induced from

the morphisms Y ′′0,g
id−→ Y ′′0,hg for h ∈ G. Then the morphism f ′′ : Y ′′ → X ′′ is

G-equivariant because the diagram

Y ′′0,g
ϕ′ //

id

��

X ′′
g //

id

��

X ′′

h

��
Y ′′0,hg ϕ′

// X ′′
hg
// X ′′

is commutative. Let H be a subgroup of G such that LH = K(X ′). Let Y ′ :=
Y ′′/H and Y := Y ′′/G. Since f ′′ is G-equivariant and since X ′ = X ′′/H and
X = X ′′/G, there exist natural morphisms f ′ : Y ′ → X ′ and f : Y → X, which
are birational. We also have natural morphisms q : Y ′′ → Y ′ and η : Y ′ → Y .

Y ′′ //

f ′′

))

q

��

Y ′′0

��

ϕ′
// X ′′

φ

��
Y ′

η

��
f ′

55Y ′0
ϕ // X ′

π

��
Y

f
// X

Let E′′ be a prime divisor on Y ′′ contained in the pull-back of E′ by Y ′′ →
Y ′′0 → Y ′0 . Since q is finite, the push-forward q∗E

′ is a prime divisor on Y ′. Let
v′′, v′ be the valuations on K(X ′′),K(X ′) corresponding to E′′, E′, respectively.
From the construction of E′′, we have q(E′′) = E′. Moreover, since η is finite,
η preserves the dimension.
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Proposition 2.5. Let π : X ′ → X be a finite dominant morphism of Q-Gorenstein
varieties. Assume that π is étale in codimension one. If X ′ is not log canonical
(resp. not log terminal), then X is not log canonical (resp. not log terminal).

Proof. We prove only the statement about log canonicity. The other is proved
similarly.

Since X ′ is not log canonical, there is a prime divisor E′ over X ′ with
discrepancy smaller than −1. For this E′, we apply Lemma 2.4, and write the
resulting diagram as follows:

Y ′
f ′ //

η

��

X ′

π

��
Y

f
// X

We denote centY ′(E
′) again by E′. Let E be the closure of η(E′). The E′ and

E are prime divisors. We put

KY = f∗KX + aE + F,

KY ′ = η∗KY + bE′ +G′,

η∗E = tE′ +H ′,

where F, G′, H ′ are divisors not containing E,E′, and a, b ∈ Q. Since π is
étale in codimension one, KX′ = π∗KX . We get

KY ′ = η∗f∗KX + (at+ b)E′ + η∗F +G′ + aH ′

= (f ′)∗π∗KX + (at+ b)E′ + η∗F +G′ + aH ′

= (f ′)∗KX′ + (at+ b)E′ + η∗F +G′ + aH ′

By assumption, at+ b < −1. Hence a < − b+1
t . Since t is the ramification index

of η along E′, by [7, 2.41], b ≥ t − 1. Therefore we get a < −1, which shows
that X is not log canonical.

The following lemma is generalization of a well-known fact on Galois cover-
ings to non-Galois ones (for instance, see [7]).

Lemma 2.6. Let k be a field of positive characteristic p. Let π : X ′ → X is a
(not necessarily Galois) finite dominant morphism of degree n between normal
Q-Gorenstein varieties over k. Suppose that π is étale in codimension one. If
n 6∈ pZ and X ′ is log terminal, then X is log terminal.

Proof. For a birational map f : Y → X from a normal variety Y , Let Y ′ be the
normalization of the component of X ′ ×X Y dominating X ′. Let ρ : Y ′ → Y
and f ′ : Y ′ → X ′ be natural morphisms. We get the following diagram:

Y ′
f ′ //

ρ

��

X ′

π

��
Y

f
// X

8



Fix an f -exceptional prime divisor E. When we write ρ∗E as
∑
i riDi with

prime divisors Di, we have
∑
i ri[Di : E] = n where [Di : E] is the degree of

Di → E. Since n 6∈ pZ, one of the ri is not divisible by p. Let E′ be a prime
divisor with such a coefficient r. We write

KY = f∗KX + aE + F,

KY ′ = ρ∗KY + bE′ +G′,

ρ∗E = rE′ +H ′,

where F,G′, H ′ are divisors not containing E,E′. Since π is étale in codimension
one, KX′ = π∗KX . Hence we get

KY ′ = ρ∗f∗KX + (ar + b)E′ + ρ∗F +G′ + aH ′

= (f ′)∗π∗KX + (ar + b)E′ + ρ∗F +G′ + aH ′

= (f ′)∗KX′ + (ar + b)E′ + ρ∗F +G′ + aH ′.

Since X ′ is log terminal, ar+ b > −1. Since r is the ramification index of ρ and
ρ is tame, by [7, 2.41], b = r − 1. Therefore,

a >
−1− b
r

= −1.

Hence X is log terminal.

Proof of Theorem.2.3. We regard G as a subgroup of GLn(k). We have only to
consider that ]G ∈ 3Z. From Sylow’s theorem, G has a 3-Sylow group H. We
have ]H = 3r from assumption.

Firstly, we consider the case that ]G ∈ 3Z− 9Z. Then H is a cyclic group.
From [15, Corollary 6.25], the quotient variety X ′ := A3/H is canonical. Let
π : X ′ → X := A3/G be the canonical morphism. Then π is étale in codimension
one. Therefore, X is log terminal by Lemma 2.6.

Next, we consider the case that ]G ∈ 9Z. Since H is a 3-group, the center
Z(H) is not trivial. Take a R ∈ Z(H) which order is three. Then we may
assume that

R =

0 1 0
0 0 1
1 0 0


since R is not a pseudo-reflection. We denote the centralizer of R in SLn(k) by
C(R). For X = [xij ] ∈ C(R), we havex21 x22 x23

x31 x32 x33

x11 x12 x13

 = RX = XR =

x13 x11 x12

x23 x21 x22

x33 x31 x32

 ,
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it implies that

x11 = x22 = x33,

x12 = x23 = x31,

x13 = x21 = x32.

Hence C(R) is (kI + kR+ kR2) ∩ SLn(k). If X = aI + bR+ cR2 ∈ C(R),

X3 = (aI + bR+ cR2)3 = (aI)3 + (bR)3 + (cR2)3 = (a3 + b3 + c3)I.

Since detX = 1, a3 + b3 + c3 = 1. Therefore, all the elements of C(R) are of
order three. Now, since H ⊂ C(R), H has a subgroup H ′ which is isomorphic
to (Z/3Z)2.

By Theorem 2.1, the quotient variety X ′ := A3/H ′ is not log canonical.
We consider the canonical morphism π : X ′ → X := A3/G. Then π is étale in
codimension one. By Proposition 2.5, X is not log canonical.

3 Crepant resolution and Euler characteristic

In this section, we fix an algebraically field k of characteristic three. Fix l be
a prime number except characteristic of k. We define the l-adic Euler charac-
teristic χ(X) for k-variety X by the alternaving sum of the dimensions of the
l-adic étale cohomology with compact support of X:

χ(X) =
∑
i

(−1)i dimQl H
i
et,c(X,Zl)⊗Zl Ql

Theorem 3.1. Let G be a small finite subgroup of SL3(k) which is written as
HoG′ where H is a tame Abelian group and G′ is the cyclic group Z/3Z or the
symmetric group S3. If G acts on the affine space A3 = A3

k canonically, then
the quotient variety X = A3/G have a crepant resolution Y → X. Moreover,
we have the following formulas:

χ(Y ) =

{
]Conj(G) (G1 = Z/3Z)

]Conj(G) + 3 (G1 = S3)

Note that χ(Y ) does not depend on the choice of crepant resolution Y → X.
We prove this theorem along the following strategy. We put Y := A3/H.

We consider the following diagram:

X̃

��
Ỹ //

��

X ′

��
A3 // Y // X

10



Since H is a tame Abelian group, we can construct Y as a toric variety. We
take a toric crepant resolution Ỹ → Y such that the G′-action on Y lifts to Ỹ .
Let X ′ be the quotient variety Ỹ /G′. Then we can take a crepant resolution

X̃ → X ′. The composition X̃ → X ′ → X is a crepant resolution of X. The
Euler characteristic of X̃ can be computed from this construction.

Firstly, we construct Y as follows. Since H is a tame Abelian subgroup of
SL3(k), we may assume that all the elements of H are diagonal matices. Let r
be their maximal order. Any h ∈ H − {I} has the formζar 0 0

0 ζbr 0
0 0 ζcr


where ζr is a fixed primitive root of unity in k and a, b, c are integers satifying
0 ≤ a, b, c ≤ r − 1 and a+ b+ c = r or 2r. We denote such h ∈ H by 1

r [a, b, c].
By this notation, we also regard elements H as points in R3. Let Γ be the lattice
generated by the all elements of H and ex = [1, 0, 0], ey = [0, 1, 0], ez = [0, 0, 1].
Note that H is isomorphic to the quotient group Γ/Z3. We define Y to be the
toric variety defined by the lattice Γ and the cone R3

≥0.

3.1 The case G′ ∼= Z/3Z
Now, we consider the case that G′ ∼= Z/3Z. We show that G′ acts on Y by toric
automorphisms.

Lemma 3.2. The G′-action on Y gives a injection of G′ into the set of the
automorphisms of Y as a toric variety. Its image is generated by the morphism
corresponding to the automorphism of Γ defined by

ex 7→ ey 7→ ez 7→ ex.

Proof. It is enough to show that G′ is generated by0 1 0
0 0 1
1 0 0

 .
Let σ ∈ G′ be a generator of G′. Take an element 1

r [a, b, c] ∈ H − {I}. Since H
is a normal subgroup of G, we can write

σ
1

r
[a, b, c]σ−1 =

1

r
[a′, b′, c′].

Put σ = [sij ]
3
i,j=1. Thenζar s11 ζbrs12 ζcrs13

ζar s21 ζbrs22 ζcrs23

ζar s31 ζbrs32 ζcrs33

 =

ζa′r s11 ζa
′

r s12 ζa
′

r s13

ζb
′

r s21 ζb
′

r s22 ζb
′

r s23

ζc
′

r s31 ζc
′

r s32 ζc
′

r s33

 .
11



If a 6∈ {a′, b′, c′}, the first column of σ is zero. It contradicts the fact that σ
is invertible. Hence a ∈ {a′, b′, c′}. Similarly, we get {a, b, c} = {a′, b′, c′}. If
a = b = c, since a + b + c ∈ rZ, 3a ∈ rZ. Since r 6∈ 3Z and 0 ≤ a ≤ r − 1,
we get a = 0. That contradicts 1

r [a, b, c] 6= I. Hence, permuting coordinates if
necessary, we may assume that a 6= b and a 6= c. If a = a′, then s12 = s13 =
s21 = s31 = 0. Hence

σ =

[
1 0
0 σ′

]
.

where σ′ ∈ SL2(k) and it has order three. This implies that σ is a pseudo-
reflection, which is impossible since G is small. Hence a 6= a′. Therefore, a = b′

or a = c′. Assume a = b′. We put

1

r
[a′′, b′′, c′′] = σ

1

r
[a′, b′, c′]σ−1.

We have {a′, b′, c′} = {a′′, b′′, c′′}. Since a = b′, b′ 6= a′ = b′′. If b′ = a′′, since
σ3 = 1, we have

a = b′ = a′′ = b.

It contradicts that a 6= b. Hence b′ = c′′, and we get

σ = diag(s12, s23, s31)

0 0 1
1 0 0
0 1 0

 .
Since it is conjugate with 0 0 1

1 0 0
0 1 0

 ,
we may assume that

σ =

0 0 1
1 0 0
0 1 0

 .
Similarly if a = c′, we may assume that

σ =

0 1 0
0 0 1
1 0 0

 .

Let σ ∈ G be 0 1 0
0 0 1
1 0 0

 .
We let G act on R3 by permutation of coordinates, i.e,

[x, y, z] = [z, x, y] · σ.

12



Figure 1:

For 1
r [a, b, c] ∈ H, we have

1

r
[a, b, c] · σ = σ−1 1

r
[a, b, c]σ =

1

r
[c, a, b].

Next we construct a toric crepant resolution Ỹ → Y . Let ∆i be the plane in R3

defined by
x+ y + z = i

for i = 1, 2. Then T := R3
≥0 ∩ ∆1 is a triangle. Giving a subdivision of T is

equivalent to giving a subdivision of the cone R3
≥0. We give a toric resolution

Ỹ → Y by giving a subdivision of T . Firstly, we choose a point

a =
1

r
[a, b, c] ∈ H ∩∆1

such that the distance from the center [ 1
3 ,

1
3 ,

1
3 ] of T is minimal among all points

in H∩∆1. Note that [ 1
3 ,

1
3 ,

1
3 ] 6∈ H. We put a′ = a·σ and a′′ = a·σ2. We denote

the triangle aa′a′′ by T0. Obviously, T0 is stable for the G′-action. We may as-
sume that a ≤ b and a ≤ c. We denote the squares aa′eyex,a

′a′′ezey,a
′′aexez

by S1, S2, S3, respectively (Figure 1). We divide the square S1 into triangles all
whose vertices are exactly all the points in H∩S1. Since S1 ·σ = S2, S2 ·σ2 = S3,
the subdivision of S1 gives the subdivisions of S2 and S3. Therefore, we have
given the subdivision of T which is stable for G′-action. We denote the fun
given by the above subdivision by Σ.

Lemma 3.3. The fun Σ gives a crepant resolution of Y and is stable for the
G′-action.

Proof. Since the subdivision of T consists of triangles which containing no points
of Γ except its vertices, the subdivision gives a toric resolution Ỹ → Y from
Lemma 3.4. Since all the rays in Σ is generate a element in ∆1, the resolution
Ỹ → Y is crepant.

13



Lemma 3.4. Let t1, t2, t3 be points in T . Suppose that no point of Γ is in the
triangle t1t2t3 except its vertices. Then t1, t2, t3 generate Γ.

Proof. Let Γ0 be the sublattice of Γ generated by t1, t2, t3. To show Γ = Γ0, we
suppose that Γ 6= Γ0 on the contrary. Then there exsits x = [x1, x2, x3] ∈ Γ−Γ0.
Since {ti}3i=1 is a basis of the vector space R3, we can write

x =

3∑
i=1

citi

by some ci ∈ R. Since

x−
3∑
i=1

bcic ti =

3∑
i=1

(ci − bcic)ti ∈ Γ− Γ0,

we may assume that 0 ≤ ci ≤ 1 for i = 1, 2, 3. Since {ti}3i=1 ⊂ ∆1, we have

3∑
i=1

ci =

3∑
i=1

xi = 1 or 2.

Since
3∑
i=1

ti − x =

3∑
i=1

(1− ci)ti ∈ Γ− Γ0,

we may assume that
∑3
i=1 ci = 1. Thus x belongs to the inter section of Γ

and the triangle t1t2t3. By asssumption, x is one of the vertices t1, t2, t3. It
contradicts that x ∈ Γ− Γ0.

From Lemma 3.3, the toric variety Ỹ defined by Σ is nonsingular and the
toric morphism Ỹ → Y is a crepant resolution of Y . Since Σ is stable for the
G′-action, the G′-action on Y lifts to Ỹ . Thus we can consider the quotient
variety Ỹ /G′.

Proposition 3.5. The quotient variety Ỹ /G′ has a crepant resolution X̃ →
Ỹ /G′.

Proof. We denote the orbit of the torus action on Ỹ corrresponding to a cone
s ∈ Σ by O(s). Since the G′-invariant points in R3 form the line {[t, t, t] ∈ R3 |
t ∈ R}, the singular locus in Ỹ /G′ is contained in O(o) ∪ O(T0), in particular,
in the affine open subvariety defined by the cone Cone(T0) corresponding to the

triangle T0. Hence the singularities of Ỹ /G′ are the same as the ones of the
quotient variety A3/(Z/3Z) for the small linear action. By [16, Corollary 6.25],

A3/(Z/3Z) has a crepant resolution. Therefore Ỹ /G′ has a crepant resolution

X̃ → Y ′/G′.

The composition X̃ → Ỹ /G′ → X is a crepant resolution of X. Hence we
get the following theorem.

14



Theorem 3.6. The quotient variety X = A3/G has a crepant resolution.

We will examine the crepant resolution X̃ → X given above in more de-
tails in order to compare the number of conjugacy classes of G and the Euler
characteristic of X̃.

Lemma 3.7. We have

]Conj(G) =
]H − 1

3
+ 3.

Proof. We denote the conjugacy class of g ∈ G by OG(g). Since,

σ−1 1

r
[a, b, c]σ =

1

r
[c, a, b]

and H is Abelian, we have

OG

(
1

r
[a, b, c]

)
=

{
1

r
[a, b, c],

1

r
[c, a, b],

1

r
[b, c, a]

}
for 1

r [a, b, c] ∈ H−{I}. Since r 6∈ 3Z and a+b+c = r or 2r, we have a+b+c 6∈ 3Z.
Thus we have a 6= b or a 6= c or both. Hence 1

r [a, b, c] 6= 1
r [c, a, b]. Therefore, H

contains ]H−1
3 + 1 conjugacy classes.

We show the conjugacy class OG(σ) containing σ is Hσ. The inclusion
OG(σ) ⊂ Hσ follows from(

1

r
[α, β, γ]σi

)−1

σ

(
1

r
[α, β, γ]σi

)
= σ−i

1

r
[−α,−β,−γ]σ

1

r
[α, β, γ]σi

= σ−i
1

r
[−α,−β,−γ]

1

r
[β, γ, α]σσi

= σ−i
(

1

r
[β − α, γ − β, α− γ]σ

)
σi

=

(
σ−i

1

r
[β − α, γ − β, α− γ]σi

)
σ ∈ Hσ.

To show the other inclusion, for a, b, c ∈ Z such that

a+ b+ c ≡ 0 mod r,

we take α, β, γ ∈ Z by

α ≡ b+ 2c

3
mod r,

β ≡ c+ 2a

3
mod r,

γ ≡ a+ 2b

3
mod r.

15



Note that, since r 6∈ 3Z, there exsits d ∈ Z such that 3d ≡ 1 mod r, and dividing
by three in the above formulas means multiplying with d. Since 1

r [a, b, c] ∈ H,
the two matrices 1

r [b, c, a], 1
r [c, a, b] are also in H. Then

1

r
[α, β, γ] =

(
1

r
[b, c, a]

1

r
[c, a, b]2

)d
∈ H.

We get

1

r
[α, β, γ]−1σ

1

r
[α, β, γ] =

1

r
[β − α, γ − β, α− γ]σ

=
1

r
[d(2a− b− c), d(2b− c− a), d(2c− a− b)]σ

=
1

r
[d(3a− r), d(3b− r), d(3c− r)]σ

=
1

r
[a, b, c]σ.

Thus OG(σ) ⊃ Hσ and hence OG(σ) = Hσ.
Similary, we get OG(σ2) = Hσ2. Therefore,

]Conj(G) =
]H − 1

3
+ 3.

Theorem 3.8. The Euler characteristic χ(X̃) of X̃ is equal to the number of
the conjugacy classes of G.

Proof. Since H is tame and abelian, the Euler characteristic χ(Ỹ ) of Ỹ is ]H.

Using the decomposition of Ỹ into torus orbits, we get[
Ỹ
]

=
∑
s∈Σ

[O(s)]

in the Grothendiek ring of varieties. Since the Euler characteristic gives an
additive map from the Grothendiek ring to Z, we get∑

s∈Σ

χ(O(s)) = ]H.

If dim(s) ≤ 2, the Euler characteristic χ(O(s)) is zero. Let Σ3 be the set of
cones of dimension three in Σ. Since a 3-dimensional cone corresponds to a
torus orbit which is a point, we get

]Σ3 =
∑
s∈Σ3

χ(O(s)) = ]H.

On the other hand,
[
X̃
]

is decomposed as[
X̃
]

=
∑

s∈(Σ−|Cone(T0)|)/G′
[O(s)] + [ ˜A3/(Z/3Z)]
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where |Cone(T0)| is the set of the faces of Cone(T0), (Σ− |Cone(T0)|)/G′ is the

set of orbits for the G′-action on Σ − |Cone(T0)|, and ˜A3/(Z/3Z) is a crepant
resolution of A3/(Z/3Z). Then, we have

χ(X̃) =
∑

s∈(Σ3−|Cone(T0)|)/G′
χ(O(s)) + χ( ˜A3/(Z/3Z))

= ]((Σ3 − |Cone(T0)|)/G′) + χ( ˜A3/(Z/3Z)))

=
]H − 1

3
+ χ( ˜A3/(Z/3Z))).

By [16, Corollary 6.21], χ( ˜A3/(Z/3Z))) = 3. Therefore,

χ(X̃) =
]H − 1

3
+ 3 = ]Conj(G)

by Lemma 3.7.

3.2 The case G′ ∼= S3

Next we prove Theorem 3.1 in the case G′ ∼= S3. The proof is similar to the one
for the case G′ ∼= Z/3Z. We put Y = A3/H. The quotient variety Y is defined
as a toric variety in the same way as in the previous case. We also assume as
before that every matrix in H is diagonal. We give a toric crepant resolution of
Y having a G′-action lifting the one on Y .

Lemma 3.9. The G′-action on A3 is given by the subgroup of SL3(k) generated
by the matrices 0 1 0

0 0 1
1 0 0

 ,
 0 0 −1

0 −1 0
−1 0 0

 .
Proof. The group S3 is generated by two elements σ, τ satisfying

σ3 = τ2 = 1, τστ = σ2.

By Lemma 3.2, we may assume that the action of σ is defined by the matrix0 1 0
0 0 1
1 0 0

 .
We write τ = [t1, t2, t3]. Since τστ = σ2, we get

[t3, t1, t2] = τσ = σ2τ = [σ2t1, σ
2t2, σ

2t3].

Hence t2 = σt1, t3 = σ2t1. Thus, we get

τ =

x y z
y z x
z x y

 .
17



Take 1
r [a, b, c] ∈ H and put τ 1

r [a, b, c]τ = 1
r [a′, b′, c′]. From the proof of Lemma

3.2, a ∈ {a′, b′, c′}. We may assume that a 6= b and a 6= c. Hence one of x, y, z
is not zero and the others are zero. Replacing τ by τσ, τσ2 if necessary, we may
assume that z 6= 0, x = y = 0. Since det τ = −x3 = 1, we have x = −1 and
hence

τ =

 0 0 −1
0 −1 0
−1 0 0

 .

We use the symbols Γ, T in the same way as in the previous case. From the
previous lemma, we may assume that

σ =

0 1 0
0 0 1
1 0 0

 , τ =

 0 0 −1
0 −1 0
−1 0 0

 .
We define a G′-action on R3 by

[x, y, z] · σ = [z, x, y],

[x, y, z] · τ = [z, y, x].

We denote the toric autmorphisms on A3 defined from the action of σ, τ by
fσ, fτ , respectively. Since A3 is a toric variety, we denote (−1,−1,−1)Q by −Q
for Q ∈ A3. Note that the G′-action on A3 is defined by

σP = fσ(P ), τP = −fτ (P )

for P ∈ A3.
Let Txy be the subset

{x = [x, y, z] ∈ T ∩ Γ | x = y}.

For x = [x1, x2, x3] ∈ R3, we define

d(x) =

3∑
i=1

∣∣∣∣13 − xi
∣∣∣∣ .

Let a ∈ Txy be a point satisfying the condition

d(a) = min {d(x)|x ∈ Txy} .

Actually, a has the following property.

Lemma 3.10. We have
d(a) = min

x∈T∩Γ
d(x).

18



Proof. Suppose that there exists x ∈ T ∩ Γ such that d(x) < d(a). We write

x =
1

r
[x, y, z].

Since the G′-action on Γ preserves the value of d, we may assume that x ≤ y ≤ z.
If two of them were equal, it would contradict the minimality of d(a). Hence,
we get x < y < z. Let y ∈ Γ be the point

[1, 1, 1]− (x + x · τ) · σ = [1, 1, 1]− 1

r
[r − y, 2y, r − y] · σ

= [1, 1, 1]− 1

r
[r − y, r − y, 2y]

=
1

r
[y, y, r − 2y].

Since x ∈ T , we have x + y + z = r. Hence, we get x < r
3 , y < r

2 , and r
3 < z.

Since y < r
2 , y ∈ Txy. If y < r

3 , we have
∣∣ r

3 − x
∣∣ > ∣∣ r3 − y∣∣ and∣∣∣r

3
− z
∣∣∣− ∣∣∣r

3
− (r − 2y)

∣∣∣ =
(
z − r

3

)
−
(

2

3
r − 2y

)
= z + 2y − r
> z + y + x− r = 0.

Therefore, d(y) < d(x). On the other hand, if y > r
3 , we have

∣∣ r
3 − z

∣∣ > ∣∣ r3 − y∣∣
and ∣∣∣r

3
− x
∣∣∣− ∣∣∣r

3
− (r − 2y)

∣∣∣ =
(r

3
− x
)
−
(

2y − 2

3
r

)
= r − (x+ 2y)

> r − (x+ y + z) = 0.

Therefore, we get d(y) < d(x) again. Since y ∈ Txy, we have

d(a) ≤ d(y) < d(x) < d(a).

This is a contradiction.

To construct a subdivision of T giving a crepant toric resolution of Y , We
show the following lemma.

Lemma 3.11. We have

T ∩ Γ =

{
1

r
[x, y, z]

∣∣∣∣x, y, z ∈ Z, 0 ≤ x, y, z ≤ r, x+ y + z = r

}
.

Proof. We put

Γ′ =

{
1

r
[x, y, z]

∣∣∣∣x, y, z ∈ Z, x+ y + z ≡ 0 mod r

}
.
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Note that the right hand of the desired equation is T ∩ Γ′. We can write
a = 1

r [a, a, b]. Let T0 be the triangle whose vertices are a,a · σ,a · σ2. By
Lemma 3.10, T0 has only vertices as points of Γ. From Lemma 3.4, a,a ·σ,a ·σ2

form a Z-basis of Γ, equivalently, a, σ−1aσ, σaσ−1 genarate H. Hence, r is the
order of a. Then

gcd(a, b, r) = 1.

Let d = gcd(a, r). Since 2a + b = r, we have b = r − 2a, in particular, b is
divisible by d. Hence gcd(a, b, r) = d. Therefore gcd(a, r) = 1. Since

det

[
a a
b a

]
= a(a− b) = a(3a− r)

Since gcd(a, r) = 1 and r is not divisible by three, this is invertible on Z/rZ.
Hence a,a · σ, [0, 0, 1] generates Γ′. Since [0, 0, 1] ∈ Γ, Γ′ is generated by a,a ·
σ,a · σ2. Therefore

T ∩ Γ =

{
1

r
[x, y, z]

∣∣∣∣x, y, z ∈ Z, 0 ≤ x, y, z ≤ r, x+ y + z = r

}
.

We give a subdivision of T by subdividing T with 3(r − 1) lines

x =
i

r
, y =

i

r
, z =

i

r
(1 ≤ i < r)

in ∆ (Figure 2). Let Σ be a fan corresponding the above subdivision of T .

Figure 2:

Lemma 3.12. The fan Σ gives a toric crepant resolution of Y with a G′-action
lifting the one on Y .

Proof. Let Ỹ be the toric variety defined by Σ and let π be the canonical mor-
phism Ỹ → Y . Since any triangle of subdivision of T has no points of Γ except its
vertices, the vertices of any triangle of subdivision are generate Γ from Lemma
3.4. Therefore, Ỹ is nonsingular, and hence π is a resolution of Y . Since all the
rays in Σ are generated by points of Γ ∩∆1, π is crepant resolution.
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We denote the crepant resolution of Y given by Lemma 3.12 by π : Ỹ → Y
as in the proof of Lemma 3.12.

Proposition 3.13. The quotient variety Ỹ /G′ has a crepant resolution X̃ →
Ỹ /G′.

Proof. Now, G′ = 〈σ〉o〈τ〉. We have a crepant resolution Y ′ → Ỹ / 〈σ〉 in Propo-
sition 3.5. We can extends the action of τ to Y ′. Let c be a 3-dimensional cone
stable for the τ -action on Γ. On the open affine toric variety Uc = Spec k[s, t, u]
of Y ′, τ acts by the morphism corresponding to

s 7→ −u, t 7→ −t, u 7→ −s.

Since any cone in Σ which stable with respect to the τ -action is a face of a 3-
dimensional cone, the fixed locus in Y ′ about 〈τ〉-action is pure 1-dimensional.
From [20, Theorem 5.5], Y ′/ 〈τ〉 has a crepant resolution x̃ → Y ′/ 〈τ〉. There-

fore, we can get the crepant resolution of Ỹ /G′ by the composition X̃ →
Y ′/ 〈τ〉 → Ỹ /G′.

Hence we get the following theorem.

Theorem 3.14. The quotient singularity A3/G has a crepant resolution.

We compute the Euler characteritic of the crepant resolution X̃ of A3/G.

Theorem 3.15. We have

χ(X̃) =
(r − 1)(r − 2)

6
+ 2r + 4.

Proof. The G′-action on Γ gives the G′-action on R3. The subdivision given in
Lemma 3.12 isG′-stable. We can separate the fan Σ defining Ỹ into theG′-orbits
with respect to the G′-action on R3. Let C0 be the cone in Σ corresponding to
the triangle T0 given in the proof of Lemma 3.12. Let Στ be the cones stable
for the action of τ except C0 and its faces. Let Σ′ be the set of representatives
of (Σ − |C0|)/G′ − Στ where |C0| is the set of faces of C0 and we choose the
representatives of (Σ− |C0|)/G′ containing Στ . Then we have

Ỹ /G′ = UC0/G
′ t

⊔
c∈Στ

O(c)/ 〈τ〉 t
⊔
c∈Σ′

O(c).

Hence

X̃ = π−1(UC0
/G′) t

⊔
c∈Στ

π−1(O(c)/ 〈τ〉) t
⊔
c∈Σ′

π−1(O(c)).

where π : X̃ → Y ′/G′ is the crepant resolution. By [20, Theorem 6.3], we have

χ(π−1(UC0
/G′)) = 6.
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Since π is isomorphism on O(c) for each c ∈ Σ′,

χ

( ⊔
c∈Σ′

π−1(O(c))

)
= ]{c ∈ Σ′ | dim(c) = 3}.

We put
Σ3 = {c ∈ Σ | dim(c) = 3}.

From the construction of the subdivision of T , ]Σ3 = r2. Since an element of Σ3

stable with respect to the σ-action is C0 only, ]((Σ3 − C0)/ 〈σ〉) = r2−1
3 . Since

τ acts freely on (Σ3 − C0)/ 〈σ〉 − Στ , we get

]{c ∈ Σ′ | dim(c) = 3} =
1

2

(
r2 − 1

3
− (r − 1)

)
=

(r − 1)(r − 2)

6
.

Lastly, we compute χ(π−1(O(c)/ 〈τ〉)) for c ∈ Στ . If dim(c) = 3, O(c) is
a point on singular loci. Hence π−1(O(c)/ 〈τ〉) is P1 (see [20, Theorem 5.5]).
Therefore,

χ(π−1(O(c)/ 〈τ〉)) = 2.

From construction of Σ, each c ∈ Στ is a face of a 3-dimensional cone c′ ∈ Στ .
Then O(c) ⊂ Uc′ . If c′ is spaned by x,y, z ∈ T , we may assume that

x · τ = y, y · τ = x, z · τ = z.

We denote the coordinate of Uc′ corresponding to x,y, z by x, y, z. The τ -action
on Uc′ is defined by

(x, y, z)→ (−y,−x,−z).

If dim(c) = 2, the orbit O(c) is defined by x = y = 0, z 6= 0 in Uc′ . Hence the
τ -action is free. Hence

χ(π−1(O(c)/ 〈τ〉)) =
χ(O(c))

2
= 0.

If dim(c) = 1, the orbit O(c) is defined by z = 0, x 6= 0, y 6= 0 on Uc′ . Hence the
fixed locus F is the line defined by x = −y on O(c). Each fiber of points in F
is P1. Therefore,

χ(π−1(O(c)/ 〈τ〉)) = χ(O(c)− F )/2 + χ(F )× χ(P1) = 0

We get

χ(
⊔
c∈Στ

π−1(O(c)/ 〈τ〉)) = 2]{c ∈ Στ | dim(c) = 3} = 2(r − 1).

Therefore

χ(X̃) = 6 + 2(r − 1) +
(r − 1)(r − 2)

6
=

(r − 1)(r − 2)

6
+ 2r + 4.
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From the proof of Lemma 3.11,

Γ =

{
1

r
[x, y, z]

∣∣∣∣x, y, z ∈ Z, x+ y + z ≡ 0 mod r

}
.

Since H = Γ/Z, H is{
1

r
[x, y, z]

∣∣∣∣0 ≤ x, y, z < r, x+ y + z ≡ 0 mod r

}
.

From this, we get

Corollary 3.16. We have

]Conj(G) =
(r − 1)(r − 2)

6
+ 2r + 1.

Hence the Euler characteristic computed in Theorem 3.15 is ]Conj(G) + 3.

Proof. Since H is Abelian, if h ∈ H and ghg−1 6= h then g 6∈ H. If this is the
case, then ghg−1 is given as a permutation of coordinate of h regarding h ∈ Γ.
Hence the normal subgroup H of G has the conjugacy classes represented by
the identity element or

1

r
[a, b, c] (0 ≤ a < b < c < r, a+ b+ c ≡ 0 mod r),

which is the case the coordinates are mutually distinct, or

1

r
[a, (r − a)/2, (r − a)/2] (0 ≤ a < r, a ≡ r mod 2),

which is the case two of coordinates are equal and the sum of coordinates is one,
or

1

r
[2a, r − a, r − a] (0 < a < r/2),

which is the case two of coordinates are equal and the sum of coordinates is
two.

The numbers of these elements with the last threee expressions are

(r − 1)(r − 2)

6
,
⌊r

2

⌋
,
⌈r

2

⌉
− 1

respectively. Hence the number of conjugacy classes contained in H is

(r − 1)(r − 2)

6
+ r.

From the proof of Lemma 3.7, Hσ ⊂ OG(σ). Since τστ = σ2, σ2 ∈ OG(σ). From
the proof of Lemma 3.7, Hσ2 ⊂ OG(σ). Hence the conjugacy class of σ contains
Hσ ∪Hσ2. Since τHστ = Hσ2, τHσ2τ = Hσ, we have OG(σ) = Hσ ∪Hσ2.
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Since σ−1τσ = στ , for h ∈ H,

hστ = hσ−1τσ

= σ−1(σhσ−1τ)σ

and

hσ2τ = hστσ−1

= σ(σ−1hστ)σ−1.

Hence hστ, hσ2τ are conjugate to h′τ for some h′ ∈ H. For h = 1
r [a, b, c],

hτh−1 =
1

r
[a, b, c]

(
τ

1

r
[−a,−b,−c]τ

)
τ =

1

r
[a− c, 0, c− a]τ.

In particular, hτh−1 = 1
r [−1, 0, 1]τ when h = 1

r [0, r − 1, 1] ∈ H. Hence, the
other conjugacy classes are represented by τ or

1

r
[0, a, r − a]τ (0 < a < r).

Therefore,

]Conj(G) =
(r − 1)(r − 2)

6
+ 2r + 1.

4 Stringy point-counting and mass formulas

In this section, we compute the numbers of Fq-points on some of crepant reso-
lutions constructed above, where q is a power of three. We can compute those
numbers from explicit description of resolutions. But now, we take alternative
approach using stringy point-count. Let k = Fq and let K = k((t)). The field
K has the valuation vK . We denote the valuation ring of K by OK . For an
OK-variety X, we denote its stringy point-count by ]stX, which is defined as
the volume of X with respect to a certain p-adic measure (for more detail, see
[17]). If X has a crepant resolution Y → X, we have

]Y (k) = ]stX.

Hence we can use this invariant for counting the k-points on a crepant resolution.
For a finite group G, a finite étale K-algebras M of degree ]G endowed with

a G-action and satisfying MG = OK is called a G-étale K-algebra. A homomor-
phism of G-étale K-algebras is a G-equivalent K-algebra homomorphism. We
denote the set of the isomorphism classes of G-étale K-algebras by G-Ét(K).
Note that each M ∈ G-Ét(K) is written as

M = L⊕n
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for some H-extension L/K where H is a subgroup of G.
Let V = AnOK = Spec OK [x1, . . . , xn]. For a linear G-action on V , we

consider the quotient variety X = V/G. For M ∈ G-Ét(K), we define its tuning
module ΞM by

ΞM = HomG
OK

(
n⊕
i=1

OKxi,OM

)
.

This is a free OK-module of rank n. The v-function vV is defined by

vV (M) =
fL
]G

lengthOK
HomOK (OK [x]1,OM )

OM · ΞM
in the errata of [14], where L is a field such that M = L⊕n and fL is the
inertia degree of L/K. When we have an OM -basis ϕi (i = 1, 2, . . . , n) of
HomOK (OK [x]1,OM ) and an OK-basis ψj =

∑
i cijϕi (j = 1, 2, . . . , n) of ΞM ,

vV (M) = vK(det(cij)) (1)

where vK is the valuation of K. By [17, Corollary 7.5, Proposition 8.5], we have
the following formula:

Theorem 4.1. With the above notation,

]stX =
∑

M∈G-Ét(K)

qn−vV (M)

]CG(HM )

where HM is the stabilizer subgroup of a connected component of Spec(M).

We compute the right hand side of the equality of the theorem for some of
the cases discussed in the last section.

4.1 The case G ∼= (Z/lZ)o (Z/3Z)
Let G be a group isomorphic to HoG′ where H = Z/lZ with l a prime different
from three and G′ = Z/3Z. Then the set G-Ét(K) is divided into three parts:

S1 = {K⊕3l},
S2 = {L⊕l ∈ G-Ét(K) | L/K : G′-extension},
S3 = {L⊕3 ∈ G-Ét(K) | L/K : H-extension}.

Case M ∈ S1: When M = K⊕3l, since M is unramified, we have vV (M) = 0.
Case M ∈ S2: When M = L⊕l ∈ S2, since vV has convertibility from [13,

Lemma 3.4], we have
vV (M) = vV |G′ (L)

where V |G′ is the G′-representation obtained by restricting the G-representation
V . The G′-extensions L/K are controlled by the Artin-Schreier theory. From
this theory, L is defined by

L = K[x]/(x3 − x− a)
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with a ∈ (k/P(k))⊕
⊕

3-j>0 kt
−j where P is the Artin-Schreier map defined by

P(x) = x3−x. We put j = −vK(a). Since V |G′ is a permutation representation,
if j > 0, we get

vV |G′ (L) =
dL/K

2
=

(j + 1)(3− 1)

2
= j + 1

by [18, Lemma 11.1] and [11, Proposition 7, page 50]. Let

S2,m = {M ∈ S2 | vV (M) = m}

From the computation of vV |G′ , S2,m is not empty if and only if m = 0 or
m = j + 1 for j ∈ Z>0 − 3Z. If m = 0, then vK(a) = 0. The number of such a
is ](k/P(k))− 1 = 2. If m = j + 1, then vK(a) = −j. Such a is written as

a = a0 +
∑

3-i>0,i≤j

ait
−i.

The number of choice of the coordinates ai is 3(q−1)qj−1−b j3c. Hence, we have

]S2,m =


2 (m = 0)

3(q − 1)qm−2−bm−1
3 c (m− 1 6∈ 3Z,m > 0)

0 (otherwise)

. (2)

Case M ∈ S3: Lastly we consider the case M = L⊕3 ∈ S3. We have

vV (M) = vV |H (L).

We now put an additional assumption q− 1 divided by l, it means k has the
l-th roots of unity.

Then the H-extensions L/K are controlled by the Kummer theory. Let
µ ∈ k× be a generator of k× and let ζl ∈ k be a primitive l-th root of unity.
Then the multiplicative group K×/(K×)l is generated by µ and t. Hence L is
generated by α ∈ L satisfying αl = f where f = µ or f = µit (i = 0, 1, . . . , l−1).
The H-action on L is defined by choosing h ∈ H such that

α · h = ζlα.

We define the age of h ∈ H by

age(h) =
1

l
[a, b, c]

if h = 1
l [a, b, c].

Lemma 4.2. For L as above, we have

vV |H (L) = age(h)vK(f).
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Proof. We denote h = 1
l [a1, a2, a3]. Let ϕ1, ϕ2, ϕ3 be the dual basis of x1, x2, x3,

i.e., ϕi are OK-linear maps from OK [x]1 to OL defined by

ϕi(xj) =

{
1 (i = j)
0 (i 6= j)

Then

3∑
i=1

ciϕi ∈ ΞL ⇔ 1 ≤ ∀j ≤ 3, (

3∑
i=1

ciϕi)(xj · h) = (

3∑
i=1

ciϕi)(xj) · h

⇔ 1 ≤ ∀j ≤ 3, ζ
aj
l cj = cj · h

⇔ 1 ≤ ∀j ≤ 3,∃dj ∈ OK , cj = αajdj .

Therefore, the maps {αaiϕi} are a basis of ΞL. Hence

vV |H (L) = vK(det diag(αa1 , αa2 , αa3)) = vK(f
a1+a2+a3

l ) = age(h)vK(f).

When M = L1 ⊕ L2 ⊕ L3, we may assume that L1σ = L2. Then, if
the H-action on L1 corresponds to h, the actions on L2, L3 correspond to
σ−1hσ, σhσ−1 respectively. Hence the G-action on M corresponds to the non-
trivial G-conjugacy classes of elements of H. Let

S3,m = {M ∈ S3 | vV (M) = m}.

If M ∈ S3,m, then the extension L/K correspoinding to M is determined by
f = µ. The number of G-action on M is ]Conj(H)−1 = l−1

3 . Hence S3,0 = l−1
3 .

If M ∈ S3,1, then the extension L/K is determined by f = µit. The number of
G-action on M is equal to the number of the conjugacy classes containing age
one elements. Since the inverses of age one elements have age two, the number

of age one elements is ]H−1
2 . Hence S3,1 = l(l−1)

6 . The number ]S3,2 is computed
similarly. We get

]S3,m =


l−1
3 (m = 0)

l(l−1)
6 (m = 1, 2)
0 (otherwise)

. (3)

Theorem 4.3. Let l be a prime different from three and let q be a power of
three such that q−1 is divisible by l. Let G be a small finite subgroup of SL3(k).
Suppose that G has a normal group H ∼= Z/lZ and G/H ∼= Z/3Z. Then we have

∑
M∈G-Ét(K)

qn−vV (M)

]CG(HM )
= q3 +

(
2 +

l − 1

6

)
q2 +

l − 1

6
q.
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Proof. We compute as∑
M∈G-Ét(K)

qn−vV (M)

]CG(HM )
=

∑
M∈G-Ét(K)

q3−vV (M)

]CG(HM )

=
∑
M∈S1

q3−vV (M)

]CG(1)
+
∑
M∈S2

q3−vV (M)

]CG(G′)
+
∑
M∈S3

q3−vV (M)

]CG(H)

=
q3

3p
+

∞∑
m=0

∑
M∈S2,m

q3−m

3
+

2∑
m=0

∑
M∈S3,m

q3−m

l
. (4)

From formula (2), we get

∞∑
m=0

∑
M∈S2,m

q3−m

3
=
∞∑
m=0

q3−m

3
]S2,m

=
2

3
q3 +

∑
p 6|j>0

q2−j

3
]S2,j+1

=
2

3
q3 +

∑
p 6|j>0

q2−j

3
3(q − 1)qj−1−b j3c

=
2

3
q3 + q(q − 1)

∑
p 6|j>0

q−b
j
3c

=
2

3
q3 + 2q(q − 1)

∞∑
l=0

q−l

=
2

3
q3 + 2q(q − 1)

1

1− q−1

=
2

3
q3 + 2q2.

For last sum in (4), we have

2∑
m=0

∑
M∈S3,m

q3−m

l
=

2∑
m=0

q3−m

l
]S3,m

=
q3

l

l − 1

3
+
q2

l

l(l − 1)

6
+
q

l

l(l − 1)

6

=
l − 1

3l
q3 +

l − 1

6
q2 +

l − 1

6
q

from (3). Therefore, we get∑
M∈G-Ét(K)

qn−vV (M)

]CG(HM )
=
q3

3l
+

(
2

3
q3 + 2q2

)
+

(
l − 1

3l
q3 +

l − 1

6
q2 +

l − 1

6
q

)

= q3 +

(
2 +

l − 1

6

)
q2 +

l − 1

6
q.
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4.2 The case G ∼= (Z/lZ)2 o (Z/3Z)
Next we consider the case that the group G is isomorphic to H o G′ where
H = (Z/lZ)2 with l a prime different from three and G′ = Z/3Z. We assume
that q − 1 is divisible by l. Then the set G-Ét(K) is divided into four sets:

S1 = {K⊕3l2},

S2 = {L⊕l
2

∈ G-Ét | L/K : (Z/3Z)-extension},
S3 = {L⊕3l ∈ G-Ét | L/K : (Z/lZ)-extension},
S4 = {L⊕3 ∈ G-Ét | L/K : (Z/lZ)2-extension}.

Case M ∈ S1: Since M is unramified, we have vV (M) = 0.

Case M ∈ S2: We take an M = L⊕l
2 ∈ S2. Let L0 be the first component

of M . Since any element in G whose order is three is conjugate to σ or σ2, we
may assume that StabG(L0) = G′. Moreover, a normalizing group NG(G′) is
G′. Hence, a component L of M such that StabG(L) = G′ is L0 only. From the
convertibility of vV , we have

vV (M) = vV |G′ (L0).

The extension L0/K is defined by

L0 = K[x]/(x3 − x− a)

by a ∈ (k/(P(k)))⊕
⊕

36|j>0 kt
−1. We put j = −vK(a). If j = 0, then L0/K is

unramified and we get vV |G′ (L0) = 0. On the other hand, if j > 0, we get

vV |G′ (L0) =
dL0/K

2
= j + 1.

Let
S2,m = {M ∈ S2 | vV (M) = m}.

By the same computation as the one for (2), we get

]S2,m =


2 (m = 0)

3(q − 1)qm−2−bm−1
3 c (m− 1 6= 3Z,m > 0)

0 (otherwise)

.

Case M ∈ S3: For M = L⊕3l ∈ S3, we have

vV (M) = vV |Z/lZ(L) = age(h)vK(f)
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for h ∈ H, f ∈ OK chosen as in Lemma 4.2. The number of elements of age two
in H is

]{h ∈ H | age(h) = 2} = ]{h−1 ∈ H | age(h) = 2}

= ]

{
1

l
[a, b, c] ∈ H | a+ b+ c = l, abc 6= 0

}
=

(
l − 1

2

)
=

(l − 1)(l − 2)

2
.

We put
S3,m = {M ∈ S3 | vV (M) = m}.

Then we can compute ]S3,m similarly as (3). When M ∈ S3,0, L0 is determined
from f = µ and the G-aciton on M corresponds to a nontrivial G-conjugacy

class in H. Hence ]S3,0 = l2−1
3 . On the other hand, when M ∈ S3,m for

m = 1, 2, L0 is determined from f = µit for i = 0, 1, . . . , l− 1 and the G-action
on M corresponds to a conjugacy class of H whose age is m. Hence we get
following formulas:

]S3,m =


l2−1

3 (m = 0)
l(l−1)(l+4)

6 (m = 1)
l(l−1)(l−2)

6 (m = 2)
0 (otherwise)

Case M ∈ S4: We consider M = L⊕3 ∈ S4. Since L/K is a (Z/lZ)2-
extension and K×/(K×)l = {µitj | 0 ≤ i, j ≤ l − 1}, L has generators α, β ∈ L
over K such that

αl = µ, βl = t.

The H-action on L corresponds to choosing the elements h1, h2 acting by

α · h1 = ζlα, β · h1 = β,

α · h2 = α, β · h2 = ζlβ.

Lemma 4.4. For above L, we have

vV |H (L) = age(h2)

Proof. We define the OK-linear maps ϕi as in the proof of Lemma 4.2. We
denote h1, h2 as 1

l [a1, a2, a3], 1
l [b1, b2, b3]. Then

3∑
i=1

ciϕi ∈ ΞL ⇔ 1 ≤ ∀j ≤ 3,

(
3∑
i=1

ciϕi

)
(xj · hm) =

(
3∑
i=1

ciϕi

)
(xj) · hm for m = 1, 2

⇔ 1 ≤ ∀j ≤ 3, ζ
aj
l cj = cj · h1, ζ

bj
l cj = cj · h2

⇔ 1 ≤ ∀j ≤ 3,∃dj ∈ OK , cj = αajβbjdj .
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Hence (αajβbjϕj)
3
j=1 are OK-basis of ΞL. Therefore, we get

vV |H (L) = vK(µ
a1+a2+a3

l t
b1+b2+b3

l ) = age(h2).

The G-action on M is defined by the orbit of (h1, h2) in (H−{I})×(H−{I})
about the G-action defined by taking componentwise conjugate. Note that this
action is free. We put

S4,m = {M ∈ G-Ét(K) | vV (M) = m}

for m = 1, 2. The number of pairs (h1, h2) with age(h2) = 1 is

(l − 1)(l + 4)

2
(l2 − l) =

l(l − 1)2(l + 4)

2

since h1 is chosen from H −〈h2〉. Since G-action on (H −{I})2 is free, we have

]S4,1 =
l(l − 1)2(l + 4)

6
.

Similarly, the number of pairs (h1, h2) with age(h2) = 2 is

(l − 1)(l − 2)

2
(l2 − l) =

l(l − 1)2(l − 2)

2
,

and we have

]S4,2 =
l(l − 1)2(l − 2)

6
.

]S4,m =

{
1
6 l(l − 1)2(l + 4) (m = 1)
1
6 l(l − 1)2(l − 2) (m = 2)

.

Theorem 4.5. Let l be a prime different from three and let q be a power of
three such that q−1 is divisible by l. Let G be a small finite subgroup of SL3(k).
Suppose that G has a normal group H ∼= (Z/lZ)2 and G/H ∼= Z/3Z. Then we
have ∑

M∈G-Ét(K)

qn−vV (M)

]CG(HM )
= q3 +

(
2 +

(l − 1)(l + 4)

6

)
q2 +

(l − 1)(l − 2)

6
q

Proof. By the same computation as in the proof of Theorem 4.3, we have

∑
M∈S2

q3−vV (M)

CG(HM )
=

2

3
q3 + 2q2.
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From the above computations, we get

∑
M∈S3

q3−vV (M)

CG(HM )
=

1

l2
(
q3]S3,0 + q2]S3,1 + q]S3,2

)
=
l2 − 1

3l2
q3 +

(l − 1)(l + 4)

6l
q2 +

(l − 1)(l − 2)

6l
q,

and ∑
M∈S4

q3−vV (M)

CG(HM )
=

1

l2
(
q2]S4,1 + q]S4,2

)
=

(l − 1)2(l + 4)

6l
q2 +

(l − 1)2(l − 2)

6l
q.

Therefore,

∑
M∈G-Ét(K)

qn−vV (M)

]CG(HM )

=
∑
M∈S1

q3−vV (M)

CG(HM )
+
∑
M∈S2

q3−vV (M)

CG(HM )
+
∑
M∈S3

q3−vV (M)

CG(HM )
+
∑
M∈S4

q3−vV (M)

CG(HM )

=
1

3l2
q3 +

(
2

3
q3 + 2q2

)
+

(
l2 − 1

3l2
q3 +

(l − 1)(l + 4)

6l
q2 +

(l − 1)(l − 2)

6l
q

)
+

(
(l − 1)2(l + 4)

6l
q2 +

(l − 1)2(l − 2)

6l
q

)
= q3 +

(
2 +

(l − 1)(l + 4)

6

)
q2 +

(l − 1)(l − 2)

6
q.

4.3 The case G ∼= (Z/lZ)2 oS3

Lastly, we consider the case that G ∼= S3. We put H ∼= (Z/lZ)2 with a prime
l 6= 3 and G′ ∼= S3. As a preparation, we describe some properties of G. We
may assume that σ, τ ∈ G′ be

σ =

0 1 0
0 0 1
1 0 0

 , τ =

 0 0 −1
0 −1 0
−1 0 0

 .
The subset H − {I} is parted in two sets

Hf =

{
1

l
[a, b, c]

∣∣∣∣]{a, b, c} = 3

}
, H ′ =

{
1

l
[a, b, c]

∣∣∣∣]{a, b, c} = 2

}
.
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Since any h ∈ H ′ can be written as

h = σ−i
1

l
[a, a, b]σi (i = 0, 1, 2)

with 2a + b ∈ lZ, we have ]H ′ = 3(l − 1), and hence ]Hf = (l − 1)(l − 2).
From the proof of Corollary 3.16, the conjugacy classes of G is represented
by 1, σ, τ, 1

r [c, d, c]τ, 1
l [c, d, c],

1
l [a, b, c] where 1

l [e, d, e] ∈ H ′, 1
l [a, b, c] ∈ Hf and

a < b < c. When we write M ∈ G-Ét(K) as M = L1 ⊕ L2 ⊕ · · · ⊕ Lr where
Li are copy of a Galois extension L/K, for any i, there exists g ∈ G such that
g(L1) = Li. Then the stable subgroups HM , H

′
M of L1, Li are conjugate by g.

Therefore, we may assume that, if HM 6⊂ H, then HM ∩G′ 6= ∅.
Suppose that q ≡ 1 mod 2l and q > l + 1. The set G-Ét(K) of G-étale

K-algebras is parted into following seven sets.

S1 = {M ∈ G-Ét(K) | HM is trivial},
S2 = {M ∈ G-Ét(K) | HM = 〈τ〉},
S3 = {M ∈ G-Ét(K) | HM = 〈σ〉},
S4 = {M ∈ G-Ét(K) | HM

∼= Z/lZ and HM ⊂ H},
S5 = {M ∈ G-Ét(K) | HM = G′},
S6 = {M ∈ G-Ét(K) | HM = H},
S7 = {M ∈ G-Ét(K) | HM ∩H ∼= Z/lZ and HM ∩G′ = 〈τ〉}.

We computed vV (M) in the previous cases except M ∈ S5 ∪ S7. Let

Si,m = {M ∈ Si | vV (M) = m}.

Case M ∈ S1: Since M is unramified, we have vV (M) = 0.
Case M ∈ S2: Since HM

∼= Z/2Z, the extension L/K is determined by
f ∈ {µ, t, µt}. From Lemma 4.2, we have

vV (M) = vK(f).

Note that τ is diagonalized as diag(1,−1,−1) and hence age(τ) = 1. Thus

]S2,m =

{
1 (m = 0)

2 (m = 1)

Since CG(HM ) =
〈

1
l [1, 2l − 2, 1], τ

〉
, we have

∑
M∈S2

q3−vV (M)

CG(HM )
=

1

2l

(
q3 + 2q

)
(5)

Case M ∈ S3: We take an M = L⊕l
2 ∈ S2. From the convertibility of vV ,

we have
vV (M) = vV |G′ (L).
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The extension L0/K is defined by

L0 = K[x]/(x3 − x− a)

by a ∈ (k/(P(k)))⊕
⊕

3-j>0 kt
−1. We put j = −vK(a). If j = 0, then L0/K is

unramified and we get vV |G′ (L0) = 0. On the other hand, if j > 0, we get

vV |G′ (L0) =
dL0/K

2
= j + 1.

Since the normalizer NG(HM ) is G′, ][NG(HM ) : HM ] = 2. From (2), we get

]S3,m =


1 (m = 0)

3(q−1)q
m−2−bm−1

3 c
2 (m− 1 6= 3Z,m > 0)
0 (otherwise)

.

Therefore ∑
M∈S3

q3−vV (M)

CG(HM )
=

1

3
q3 + q. (6)

Case M ∈ S4: For M = L⊕6l ∈ S4, we have

vV (M) = vV |Z/lZ(L) = age(h)vK(f)

for h ∈ H, f ∈ OK chosen as in Lemma 4.2. We put

S4,m,f = {M ∈ S4,m | h ∈ Hf}, S′4,m = {M ∈ S4,m | h ∈ H ′}.

Then we can compute ]S4,m similarly as (3). Note that the G-aciton on M
corresponds to a nontrivial G-conjugacy class in H. Since

H ′ =

〈
1

l
[1, 2l − 2, 1]

〉
∪
〈

1

l
[2l − 2, 1, 1]

〉
∪
〈

1

l
[1, 1, 2l − 2]

〉
,

we have

{h ∈ H ′ | age(h) = 1} = {1

l
[a, l − 2a, a],

1

l
[l − 2a, a, a],

1

l
[a, a, l − 2a] | 0 < a ≤ l

2
},

{h ∈ H ′ | age(h) = 2} = {1

l
[a, 2l − 2a, a],

1

l
[2l − 2a, a],

1

l
[a, a, 2l − 2a] | l

2
< a ≤ l − 1}.

Since OG(h) = 3 for h ∈ H ′, we have

]S′4,m =


l − 1 (m = 0)

l
⌊
l
2

⌋
(m = 1)

l
⌈
l
2

⌉
− 1 (m = 2)
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On the other hand, since

]{h ∈ H | age(h) = i} =

{
(l−1)(l+4)

2 (i = 1)
(l−1)(l−2)

2 (i = 2)

we have

]{h ∈ H ′ | age(h) = i} =

{
(l−1)(l+4)

2 − 3
⌊
l
2

⌋
(i = 1)

(l−1)(l−2)
2 − 3

(⌈
l
2

⌉
− 1
)

(i = 2)

and hence

]S4,m,f =


l2−1−3(l−1)

6 (m = 0)
l
6

(
(l−1)(l+4)

2 − 3
⌊
l
2

⌋)
(m = 1)

l
6

(
(l−1)(l−2)

2 − 3
(⌈

l
2

⌉
− 1
))

(m = 2)

Since

]CG(HM ) =

{
l2 (h ∈ Hf )

2l2 (h ∈ H ′)

we get following formulas:∑
M∈S4

q3−vV (M)

CG(HM )
= q3

(
1

l2
]S4,0,f +

1

2l2
]S′4,0

)
+ q2l

(
1

l2
]S4,1,f +

1

2l2
]S′4,1

)
+ ql

(
1

l2
]S4,2,f +

1

2l2
]S′4,2

)
=
l2 − 1

6l2
q3 +

(l − 1)(l + 4)

12l
q2 +

(l − 1)(l − 2)

12l
q (7)

Case M ∈ S5: In this case, L/K is an S3-extension. Put Q = Lσ. Then
L/Q is a Z/3Z-extension and Q/K is a Z/2Z-extension. By the Kummer theory
and the Artin-Schreier theory, Q is generated by α ∈ Q over K such that
α2 ∈ {µ, t, µt} and L is generated by β ∈ L over Q such that

β3 − β ∈

F3λ⊕
⊕

3-j>0

kQπ
−j
Q

 =: RPQ

where kQ is the residue field of Q, λ ∈ kQ − P(kQ), and πQ is a uniformizer of
Q. Note that we can choose πQ satisfying πQ · τ = ±πQ. Hence the set RPQ is
invariant under the action of τ . We may assume that

α · σ = α,

α · τ = −α,
β · σ = β + 1.
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We put β · τ =
∑2
i=0 ciβ

i with ci ∈ Q. Since τσ = σ2τ , we have

β · (τσ) = β · (σ2τ)

and
(c0 + c1 + c2) + (c1 − c2)β + c2β

2 = (c0 − 1) + c1β + c2β
2.

Then, c2 = 0, c1 = −1, in other words, β · τ = c0 − β. Since τ2 = 1,

β = (β · τ) · τ = (c0 · τ − c0) + β.

Hence c0 · τ = c0 and c0 ∈ K. Let b = β3 − β. Then

b · τ = (β3 − β) · τ = (c30 − c−0)− b

We get b · τ + b = c30 − c0. Since the set RPQ is closed under the τ -action and
addition, b · τ + b ∈ RPQ. Now RPQ ∩ P(K) = {0}. Therefore b · τ = −b and
c0 ∈ F3. By replacing β with β±1 if necessary, we may assume that β · τ = −β.

If α2 = µ, any element of kQ is written as sα+ u by s, u ∈ Fq. We have

P(sα+ u) = P(sα) + P(u)

= s3α3 − sα+ u3 − u
= (s3µ− s)α+ u3 − u.

Hence P(kQ) ∩ Fq = P(Fq). Then we can choose λ from Fq and πQ = t. We
put b = a0λ+

∑
3-j>0 ajt

−j where a0 ∈ F3, aj ∈ kQ. Then

b · τ = a0λ+
∑

3-j>0

(aj · τ)t−j

Since b · τ = −b, aj ∈ αFq for any j. Hence

b ∈
⊕

3-j>0

αFqt−j .

If α 6= µ, we can choose α as uniformaizer of Q. Then b is written as a0λ +∑
3-j>0 ajα

−j where a0 ∈ F3, aj ∈ kQ = Fq. Since b · τ = −b and

b · τ = a0λ+
∑

3-j>0

(−1)jajα
−j ,

we get aj = 0 for any j ∈ 2Z, and hence

b ∈
⊕

j>0,gcd(j,6)=1

Fqα−j
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. Let ϕ1, ϕ2, ϕ3 be the dual basis of x1, x2, x3. Then

(

3∑
i=1

ciϕi) ∈ ΞL ⇔ 1 ≤ ∀j ≤ 3,

{
(
∑3
i=1 ciϕi)(xj · σ) = ((

∑3
i=1 ciϕi)(xj)) · σ

(
∑3
i=1 ciϕi)(xj · τ) = ((

∑3
i=1 ciϕi)(xj)) · τ

⇔

{
c1 = c2 · σ = c3 · σ2

c1 = −c3 · τ, c2 = −c2 · τ

⇔ c1 = c2 · σ2, c3 = c2 · σ, c2 · τ = −c2
⇔ c1 = c2 · σ2, c3 = c2 · σ, c2 ∈ (Kα⊕Kβ ⊕Kαβ2) ∩ OK

Since vL(α) = 3vQ(α) ∈ 3Z and vL(β) = vQ(b) 6∈ 3Z, we have

vL(α) 6≡ vL(β) 6≡ vL(αβ2) 6≡ vL(α) mod 3.

Hence, for a1, a2, a3 ∈ K,

vL(a1α+ a2β + a3αβ
2) = min(vL(a1α), vL(a2β), vL(a3αβ

2)).

Thus,

(Kα⊕Kβ ⊕Kαβ2) ∩ OK = αOK + tn1βOK + tn2αβ2OK

where

n1 =

⌈
−vL(β)

eL/K

⌉
, n2 =

⌈
−2vL(β)− vL(α)

eL/K

⌉
and eL/K is the ramification index of L/K. Note that

eL/K =

{
3 (α2 = µ)

6 (otherwise)

Hence, we can take a basis of ΞL as the morphisms ψ1, ψ2, ψ3 corresponding to
c2 = α, tn1β, tn2αβ2 respectively:

ψ1 = α

3∑
i=1

ϕ, ψ2 = tn1

3∑
i=1

β · σi+1ϕi, αψ3 = tn2

3∑
i=1

β · σi+1ϕi

Therefore

vV (M) = vK

det

 α α α
β − 1 β β + 1

α(β − 1)2 αβ2 α(β + 1)2

+ n1 + n2

= vK(α2) + n1 + n2.

by the formula (1). We put

S5,m,j = {M ∈ S5 | vK(α2) = m, vLσ (b) = −j}
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for m ∈ {0, 1} and j > 0. Then, we get

vV (M) =

{ ⌈
j
3

⌉
+
⌈

2j
3

⌉
(m = 0, j ∈ Z− 3Z)

1 +
⌈
j
6

⌉
+
⌈

2j−3
6

⌉
(m = 1, j ∈ Z, gcd(j, 6) = 1)

for M ∈ S5,m,j . We have

]

b ∈ ⊕
3-j>0

αFqt−j
∣∣∣∣∣∣vQ(b) = −j

 = (q − 1)qj−b
j
3c−1

when α2 = µ and

]

b ∈ ⊕
j>0,gcd(j,6)=1

Fqα−j
∣∣∣∣∣∣vQ(b) = −j

 = (q − 1)qj−2b j+1
3 c−1

when α2 = t, µt. Since the G′-action on L corresponding to −b is conjugate
with the one corresponding to b, we have

]S5,m,j =

{
1
2 (q − 1)qj−b

j
3c−1 (m = 0, j ∈ Z− 3Z)

(q − 1)qj−2b j+1
3 c−1 (m = 1, j ∈ Z, gcd(j, 6) = 1)

Therefore,

∑
M∈S5

q3−vV (M)

CG(HM )
=

1∑
m=0

∞∑
j=1

∑
M∈S5,m,j

q3−vV (M)

=
∑

j∈Z>0−3Z

∑
M∈S5,0,j

q3−d j3e−d 2j
3 e

+
∑

j∈Z>0,gcd(j,6)=1

∑
M∈S5,1,j

q2−d j6e−d 2j−3
6 e

=

∞∑
l=0

∑
M∈S5,0,3l+1

q1−3l +

∞∑
l=0

∑
M∈S5,0,3l+2

q−3l

+

∞∑
l=0

∑
M∈S5,0,6l+1

q1−3l +

∞∑
l=0

∑
M∈S5,0,6l+5

q−3l−1

=
1

2

∞∑
l=0

(q − 1)q1−l +

∞∑
l=0

(q − 1)q1−l

+

∞∑
l=0

(q − 1)q1−l +

∞∑
l=0

(q − 1)q−l−1

= 2q2 + q (8)
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Case M ∈ S6: We consider M = L⊕6 ∈ S4. Since L/K is a (Z/lZ)2-
extension and K×/(K×)l = {µitj | 0 ≤ i, j ≤ l − 1}, L has generators α, β ∈ L
over K such that

αl = µ, βl = t.

The H-action on L corresponds to choosing the elements h1, h2 acting by

α · h1 = ζlα, β · h1 = β,

α · h2 = α, β · h2 = ζlβ.

From Lemma 4.4,
vV (M) = age(h2).

The G-action on M is defined by the orbit of (h1, h2) in (H −{I})× (H −{I})
about the G-action defined by taking componentwise conjugate. Note that this
action is free. The number of pairs (h1, h2) with age(h2) = 1 is

(l − 1)(l + 4)

2
(l2 − l) =

l(l − 1)2(l + 4)

2

since h1 is chosen from H −〈h2〉. Since G-action on (H −{I})2 is free, we have

]S6,1 =
l(l − 1)2(l + 4)

12
.

Similarly, the number of pairs (h1, h2) with age(h2) = 2 is

(l − 1)(l − 2)

2
(l2 − l) =

l(l − 1)2(l − 2)

2
,

and we have

]S6,2 =
l(l − 1)2(l − 2)

12
.

]S6,m =

{
l(l−1)2(l+4)

12 (m = 1)
l(l−1)2(l−2)

12 (m = 2)
.

Threrefore, we have

∑
M∈S6

q3−vV (M)

CG(HM )
=

1

l2

(
l(l − 1)2(l − 4)

12
q2 +

l(l − 1)2(l − 2)

12
q

)
(9)

Case M ∈ S7: Since HM ∩ G′ = 〈τ〉 is acts on HM ∩ H by conjugate,
HM ∩ H =

〈
1
l [1, 2l − 2, 1]

〉
or HM ∩ H =

〈
1
l [1, 0, l − 1]

〉
. If HM ∩ H is the

former, then HM = 〈hτ〉 ∼= Z/2lZ for some h ∈ H. In the latter case, HM =
〈 1l [1, 0, l− 1], τ〉 which is isomorphic to the dihedral group. Since the tame part
of absolute Galois group of K is abelian, the latter appears only if l = 2.
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When HM
∼= Z/2lZ, HM is generated by hτ for some h = 1

l [a, b, c] ∈ H.
Since hτ is conjugate with

1

l
[0, l − a, a]hτ

1

l
[0, a− l,−a] = h

1

l
[−a, 0, a]τ =

1

l
[0, b, l − b]τ,

we may assume that HM =
〈

1
l [0, 1, l − 1]τ

〉
. From the Kummar theory, there

exists a generator α ∈ L over K such that

α2l ∈ {µ, µtl, µ2tl} ∪ {µit | 0 ≤ i ≤ 2l − 1} ∪
{
µ2j−1t2 | 1 ≤ j ≤ l

}
and the generator h ∈ HM such that α ·hτ = ζ2lα where ζ2l is a 2l-th primitive
root of unity. Note that if l = 2, µ2t2 is in (K×)2, and hence

α4 ∈ {µ, µt2, t, µt, µ2t, µ3t}

Since HM =
〈

1
l [0, 1, l − 1]τ

〉
, h is written as(

1

l
[0, 1, l − 1]τ

)2i−1

=
1

l
[(i− 1)(l − 1), i, i(l − 1)] (1 ≤ i ≤ l, 2i− 1 6= l).

Lemma 4.6. For L as above, we have

vV |HM (L) = vV (M) =


0 (α2l = µ)

1 (vK(α2l) ≤ 2, i ≥ l
2 )

2 (vK(α2l) ≤ 2, i < l
2 )

1 (vK(α2l) = l)

Proof. We write α2 as µmtn and h as 1
l [a, b, c]. Note that a+ b+ c = age(h)l. If

n = 0, vV |HM (L) = 0 since L/K is unramified. Let ϕ1, ϕ2, ϕ3 be the dual basis
of x1, x2, x3. Then

(

3∑
i=1

ciϕi) ∈ ΞL ⇔ 1 ≤ ∀j ≤ 3, (

3∑
i=1

ciϕi)(xj · hτ) = (

3∑
i=1

ciϕi)(xj) · hτ

⇔


−ζal c3 = c1 · hτ,
−ζbl c2 = c2 · hτ,
−ζcl c1 = c3 · hτ

⇔ c1 · (hτ)2 = ζa+c
l c1, c2 ∈ α2b+lK ∩ OK , c3 = −ζ−al c1 · hτ

⇔ c1 · hτ = ±ζa+c
2l c1, c2 ∈ α2b+lK ∩ OK , c3 = −ζ−al c1 · hτ

⇔ c1 ∈ (αa+cK + αa+c+lK) ∩ OK , c2 ∈ α2b+lK ∩ OK , c3 = −ζ−al c1 · hτ

Now we have

(αa+cK + αa+c+lK) ∩ OK = αa+ctn1OK + αa+c+ltn2OK
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where

n1 = −
⌊

(a+ c)n

2l

⌋
, n2 = −

⌊
(a+ c+ l)n

2l

⌋
,

and
α2b+lK ∩ OK = α2b+ltn3OK

where

n3 = −
⌊

(2b+ l)n

2l

⌋
.

Hence we get an OK-basis

tn1(αa+cϕ1 − ζc−a2l αa+cϕ3), tn3α2b+lϕ2, t
n2(αa+c+lϕ1 + ζc−a2l αa+c+lϕ3)

of ΞL. By the formula (1),

vV |HM (L) = vK

det

 αa+c 0 αa+c+l

0 α2b 0
−ζc−a2l αa+c 0 ζc−a2l αa+c+l

+ n1 + n2 + n3

= vK(α2(a+b+c+l)) + n1 + n2 + n3

= (age(h) + 1)n+ n1 + n2 + n3

Since a+ c = lage(h)− b,

n1 = −
⌊

(lage(h)− b)n
2l

⌋
, n2 = −

⌊
(lage(h) + l − b)n

2l

⌋
.

Hence

(age(h) + 1)n+ n1 + n2 + n3 =

2n−
⌊

(l−b)n
2l

⌋
−
⌊

(2l−b)n
2l

⌋
−
⌊

(2b+l)n
2l

⌋
(age(h) = 1)

3n−
⌊

(2l−b)n
2l

⌋
−
⌊

(3l−b)n
2l

⌋
−
⌊

(2b+l)n
2l

⌋
(age(h) = 2)

Since
⌊

(3l−b)n
2l

⌋
= 1 +

⌊
(l−b)n

2l

⌋
, we have

vV |HM (L) = (age(h) + 1)n+ n1 + n2 + n3

= 2n−
⌊

(l − b)n
2l

⌋
−
⌊

(2l − b)n
2l

⌋
−
⌊

(2b+ l)n

2l

⌋

=


2−

⌊
l−b
2l

⌋
−
⌊

2l−b
2l

⌋
−
⌊

2b+l
2l

⌋
(n = 1)

4−
⌊
l−b
l

⌋
−
⌊

2l−b
l

⌋
−
⌊

2b+l
l

⌋
(n = 2)

2l −
⌊
l−b
2

⌋
−
⌊

2l−b
2

⌋
−
⌊

2b+l
2

⌋
(n = l)

=


2−

⌊
2b+l

2l

⌋
(n = 1)

2−
⌊

2b
l

⌋
(n = 2)

2l − b−
⌊
l−b
2

⌋
−
⌊

2l−b
2

⌋
−
⌊
l
2

⌋
(n = l)
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If n = 1, 2, then we have

vV |HM (L) =

{
2 (b < l

2 )

1 (b ≥ l
2 )

If n = l, then we have

vV |HM (L) =

{
2l − b− 3l−2b−1

2 −
⌊
l
2

⌋
(l 6= 2)

1 (l = 2)
= 1

Therefore, if l 6= 2, then

]S7,m =


l − 1 (m = 0)
3l(l−1)

2 + 2(l − 1) (m = 1)
3l(l−1)

2 (m = 2)

Therefore, ∑
M∈S7

q3−vV (M)

CG(HM )
=

1

2l

(
q3]S7,0 + q2]S7,1 + q]S7,2

)
=
l − 1

2l
q3 +

(l − 1)(3l + 4)

4l
q2 +

3(l − 1)

4
q. (10)

If l = 2, since 1
l [0, 1, 1]τ = τ( 1

l [1, 1, 0]τ)τ , we have

]{M ∈ S7,m | HM
∼= Z/4Z} =

{
1 (m = 0)

5 (m = 1)

When HM isomorphic to dihedral group, l = 2 and HM
∼= (Z/2Z)2. From

Lemma 4.4 and any element of HM is age one, vV (M) = 1. The choices of a
ordered pair of generators of HM are (h, τ), (τ, h), (τ, hτ) up to conjugate where
h = 1

l [1, 0, 1]. Therefore, we have

]{M ∈ S7,1 | HM
∼= (Z/2Z)2} = 3

and hence

]S7,m =

{
1 (m = 0)

8 (m = 1)

Therefore, ∑
M∈S7

q3−vV (M)

CG(HM )
=

1

4

(
q]S7,1 + q2]S7,2

)
=

1

4
q3 + 2q2. (11)

Therefore, we get
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Theorem 4.7. Let l be a prime different from three and let q be a power of
three such that q−1 is divisible by l. Let G be a small finite subgroup of SL3(k).
Suppose that G has a normal group H ∼= (Z/lZ)2 and G/H ∼= S3. Then we
have ∑

M∈G-Ét(K)

qn−vV (M)

]CG(HM )
=

{
q3 + (l+5)(l+7)

12 q2 + (l+1)(l+5)
12 q (l 6= 2)

q3 + 6q2 + q (l = 2)

Proof. If l 6= 2, then

∑
M∈G-Ét(K)

q3−vV (M)

]CG(HM )
=

7∑
i=1

∑
M∈Si

q3−vV (M)

]CG(HM )

= q3 +
(l + 5)(l + 7)

12
q2 +

(l + 1)(l + 5)

q

from the equations (5), (6), (7), (8), (9), and (10). If l = 2, then

∑
M∈G-Ét(K)

q3−vV (M)

]CG(HM )
=

7∑
i=1

∑
M∈Si

q3−vV (M)

]CG(HM )

= q3 + 6q2 + q

from the equations (5), (6), (7), (8), (9), and (11).

4.4 Computing Euler characteristic

From Theorems 4.3, 4.5, and 4.7, we can get the Euler characteristic of a crepant
resolution of the associated quotient variety. We get the following formula from
the Weil conjecture.

Proposition 4.8. For a smooth variety Y over Fq. Suppose that

]Y (Fqm) =

n∑
i=1

aiq
im

where ai ∈ Z. Then

χ(Y ) =

n∑
i=1

ai.

Proof. Let Z(t) ∈ Q[[t]] be the zeta function of Y , which is defined as

Z(t) = exp

( ∞∑
m=1

]Y (Fqm)
tm

m

)
,

or equivalently

d

dt
logZ(t) =

∞∑
m=1

]Y (Fqm)tm−1.
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From the assumption, we have

∞∑
m=1

]Y (Fqm)tm−1 =

n∑
i=1

aiq
i

1− qit
.

Hence

Z(t) =

n∏
i=1

1

(1− qit)ai
.

From the Weil conjecture, we get

χ(Y ) =

n∑
i=1

ai.

Corollary 4.9. Let G be a finite group considered in Theorem 4.3, 4.5, or 4.7.
Suppose that A3/G have a crepant resolution Y → A3/G. Then

χ(Y ) =


3 + l−1

3 (H = Z/lZ, G′ = Z/3Z)

3 + l2−1
3 (H = (Z/lZ)2, G′ = Z/3Z)

(l−1)(l−2)
6 + 2l + 4 (H = (Z/lZ)2, G′ = S3)

.

Proof. By the property of the stringy-point count, we have

]Y (Fq) = ]stA3/G.

Hence the assertion follows from the previous proposition and Theorem 4.3, 4.5,
or 4.7.

5 An example where the v-function is not de-
termined by the ramification filtration

Let k be an algebraic closed field of characteristic p > 0. Let K be the field k((t))
of Laurent power series and let OK be the valuation ring of K. We consider the
2-dimensional OK-representation V = A2

OK of G = (Z/pZ)2 defined by

σ =

[
1 1
0 1

]
, τ =

[
1 a
0 1

]
for some a ∈ k − Fp where σ, τ are generators of G.

We define a subset J ⊂ K by

J =
⊕

p-j,j>0

kt−j ,

which is an additive group of representatives of K/P(K). Let F/K be a G-
extension. Since Fσ/K and F τ/K are (Z/pZ)-extensions, there exist α, β ∈ F
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uniquely such that Fσ = K[α], F τ = K[β], αp − α = g1 ∈ J, βp − β = g2 ∈ J ,
and

α · τ = α+ 1, β · σ = β + 1.

by the Artin-Schreier theory. In this case, we denote F by Fg1,g2 where the pair
(g1, g2) is chosen from

J (2) = {(g1, g2) ∈ J2 | g1 6= 0, g2 6∈ Fpg1}.

We denote vV (Fg1,g2) by vV (g1, g2) for simplicity.
Let OK [x1, x2] be the coordinate ring of V .

Proposition 5.1. The tuning module ΞF of F ∈ G-Ét(K) is isomorphic to

ΘF := {m ∈ OF | m(σ − 1)2 = 0,m(τ − 1) = am(σ − 1)}

as an OK-module by the following maps

ΞF 3 ϕ 7→ ϕ(x2) ∈ ΘF ,

ΘF 3 m 7→ mϕ2 +m(σ − 1)mϕ1 ∈ ΞF .

Proof. Let ϕ ∈ ΞF and let m = ϕ(x2). Since ϕ ∈ ΞF , we get

m(σ − 1)2 = ϕ(x2(σ − 1)2) = ϕ(0) = 0

and

m(τ − 1) = ϕ(x2(τ − 1)) = ϕ(ax1) = aϕ(x2(σ − 1)) = am(σ − 1).

Thus m ∈ ΘF .
On the other hand, for m ∈ ΘF , we define

ϕ = (m(σ − 1))ϕ1 +mϕ2

where ϕi : OK [x1, x2]1 → OF are OK-linear maps defined by ϕj(xi) = δij . Then

ϕ(x1)σ = m(σ − 1)σ = m(σ − 1) = ϕ(x1) = ϕ(x1σ),

ϕ(x1)τ = m(σ − 1)τ = (am(σ − 1) +m)(σ − 1) = m(σ − 1) = ϕ(x1) = ϕ(x1τ),

ϕ(x2)σ = mσ = m(σ − 1) +m = ϕ(x1 + x2) = ϕ(x2σ),

ϕ(x2)τ = mτ = am(σ − 1) +m = ϕ(ax1 + x2) = ϕ(x2τ).

These equalities show that ϕ is G-equivariant and belongs to ΞF .
Therefore, we have two OK-homorphisms

ΞF 3 ϕ 7→ ϕ(x2) ∈ ΘF ,

ΘF 3 m 7→ mϕ2 +m(σ − 1)ϕ1 ∈ ΞF

These maps are inverse of each other.
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We get the following formula for v-function.

Theorem 5.2. For (g1, g2) ∈ J (2), we put f = apg1 + g2. Then

vV (g1, g2) =

⌈
−min{vK(g1), pvK(f)}

p2

⌉
Proof. The field Fσ endowed with the action of 〈τ〉 can be regarded as a cyclic
representation of Z/pZ over K. Since

αi(τ − 1) = (α+ 1)i − αi = iαi−1 +

i−2∑
j=0

(
i

j

)
αj

for i ≥ i, αi(t − 1)j is a polynomial of α degree i − j. In particular, αp−1(t −
1)p−1 6= 0. Hence the matrix of τ on this representation has only one Jordan
block. The same is true for F τ endowed with the action of 〈σ〉. Hence we can
choose K-bases (Ai)

p−1
i=0 ⊂ Fσ and (Bj)

p−1
j=0 ⊂ F τ of Fσ and F τ respectively

which satisfy

Ai · (τ − 1) = Ai−1 (i = 1, 2, . . . , p− 1),

Bj · (σ − 1) = Bj−1 (j = 1, 2, . . . , p− 1),

and A0 = B0 = 1, A1 = α,B1 = β. Then (AiBj)
p−1
i,j=0 is a K-basis of F .

Let m ∈ ΘF . Then we can write m =
∑p−1
i=0

∑p−1
j=0 cijAiBj with cij ∈ K.

We can rephrase the two equations defining ΘF the terms of cj as follows:

m(σ − 1)2 = 0 ⇔ 0 ≤ i ≤ p− 1, 2 ≤ ∀j ≤ p− 1, cij = 0,

m(τ − 1) = am(σ − 1) ⇔
p−2∑
i=0

p−1∑
j=0

ci+1,jAiBj =

p−1∑
i=0

p−2∑
j=0

ci,j+1AiBj

⇔

 1 ≤ ∀i ≤ p− 1, ci1 = 0
c10 = ac01

2 ≤ ∀i ≤ p− 1, ci0 = 0
.

Therefore, we can write m = c0 +c1(aα+β) with c0, c1 ∈ K. Let s be −vF (aα+
β). Then,

m ∈ OF ⇔ c0 ∈ OK and c1 ∈ t
⌈
s
p2

⌉
OK .

We get an OK-basis 1, t

⌊
s
p2

⌋
(aα+β) of ΘF . Via the isomorphism in Proposition

5.1, this corresponds to the OK-basis

ϕ2, t

⌊
s
p2

⌋
(ϕ1 + (aα+ β)ϕ2)

of ΞF .
Since the formula (1),

vV (F ) = vK

(
t

⌊
s
p2

⌋
det

([
0 1
1 aα+ β

]))
=

⌊
s

p2

⌋
.
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On the other hand, γ := aα+ β satisfies

NF/F τ (γ) = γp − γ
= (apαp + βp)− (aα+ β)

= ap(α+ g1) + (β + g2)− aα− β
= (ap − a)α+ apg1 + g2.

We get
s = −vF τ ((ap − a)α+ apg1 + g2).

Now
vF τ (α) = vK(NF τ/K(α)) = vK(g1),

which is not divided by p. Since

vF τ (apg1 + g2) = pvK(apg1 + g2) ∈ pZ,

we get vF τ (α) 6= vF τ (apg1 + g2) and

s = −vF τ ((ap − a)α+ apg1 + g2)

= −min{vF τ (α), vF τ (apg1 + g2)}
= −min{vK(g1), pvK(apg1 + g2)}

Therefore, we get the value of v-function as

vV (g1, g2) =

⌈
−min{vK(g1), pvK(f)}

p2

⌉
.

Corollary 5.3. We keep the notation of this section. Then the value of vV at a
G-extension F/K is not determined by the ramification filtration of G associated
to F/K.

Proof. In the situation of Theorem 5.2, g1 = t−(p2−1) and g2 = ct−(p2−1) + t−1

where c ∈ k − Fp. Then

vV (g1, g2) =

{
p (c 6= −a2)
1 (c = −a2)

.

In particular, vV (g1, g2) depends on the value of c. We will show that the
ramification filtration is independent of c, which proves the corollary.

The upper ramification filtration is compatible with passing to a quotient
group, and hence the upper ramification filtration is determined from the ones
of all the intermediate fields of F/K. An intermediate field is determined from
a subgroup of Fpg1 + Fpg2. A ramification filtration of an intermediate field is
determined from valuations of all elements of the corresponding subgroup. Then
the upper ramification filtration of F is determined from the valuations of all
the elements Fpg1 +Fpg2. Since c 6∈ Fp, each nonzero element of Fpg1 +Fpg2 has
valuation −3. Therefore, the ramification filtration of Fg1,g2 does not depend
on c.
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