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1 Introduction

Singularities are one of the most important themes in algebraic geometry. Quo-
tient singularities, which appear when dividing a nonsingular variety by a finite
group action, form a fundamental class of singularities. In characteristic zero,
quotient singularities have good behavior. For example, they are log terminal
singularities, which are a class of singularities used in minimal model program.
Moreover, they have resolutions, in particular, Gorenstein quotient singularities
of dimension < 3 have crepant resolutions [4],[5],[6],[9],[10].

On the other hand, in positive characteristic, there are many pathological
phenomena about quotient singularities. For instance, quotient singularities in
positive characteristic are not log terminal in general (for instance see [16]).
Whether quotient singularities have resolutions or not is not known, and there
exist three-dimensional Gorenstein quotient singularities not having crepant res-
olution.



One of the natural questions is when quotient singularities are log termi-
nal or belong to other classes of singularities appearing in the minimal model
program. In characteristic zero, there is the Reid—Shepherd-Barron—Tai cri-
terion [7, Theorem 3.21], which determines whether a quotient singularity is
terminal/canonical by looking at elements of the finite group in question indi-
vidually. But, in positive characteristic, this is no longer true, as was proved
in the auther’s master thesis. More precisely, there exist quotient singularities
which are not log canonical such that the quotient by every cyclic subgroup
of the total group is canonical. This illustrates how difficult it is to determine
which classes given quotient singularities belong to. Our first main result below
gives a partial answer to this problem.

Theorem 1.1 (Theorem [2.3[[21]). Let k be an algebraic closed field of char-
acteristic three. Let G be a group acting on A® = A} faithfull and linearly.
Suppose that G has no pseudo-reflection. Then A3 /G is log terminal if and only
if 4G & 9Z. Moreover, if $G € 9Z, then A3 /G is not log canonical.

Note that from [I6], wild quotient singularities by linear actions without
pseudo-reflection in dimension three and characteristic p > 3 are not log ter-
minal. Any three dimensional wild representation in characteristic two has
pseudo-reflection. These are the reasons why we consider in dimension three
and characteristic three.

Next we consider the question, when quotient singularities have crepant
resolutions. As mentioned above, Gorenstein quotient singularities in dimension
< 3 have crepant resolutions in characteristic zero. When crepant resolution
exists, we also ask whether the following theorem of Batyrev [I, Theorem 1.10)
holds in positive characteristic:

Theorem 1.2. Let G C SL4(C) be a finite group. If the quotient variety AL /G
has a crepant resolution ¥ — A%/G, then the topological Euler characteristic
e(Y) is equal to the number of the conjugacy classes of G:

e(Y) = #Conj(G).

Let x be the [-adic Euler characteristic, which is defined as the alternating
sum of dimensions of [-adic cohomology. It coincides with the topological Euler
characteristic in characteristic zero. We consider the equation of Batyrev’s
theorem using x instead of e in positive characteristic.

In [§] and [2], it is shown that the quotient singularity of the canonical action
of the symmetric group S, on A" has a crepant resolution. In this case, the
equation of Batyrev’s theorem holds. In [16], there are some examples of quo-
tient varieties associated to Z/pZ-representations which have crepant resolutions
in characteristic p. Also in this case, the equation of Batyrev’s theorem holds.
However, in positive characteristic, there exist counterexamples of Batyrev’s
theorem.

Theorem 1.3 (Theorem . Let k be an algebraically closed field of charac-
teristic three. Let G C SL3(k) be a small finite subgroup. If G = H x G’ where



H is a tame Abelian group and G' is Z/3Z or &3, then A®/G has a crepant
resolution Y — A3/G and

_ #Conj(G) (G'=17/3Z)
x(Y) = { uCOnj(é:) +3  (G'=6)

The case when H is trivial or the Klein four-group was treated in the author’s
master thesis [20]. In particular, the last theorem gives infinitely many examples
of wild quotient singularities having crepant resolutions and infinitely many
counterexamples to Batyrev’s theorem in positive characteristic.

To prove Theorem [1.3] we explicitly construct crepant resolutions of quotient
varieties. Since G' has the normal subgroup H, we firstly construct a crepant
resolution Y — A3/H using the theory of toric varieties. Next, we construct
a crepant resolution X — 17/ G’ which gives a crepant resolution of A%/G by
composing Y /G’ — A®/G. We compute its Euler characteristic from the explicit
structure of crepant resolutions.

We also compute, in an alternative way, the Euler characteristics of crepant
resolutions in Theorem using the wild McKay correspondence. The wild
McKay correspondence was proved in [19]:

Theorem 1.4 ([19],Corollary 16.3). Let G be a finite group. Suppose that G
acts on' V- = A? linearly. Suppose that G has no pseudo-reflection. Then

Mst (X) — / ]Ldf'UV
G-Cov(D)

for X =V/G.

Here M (X) is the stringy-motive of X, G-Cov(D) is the moduli space of
G-covers of D, L. = [A!] in the Grothendieck ring, and vy is a function on
G-Cov(D) defined from the representation. The stringy-motive is an element
of the Grothendieck ring of k-varieties localized and completed in some way.
It has a lot of information of singularity of X. In particular, if there exists a
crepant resolution Y — X, then we have M (X) = [Y]. The stringy-motive is
generalization of the stringy E-function in characteristic zero defined by Batyrev
[1]. This theorem is generalization of the motivic McKay correspondence in
characteristic zero proved by Batyrev [I] and Denef-Loeser [3]. In this paper,
we use the stringy-point count, which is regarded as a realization of the wild
McKay correspondence.

Theorem 1.5 ([I7]). Let G be a finite group. Let K = F,((t)) where q is a
power of a prime number. Suppose that G acts on'V = A‘éK linealy and that G
has no pseudo-reflection. Then

d*Uv(M)

q

MeG-Et(K)



Here G-Et(K) is the set of G-étale K-algebras, which are étale K-algebras
M of dim (M) = §G endowed with G-action such that MY = K, Hyy is the
stabilizer subgroup of a connected component of Spec (M) when we write as
M = L®™ by a Galois extension L/ K, and Cg(H ) is the centralizer of Hy,. We
compute the right hand side of this equality directly in some of cases considered
in Theorem [L3]

Theorem 1.6 (Theorem [4.34.5/4.7). We follow the notation of Theorem
except that k now denote the finite field F,. Let | # 3 be a prime. We suppose

that g — 1 is divisible by | if G' = Z/3Z. We suppose that ¢ — 1 is divisible by 2l
if @ = &3. Then we have the following formulas:

e+ 02+5) @+ 5 (H=17/IZ,G' =7/37)
¢+ (24 R 2 V2 (g = (2/12)2, G = Z,/3Z)

¢+ D2 L OIS g (142, H = (Z/12)%,G' = &)

¢ +6¢*+q (H = (Z/22)*,G' = &3)

ustAg/G =

In [1I7], the Serre-Bhargava mass formula is proved using the stringy-point
count of the quotient variety. So the fomulas in Theorem can be regarded
as other versions of mass formula.

This theorem together with the Weil conjecture gives the Euler characteris-
tics of crepant resolution.

Corollary 1.7. In the situation of Theorem if Y — A3/G is a crepant
resolution, then

34+ 51 (H =7/1Z,G' = Z./37)
X(Y) = 34 £ (H = (Z/IZ)?,G' = Z/3Z)
D022 L oj 44 (H = (Z)I12)%, G = &s)
Corollary coincides with the equality in Theorem
To compute right hand side of equality in the wild McKay correspondence
(Theorem , a key is computation of v-function. However, computing v-

function is generally very difficult. Below are some examples of previously known
computation:

e We consider the case when the n-th symmetric group &,, acts on A?" =
(A%)" canonically. Then the v-function is the same as the Artin conductor
[13], which is used in the number theory.

o [I2| Theorem 3.11] In characteristic p > 0, we consider the d-dimensional
indecomposable representation V' of G = Z/p"Z where d < p". For a
Galois extension L/K whose Galois group is G with ramification jumps

lo <L <l < <y,

we have

’Uv(L) =

Z iolop™ L+ itlip" 2 4 i1l
pn '
0<ig+iypt-+in_1p" "' <d,
0<4g,...,in—1<pP



In all the known cases, the v-functions are determined from the ramification
filtration of the extension L/K, as the last example indicates. We give an
example where this is not the case:

Theorem 1.8. There exist a finite group G and a G-representation whose v-
fuention is not determined by the ramification filtration of G.

Therefore, for the computation of v-function, we need to use information of
extension L/K more than the ramification filtration in general.

The outline of the paper is as follows. We prove Theorem in section two.
In section three, we construct counterexamples to Batyrev’s theorem in positive
characteristic. In section four, we give proofs of and Lastly, in section
five, we illustrate the example that the v-function is not computed only from
ramification filtration only.

2 A criterion for log terminal quotient singular-
ities

Let k£ be an algebraic closed field. For a normal variety X with Q-Cartier
canonical divisor Kx, if there exists a proper birational map 7 : ¥ — X and
hold the equation
}(S/ = 7T*}K:X'—F :E:: al;l?,
E:prime
we call E is an ezxceptional divisor of X and ag is discrepancy of E. We call
X is terminal (resp. canonical, log terminal, log canonical) if discrepancies > 0
(resp. >0, > —1, > —1) for any prime exceptional divisors.
We already have the following result.

Theorem 2.1 ([20]). Let k be an algebraic closed field of characteristic three.
If the group G = (Z/3Z)?* acts on A} linearly without pseudo-reflection, then
the quotient variety A} /G is not log canonical.

The proof of this theorem is given by direct computation of a resolution.
This theorem gives a counterexample of the equivalence of the first condition
and the second one in the Reid—Shepherd-Barron—Tai criterion below. Let a
finite group G acts on C¢ linearly. For g € G, we define the age age(g) of g by

d
1
age(g) = n E a;
i=1

if the representation matrix of g is diagonalized as

2aqmi
e n
2ag7i

e n

2agmi
[ n



Proposition 2.2 (The Reid-Shepherd-Barron—Tai criterion,[7], Theorem 3.21).
Suppose that a finite group G acts on C% linearly without pseudo-reflection.
Then the following three conditions are equivalent:

e the quotient variety C?/G is canonical (resp. terminal),

e the quotient variety C?/C is canonical (resp. terminal) for any cyclic
subgroup C' of G,

e age(g) > 1 (resp.> 1) for any g € G — {1}.

Let G = (Z/3Z)%. Any nontrivial cyclic subgroup C of G is Z/3Z. By [15],
the quotient variety A%/C is canonical. If the first and second condition of
Reid—Shepherd-Barron—Tai criterion were equivalent in positive characteristic,
A3 /G would be also canonical. But Theorem says A3 /G is not log canonical.
Hence these conditions are not equivalent in positive characteristic.

As an application of Theorem 2.1} we get the following criterion for quotients
of A3 in characteristic three.

Theorem 2.3. Let k be an algebraic field of characteristic three. Let G be a
finite group. Suppose that G acts on A3 faithfully and linearly without pseudo-
reflection. Then A3/G is log terminal if and only if 4G & 9Z. Moreover, if
A3/G is not log terminal, then it is not log canonical.

We first prove auxiliary results which will be used in the proof of the theorem.

Lemma 2.4. Let m: X' — X be a finite dominant morphism of varieties. Then,
for any divisor E' over X', there exists a commutative diagram

satisfying the following conditions:
o Y and Y’ are normal varieties.
e [/ and f are birational.
® p is a morphism.
e The center of E' on' Y’ has codimension one.
e The closure of p(centy:(E’)) has codimension one.

Proof. First, we take a birational morphism ¢: Yy — X’ from a normal variety
Y] such that E’ is a divisor on Y. Let ¢: X” — X' be the Galois closure of 7.
Thus the coordinate ring Ox of X" is the integral closure of the one Ox of X’



in a Galois closure L of K(X')/K(X). Let G be the Galois group of L/K(X),
and we put

G = {glaQQa ce. 7gd}'
The group G acts on X" naturally.

Let Yy’ be the component of Y x x X" such that the morphism ¢’: Yy’ — X"
is dominant. We denote a copy of Yy’ endowed with the morphism

o(g): vy L x4 x"

by Yy',. We consider the variety Y given by the fiber product of all the Y,
over X'

Y= (- ((YOI,I91 Xo(g1),X",0(g2) YOI,/gz) XX",0(gs) YO/-,/93) ) XX".0(gq) YO/,/gd,'

The G-action on Y is defined by the morphism h : Y — Y” induced from
the morphisms Y{', d, Yy/p, for h € G. Then the morphism f”: Y" — X" is
G-equivariant because the diagram

YO/,g ¥ X" 9 X"

1

" " "
YO,hg o X hg X

is commutative. Let H be a subgroup of G such that L7 = K(X’). Let Y’ :=
Y"/H and Y :=Y"/G. Since f” is G-equivariant and since X' = X”/H and
X = X" /@G, there exist natural morphisms f': Y/ — X’ and f: Y — X, which
are birational. We also have natural morphisms ¢: Y — Y’ and n: Y/ — Y.

f//

v /Yb//\ X

117

Y’ Y, —2s X'
\_/
Y X
f

Let E” be a prime divisor on Y contained in the pull-back of E’ by Y" —
Yy — Y. Since q is finite, the push-forward ¢.E’ is a prime divisor on Y. Let
v”,v" be the valuations on K(X"), K(X') corresponding to E”, E’, respectively.
From the construction of E”, we have q(E") = E’. Moreover, since 7 is finite,
1 preserves the dimension. O



Proposition 2.5. Let m: X' — X be a finite dominant morphism of Q-Gorenstein
varieties. Assume that 7 is étale in codimension one. If X' is not log canonical
(resp. not log terminal), then X is not log canonical (resp. not log terminal).

Proof. We prove only the statement about log canonicity. The other is proved
similarly.

Since X’ is not log canonical, there is a prime divisor E’ over X' with
discrepancy smaller than —1. For this E’, we apply Lemma and write the
resulting diagram as follows:

Y/ fH X/

R
We denote centy (E’) again by E’. Let E be the closure of n(E’). The E’ and
FE are prime divisors. We put
Ky :f*KX—f—CLE—f—F,
Ky, = 77*Ky +bE + GI,
n*E =tE + H',
where F, G', H' are divisors not containing E, E’, and a,b € Q. Since 7 is
étale in codimension one, Kx/ = 7*Kx. We get
Ky =n"f*Kx + (at + b)E' +n*F + G' + aH’
=(f'Y'm"Kx + (at+b)E'+n*F+ G +aH'
= (f/)*KX/ —+ (at + b)E/ + ’I]*F + G/ + CLH’
By assumption, at +b < —1. Hence a < —#. Since t is the ramification index

of n along E’, by [1, 2.41], b > t — 1. Therefore we get a < —1, which shows
that X is not log canonical. O

The following lemma is generalization of a well-known fact on Galois cover-
ings to non-Galois ones (for instance, see [7]).

Lemma 2.6. Let k be a field of positive characteristic p. Let m: X' — X is a
(not necessarily Galois) finite dominant morphism of degree n between normal
Q-Gorenstein varieties over k. Suppose that w is étale in codimension one. If
n & pZ and X' is log terminal, then X is log terminal.

Proof. For a birational map f: Y — X from a normal variety Y, Let Y’ be the
normalization of the component of X’ x x Y dominating X’. Let p: Y/ — Y
and f': Y’ — X' be natural morphisms. We get the following diagram:

Y/ fH X/

Y —X
!



Fix an f-exceptional prime divisor E. When we write p*E as ), r;D; with
prime divisors D;, we have ) . r;[D; : E] = n where [D; : E] is the degree of
D; — E. Since n € pZ, one of the r; is not divisible by p. Let E’ be a prime
divisor with such a coefficient r. We write

Ky Zf*Kx—FaE—i-F,
Ky = p*Ky +bE + G/7
p*E=rE + H',
where F,G’, H' are divisors not containing F, E’. Since  is étale in codimension
one, Kx = m*Kx. Hence we get

Kyl = p*f*KX + (0,7“ —|— b)El + p*F + G/ + (IH/
= (f'Y'7*Kx + (ar + b)E' 4+ p*F + G' + aH'
= (f')*Kx: 4 (ar + b)E' 4+ p*F + G' + aH'.

Since X' is log terminal, ar +b > —1. Since r is the ramification index of p and
p is tame, by [, 2.41], b = r — 1. Therefore,

“1-b
—° =

a > —1.

Hence X is log terminal. O

Proof of Theorem[2-3 We regard G as a subgroup of GL, (k). We have only to
consider that §G € 3Z. From Sylow’s theorem, G has a 3-Sylow group H. We
have §H = 3" from assumption.

Firstly, we consider the case that G € 3Z — 9Z. Then H is a cyclic group.
From [I5, Corollary 6.25], the quotient variety X’ := A3/H is canonical. Let
7: X' — X := A%/G be the canonical morphism. Then 7 is étale in codimension
one. Therefore, X is log terminal by Lemma [2.6]

Next, we consider the case that G € 9Z. Since H is a 3-group, the center
Z(H) is not trivial. Take a R € Z(H) which order is three. Then we may
assume that

01 0
R=10 0 1
1 00

since R is not a pseudo-reflection. We denote the centralizer of R in SL, (k) by
C(R). For X = [z;;] € C(R), we have

Ta1 Too T3 T3 T11  T12
31 w32 33| = RX = XR= %23 @21 22|,
T11 T12 13 Tr33 T31 T32



it implies that

T11 = T22 = T33,

T12 = T23 = T31,

T13 = T21 = T32-
Hence C(R) is (kI + kR + kR?*) N SL, (k). If X = al +bR + cR? € C(R),
X? = (al + bR+ cR?)® = (al)® + (bR)® + (cR?)® = (a® + b* + *)I.

Since det X = 1, a® + b3 + ¢3 = 1. Therefore, all the elements of C(R) are of
order three. Now, since H C C(R), H has a subgroup H’ which is isomorphic
to (Z/3Z)%.

By Theorem the quotient variety X’ := A3/H’ is not log canonical.
We consider the canonical morphism 7: X’ — X := A3/G. Then 7 is étale in
codimension one. By Proposition X is not log canonical. O

3 Crepant resolution and Euler characteristic

In this section, we fix an algebraically field k£ of characteristic three. Fix [ be
a prime number except characteristic of k. We define the l-adic Fuler charac-
teristic x(X) for k-variety X by the alternaving sum of the dimensions of the
[-adic étale cohomology with compact support of X:

X(X) = (—1) dimg, H,, (X, Z;) @z, Q

i

Theorem 3.1. Let G be a small finite subgroup of SLs(k) which is written as
H x G' where H is a tame Abelian group and G’ is the cyclic group Z /37 or the
symmetric group S3. If G acts on the affine space A3 = A3 canonically, then
the quotient variety X = A3/G have a crepant resolution Y — X. Moreover,
we have the following formulas:

_{ tConj(G)  (Gy=1Z/3Z)
x(Y) ‘{ tiConj(é‘) +3 (G =63)

Note that x(Y) does not depend on the choice of crepant resolution ¥ — X.
We prove this theorem along the following strategy. We put Y := A3/H.
We consider the following diagram:
X

~

Yy — =X
Y

10

A — YV — = X



Since H is a tame Abelian group, we can construct Y as a toric variety. We
take a toric crepant resolution Y — Y such that the G’-action on Y lifts to Y.
Let X’ be the quotient variety Y/ G'. Then we can take a crepant resolution
X — X'. The composition XX 5 Xisa crepant resolution of X. The
Euler characteristic of X can be computed from this construction.

Firstly, we construct Y as follows. Since H is a tame Abelian subgroup of
SL3(k), we may assume that all the elements of H are diagonal matices. Let
be their maximal order. Any h € H — {I} has the form

¢ 0 0
0 ¢ 0
0 0 ¢

where ¢, is a fixed primitive root of unity in k and a, b, ¢ are integers satifying
0<abc<r—1anda+b+c=ror2r. Wedenote such h € H by 2[a,b,c|.
By this notation, we also regard elements H as points in R3. Let I' be the lattice
generated by the all elements of H and e, = [1,0,0],e, = [0,1,0],e. = [0,0,1].
Note that H is isomorphic to the quotient group I'/Z3. We define Y to be the
toric variety defined by the lattice I' and the cone RS .

3.1 The case G' = Z/3Z

Now, we consider the case that G’ = Z/3Z. We show that G’ acts on Y by toric
automorphisms.

Lemma 3.2. The G'-action on Y gives a injection of G’ into the set of the
automorphisms of Y as a toric variety. Its image is generated by the morphism
corresponding to the automorphism of I' defined by

e, ey e, e,

Proof. Tt is enough to show that G’ is generated by

= o O

1
0
0

o = O

Let 0 € G’ be a generator of G'. Take an element 1[a,b,c] € H — {I}. Since H
is a normal subgroup of G, we can write

1 1
o—[a,b,clo™t = =[d,V/,¢].
T r

Put o = [5”]” 1- Then
/ ! !
Ces11 (Ps12 (Csis Cﬂlsu Cﬁ/su 45/513
(st QZSzz CEsaz| = |(Fsar (Usaa (Psas
/ / ’
Crss1 Grss2 (rss3 Crsar (fs32 (Fs33

11



If a & {da’,b',c'}, the first column of o is zero. It contradicts the fact that o
is invertible. Hence a € {a’,¥’,'}. Similarly, we get {a,b,c} = {a/,V',c'}. If
a=b=c sincea+b+c€rZ, 3a € rZ. Sincer € 3Z and 0 < a < r — 1,
we get a = 0. That contradicts %[a, b,c] # I. Hence, permuting coordinates if
necessary, we may assume that a # b and a # c. If a = o/, then s13 = s13 =

s91 = s31 = 0. Hence
|10
=10

where o’ € SLy(k) and it has order three. This implies that ¢ is a pseudo-
reflection, which is impossible since G is small. Hence a # a’. Therefore, a = b’
or a=c. Assume a = b'. We put

1 1
7[all’b/l7c//] — U*[a/,b/,cl]d_l.
r r
We have {a',V/,¢'} = {a”,b","}. Since a =¥, 0 #a =V". L ¥ = d”, since
03 =1, we have
a=b=d" =b.

It contradicts that a # b. Hence b’ = ¢, and we get

0 0 1
o = diag(s12,523,531) |1 0 0
010
Since it is conjugate with
0 0 1
1 0 0},
010
we may assume that
0 0 1
c=11 0 0
010
Similarly if a = ¢/, we may assume that
01 0
c=1(0 0 1
1 00
O
Let 0 € G be
010
0 0 1
1 0 0

We let G act on R3 by permutation of coordinates, i.e,

[x7y72] = [2755,3/] - 0.

12



Figure 1:

For %[a,b, c|] € H, we have
1 1 1
—[a,b,c] -0 =0 =[a,b,clo = =[c,a,b].
7n[a, ,clro=0 7n[a, ,clo 7q[c,a, ]

Next we construct a toric crepant resolution Y Y. Let A, be the plane in R3
defined by
r+y+z=1

for i = 1,2. Then T := R3,N A, is a triangle. Giving a subdivision of T is
equivalent to giving a subdivision of the cone R%(y We give a toric resolution

Y Y by giving a subdivision of T'. Firstly, we choose a point

a= %[a,b,c] e HNA,

such that the distance from the center [%7 %7 %] of T' is minimal among all points
in HNA;. Note that [%, %, %} ¢ H. Weput @’ = a-0 and a”’ = a-0?. We denote
the triangle aa’a’” by Ty. Obviously, Ty is stable for the G’-action. We may as-
sume that a < b and a < c. We denote the squares aa’eye;,a’a’e.e,,a’ae e,
by Si, S2,S3, respectively (Figure . We divide the square S7 into triangles all
whose vertices are exactly all the points in HNS;. Since S1-0 = Sy, So-0% = Ss,
the subdivision of S; gives the subdivisions of Sy and S3. Therefore, we have
given the subdivision of T' which is stable for G’-action. We denote the fun
given by the above subdivision by X.

Lemma 3.3. The fun ¥ gives a crepant resolution of Y and is stable for the
G'-action.

Proof. Since the subdivision of T" consists of triangles which containing no points
of T' except its vertices, the subdivision gives a toric resolution ¥ — Y from
Lemma Since all the rays in X is generate a element in Aj, the resolution
Y — Y is crepant. O

13



Lemma 3.4. Let t1,to,t3 be points in T. Suppose that no point of T is in the
triangle t1tots except its vertices. Then tq,to,ts generate T.

Proof. Let I'g be the sublattice of I' generated by t1,t5,t3. To show I' =Ty, we
suppose that T # T'g on the contrary. Then there exsits = [x1, 22, 23] € T —T.
Since {¢;}3_; is a basis of the vector space R3, we can write

3
r = E Citi
i=1

by some ¢; € R. Since

3 3

€T — Z LCZJ tl = Z(Cl — LClj)ti el — Fo,

i=1 i=1

we may assume that 0 < ¢; <1 for i =1,2,3. Since {t;}?_; C Ay, we have

Zci:inzlorQ.

1=1 1=1
Since
3 3
ZtZ — T = Z(l —Ci)ti € F—Fo,
=1 =1

we may assume that Z?zl ¢; = 1. Thus x belongs to the inter section of T’
and the triangle t1tot3. By asssumption, x is one of the vertices ¢, ts,t3. It
contradicts that @ € I' — I'. O

From Lemma the toric variety Y defined by ¥ is nonsingular and the
toric morphism ¥ — Y is a crepant resolution of Y. Since ¥ is stable for the
G'-action, the G’-action on Y lifts to Y. Thus we can consider the quotient
variety Y /G'.

Proposition 3.5. The quotient variety ?/G’ has a crepant resolution X -
Y/G".

Proof. We denote the orbit of the torus action on Y corrresponding to a cone
s € X by O(s). Since the G’-invariant points in R? form the line {[t,¢,t] € R? |
t € R}, the singular locus in Y /G’ is contained in O(0) U O(Ty), in particular,
in the affine open subvariety defined by the cone Cone(Tp) corresponding to the
triangle Tp. Hence the singularities of Y /G’ are the same as the ones of the
quotient variety A®/(Z/3Z) for the small linear action. By [16, Corollary 6.25],
A3/(Z/3Z) has a crepant resolution. Therefore Y /G’ has a crepant resolution
X ->Y'/G. O

The composition X — Y /G' — X is a crepant resolution of X. Hence we
get the following theorem.
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Theorem 3.6. The quotient variety X = A3 /G has a crepant resolution.

We will examine the crepant resolution X =5 X given above in more de-

tails in order to compare the number of conjugacy classes of G and the Euler
characteristic of X.

Lemma 3.7. We have

4H —1
3

#Conj(G) = + 3.

Proof. We denote the conjugacy class of g € G by Og(g). Since,

1 1
-1+ _ 2
o T[a, b, c]o T[c,a,b]

and H is Abelian, we have

O¢ (i[a,b,c]) = {i[a,b,c],i[c,a,b},i[b,c,a}}

for 1]a,b,c] € H—{I}. Since r ¢ 3Z and a+b+c = r or 2r, we have a+b+c ¢ 3Z.
Thus we have a # b or a # ¢ or both. Hence %[a, b, c] # %[c, a,b]. Therefore, H
contains ﬁHT*l + 1 conjugacy classes.

We show the conjugacy class Og(o) containing o is Ho. The inclusion
O¢ (o) C Ho follows from

—1
(Ha,ﬁ,v}ai) - (1[a7ﬁ7v]0i> B S e S
T T T T
[_a7 _ﬁ7 _7]%[@ v, a]UUi

= U_i (1[ﬁ_a77_ﬁ7a_’7]0> Ui

=

= <0i[ﬂ —a,y— B, ’y]ai> o € Ho.
r
To show the other inclusion, for a, b, ¢ € Z such that

a+b+c=0 modr,

we take «, 8,7 € Z by

b+ 2
a= + 2 mod r,

3

2
B:cJ;a mod 7,

2b
Eag mod 7.

15



Note that, since r ¢ 3Z, there exsits d € Z such that 3d =1 mod r, and dividing
by three in the above formulas means multiplying with d. Since X[a,b,c] € H,
the two matrices %[b, c,al, 1[c,a,b] are also in H. Then

r

d
Houpol = (el tieai?) e

We get
~la, 87 oo fi0) = 218 — v — BLa — o
= %[d(?a —b—10¢),d(2b —c—a),d(2¢ — a — b)|o
= %[d(?)a —71),d(3b—r7),d(3c — )]0
= %[mb, co.

Thus Og(0) D Ho and hence Og(0) = Ho.
Similary, we get Og(0?) = Ho?. Therefore,
tH -1

tConj(G) = ==

+ 3.

O

Theorem 3.8. The Fuler characteristic X()Z') of)Z' s equal to the number of
the conjugacy classes of G.

Proof. Since H is tame and abelian, the Euler characteristic X(f/) of Y is tH.
Using the decomposition of Y into torus orbits, we get

7] =Y [06)

in the Grothendiek ring of varieties. Since the Euler characteristic gives an
additive map from the Grothendiek ring to Z, we get

S \(O(s)) = ¢H.
s€X

If dim(s) < 2, the Euler characteristic x(O(s)) is zero. Let X3 be the set of
cones of dimension three in . Since a 3-dimensional cone corresponds to a
torus orbit which is a point, we get

155 = > x(O(s)) = £H.

SEX3

On the other hand, {ff } is decomposed as

X] = > (0(s)] + [A3/(2,/32)]

s€(X—[Cone(To)[)/ G’

16



where |Cone(Tp)| is the set of the faces of Cone(Tp), (X — |Cone(Tp)|)/G’ is the

set of orbits for the G’-action on ¥ — |Cone(Tp)|, and A3/(Z/3Z) is a crepant
resolution of A3/(Z/37Z). Then, we have
X(X) = > x(0(s)) + x(A3/(Z/3Z))
s€(X3—|Cone(Ty)|)/G’

—_~—

= (X5 — [Cone(T)|)/G") + x(A?/(Z/31)))

= ML xwsi@fm)).

—_~—

By [16, Corollary 6.21], x(A3/(Z/3Z))) = 3. Therefore,

X(X) = ﬁHg_l

by Lemma O

+ 3 = #Conj(G)

3.2 The case G' = &3

Next we prove Theorem in the case G’ = G3. The proof is similar to the one
for the case G’ = Z/3Z. We put Y = A%/H. The quotient variety Y is defined
as a toric variety in the same way as in the previous case. We also assume as
before that every matrix in H is diagonal. We give a toric crepant resolution of
Y having a G’-action lifting the one on Y.

Lemma 3.9. The G'-action on A% is given by the subgroup of SL3(k) generated
by the matrices

10 0o 0 -1

0 1{,{0 -1 0

0 0 -1 0 0

_ o O

Proof. The group &3 is generated by two elements o, 7 satisfying
od=12=1, o1 = 0>,

By Lemma [3.2] we may assume that the action of o is defined by the matrix

0
0
1

O O =
o~ O

2

We write 7 = [t1, ta, t3]. Since 70T = 0%, we get

2

[ts, t1,ts] = To = 0% = [0%t1, 02ty 07t3).

Hence ty = otq, t3 = o’t;. Thus, we get

9
|
SIS
SEENIES
SN

17



Take 1[a,b,c] € H and put 72[a,b,c]r = 1[a’,¥’,']. From the proof of Lemma
a € {a',V,c'}. We may assume that a # b and a # c¢. Hence one of z,y, z
is not zero and the others are zero. Replacing 7 by 7o, 702 if necessary, we may

assume that z # 0,7 = y = 0. Since det7 = —2% = 1, we have z = —1 and
hence
0 0 -1
T=|10 -1 0
-1 0 0
O

We use the symbols I', T in the same way as in the previous case. From the
previous lemma, we may assume that

01 0
co=10 0 1|,7=|0 -1 0
100

We define a G’-action on R3 by

[.’L‘,y,Z] t0 = [Zaxay]a

[a@y,z] T= [z,y,m].

We denote the toric autmorphisms on A® defined from the action of o,7 by
fo, fr, respectively. Since A? is a toric variety, we denote (—1,—1,—1)Q by —Q
for Q € A3. Note that the G’-action on A3 is defined by

oP = fs(P), TP = —f.(P)

for P € A3.
Let T, be the subset

{z=lr.y,2] eTNT |z =y}

For & = [x1, 72, 23] € R3, we define

Let a € T, be a point satisfying the condition

d(a) = min {d(z)|z € Ty} .
Actually, a has the following property.
Lemma 3.10. We have

A= B )

18



Proof. Suppose that there exists @ € T NT such that d(z) < d(a). We write

T = ;[537:1/,2]

Since the G’-action on I' preserves the value of d, we may assume that v <y < z.
If two of them were equal, it would contradict the minimality of d(a). Hence,
we get x <y < z. Let y € I be the point

1
[1,1,1]7($+.’E'T)'0’:[1,1,1]*;[7’7y,2y,7’7y]'0'
1
= [1,1,1]7;[7’—y,r7y,2y]
1
= 7[y7y77n_2y]'
r
Since © € T', we have x +y + 2z = r. Hence, we get x < 5, y < 5, and 5 < z.
Since y < 5, y € Tyy. If y < 5, we have |§—x’ > |%—y| and

-l - ()~ ()

=z+2y—r
>z+y+z—r=0.

Therefore, d(y) < d(z). On the other hand, if y > %, we have |5 — z| > |£ — y|

and
=) (o
3 3 Y173 Y3

=r—(z+2y)
>r—(r+y+2) =0

Therefore, we get d(y) < d(z) again. Since y € T, we have
d(a) <d(y) < d(z) < d(a).
This is a contradiction. O

To construct a subdivision of T" giving a crepant toric resolution of Y, We
show the following lemma.

Lemma 3.11. We have

r

TNnT = {1[9c,y,z]

x,y,z6Z,0<x7y,z<r,x+y+z=r}.
Proof. We put

F’:{l[x,y,z]

r

Y,z €l,x+y+2=0 modr}.
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Note that the right hand of the desired equation is TN T'. We can write
a = %[a,a,b]. Let Ty be the triangle whose vertices are a,a - 0,a - 0. By
Lemma Ty has only vertices as points of I'. From Lemma a,a-0,a-0°
form a Z-basis of I, equivalently, a,oc " 'ac,cac~! genarate H. Hence, r is the

order of a. Then
ged(a,b,r) = 1.

Let d = ged(a,r). Since 2a + b = r, we have b = r — 2a, in particular, b is
divisible by d. Hence ged(a, b, ) = d. Therefore ged(a,r) = 1. Since

a

det {b

Z] =ala—b)=a(3a—1)

Since ged(a,r) = 1 and 7 is not divisible by three, this is invertible on Z/rZ.
Hence a,a - 0,[0,0, 1] generates I'". Since [0,0,1] € T, IV is generated by a, a -
o,a - o2. Therefore

1
TﬁI‘:{ [x,y, 2]

— x,y,zEZ7O§x7y,z§r,x+y+z:r}.
,

We give a subdivision of T by subdividing T with 3(r — 1) lines

z=— (1<i<r)

)
r= —,y=—-
T r r

in A (Figure . Let ¥ be a fan corresponding the above subdivision of T

Figure 2:

Lemma 3.12. The fan X gives a toric crepant resolution of Y with a G’-action
lifting the one on Y.

Proof. Let Y be the toric variety defined by ¥ and let m be the canonical mor-
phism Y — Y. Since any triangle of subdivision of 7" has no points of I" except its
vertices, the vertices of any triangle of subdivision are generate I' from Lemma
Therefore, Y is nonsingular, and hence 7 is a resolution of Y. Since all the
rays in % are generated by points of I' N Ay, 7 is crepant resolution. O
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We denote the crepant resolution of Y given by Lemma by 7 : Y Y
as in the proof of Lemma [3.12

Proposition 3.13. The quotient variety ?/G’ has a crepant resolution X >
\igled

Proof. Now, G’ = (o) (7). We have a crepant resolution Y’ — Y/ (o) in Propo-
sition 3.5 We can extends the action of 7 to Y”. Let ¢ be a 3-dimensional cone
stable for the 7-action on I'. On the open affine toric variety U, = Spec k[s, t, u]
of Y’, 7 acts by the morphism corresponding to

S —u, t— —t, ur— —s.

Since any cone in ¥ which stable with respect to the T-action is a face of a 3-
dimensional cone, the fixed locus in Y’ about (r)-action is pure 1-dimensional.
From [20, Theorem 5.5], Y’/ (1) has a crepant resolution  — Y’/ (7). There-
fore, we can get the crepant resolution of ?/G’ by the composition X -
Y/ (1) = Y /G O

Hence we get the following theorem.
Theorem 3.14. The quotient singularity A3 /G has a crepant resolution.
We compute the Euler characteritic of the crepant resolution X of A3 /G.
Theorem 3.15. We have

> (r=1)(r-2)

X(X) = 6 +2r +4.

Proof. The G’-action on I' gives the G’-action on R®. The subdivision given in
Lemma is G’-stable. We can separate the fan ¥ defining Y into the G’-orbits
with respect to the G’-action on R3. Let Cjy be the cone in ¥ corresponding to
the triangle Ty given in the proof of Lemma Let ¥, be the cones stable
for the action of T except Cy and its faces. Let X’ be the set of representatives
of (X —|Cy|)/G" — =, where |Cy| is the set of faces of Cy and we choose the
representatives of (X — |Cy|)/G’ containing .. Then we have

Y/G' =Uq,/G'U | | Oc)/(ryu | | Oc).

ceEX, ced’

Hence

X =7 (Ug/au || =0/ (m)u || 77 (0()).

ceEX cex’
where m: X — Y’/ is the crepant resolution. By [20, Theorem 6.3], we have

X (Ue, /G)) = 6.
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Since 7 is isomorphism on O(c) for each ¢ € ¥,

X < |_| 77_1(0(0))> =f#{c e X | dim(c) = 3}.

cey’
We put
Y3 ={ce ¥ |dim(c) = 3}.

From the construction of the subdivision of T', #5535 = 2. Since an element of X3
stable with respect to the o-action is Cy only, #((X3 — Cp)/ (o)) = T%l Since
T acts freely on (33 — Cp)/ (o) — 3;, we get

r?—1 (r—1(r-2)
3 (7“1>>6-

#{c € ¥’ | dim(c) = 3} = % (

Lastly, we compute x(7~1(O(c)/ (1)) for ¢ € X,. If dim(c) = 3, O(c) is
a point on singular loci. Hence 7=1(O(c)/ (r)) is P! (see [20, Theorem 5.5]).

Therefore,
X(m(O(e)/ (7)) = 2.

From construction of 3, each ¢ € X, is a face of a 3-dimensional cone ¢’ € X,
Then O(c) C Uy . If ¢ is spaned by x,y,z € T, we may assume that

T T=Y, Y T=2, Z2-T=2Z2.

We denote the coordinate of U,/ corresponding to x, y, z by z,y, z. The T-action
on U, is defined by

($, Y, Z) — (7ya -, 72)
If dim(c) = 2, the orbit O(c) is defined by z = y = 0,z # 0 in U,. Hence the
T-action is free. Hence

If dim(c) = 1, the orbit O(c) is defined by z = 0,2 # 0,y # 0 on U... Hence the
fixed locus F' is the line defined by © = —y on O(c). Each fiber of points in F'
is P'. Therefore,

X(mHO(e)/ ())) = x(O(c) = F)/2 + x(F) x x(P") = 0
We get
(L] 77H0()/ (7)) = 2¢{c € =, | dim(e) = 3} = 200 — 1).

Therefore

X()?):6+2(r71)+(7“_1)6(7"_2) = <r_1)6(r_2) +or 4.
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From the proof of Lemma [3.11]

r

F:{l[x,y,z]

z,y,z2 €Z,x+y+2=0 mod r}.
Since H =T'/Z, H is

{2ow.

From this, we get

0<z,yz2<rz+y+2=0 modr}.

Corollary 3.16. We have

(r—=1)(r—2)
6

Hence the Euler characteristic computed in Theorem [3.15 is §Conj(G) + 3.

#Conj(G) = +2r+ 1.

Proof. Since H is Abelian, if h € H and ghg=! # h then g ¢ H. If this is the
case, then ghg™! is given as a permutation of coordinate of h regarding h € T.
Hence the normal subgroup H of G has the conjugacy classes represented by
the identity element or

1
—la,b,c] (0<a<b<e<r,a+b+c=0 modr),
r

which is the case the coordinates are mutually distinct, or
1
—[a,(r—a)/2,(r—a)/2] (0<a<r,a=r mod2),
r

which is the case two of coordinates are equal and the sum of coordinates is one,

or
1
~[2a,r —a,r —a] (0 <a<r/2),
’

which is the case two of coordinates are equal and the sum of coordinates is

two.
The numbers of these elements with the last threee expressions are

(r—=1)(r—-2) VJ V—‘—l
’ )

6 2

respectively. Hence the number of conjugacy classes contained in H is

(r—1(r-2)

6 + 7.

From the proof of Lemma Ho C Og(o). Since Tot = 02, 0% € Og(0). From
the proof of Lemma Ho? C Og(o). Hence the conjugacy class of o contains
Ho U Ho?. Since THoT = Ho?, THo?t = Ho, we have Og(c) = Ho U Ho?.
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1

Since 0~ '7o = o7, for h € H,

hor = ho 70

= U_l(O‘hU_lT>O'

and

ho?r = horo™!

=o(oc thor)o L.

Hence hoT, ho®T are conjugate to i/t for some b’ € H. For h = 1[a,b, ],
1 1 1
hrh™' = =[a,b, ] <7’[—a7 —b, —c]7'> T=-[a—1¢0,¢c—a]r.
T r r

In particular, hth™' = 1[—1,0,1]7 when h = 1[0,7 — 1,1] € H. Hence, the

p
other conjugacy classes are represented by 7 or

1
;[O,a,rfa]r 0<a<r).

Therefore,

—1)(r—2)

gConj(G) = (r 6 +2r+1.

4 Stringy point-counting and mass formulas

In this section, we compute the numbers of F4-points on some of crepant reso-
lutions constructed above, where ¢ is a power of three. We can compute those
numbers from explicit description of resolutions. But now, we take alternative
approach using stringy point-count. Let k = F, and let K = k((¢)). The field
K has the valuation vg. We denote the valuation ring of K by Og. For an
Ok-variety X, we denote its stringy point-count by #5 X, which is defined as
the volume of X with respect to a certain p-adic measure (for more detail, see
[I7]). If X has a crepant resolution Y — X, we have

ﬁY(k) = X.

Hence we can use this invariant for counting the k-points on a crepant resolution.

For a finite group G, a finite étale K-algebras M of degree G endowed with
a G-action and satisfying M© = O is called a G-étale K -algebra. A homomor-
phism of G-étale K-algebras is a G-equivalent K-algebra homomorphism. We
denote the set of the isomorphism classes of G-étale K-algebras by G—Et(K ).
Note that each M € G-Et(K) is written as

M = L®"
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for some H-extension L/K where H is a subgroup of G.
Let V. = A% _ = Spec Ok[r1,...,2,]. For a linear G-action on V, we
consider the quotient variety X = V/G. For M € G—Et(K ), we define its tuning

module Zp; by
n
Ey = HomgK <@ OKxi,OM> .
i=1
This is a free Ox-module of rank n. The v-function vy is defined by
HOI’H@K ((’)K[a:]l, OM)
On - Enm
in the errata of [14], where L is a field such that M = L®" and f is the

inertia degree of L/K. When we have an Ops-basis ¢; (i = 1,2,...,n) of
Homo, (Ok[x]1,On) and an Og-basis ©; =Y. ¢ (j =1,2,...,n) of Ep,

vy (M) = vk (det(ci;)) 1)

where vk is the valuation of K. By [I7, Corollary 7.5, Proposition 8.5], we have
the following formula:

Theorem 4.1. With the above notation,

n—vy (M)

_ q
WX =D et

MEG-Et(K)
where Hyy is the stabilizer subgroup of a connected component of Spec(M).

We compute the right hand side of the equality of the theorem for some of
the cases discussed in the last section.

4.1 The case G = (Z/IZ) x (Z/3Z)

Let G be a group isomorphic to H x G’ where H = Z/IZ with | a prime different
from three and G’ = Z/3Z. Then the set G-Et(K) is divided into three parts:

Sl = {K@Bl}a
Sy = {L® € G-Et(K) | L/K : G'-extension},
Sy = {L% € G-Et(K) | L/K : H-extension}.
Case M € S;: When M = K®3 since M is unramified, we have vy (M) = 0.
Case M € So: When M = L® € S,, since vy has convertibility from 13,
Lemma 3.4], we have
vy (M) = vy, (L)
where V| is the G'-representation obtained by restricting the G-representation

V. The G’-extensions L/K are controlled by the Artin-Schreier theory. From
this theory, L is defined by

L=K[z]/(2® —z — a)
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with a € (k/P(k)) & B0 kt=7 where P is the Artin-Schreier map defined by
P(x) = 23 —x. We put j = —vx(a). Since Vg is a permutation representation,
if 7 >0, we get

_dyx _(G+DEB-1)

vvlcl(L) - ) = 2 :.7+1

by [18, Lemma 11.1] and [I1], Proposition 7, page 50]. Let
Sa,m ={M € Sz | vy (M) =m}

From the computation of vy|_,, S2,, is not empty if and only if m = 0 or
m=j+1for j € Zso—3Z. If m =0, then vk (a) = 0. The number of such a
is f(k/P(k)) —1=2. Iif m = j+ 1, then vg(a) = —j. Such a is written as

a=ag+ Z ait*i.

34i>0,i<j

The number of choice of the coordinates a; is 3(q—1)¢’ '~ 5], Hence, we have

2 (m =0)
8S0m =14 3(g— D¢ 2" (m-1¢32Z,m>0) . (2)
0 (otherwise)

Case M € Ss: Lastly we consider the case M = L®3 € S5. We have
’Uv(M) = ’UV|H(L).

We now put an additional assumption q — 1 divided by [, it means k has the
[-th roots of unity.

Then the H-extensions L/K are controlled by the Kummer theory. Let
i € k* be a generator of k* and let (; € k be a primitive [-th root of unity.
Then the multiplicative group K*/(K*)! is generated by u and ¢. Hence L is
generated by a € L satisfying o! = f where f = por f = pit (i =0,1,...,1—1).
The H-action on L is defined by choosing h € H such that

a-h=a.

We define the age of h € H by

age(h) = %[a, b, (]

if h = 1[a,b,c].

Lemma 4.2. For L as above, we have

vy, (L) = age(h)vk (f).

26



Proof. We denote h = %[al, as, as). Let @1, pa, @3 be the dual basis of 21, xo, 3,
i.e., ¢; are O-linear maps from O[xz]; to O defined by

[ =0
wten={ 5 (79
Then

3 3 3
D eipi €EL e 1<V <3, awi)(z-h) = cipi)(a;) b
i=1 =1 i=1

S 1<V <3, =c¢j-h

S 1<V < 3,3dj S OK,Cj = Ozajdj.

Therefore, the maps {a%¢;} are a basis of Z;. Hence

vy, (L) = vk (det diag(a®,a"?, ")) = z;K(fiaﬁafﬂ3

) = age(h)vk (f)-
O

When M = Ly & Ly & L3, we may assume that Lioc = L. Then, if
the H-action on L; corresponds to h, the actions on Ls, Ls correspond to
o~ ho,ocho~! respectively. Hence the G-action on M corresponds to the non-
trivial G-conjugacy classes of elements of H. Let

S&m = {M € S3 ‘ ’U\/(M) = m}

If M € S5,,, then the extension L/K correspoinding to M is determined by
f = . The number of G-action on M is §Conj(H)—1 = % Hence S5 = %
If M € S5, then the extension L/K is determined by f = p’t. The number of
G-action on M is equal to the number of the conjugacy classes containing age

one elements. Since the inverses of age one elements have age two, the number
1(1-1)

of age one elements is uH;l . Hence S3 1 = =. The number 53 5 is computed
similarly. We get
L (n—0)
895.m =9 WD (m=1,2) . (3)
0 (otherwise)

Theorem 4.3. Let | be a prime different from three and let q be a power of
three such that ¢—1 is divisible by l. Let G be a small finite subgroup of SLs(k).
Suppose that G has a normal group H =2 Z /17 and G/H = Z/37. Then we have

gnovM) ( 1—1)2 -1
Yo =+ (24— )P+ ——a

Ca(H 6 6
MeG—E"t(K)ﬁ a(Ha)
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Proof. We compute as

Z qnf'uv(M) Z q37'uv(M)
8Ca(Hy) #Ca(Har)
Mea K ﬁCG( M) MeoTn K)ﬁ Cc(Hpr)

_ Z q3 ’Uv(M Z 3 vy M) q3 ’Uv(M)

MeS, 1Ca(1) #Ca(@) MeSs tCc(H)
¢ q "
+Z > +Z > (4)
m=0MeESa m m=0 MeS3 m

From formula , we get

> oy ey
3

m=0 MeSa m

2 . q2*j
= qu + Z TﬁSQ,j-ﬁ-l
pli>0

23 q27j 1—| 2
S — 1)1~ L4]
30+ 3 3(g—1)q
plf>0
2 3 i
=3¢ talg—1) > L3
pli>0
23 - —1
= 34 +29(¢—-1)) ¢
=0
2, 1
=: 2(q —1)———
34+ 2a(q )1_q_1
23 2
== 242
SQ+ q

For last sum in , we have

3—m

2
> oy =D T Sm

m= OMES;m

from . Therefore, we get

gnovM) g8 (23 2) <z—13 -1, 1—1)
Y e = (32 )+ e+ ¢+ q
Co(H 3 3 3 6 6
MeG-Et(K)ﬁ a(Har)




4.2 The case G = (Z/IZ)* x (Z/3Z)

Next we consider the case that the group G is isomorphic to H x G’ where
H = (Z/IZ)? with | a prime different from three and G’ = Z/3Z. We assume
that ¢ — 1 is divisible by I. Then the set G-Et(K) is divided into four sets:

S = {Keeu?.l?}7

Sg = {Leal2 € G-Et | L/K : (Z/3Z)-extension},
Sy = {L% € G-Et | L/K : (Z/IZ)-extension},
Sy = {L%® € G-Et | L/K : (Z/IZ)?-extension}.

Case M € S;: Since M is unramified, we have vy (M) = 0.

Case M € S5: We take an M = LoV ¢ So. Let Lo be the first component
of M. Since any element in G whose order is three is conjugate to o or o2, we
may assume that Stabg(Lg) = G’. Moreover, a normalizing group Ng(G') is
G’. Hence, a component L of M such that Stabg(L) = G’ is Lo only. From the

convertibility of vy, we have
vy (M) = vy, (Lo).
The extension Ly/K is defined by
Lo = Klz]/(2® — x — a)

by a € (k/(P(k))) & D350 kt=1. We put j = —vg(a). If j =0, then Lo/K is
unramified and we get vy|_, (Lo) = 0. On the other hand, if j > 0, we get

dLo/K

— i1
2 I+

VV|a (Lo) =

Let
Sg7m = {M €5, ‘ 'Uv(M) = m}

By the same computation as the one for 7 we get

2 (m=0)
8S0m =14 3(g— 1™ 2" (m—1#£3Z,m>0)
0 (otherwise)

Case M € S3: For M = L%3 € S5, we have

vy (M) = vy, (L) = age(h)vr (f)
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for h € H, f € Ok chosen as in Lemma The number of elements of age two
in H is

S € H | age(h) = 2} = #{h~" € H | age(h) = 2}

Zﬁ{;[a,b,C]EH|a+b+c=l,abc;é0}
C(I=1\ _ (1-1)(1-2)
—< ) )—2~

S&m = {M € Sy ‘ 'Uv(M) = m}

Then we can compute §53 ,,, similarly as . When M € S5, Lo is determined
from f = p and the G-aciton on M corresponds to a nontrivial G-conjugacy
class in H. Hence #5309 = l%l On the other hand, when M € Ss3,, for
m = 1,2, Ly is determined from f = p’t for i = 0,1,...,] — 1 and the G-action
on M corresponds to a conjugacy class of H whose age is m. Hence we get
following formulas:

We put

l2;1 (m _ 0)

1(1=17(1+4) m—1

§.53,m = 1(1712(172) Em _ )
0 (otherwise)

Case M € Sy: We consider M = L® € S,. Since L/K is a (Z/IZ)*
extension and K> /(K*)! = {uit/ | 0 <4,j <1— 1}, L has generators a, 3 € L
over K such that

o =p, B =t

The H-action on L corresponds to choosing the elements hi, hy acting by

a-hy = Qao, B-hi =5,
a-hy = q, B-hy=(B.

Lemma 4.4. For above L, we have
vy, (L) = age(hz)

Proof. We define the Og-linear maps ; as in the proof of Lemma We
denote h, hy as %[al,ag,a3], %[bl,bg,bg]. Then

3 3 3
ZCZ'QOZ' S EL = 1 S V‘] S 3, (ZCZSQZ) (Ij . hm) = (Zcz(pz> (.IJ) . hm fOI‘ m = 1,2

i=1 i=1 i=1
S 1<V < 3,ClajCj =Cj -hl,clbjcj‘ = ¢4 - ho
= 1<V)<3,3d; € Og,c; = a%p%d;.
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Hence (a% 3% <pj)§?=1 are Og-basis of Z1. Therefore, we get

vy (L) = v (T = age(hy).
]

The G-action on M is defined by the orbit of (hy, he) in (H—{I})x(H—{I})
about the G-action defined by taking componentwise conjugate. Note that this
action is free. We put

Sym = {M € G-Et(K) | vy (M) = m}
for m = 1,2. The number of pairs (h1, he) with age(hs) =1 is

(- 1)(1+4)
2

11— 1)2(1+4)

(2 -1 = %

since hy is chosen from H — (hy). Since G-action on (H — {I})? is free, we have

11— 1)2(1 +4)

541 = 5

Similarly, the number of pairs (hi, he) with age(hs) = 2 is

(l—l)(l—2)(l2 I(1-1)2(1—2)

)=

2 2 ’
and we have 9
§54,2 = W
S HI-121+4) (m=1)
BSam = { 25(1 —1)*(1—-2) (m=2)

Theorem 4.5. Let | be a prime different from three and let q be a power of
three such that ¢—1 is divisible by l. Let G be a small finite subgroup of SLs(k).
Suppose that G has a normal group H = (Z/1Z)? and G/H = 7/3Z. Then we
have

q

n—vy (M) . I—1)(l+4 -1l -2
S DY o (102
< 4Cq(Hur) 6 6

MeG-BH(K)
Proof. By the same computation as in the proof of Theorem [£.3] we have

m — 2(]3 + 2q2
MeSy CG(HM) 3
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From the above computations, we get

3—’vv(M)

q L 3 2
m =5 (q #1550 +q 4531 + Qﬁ53,2)

2o1, (-1)1+4) , (-1(i-2)
TP o Tt @

MeSs3

and

q3—’Uv(M)

1
m = 2 (q2ﬁ54,1 + Qﬁ54,2)

MeS,

_ (=121 +4) 5 (1-1)%(1-2)
- a4 o 7
Therefore,
n—vy (M)

q
Z 1Cc(Hr)

MeG-Et(K)
3wy (M)

- qc o) T (é* o T qc ) qc i
MeS; (Hu) MeSs o (H) MeSs ¢(Hw) MeS, ¢(Hw)
1, (2, ., 21, (-10+4) , (-1)1-2)

- 2842
3z2q+(3q+q>+<3z2q+ o Tt ¢
NEETPREIELN

3—vy (M) 3—vy (M) 3—vy (M)

61 ¢+ 61
(Z_1)6(l+4)>q2+ (1-1)(-2)

q.

3
= 2
q+<+ 6

4.3 The case G = (Z/IZ)* x &3

Lastly, we consider the case that G =2 &3. We put H = (Z/IZ)? with a prime
[l # 3 and G’ = G3. As a preparation, we describe some properties of G. We
may assume that o,7 € G’ be

01 0 0 0 -1
00 1|,7=]0 -1 0].
100 -1 0 0

The subset H — {I} is parted in two sets

o =

1
Hy = {l[a,b,c]

4a,b, c} = 3}, H = {;[a,b,c}

#{a,b, c} _2}.
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Since any h € H' can be written as

h= a_lj[a,a,b]al (1=0,1,2)

with 2a + b € IZ, we have $H' = 3(l — 1), and hence §H; = (I — 1)(I — 2).
From the proof of Corollary the conjugacy classes of G is represented
by 1,0,7’,%[c,d,c]n%[c,d,c],%[a,b,c] where %[e,d,e] € H’,%[a,b,c] € Hy and
a <b<c. When we write M € G-Et(K) as M = Ly ® Ly & - -- ® L, where
L; are copy of a Galois extension L/K, for any 4, there exists g € G such that
g(L1) = L;. Then the stable subgroups Hys, Hy, of Ly, L; are conjugate by g.
Therefore, we may assume that, if Hy, ¢ H, then Hy NG’ # 0.

Suppose that ¢ = 1 mod 2] and ¢ > [ + 1. The set G—Et(K) of G-étale
K-algebras is parted into following seven sets.

Sy = {M € G-Et(K) | Hyy is trivial},

Sy ={M € G-Et(K) | Hy = (1)},

So = {M € G-EA(K) | Hys = (o)},

Sy ={M € G-Et(K) | Hy = Z/IZ and Hy, C HY,

S5 ={M € G-Et(K) | Hy = G'},

Sg ={M € G-Et(K) | Hyy = H},

Sy ={M € G-Et(K) | Hy N H = Z/IZ and Hyy NG’ = (1)}.
We computed vy (M) in the previous cases except M € S5 U Sy7. Let

Sim ={M € S; | vy (M) =m}.

Case M € S;: Since M is unramified, we have vy (M) = 0.
Case M € Sy: Since Hyy = Z/27, the extension L/K is determined by
f € {u.t,ut}. From Lemma[1.2] we have

vy (M) = vk (f).
Note that 7 is diagonalized as diag(1, —1,—1) and hence age(7) = 1. Thus

_J1 (m=0)
ﬂ52”71_{2 (m=1

Since C;(Hn) = ($[1,20 — 2,1],7), we have
37'0\/(M) 1 .
1 = o (¢° +2q) (5)

o) Ca(Hy) 2

Case M € S3: We take an M = Lo ¢ So. From the convertibility of vy,
we have
’UV(M) = vVIG/ (L)
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The extension Ly/K is defined by
Lo = K[z]/(2® — x — a)

by a € (k/(P(k))) ® Dsj-0 kt=1. We put j = —vg(a). If j =0, then Ly/K is
unramified and we get vy, (Lo) = 0. On the other hand, if j > 0, we get

dLo/K

vy, (Lo) = =j+1

Since the normalizer Ng(Hyy) is G', §{Na(Har) : Hpy] = 2. From , we get

1 (m =0)
o | m=1
8Sm = { e L7 (m—1+3%Z,m>0)
0 (otherwise)
Therefore

3—vy (M) 1
q 3
T Pt (6)

MeSs CG(HM) 3

Case M € Sy: For M = L®% ¢ S, we have
vy (M) = vy, (L) = age(h)vk (f)
for h € H, f € Ok chosen as in Lemma @ We put
Sam.f={M € Sym |h € Hy}, Sy, ={M € Sym|hecH}

Then we can compute #§S4 ,, similarly as . Note that the G-aciton on M
corresponds to a nontrivial G-conjugacy class in H. Since

ff:<hL%—ZH>U<h%—&LH>U<hLL%—ﬂ»

Uzeff|agdh):]}::{%MJ——2ma}

we have

1 1 l
,T[Z—Qa,a,a],j[a,a,l—Qa]|O<a§ 5},

1 1 1 l
{h € H' | age(h) =2} = {j[a,Ql—2a,a],7[21—2a,a],7[a,a,21—2a] | 5 <a <l—-1}.

l
Since Og(h) = 3 for h € H', we have

-1 (m=0)
8S4m = q1[5] (m=1)
(5] -1 (m=2)
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On the other hand, since

(l—1)2(l+4) i=1)
t{h € H | age(h) =i} = q q_1ju— )
(l 1)2(l 2) (Z _ 2)
we have
(=1)(+4) 3 LJ (Z _ 1)
th e H' |age(h) =i} ={ (120 02 .
D 5 (41 (=2
and hence
l2_1—63(l—1) (m =0
1-1)(1+4
1 = 4 5 (2 -3 (L)) (m=1)
U2 o314 - 1) (=)
Since
l2 (h S Hf)
Co(Hy) =
#Co(Hu) {212 (h € H')

we get following formulas:

3—wvy (M) 1 1
qiz 3( = - /
ot~ (5o e35in)

1 1
+ ¢ <pﬁ54,1,f + 2121154/1’1)

MeSy

1 1
+ql <l2ﬁ54,2,f + 2l2ﬁS‘1’2>

P11, (-1D)1+4) , (-1)1-2)
o2 Ut T T g

(7)

Case M € Ss: In this case, L/K is an G3-extension. Put Q = L?. Then
L/Q is a Z/3Z-extension and Q/K is a Z/2Z-extension. By the Kummer theory
and the Artin-Schreier theory, @) is generated by a € @ over K such that

a? € {u,t,ut} and L is generated by 8 € L over @ such that

where kg is the residue field of Q, A € kg — P(kq), and ¢ is a uniformizer of
Q. Note that we can choose mg satisfying mq - 7 = +=mg. Hence the set RPy is

invariant under the action of 7. We may assume that

a0 =aq,
a-T=—q,
B-o=p+1.
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Weput 8-7 = Z?:o ¢; 3" with ¢; € Q. Since 70 = 07, we have
B-(ra) =p5-(07)

and
(CO + C1 + Cg) + (Cl — Cg)ﬁ + 6252 = (CO — 1) + Clﬂ + 0252.

Then, c; = 0,¢; = —1, in other words, 8- 7 = ¢y — 3. Since 72 = 1,
B=B -7)-T=(co-T—co)+ B.
Hence ¢o -7 = ¢y and ¢g € K. Let b = 32 — 3. Then
ber— (8% B)m=(ch—c 0)—b

We get b7+ b =c3 — cp. Since the set RPg is closed under the T-action and

addition, b- 7+ b € RPy. Now RPy NP(K) = {0}. Therefore b-7 = —b and

co € F3. By replacing S with 5+ 1 if necessary, we may assume that g-17 = —f.
If a2 = p, any element of kg is written as sa +u by s,u € F,. We have

P(sa+u) =P(sa)+ P(u)

3—3a+u3—u

=s’a

= (s°u—s)a+u® —u.
Hence P(kg) NF, = P(F,). Then we can choose A from F, and mg = t. We
put b = agA + ZBJ(j>O ajt™7 where ag € F3, a;j € kg. Then

b'T:aoA+ Z (aj'T)tij
315>0
Since b- 7 = —b, a; € alF, for any j. Hence
be €P aF,t.
315>0

If « # p, we can choose « as uniformaizer of (). Then b is written as agA +
Z3ﬁ>0 aja’ where ag € IF3, a; € kg =F,. Since b-7 = —b and

b-T=ap\+ Z (-1)Yaja™7,
3ti>0
we get a; = 0 for any j € 2Z, and hence

be @ F,a™7

J>0,gcd(j,6)=1
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. Let 1, @2, 3 be the dual basis of z1, 22, xz3. Then

(Xl )@y o) = (T avi)l@)) o
(O )@y 1) = (i, copi) () - 7

2

3
O cip) €L & 1<V) <3, {
i=1

Cl =C+-0 —=C3*0
=
Cl = —C3-T,Cg = —C2-T

<:>Cl262-0'2703202'0',02-7':—02

S =co-0%c3=0Co-0,C0 € (Ka@Kﬂ@KOLBQ)ﬂOK
Since vy (a) = 3vg(a) € 3Z and v, (8) = vo(b) & 3Z, we have
vr(a) #vr(B) # vi(af?) # vr(a) mod 3.
Hence, for a1, as,a3 € K,
vp(a1a + azfB + azaf?) = min(vg (a1a), vy (azfB), v (azaf?)).
Thus,
(Ka® KB® Kaf?) N Ok = a0k + t"BOk +t"2af?O

where

ny = {”L(mw iy = ’72’UL(5) vL(a)"‘

eL/K €L/K
and ey is the ramification index of L/K. Note that

oo )3 =)
LK =6 (otherwise)

Hence, we can take a basis of 21, as the morphisms 1,19, 13 corresponding to
co = a, "B, t"2aB? respectively:

3 3 3
P = CYZ% thy =™ Zﬁ co' oy, anps =t 2/5 co'
i=1 i=1 i=1
Therefore

o o o
vy (M) = vk | det B—1 B8 5+1 +ny +ng
a(B-1 af® a(f+1)?

= UK(OZQ) +ny + na.
by the formula . We put

Ss.m.; ={M € S5 | vi(a?) =m, vi-(b) = —j}
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for m € {0,1} and j > 0. Then, we get

- 141+ %) (m=0,j € Z— 37)
vv(M)—{ 1+f%T+[32jT_3W (m=1,j € Z,ged(j,6) = 1)

for M € S5,m,;. We have
18be @D aFgt|ug(b) = —j p = (q— )¢/~ L3
3tj>0
when o? = p and
1ebe P Fea ) =—jp = (-1 2LFT
7>0,gcd(5,6)=1

when o? = t,ut. Since the G’-action on L corresponding to —b is conjugate
with the one corresponding to b, we have

485 = Lg- 113 (m =0, €Z~3Z)
5.m.j (q— 1) 251 (m=1,j € Z,g0d(j,6) = 1)
Therefore,
3—vy (M) L&
g B Z Z 3—vy (M)
I q
e Ca(Huy) m=0 j=1 M€ESs5 m ;

YD M

J€Z>0,gcd(j,6)=1 ME€S5,1,;

oo oo
S SNDSRFETS S S
=0 M€S5,0,31+1 =0 M€ESs5,0,31+2
oo (oo}
DD DD DEED DI
=0 M€S5,0‘6L+1 =0 N[€S5,0,61+5
1 oo oo
=32 (a=Da" "+ ) (g - 1)g!
1=0 =0
oo oo
+> (g=Dg" 7+ (- g
1=0 =0
=2¢>+¢ (8)

38



Case M € Sg: We consider M = L% € S,. Since L/K is a (Z/IZ)*
extension and K> /(K*)! = {u*t’ | 0 <1i,j <1— 1}, L has generators o, 3 € L
over K such that

o =p, Bl =t

The H-action on L corresponds to choosing the elements hi, hy acting by

a'hlzgav B'h1:ﬂ7
a-hy = a, B-hy=(B.
From Lemma [£.4]
vy (M) = age(hg).

The G-action on M is defined by the orbit of (hy, he) in (H —{I}) x (H —{I})
about the G-action defined by taking componentwise conjugate. Note that this
action is free. The number of pairs (h1, he) with age(hs) =1 is

(-10+4)
2

(e 1)22(1 +4)

since hy is chosen from H — (hs). Since G-action on (H — {I})? is free, we have

_1\2
50, = 0 112(z+4)'

Similarly, the number of pairs (hi, ho) with age(hg) = 2 is
-1l —-2 I(1—1)%(1—2
02y Moo

and we have

11— 1)%(1 - 2)

Woa ="
1(1=1)%(+4) -1
£56,m = { 1(171}3(172) m=1)

Threrefore, we have

@ov) (1(1—1)2(1—4) 5 l1—-1)2(1-2) )

=13 q (9)

=5, CalHu) 1 12 12
Case M € S7: Since Hyy NG’ = (r) is acts on Hy N H by conjugate,
Hy N H = (41,20—2,1]) or Hy N H = (3[1,0,1—1]). Tf Hy N H is the
former, then Hyy = (h1) = Z/2IZ for some h € H. In the latter case, Hy =
<%[17 0,1 — 1], 7) which is isomorphic to the dihedral group. Since the tame part

of absolute Galois group of K is abelian, the latter appears only if [ = 2.
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When Hy; & Z/2IZ, Hyy is generated by hr for some h = }[a,b,c] € H.
Since hT is conjugate with

1 1 1
-[0,1 —a, a]hT?[O’ a—1,—a]=h-

1
1 l [70’3 070’]7_ = 7[07 bal - b}’ra

we may assume that Hj, < [0,1,1 — 7'>. From the Kummar theory, there
exists a generator a € L over K such that

o e {ppth Py u{pit|0<i <2 1yu{p¥ 1< <1}

and the generator h € H); such that o - ht = {3y where (5; is a 2I-th primitive
root of unity. Note that if [ = 2, y?t? is in (K*)?, and hence

ot € {p, pt? t, pt, p?t, p°t}

Since Hyr = (1[0,1,1 — 1]7), h is written as

(}[0,1,1 — 1]7)211 %[(z — D) —1),ii(l—1)] (1<i<1,2i—1#1).

Lemma 4.6. For L as above, we have

0 (@ =p)
_ )1 (k@) <2,i> L)
Wi (D) =0V =0 ) < 2,0 < )
1 (vK(aQZ):l)

Proof. We write o? as ™t™ and h as }[a, b, c]. Note that a+b+c = age(h)l. If
n =0, vy, (L)=0since L/K is unramified. Let ¢1, @2, p3 be the dual basis
of x1, x5, 3. Then

3 3 3
(Q_civi) €& 1SVG <3, (3 i) hr) = (Q_eipi)(wy) - hr

i=1
—(l'ez = c1 - hr,
& —Clbcz =cy- hT,
—(fc1 =c3-hr
&y - (117')2 = (jl‘”ccl, o € MK NOKk, ¢35 = —¢, “c1-hr
&y -hr = :I:Cgl’Lccl7 cs € K NOk, ¢3= —¢, %c1-ht
S € (@K +aTMK)N Ok, ¢ € oK N Ok, 3= —(, “c1-hT

Now we have

(@K + 0t HE) 0 O = a4 O + a2 0
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where

e e

and
PHE N Ok = 2O

where

Hence we get an Og-basis
— 2b+1 l — l
tnl (anrcspl _ Cgl aaa+c¢3), tn3a + 802, tng (aa+c+ 801 + Cgl aaa+c+ @3)

of Zy,. By the formula ,

aote 0 aa+c+l

vy, (L) = vk | det 0 a? 0 +n1 +mng + ng
_Czcl_aaa+c 0 Cch—aaa+c+l

_ ’UK(OL2(0'+b+C+l)) +n1 4+ ng 4 ns
= (age(h) + 1)n +ny +ng + ng
Since a + ¢ = lage(h) — b,

ny = — {(lage(’;g‘b)"J g {(lage(h);lr - b)nJ |

Hence

) 20-b 2b+1
2n — | 2z)nJ - V 2 )nJ - V 20 )nJ (age(

(age(h) + 1)n +ny +ng +ng = b —b)n n
3 — (2l2lb) J B {(312;;) J B V%;ll) J (age(

Since L%J =1+ L(l_;l’)"J, we have

vy |y, (L) = (age(h) + L)n +n1 + no + n3

o {(l _sz)nJ - {(21 ;lb)nJ - {(Qb;;l)nJ
I n
i n

{2 S =152 - 15 (n=1)
= 4= (5] - [ - (2] (=)
20— |52 - 222 = | B (n=1D)
{ngm (n=1)
-2~ %] (n=2)

2—b—|5] - 22| - 4] (n=1)
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If n =1,2, then we have

OV |y, (L) =

If n = I, then we have

9l — p — 3=2b=1 _ |1 (1+#2)
OV, (L) = {1 2 El (i=2) =1
O
Therefore, if [ # 2, then
-1 (m=0)
8S7m =14 2D 91— 1) (m=1)
31(12—1) (m = 2)
Therefore,
3—vy (M) 1
q ( 3 2
= 5 (¢°4S7.0 + ¢*8571 + q#S72)
Mes, Cg(HM) 21
=15 (I-1)3l+4) 5 3(1-1)
T2 4 T (10)

If | = 2, since 1[0, 1,1]7 = 7(7[1,1,0]7)7, we have

(m

HOM € Sy | Har & 7/4Z) = {; o

0)
1)

When H); isomorphic to dihedral group, [ = 2 and Hy = (Z/2Z)?. From
Lemma and any element of Hjs is age one, vy (M) = 1. The choices of a
ordered pair of generators of Hyy are (h,7), (7, h), (7, h7) up to conjugate where

h = %[17 0, 1]. Therefore, we have

#H{M € Sy, | Hy = (Z/27)°} =3

and hence
1 (m=0)
S7m =
s, {8 (m=1)
Therefore,
3—vy (M) 1
q ( 2
= - (a#S71 + ¢ ﬁ57,2)
vics, Ca(Ha) 4
L 2
== 2q°.
4q +2¢q

Therefore, we get
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Theorem 4.7. Let | be a prime different from three and let q be a power of
three such that ¢—1 is divisible by l. Let G be a small finite subgroup of SL3(k).

Suppose that G has a normal group H = (Z/IZ)? and G/H = S3. Then we
have

n—vy (M) {q3+ (LB)IT) 2 4 (HEDWEES) ) () £ 9

q
Z =313 2 _
Mo UK 1Cc(Hum) ¢ +6¢°+q (1=2)

Proof. 1f | # 2, then

o 7 w
Z g3—vv (M) :Z Z g3—vv ()
H H
MeG-Et(K) #Ca(Hu) i=1 M€S; #Ca(Hu)
L+5)(1+7 I+ 1D)(I+5
0D 5 (D)
12 q
from the equations , @, , , @D, and . If ] = 2, then
Z 3 vy M) Z Z 3 'U\/(M)
MeoBeK ﬁCG Hy) = 1Ca(Hyr)
=q¢*+6¢° +¢

from the equations , @, , , @D, and . O

4.4 Computing Euler characteristic

From Theorems [£.3] [.5] and[£.7] we can get the Euler characteristic of a crepant
resolution of the associated quotient variety. We get the following formula from
the Weil conjecture.

Proposition 4.8. For a smooth variety Y over F,. Suppose that

Z aiq'™

where a; € Z.. Then

n

x(Y) = Zai-

=1

Proof. Let Z(t) € Q[[t]] be the zeta function of Y, which is defined as

o0 tm
Z(t) = exp (Z ﬁY(qu)m> ,
m=1
or equivalently

d oo
Slog Z(t) = > Y (Fgm )t
m=1
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From the assumption, we have

n

Y Y (Em =Y 1‘ﬁqqit.

m=1 i=1

Hence
n

1
70= =g

=1

From the Weil conjecture, we get

x(Y) = Z a;.
i=1

O

Corollary 4.9. Let G be a finite group considered in Theorem[{.3, [£.8, or[{-7
Suppose that A3 /G have a crepant resolution Y — A3/G. Then

3452 (H = 7./12,G' = 7./37)
x(Y) = 34 £ (H = (Z)I7)%,G' = 7./37)
D) Lo 44 (H = (Z)I1Z)%, G = &3)

Proof. By the property of the stringy-point count, we have
ﬁY(Fq) = ﬁstA?)/G'

Hence the assertion follows from the previous proposition and Theorem [£.3]
or O

5 An example where the v-function is not de-
termined by the ramification filtration

Let k be an algebraic closed field of characteristic p > 0. Let K be the field k((¢))
of Laurent power series and let Ok be the valuation ring of K. We consider the
2-dimensional Of-representation V = AZ  of G = (Z/pZ)? defined by

SN

for some a € k —IF,, where o, 7T are generators of G.
We define a subset J C K by

J= & K,
pt3,5>0

which is an additive group of representatives of K/P(K). Let F/K be a G-
extension. Since F?/K and F" /K are (Z/pZ)-extensions, there exist o, 5 € F
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uniquely such that F7 = K[a], F™ = K[f],a? —a=g; € J,fP — 3 = g2 € J,
and

a-T=a+1, B-o=p+1.

by the Artin-Schreier theory. In this case, we denote F' by F,
(g1, g2) is chosen from

I ={(g1,92) € | 1 #0, 92 & Fpgn}.

We denote vy (Fy, 4,) by vv (91, g2) for simplicity.
Let Oz, x2] be the coordinate ring of V.

1,g» Where the pair

Proposition 5.1. The tuning module Zg of F € G—E’t(K) is 1somorphic to
Op :={m e Op |m(c—1)?=0,m(r —1) =am(c — 1)}
as an Ok -module by the following maps

Er 3 ¢ p(x2) € Op,
Op > m+— mys +m(oc — 1)mey € Ep.

Proof. Let ¢ € Zf and let m = ¢(x3). Since ¢ € Zp, we get
m(o —1)? = p(z2(0 — 1)%) = (0) = 0
and
m(T — 1) = p(z2(T — 1)) = p(az1) = ap(z2(0 — 1)) = am(o —1).

Thus m € OF.
On the other hand, for m € ©p, we define

o = (m(o—1))p1 +mp2

where ¢;: Oglx1, 22]1 = OF are Ok-linear maps defined by ¢;(x;) = d;;. Then

p(x1)o =m(o —1)o =m(c —1) = p(z1) = p(z10),

o))t =m(oc— 1)1 = (am(c—1)+m)(oc —1) =m(oc — 1) = p(x1) = p(x17),
o(x2)o =mo =m(c—1)+m = p(x; +x2) = p(x20),

o(xa)T =mr =am(o — 1) + m = p(azxy + x2) = p(z27).

These equalities show that ¢ is G-equivariant and belongs to Zp.
Therefore, we have two Og-homorphisms

Er 3@ @(x) € Op,
OrF dm— myps +m(c—1)p; € Zp

These maps are inverse of each other. O
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We get the following formula for v-function.

Theorem 5.2. For (g1,92) € J®), we put f = aPg, + go. Then

_min{vK(gl),p’UK(f)}—‘
D2

vv(g1,92) = {

Proof. The field F? endowed with the action of (7) can be regarded as a cyclic
representation of Z/pZ over K. Since

i-2 .
. . . . 7 .
ad(r—1)=(a+1) —a" =ia" ' + E <,>oﬂ
=0

for i > i, a’(t — 1) is a polynomial of o degree i — j. In particular, a?~1(t —
1)P~! 2 0. Hence the matrix of 7 on this representation has only one Jordan
block. The same is true for F'7 endowed with the action of (o). Hence we can
choose K-bases (Ai)fz_ol C F? and (Bj)é?;é C F7 of F° and F7 respectively
which satisfy

Ai'(Tf].):Ai_l (Z‘:].,Q,...,p*].),
Bj-(c-1)=Bj1 (G=12...,p—1),

and Ag = Bp =1,A; = a, By = 3. Then (AiBj)f,;‘io is a K-basis of F.
Let m € ©p. Then we can write m = Zf;ol Z?;é ¢;jA;B; with ¢;; € K.

We can rephrase the two equations defining O the terms of c; as follows:

mo—1)?=0 < 0<i<p—-1,2< "j<p—1, ¢;; =0,

p—2p—1 p—1p—2

m(T — 1) = am(a — 1) 4 Z ZCH,LJ‘A,L‘BJ‘ = Z Zci,j+1AiBj

=0 j=0 i=0 j=0
1< Vi<p-1l,e0=0
& €10 = aco1
2< Yi<p—1, cio=0
Therefore, we can write m = c¢o+c1(aa+8) with ¢g,¢; € K. Let s be —vp(aa+
B). Then,
meOp & €O and e €t 70,

We get an Og-basis 1, tLP%J (aa+B) of Op. Via the isomorphism in Proposition
this corresponds to the Ox-basis

P2, el (¢1 + (acx + B)p2)

of E.F
Since the formula ,



On the other hand, v := aa + § satisfies
Nrypr(y) =" =~
= (a%a? + ) ~ (0 + )
=aP(a+g1)+ (B+g2) —aa—f
= (a” — a)a+d’g1 + ga.
We get
s =—vp-((a? —a)a+ aPgr + g2).
Now
vpr (@) = v (Npr k(@) = vie(g1),
which is not divided by p. Since
vpr(aPg1 + g2) = pvi(aPg1 + g2) € PZ,
we get vpr(a) # vpr(aPgr + g2) and
5 = —vp- (0 — )+ aPgs + go)
= —min{vp-(a),vp-(a’g1 + g2)}
= —min{vk (g1), pvr(a’g1 + g2)}
Therefore, we get the value of v-function as

min{vK(gl),pUK(f)}—‘
P’ '

vv(g1,92) = {

O

Corollary 5.3. We keep the notation of this section. Then the value of vy at a
G-extension F/K is not determined by the ramification filtration of G associated
to F/K.

Proof. In the situation of Theorem |5.2} g; = +=(*=1) and go = ct= (=1 4 41
where c € kK — F,. Then

(c# —a?)
vV(glagQ) = { 11) (C — _az)

In particular, vy (g1,g2) depends on the value of ¢. We will show that the
ramification filtration is independent of ¢, which proves the corollary.

The upper ramification filtration is compatible with passing to a quotient
group, and hence the upper ramification filtration is determined from the ones
of all the intermediate fields of F//K. An intermediate field is determined from
a subgroup of Fpg1 + F,g2. A ramification filtration of an intermediate field is
determined from valuations of all elements of the corresponding subgroup. Then
the upper ramification filtration of F' is determined from the valuations of all
the elements Fj,g1 +F,g2. Since ¢ € F,,, each nonzero element of F,g; +F,g2 has
valuation —3. Therefore, the ramification filtration of Fy, ,, does not depend
on c. U
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