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Abstract

Low-dimensional antiferromagnets with a small spin quantum number have
been studied extensively because of their intriguing features, such as the appear-
ance of a spin liquid state owing to strong quantum fluctuations. In experimen-
tal studies, unconventional magnetic-field induced quantum phase transitions
have been observed in such antiferromagnets, and hence high-magnetic fields
are required to investigate their properties. In this thesis, we have studied two
types of low-dimensional antiferromagnets, the spin-1/2 quasi-one-dimensional
(1D) Ising-like antiferromagnet BaCo2V2O8 and the honeycomb-lattice antifer-
romagnet (HLA) Cu2(pymca)3(ClO4), and performed magnetization, electron
spin resonance (ESR), specific heat, and magnetostriction measurements in high
magnetic field of up to 70 T.

BaCo2V2O8 has attracted a lot of attention as a candidate of the spin-1/2
quasi-1D Ising-like antiferromagnet. The Néel state is realized below 5.4 K in
zero field, and the field-induced order-disorder transition was observed at 3.9 T
in magnetic fields along the [001] (chain) direction. These observations have
been explained by the spin-1/2 1D Ising-like antiferromagnet model. Several
studies were conducted in transverse magnetic field, and the difference in phys-
ical properties between the [100] and [110] directions was reported. The Néel
order collapses at approximately 10 T for H ∥ [100], while it does not above
this field for H ∥ [110]. Therefore, magnetic excitations for these two different
directions should be studied. We report on the experimental results of the mag-
netic susceptibility, the high-field multi-frequency ESR, the specific heat, and the
magnetostriction on BaCo2V2O8 single crystals in magnetic fields applied along
the [100] and [110] directions. Two main ESR branches, which are ascending
and descending with increasing magnetic fields, were observed from 400 GHz in
zero magnetic field for both directions. The lower ESR branch shows a softening
near 10 T for H ∥ [100], whereas no softening was observed up to the saturation
field for H ∥ [110]. These observations are reproduced by numerical calculations
using the density-matrix renormalization group method, including the staggered
magnetic fields, which reflects the crystal structure of BaCo2V2O8, induced by
a uniform external magnetic field and the interchain magnetic exchange interac-
tion. For H ∥ [100], the observed transition magnetic field is reproduced by the
calculations for two cases, the staggered magnetic field parameter Cy = 0.4 (Cy:
the ratio of the staggered field along the y-axis to the external magnetic field)
and the finite interchain interaction J ′/J = 0.02, and Cy = 0.25 and J ′/J = 0.
The former calculation agrees well with the observation compared to the latter
one. The disordered state above the critical magnetic field for H ∥ [100] is con-
sidered to be a field-induced ferromagnetic state or a paramagnetic state, unlike
a Tomonaga-Luttinger spin liquid state above the transition field for H ∥ [001].

A number of theoretical studies on HLAs have been conducted, but in con-
trast, there are few experimental studies owing to the small number of can-
didate substances. Cu2(pymca)3(ClO4) (pymca: pyrimidine-2-carboxylate) has
attracted a substantial interest as a spin-1/2 HLA, because no magnetic long-
range order was observed down to 2 K even though this compound was believed
to have a regular honeycomb-lattice structure. We report on the experimental
results of magnetic susceptibility, specific heat, ESR, and high-field magnetiza-
tion measurements on a polycrystalline sample of Cu2(pymca)3(ClO4). Magnetic
susceptibility exhibits a broad peak at about 25 K, which is typical of a low di-
mensional antiferromagnet, and the intrinsic susceptibility after subtracting an
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impurity contribution shows an exponential decrease with lowering temperatures,
suggesting a singlet ground state with an energy gap to the lowest excited state.
No sign of long-range order was observed down to 0.6 K from the specific heat
measurements in zero magnetic field. A paramagnetic signal with g = 2.13 was
observed in the ESR measurements. The magnetization curve up to 70 T at
1.4 K shows three stepwise increases with 1/3 and 2/3 magnetization plateaus.
Assuming three different exchange bonds JA, JB and JC from the crystal struc-
ture that was precisely determined by synchrotron X-ray analysis, the calculated
magnetization curve by using a quantum Monte Carlo (QMC) method repro-
duces the observed one when JA/kB = 43.7 K, JB/JA = 1 and JC/JA = 0.2,
except the magnetization near 70 T where the observed magnetization indicates
another step while the calculated magnetization becomes saturated. The param-
eters used for the calculation are found to be located in the spin liquid (singlet)
phase calculated by a QMC method, which agrees with the experimental obser-
vation.
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1 Introduction

1-1 S = 1/2 One-dimensional Antiferromagnet

1-1-1 XXZ Antiferromagnet

One-dimensional (1D) antiferromagnets with a small spin quantum number (S) have
been studied extensively because of the simplest strongly correlated system and their
unconventional properties, such as quantum phase transitions (QPTs) and quantum
critical behavior observed at extremely low temperatures [1]. Furthermore, their mag-
netic properties are calculated easier than those in higher dimension, and exact solu-
tions of the interacting many body systems in which quantum effects play an important
role are obtained in some cases, and are used to test the validity of quantum statisti-
cal mechanics. The spin Hamiltonian for this 1D antiferromagnet with S = 1/2 and
anisotropic exchange interaction in zero magnetic field is given by

H = J
∑
j

{
Sz
jS

z
j+1 + ε

(
Sx
j S

x
j+1 + Sy

j S
y
j+1

)}
, (1-1-1)

where Sα
j is the α component (α = x, y, or z) of spin-1/2 operator at site j, J (> 0) is

the antiferromagnetic (AF) exchange constant between the nearest-neighbor spins, ε
(≥ 0) is the ratio of the xy component of the exchange interaction to its z component,
respectively. The ground state of the S = 1/2 1D Heisenberg antiferromagnet (ε = 1) is
a spin liquid state [2,3] possessing a spin-spin correlation with a power law decay, which
indicates a quantum critical point, and a gapless excitation (a Tomonaga-Luttinger
(TL) liquid with a linear energy dispersion). Concerning spin excitations, the spin
wave was calculated exactly by des Cloizeaux and Peason in 1962 [4]. The dispersion
relation ε(k) = π|J || sin k|/2 was obtained and it is π/2 times as large as that calculated
by the classical spin wave theory [5–7]. This relation was confirmed by the inelastic
neutron scattering experiment on CuCl2 · 2 N(C5D5) as shown in Fig. 1-1-1 [8].

In addition to this fundamental isotropic antiferromagnet, S = 1/2 1D anisotropic
models such as XY (ε = ∞)- and Ising (ε = 0)-types have been studied intensively
for long time. Both cases are solvable exactly, especially the Ising-type is easy to solve
by hand. For XY -case, the ground state energy, elementary excitation and free energy
were obtained exactly by Lieb, Shultz and Mattis [9], and Katsura [10] studied the
thermal and magnetic properties including the behavior in a magnetic field.

The S = 1/2 Ising-type antiferromagnet in transverse magnetic fields has been stud-
ied as a simplest QPT system for long time. As described in Ref. 11 (not only antifer-
romagnet but also ferromagnet), the advantage of the use of the transverse Ising model
is as follows: (i) the one-dimensional case is exactly solvable and the QCP is confor-
mally invariant, and (ii) the model can be mapped to a classical two-dimensional Ising
model using the Suzuki-Trotter formalism or the path integral formalism. These two
remarkable properties of the models have been exploited to understand quantum phase
transitions and their connection to quantum information processing, non-equilibrium
dynamics, and quantum annealing [12], followed by an efficient quantum computer in
the near future. From the experimental side of the transverse Ising model, one dimen-
sional Ising-like ferromagnet CoNb2O6 was studied recently and novel excitation peaks
m1 and m2 with the golden ratio m2/m1 = (1 +

√
5)/2 predicted theoretically as a

result of E8 symmetry were observed by neutron scattering experiments [13].
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Figure 1-1-1: Energy dispersion of the elementary excitations in CuCl2 · 2 N(C5D5) at
1.3 K with the energy in units of J/kB = 13.4 K (kB: the Boltzmann constant). The
solid lines indicate the theoretical dispersion curves calculated by the method devised
by des Cloizeaux and Pearson [4], and by using a classical spin wave model [5]. Quoted
from [8].

1-1-2 Ising-like Antiferromagnet: Theory and Experiment

We distinguish two cases depending on ε, namely Ising-like (0 < ε < 1) and XY -like
(ε > 1), and describe the nature of Ising-like antiferromagnet in this subsection.

As a prototypical spin system exhibiting QPTs, let us here consider the S = 1/2
1D XXZ antiferromagnet with Ising-like anisotropy in magnetic fields. The ground
state at zero magnetic field is a magnetically ordered Néel state, while it changes in a
different way depending on the magnetic field direction. On applying a magnetic field
along the easy axis (z-axis), the ground state turns into a TL spin liquid state [3,14,15]
and eventually it reaches a field-induced ferromagnetic state. That is, two QPTs occur.
In addition, within the spin liquid phase, a longitudinal incommensurate correlation is
dominant in the low magnetic field region and a transverse staggered one is dominant
in the high magnetic field region [16]. In contrast, applying a magnetic field along the
hard axis (x-axis), a single QPT from a Néel state to a field-induced ferromagnetic
state takes place at a critical field [17,18].

Regarding the experimental realization of the S = 1/2 1D Ising magnets, several
Co compounds have been investigated. CsCoX3 (X=Cl, Br) are known as model sub-
stances for the S = 1/2 quasi-1D Ising-like antiferromagnet. For magnetic excitations
at zero magnetic field, a two-spinon continuum should appear in the pure 1D case,
whereas quantized discrete spectra, named as the Zeeman ladder [19], were observed
due to the interchain interactions as shown in Fig. 1-1-2 [20, 21]. The experimental
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Figure 1-1-2: Comparison of calculation (solid lines) with experiment (dotted lines)
for Raman spectra of CsCoCl3 in the xz polarisation at 2 K and 12 K. The calculated
continuum is drawn separately as dashed lines. These represent how the continuum
spectra is quantized. Quoted from [20].
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results of the magnetization (Fig. 1-1-3) and the electron spin resonance (ESR) [22,23]
in CsCoCl3 in pulsed high fields applied parallel to the chain (z-axis) direction were
analyzed successfully based on the S = 1/2 quasi-1D Ising-like antiferromagnet with
an additional small next-nearest-neighbor ferromagnetic interaction [23]. However, the
critical field, above which the Néel state is destroyed and the TL spin liquid state is
expected to appear, is as high as 33 T owing to large Ising anisotropy. Hence, it was dif-
ficult to perform experiments to investigate magnetic properties above the critical field
in detail, and a suitable substance with a much lower critical field has been desired. In
transverse magnetic fields, the magnetization for CsCoCl3 was measured in magnetic
fields of up to 60 T at 4.2K, and was compared with the calculated magnetization [24].
Figure 1-1-4(a) represents the calculated magnetization curves at designated γ, where
γ corresponds to ε in Eq. (1-1-1) and h is the normalized magnetic field by J along
the x-direction, and the observed magnetization with g = 3.5. When 0 ≤ γ < 1, the
magnetization saturates only in the limit h→ ∞, while the magnetic field derivative of
the magnetization (dm/dh) diverges at a finite critical field, as shown in Fig. 1-1-4(b),
indicating the phase transition to the field-induced ferromagnetic state. Although the
experimental curve follows the calculated one with γ = 0.13 at low fields, it deviates
from the calculated one near the critical field. A higher magnetic field is required to
observe the phase transition in CsCoCl3.

Recently, ACo2V2O8 (A=Ba, Sr) compounds have been studied intensively as a
series of candidates suitable for the study of the field-induced QPT in the S = 1/2
1D Ising-like antiferromagnet, because moderate Ising anisotropy makes the critical
field for the easy axis lower and thus we can easily access the field-induced TL spin
liquid state and its long-range ordered one due to a weak interchain interaction. We
note that both compounds have similar screw-chain structures along the c-axis, al-
though BaCo2V2O8 is centrosymmetric (I41/acd, non-polar) [25] and SrCo2V2O8 is
non-centrosymmetric (I41cd, polar) [26]. They are very similar in magnetic and ther-
modynamic properties such as magnetic susceptibility, specific heat [27–29], high-field
magnetization [30,31], and ESR spectra of the Zeeman ladder [32–34].

Here, we describe the electronic state of Co2+ ion. The total orbital angular mo-
mentum L, the spin quantum number S and the lowest LS multiplet of Co2+ ion are
L = 3, S = 3/2, and 4F , respectively. As shown in Fig. 1-1-5, the electronic state
shows seven-fold degenerate in a spherically symmetric field, but in a cubically symmet-
ric octahedral ligand-field, it splits into two orbital triplets (4T1,

4 T2) and one orbital
singlet (4A2) [23,35,36]. At this time, the energy difference between the orbital triplet
in the ground state and the orbital triplet in the lower excited state is about 104 K,
and thus only the ground orbital state should be considered at room temperature and
lower temperatures. When the quantization axis is taken along the [111] direction,
these states can be described by

4A2 =

√
2

3
(ϕ3 − ϕ−3) −

√
5

3
ϕ0 (1-1-2)

4T2 =


1√
2

(ϕ3 + ϕ−3)

1√
6
ϕ2 −

√
5
6
ϕ−1

1√
6
ϕ−2 +

√
5
6
ϕ1

(1-1-3)
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Figure 1-1-3: High-field magnetization curve of CsCoCl3 for H ∥ c at 4.2 K. The solid,
dash-dotted, and broken lines indicate the experimental curve, theoretical curve, and
Van-Vleck contribution, respectively. Quoted from [22].

(a) (b)

Figure 1-1-4: (a) Magnetization (m) curves calculated at designated γ (solid lines)
corresponding to ε in the text, and the experimental m curve for CsCoCl3 at 4.2 K
with g = 3.5 (dashed lines). h is the normalized magnetic field by J along the x-
direction. (b) Magnetic field derivatives of the magnetization (dm/dh) at designated
γ. Quoted from [24].
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4T1 =


2
3
ϕ0 −

√
5

3
√
2

(ϕ3 − ϕ−3) = |0⟩√
5
6
ϕ2 − 1√

6
ϕ−1 = |+1⟩√

5
6
ϕ−2 + 1√

6
ϕ1 = |−1⟩

(1-1-4)

where ϕm is the state of the orbital magnetic quantum number m of the total orbital
angular momentum L.

We calculate the matrix elements of Lz, which is the z component of the angular
momentum of L = 3, for these three ground states

⟨±1|Lz| ± 1⟩ = ∓3

2
(1-1-5)

⟨0|Lz|0⟩ = 0. (1-1-6)

Therefore, the value obtained by multiplying the matrix element of lz, which is the
z component of the angular momentum of l = 1, is −3/2. These relations are the
same for L+ and L−, and hence when considering only the orbital triplet in the orbital
ground state, L = 3 angular momentum L = −(3/2)l can be replaced by l = 1 effective
angular momentum l.

Usually, Co2+ ions are often placed in a tetragonal symmetric field or a trigonal
symmetric field that is less symmetric from a cubic symmetry, but the magnitudes of
these split widths are smaller than those by the cubic symmetry field and are similar
to the magnitude of the spin-orbit interaction λ′L · S. Therefore, the spin-orbit inter-
action and the uniaxial crystal field are combined and written in the following, and are
considered to be perturbations for the ground state orbital triplet.

H′ = −3

2
λ′l · S − δ

{
(lz)2 − 2

3
,

}
(1-1-7)

where λ′ is the spin-orbit coupling constant, and the second term represents the split-
ting by the tetragonal field where δ is the split width due to the uniaxial crystal field
of 4T1.

When the matrix elements of the angular momentum l and spin S are given by the
eigenfunction of magnetic quantum number ml and mS |ml,mS⟩, the matrix elements
by |ml,mS⟩ are equal to those by |−ml,−mS⟩, and then double degeneracy remains.
This is called the Kramers doublet, and the lowest electronic state is split into six
Kramers doublets as a whole. The energy eigenvalues of these Kramers doublets are
plotted as a function of δ/λ′ in Fig. 1-1-6. The E1 state in Fig. 1-1-6 always has the
lowest energy, and the energy difference between the E1 and the lowest excited states
is about 102 K. Therefore, at low temperatures well below 100 K, the lowest energy
state E1 only have to be dealt with.

The doubly degenerate wave functions of the lowest energy state ψ± are expressed
as follows:

ψ± = c1 |∓1,±3

2
⟩ + c2 |0,±

1

2
⟩ + c3 |±1,∓1

2
⟩ (1-1-8)

Here, there is the following relationship between the coefficients c1, c2,and c3.

c21 + c22 + c23 = 1 (1-1-9)
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4T1

4T2

4A2

cubic

tetragonal + 
spin-orbit coupling

spherical

Zeeman

~104 K

~100 K

6 Kramers doublets

Effective spin 1/2 
at low temperatures

Electronic state of Co2+

L=3
S=3/2

2
1
0
-1
-2
l

Figure 1-1-5: The electronic state of Co2+ ion in a tetragonal ligand-field surrounding.
The effective spin of Co2+ ion becomes 1/2 well below 100 K.

Figure 1-1-6: Crystal-field splitting of 4T1 as a function of δ/λ′. δ and λ′ are explained
in the text. The six levels are doubly degenerate owing to time reversal symmetry.
Quoted from [23].
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The matrix elements of Sz and S± for S = 3/2 are written as,

⟨ψ±|Sz|ψ±⟩ = ±1

2

(
3c21 + c22 − c23

)
= ±1

2
p (1-1-10)

⟨ψ±|S±|ψ∓⟩ = 2
(√

3c1c3 + c22

)
= q (1-1-11)

A pseudo spin (fictitious spin) s of 1/2 is introduced, and its z components sz = ±1/2
correspond to the states ψ±. The true spin S is expressed by the pseudo spin s like

Sx = qsx, Sy = qsy, Sz = psz. (1-1-12)

Assuming that the exchange interaction Hex = JS1 ·S2 acts between the true spins S1

and S2 of two magnetic ions 1 and 2, the effective exchange interaction represented by
the pseudo spin is described as follows:

Hex = J
[
p2sz1s

z
2 + q2 (sx1s

x
2 + sy1s

y
2)
]
. (1-1-13)

Consequently, when J > 0 and p2 > q2, the system becomes an Ising-like antiferromag-
net, and when J > 0 and p2 < q2, it becomes an XY -like antiferromagnet. Then, when
p2 = q2, it becomes a Heisenberg antiferromagnet. Thus, the exchange interaction of
Co2+ ion in an octahedral surrounding mostly becomes anisotropic for the effective
spin S = 1/2.

1-2 S = 1/2 Two-Dimensional Antiferromagnet

1-2-1 Various types of S = 1/2 Two-Dimensional Antiferromagnets

There are several kinds of simple two-dimensional (2D) antiferromagnets with the
nearest-neighbor (NN) exchange interaction. Here, we classify them by the coordi-
nation number z of exchange bonds: (i) z = 3: honeycomb-lattice antiferromagnet
(bipartite) (HLA), (ii) z = 4: square-lattice antiferromagnet (bipartite) (SLA) and
kagome-lattice antiferromagnet (non-bipartite) (KLA), and (iii) z = 6: triangular-
lattice antiferromagnet (non-bipartite) (TLA). In these bipartite 2D antiferromagnets,
no magnetic frustration occurs, while magnetic frustration occurs in the case of non-
bipartite owing to the competition of exchange interactions caused by the geometry,
the so-called geometrical frustration.

1-2-2 Honeycomb-Lattice Antiferromagnets

In this thesis, we focus on a HLA with the NN exchange interactions. The HLA has the
minimum z among the 2D antiferromagnets, implying that quantum fluctuations must
be larger than those in the SLA. When the next-nearest-neighbor (NNN) AF exchange
interactions are included, the HLA system is expected to exhibit magnetic frustration.
A recent theory predicted a rich phase diagram depending on the magnitudes of distant
interactions (NNN and the third nearest-neighbor). Figure 1-2-1 shows the spin con-
figurations and the phase diagram of the spin-1/2 J1-J2-J3 honeycomb-lattice model
given by,

H = J1
∑
<i,j>

Si · Sj + J2
∑
<i,k>

Si · Sk + J3
∑
<i,l>

Si · Sl, (1-2-1)

8



(a) (b)

(c) (d)

(d)

Néel

Néel-II

striped

spiral

Figure 1-2-1: (a)–(d) Spin configurations of the spin-1/2 J1-J2-J3 honeycomb-lattice
model with J1 ≡ 1, J2 > 0, and J3 > 0 where J1, J2, and J3 represent the nearest-
neighbor, the next-nearest-neighbor, and the third nearest-neighbor exchange interac-
tions, respectively as depicted in (a). The spins on lattice sites (solid dots) are indicated
by the red arrows. (e) Phase diagram of the spin-1/2 J1-J2-J3 model on the HLA with
J1 ≡ 1 in the parameter window J2, J3 ∈ [0, 1]. Quoted from [37].
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where Si is the spin-1/2 operator at site i, J1, J2, and J3 are the AF exchange constants
between NN, NNN, and third nearest-neighbor spins, respectively, as depicted in Fig. 1-
2-1(a) [37]. Various ground states were predicted.

The ground state of a HLA with anisotropic NN and identical NNN exchange
interactions (Fig. 1-2-2(a)) was also investigated theoretically [38]. The phase diagram
of the distorted HLA with the NN interaction are represented in Fig. 1-2-2(b). The
spin Hamiltonian of this model is given by

H = J1
∑
<i,j>

Si · Sj + J ′
1

∑
<i,k>

Si · Sk + J2
∑
<i,l>

Si · Sl, (1-2-2)

where Si is the quantum spin at site i, and the exchange constants J1, J
′
1, and J2 are

indicated in Fig. 1-2-2(a). The distortion parameter δ and the frustration parameter
α are defined by,

J1 = J̄1(1 − δ) (1-2-3)

J ′
1 = J̄1(1 + 2δ) (1-2-4)

α = J2/J̄1. (1-2-5)

The J̄1 is an average of all the NN exchange constants J̄1 = 1
3
(2J1+J ′

1). The appearance
of disordered phase or spin liquid state results from the magnetic frustration and the
different NN exchange interactions owing to the bond distortion.

(b)
(a)

J1

J2

J1’

Figure 1-2-2: (a) The nearest-neighbor exchange interactions J1 and J ′
1 are represented

by the solid and the dashed lines, respectively. The next-nearest-neighbor interaction
J2 is represented by the thin dashed line. (b) Phase diagram in the space of the distor-
tion parameter δ and the frustration parameter α for various quantum spin numbers.
The details of δ and α are given in the text. Possible positions for InCu2/3V1/3O3

and Na3Cu2SbO6 are shown by diamond and triangle symbols, respectively. Quoted
from [38].
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(a) (b)

Figure 1-2-3: (a) Neutron powder diffraction patterns from Bi3Mn4O12(NO3) at 0 T
and 10 T and at 3.0 K. At 10 T, the broad magnetic peak is suppressed and sharp
magnetic Bragg peaks appear. (b) Magnetic structure in the magnetic field-induced
phase. Mn4+ ions in 2× 2× 2 unit cells are represented. The magnetic moments lie in
the ab plane, although the direction of the magnetic moments in the plane cannot be
determined uniquely. J1, J2, and Jc indicate the nearest-neighbor, the next-nearest-
neighbor exchange interactions, and the exchange interaction between the two adjacent
honeycomb planes, respectively. Quoted from [44].

In contrast to the extensive theoretical investigations performed on HLAs, few
inorganic honeycomb-lattice compounds have been reported to date. For example, in
In3Cu2VO9, the Cu2+(S = 1/2) ions form a honeycomb lattice that is well separated
by InO6 and VO5 layers, thereby providing a clear two-dimensional character [39, 40].
This compound exhibits conventional Néel-type collinear AF long-range order (LRO)
below 20 K [41]. As the second example, Na3Cu2SbO6 possesses a honeycomb lattice
of Cu2+ (S = 1/2) ions, but its magnetic properties are interpreted in terms of a spin-
gapped antiferromagnetic-ferromagnetic bond alternating chain [42]. Another example
is Bi3Mn4O12(NO3) (Mn4+ ion, S = 3/2) which shows a disordered ground state at low
temperatures [43] and an unusual field-induced LRO revealed by the neutron scattering
experiment [44]. Figures 1-2-3(a) and 1-2-3(b) display the neutron powder diffraction
pattern and the magnetic structure of Bi3Mn4O12(NO3), respectively. Sharp magnetic
Bragg peaks were observed when the external magnetic field was 10 T, whereas no
such peaks were not observed at 0 T. The magnetic field versus temperature phase
diagram of the frustrated HLA with NNN interaction for J2/J1 = 0.18 corresponding
to the ratio in Bi3Mn4O12(NO3) was calculated by Shimokawa and Kawamura as shown
in Fig. 1-2-4 [45]. Above the temperature of T/J1 = 0.03, a spin liquid state called
the Pancake liquid is realized in zero magnetic field, and a field-induced AF short-
range correlation develops by applying magnetic fields. Therefore, the field-induced AF
LRO in Bi3Mn4O12(NO3) was suggested to appear in this field-induced AF area with
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the help of interlayer interactions. These various magnetic properties in honeycomb-
lattice compounds result not only from distant exchange interactions but also from the
difference in the NN exchange interactions.

Figure 1-2-4: Phase diagram of a frustrated HLA for J2/J1 = 0.18 obtained by Monte
Carlo simulations, where J1 and J2 are the NN and the NNN exchange constants,
respectively. Above about T/J1 = 0.03, the field-induced AF short-range correlation
develops in magnetic fields. Quoted from [45].

Figure 1-2-5: Schematic view of bridging ligands of 2,2′-bipyrimidine, pyrimidine-2-
carboxylate, and oxalate. Quoted from [54].

Recently, a honeycomb lattice with bond-dependent exchange interactions Jx, Jy,
and Jz has been extensively studied as a Kitaev model. Importantly, the Kitaev model
has an exactly solvable spin liquid ground state [46], and gapless or gapped Majorana
fermion excitations are expected to occur, depending on the parameters under the
condition Jx+Jy+Jz = 1. Since the theoretical study by Jackeli and Khaliullin [47], this
Kitaev model has been expected to be realized in some Ir oxides and α-RuCl3 [48,49].

Using various types of organic (e.g. 2,2′-bipyrimidine, abbreviated as bpym) or inor-
ganic (e.g. oxalate, abbreviated as ox) bridging ligands, a number of honeycomb-lattice
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molecule-based magnetic materials have been synthesized [50–53]. Pymca (pyrimidine-
2-carboxylate) is an appropriate bridging ligand between bpym and ox that can be con-
sidered as one-half bpym and one-half ox, as shown in Fig. 1-2-5, to build a honeycomb-
lattice structure. Honeycomb-layered metal complexes [M2(pymca)3]OH ·H2O (M=Fe2+,
Co2+) were synthesized and their magnetic properties were investigated [54]. Later, we
will report on these honeycomb-lattice compounds.

In this thesis, we study two kinds of low-dimensional antiferromagnets, the S = 1/2
1D Ising-like antiferromagnet BaCo2V2O8 and the S = 1/2 2D HLA Cu2(pymca)3(ClO4)
in high magnetic fields. The purposes and the details of the studies on these compounds
will be described in Sect. 3 (BaCo2V2O8) and Sect. 4 (Cu2(pymca)3(ClO4)). In the
next section, experimental apparatus and methods of these studies will be given.
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2 Experimental Apparatus and Methods

In this study, we carried out magnetic susceptibility, magnetization, ESR, specific
heat, and magnetostriction measurements on BaCo2V2O8 and Cu2(pymca)3(ClO4).
Some of the experimental apparatuses were commercially available, while the others
were homemade. This chapter describes the details of the experimental apparatuses,
especially homemade ones.

2-1 Magnetic Field Generation Method

The magnetic field generation methods are related to two types of magnetic fields,
namely a pulsed magnetic field and a static magnetic field. The static magnetic field of
about 1 T is generated with a permanent magnet. The generation of a magnetic field
larger than 1 T is basically performed by an electromagnet. Examples of magnets for
a static magnetic field are a water-cooled magnet (∼ 33 T), a superconducting magnet
(∼ 32 T [55]), and a hybrid magnet (∼ 45 T), which is composed of a water-cooled
and a superconducting magnets. Magnets to generate a pulsed magnetic field are
roughly divided into two types: destructive type and non-destructive type. Examples
of the former magnetic field generation method include a single-turn coil method (∼
200 T), and two magnetic-field compression methods, namely, an electromagnetic flux
compression (∼ 1200 T [56]), and explosive flux compression (∼ 2000 T).

A non-destructive multilayer pulse magnet devised and developed by Professor
Koichi Kindo (The Institute for Solid State Physics, The University of Tokyo) was
used to generate the magnetic field in this study. This is called a Kindo-pulse magnet.
It is necessary to flow a large current in order to generate a high-magnetic field. The
pulsed high-magnetic field used in this study is generated by instantaneously releasing
the electrostatic energy stored in the capacitor as an electric current to the coil. When
a large current flows in the coil, a huge electromagnetic stress is applied to the coil
in the direction of outward expansion and vertical contraction. In addition, a large
current generates a large Joule-heat and causes a temperature rise. Therefore, the wire
used as the material of the coil is required to have high tensile strength and to be as low
resistance as possible. CuAg (24 wt%) (cross-section area: 2×3 mm2, tension strength:
approximately 900 MPa) wire is used to satisfy the above requirements, and is wound
in multiple layers to form a coil. Furthermore, the outside of the coil is reinforced
with a high-strength Maraging steel cylinder to prevent deformation of the magnet
due to electromagnetic stress as shown in Fig. 2-1-1(a). We employed nondestructive
short pulse magnets with the duration time of ∼ 7 ms for magnetization and ESR
measurements. The bore diameters of these magnets are 11 mm, 18 mm, or 22 mm.
The magnet is immersed in liquid N2 to reduce the electric resistance and to cool the
magnet after the magnetic field is generated. The magnet is driven by the capacitor
bank system as shown in Fig. 2-1-2. The magnet current is supplied sinusoidally by
the capacitor bank, which can store charge energy of up to 1.5 MJ (20 kV, 7.5 mF),
through the discharge of air-gap-type switch (start switch in Fig. 2-1-2). After a half
of the period, the current is dumped into the crowbar circuit using a crowbar switch in
Fig. 2-1-2 to avoid an additional Joule heating of the magnet. The magnitudes of the
pulsed magnetic field depending on the number of capacitor banks and the changing
voltage are shown in Fig. 2-1-1(b). We can control the duration time by changing the
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number of the capacitor banks (at most six banks). The duration time is proportional
to

√
LC, where L and C are the inductance of the pulse magnet and the capacitance

of the capacitor banks, respectively. In this study, we used pulse magnets capable of
generating magnetic fields of up to 70 T.
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Figure 2-1-1: (a) Schematic cut view of a pulse magnet. The magnet is held by stainless
steel flanges. (b) Typical pulsed magnetic-field shapes generated by a pulse magnet.
These are produced by using six banks with 7 kV voltage, five with 6 kV, four with
8.5 kV, four with 4 kV, three with 3 kV, two with 3 kV, and one with 2 kV, respectively.

Power supply
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Crowbar switch

Crowbar resistor Charge resistor

Charge switch

Figure 2-1-2: Schematic view of the circuit of pulse field generation system using the
capacitor bank.
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2-2 Magnetic Measurements (Susceptibility, Magnetization)

2-2-1 Magnetic Susceptibility and Magnetization Measurements in Static
Magnetic Fields

Magnetic susceptibility χ (= M/H where M magnetization and H magnetic field,
0.1 T) and magnetization up to 7 T were measured with a commercial SQUID magne-
tometer (MPMS-XL7, Quantum Design, USA). The measurements were conducted in
the temperature range 1.9 K–350 K.

2-2-2 Magnetization Measurements in Pulsed Magnetic Fields

Liq. N2Liq. N2 Liq. He

Magnet

Sample
Quartz rod

Pick-up coil
Field pick-up coil

C-coil

B-coil
A-coil Sample

(φ ∼2.5 mm)

H

M

(b)

(a)

Figure 2-2-1: (a) Block diagram of pulsed field magnetization measurement system. (b)
Cut view of a co-axial type pick-up coil system (M : magnetization and H: magnetic
field).

We performed high-field magnetization measurements with a pulse magnet by an in-
duction method using a pick-up coil up to almost 70 T at 1.4 K and 4.2 K. Figure 2-2-
1(a) depicts the block diagram of the high-field magnetization measurement system in
pulsed magnetic fields. The technique of reducing the background flux change due to a
transient field, which is usually 104 ∼ 106 times larger than the flux change caused by
the magnetization of the target sample, is shown schematically in Fig. 2-2-1(b). The A-
coil picks up the magnetic flux changes and the external field while the B-coil is wound
oppositely to the A-coil in order to compensate the background flux change. A fine
adjustment is established with the one turn C-coil. Considering the field duration and
frequency response, the A-coil is wound with 80 turns on a 3.0 mm diameter Bakelite
pipe. The B-coil is wound with 40 turns coaxially on the A-coil on a 4.3 mm diameter
in opposite direction to the A-coil. The C-coil is wound with one turn coaxially on the
others. The cross section of the B-coil is twice as large as that of the A-coil so as to
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receive the same amount of external flux in the two coils. In this way, we can obtain
only an induced voltage coming only from a magnetization of the sample. We obtain
the magnetization signals as dM/dt. The field and magnetization pick-up coils were
calibrated by a single crystal of MnF2 as the standard specimen using the known values
of the spin-flop transition field and the slope of the magnetization above the transition.
The measurements at low temperatures down to 1.4 K were performed by pumping
liquid 4He. Magnetization up to 7 T measured by MPMS was used for calibration of
the magnetization obtained in the pulsed-field measurement.

2-3 Electron Spin Resonance (ESR) Measurements

Three types of the ESR measurement systems were used in this study. One is an
X-band ESR apparatus, which is a commercial ESR spectrometer (Bruker, USA) for
the precise measurement of the temperature dependent ESR spectra at 9.3 GHz. The
second one is a multi-frequency ESR apparatus that consists of a superconducting
magnet, a vector network analyzer and Gunn oscillators as microwave sources. The
last one is a high-field multi-frequency ESR apparatus that is composed of a pulse
magnet, an InSb detector, and microwave sources such as a far infrared (FIR) laser,
Gunn oscillators and a backward wave oscillator. The latter two ESR apparatuses,
which are home-made, are described below.

2-3-1 ESR Measurements in Static Magnetic Fields

The ESR measurements in static magnetic fields were performed up to 14 T at 1.5 K.
ESR measurement system in static magnetic fields consists of a 16 T superconducting
magnet (Oxford Instruments, UK) and a vector network analyzer (MVNA-8-350, AB
Millimeter, France) with high frequency ESA(External Source Association)-1 and ESA-
2 extensions up to 700 GHz as shown in Fig. 2-3-1. Normally, the superconducting
magnet is cooled down to 4.2 K with liquid He and used in the magnetic field range of
up to 14 T. When using a λ-refrigerator, magnetic field up to 16 T can be generated. A
variable temperature insert (VTI) is used to change the temperature of the sample space
from 1.5 K to 300 K. The sample space temperature is monitored by using a calibrated
cernox resister thermometer placed close to the sample, and is controlled by a heater
of Manganin-wire. In the region of 30 GHz–150 GHz, the optical element is irradiated
with electromagnetic waves from the internal source of MVNA, and the multiplied
waves generated there are used for the measurements. In the region above 150 GHz,
the output power of the multiplied wave is weakened by the above method, and thus the
Gunn oscillators Gunn1: 68 GHz–82 GHz and Gunn2: 82 GHz–102 GHz, which have a
high transmission frequency band, are used. Since the frequency of the electromagnetic
wave transmitted from the Gunn oscillator is unstable, feedback control is performed
with reference to the stable electromagnetic waves from MVNA internal source to fix the
transmission frequency. MVNA detects the microwaves through the sample. Since not
only the amplitude but also the phase of the ESR signal measured with the MVNA, the
resonance magnetic field can be precisely determined even if the dispersion component
of the ESR signal is mixed with the absorption one and the absorption waveform is
deformed. The Gunn oscillator A of ESA-1 sends its emitted microwave frequencies FA

into the Schottky multiplier (SM). Non-linear effects due to the Schottky diode create
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harmonic frequencies m× FA (m: integer), and one of these harmonics is selected for
the experiments. At the same time, the Gunn oscillator B of ESA-2 sends its emitted
microwave frequencies FB into the the Schottky Harmonic Mixer (SHM), which also
creates harmonic frequencies m × FB. Then the difference frequency m × (FA − FB),
which can be easily extracted and amplified, is detected. The ESR spectra for two
different frequencies (dual frequency option) can be observed at the same time when
we have receivers for two frequencies m × (FA − FB) and (m − 1) × (FA − FB) which
are usually radio frequencies (the order of 10 MHz). Microwaves are injected into the
sample in a cryostat which is made of stainless steel light pipes with the diameter of
8 mm. A thin stainless steel jacket is used to avoid the noise from a bubbling of liquid
He. The microwaves for the frequency from about 30 GHz to about 700 GHz can
be generated almost continuously. Both Faraday (k ∥ H, k : light vector) and Voigt
(k ⊥ H) configurations can be used and are selected according to the setting depends
on the shape and the crystallographic directions of the sample.

Liq. N2Liq. N2

Liq. He

Magnet

(b)  Faraday configuration(a)

Light pipe

Sample

(c)  Voigt configuration

Gas He

Gunn BGunn A

SHMSM
Amp

Jacket

Sample

Sample

Figure 2-3-1: (a) Block diagram of ESR measurement system in static magnetic fields,
which is composed of a vector network analyzer and a 16 T superconducting magnet.
Sample setting for (b) Faraday and (c) Voigt configurations.

18



2-3-2 ESR Measurements in Pulsed Magnetic Fields

We performed the ESR measurements in pulsed magnetic fields of up to 53 T at
1.4 K. Figure 2-3-2 shows the block diagram of the ESR measurement system in pulsed
magnetic fields which is composed of a nondestructive short pulse magnet, an InSb
hot electron bolometer (QMC Instruments Ltd., UK), and a variety of light sources,
such as a FIR laser (Edinburgh Instruments, UK), Gunn oscillators, and a backward
wave oscillator (CDP Systems Corp., Russia). Microwaves at frequencies from about
300 GHz to about 2.0 THz are generated with a FIR laser, which is excited by a CO2

pumping laser and produces many various frequencies by changing molecular gases
such as a methanol and formic acid, and those at frequencies below 300 GHz are
obtained by using several Gunn oscillators with doubler (75, 90, 110, 130, 150, 180,
220, 260 GHz) and a backward wave oscillator (BWO) (250 GHz–500 GHz). ESR
signals are detected with an InSb hot electron bolometer which is magnetically tuned
to offer optimized sensitivity over the maximum possible range of frequencies between
millimeter and sub-millimeter wavelengths. Microwaves are injected into the sample in
a cryostat which is made of stainless steel light pipes with the diameter of 4 mm. The
light pipe itself acts as a jacket and avoids the noise from a bubbling of liquid He. The
measurements are performed at low temperatures down to 1.4 K by pumping liquid
4He. In pulsed field ESR measurements, a powder of 2,2-Diphenyl-1-picrylhydrazyl
(DPPH) with g = 2.0036 (g-factor), which is a kind of free radical molecule with
unpaired electrons, is used as a magnetic field calibration standard. Like the static
field ESR system, both Faraday and Voigt configurations can be used.

Liq. N2Liq. N2 Liq. He

Magnet

Field pick-up coil

(b)  Faraday configuration
(a)

Light pipe

Sample

Light pipe (inner)

Sample (φ ~ 4 mm)

Light pipe (outer)

PTFE sheet

PTFE sheet

Heat shrinkable tube

(c)  Voigt configuration

Light pipe

Sample

PTFE sheet

Mirror

Bakelite

Figure 2-3-2: (a) Block diagram of pulse field ESR measurement system. (b) Faraday
and (c) Voigt configurations in the pulse field ESR measurements.
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2-4 Specific Heat Measurements

Two types of the specific heat measurement system were used in this study. One is a
commercial Physical Properties Measurement System with a 3He refrigerator (PPMS,
Quantum Design, USA) using a relaxation method at temperatures down to 0.6 K. The
other consists of a homemade cryostat down to 1.4 K and a superconducting magnet
up to 9 T by the thermal relaxation method.

In Fig. 2-4-1(a), a schematic diagram of the sample setting on the addenda in a
homemade cryostat is depicted. The size of the addenda is 5 mm square and the
thickness is 0.05 mm. The addenda is hung by wires to avoid thermal contact with
the surroundings as much as possible. These hanging wires double as the wiring to the
heater and thermometer on the back of the addenda, as shown Fig. 2-4-1(b).

Figure 2-4-2 shows the sequence for performing the specific heat measurements.
Assuming that the current passing through the heater is I0 and the temperature at that
time is T0, when the current of I0 + ∆I is passed through the heater, the temperature
rises accordingly. After ∆t, the current passing through the heater returns to I0, and
thus the temperature begins to drop from T0 + ∆T . The specific heat can be obtained
by fitting the curve obtained after this time with a function that takes the relaxation
into consideration. After the measurement at temperature T0 is completed in this way,
the current is set to I1 so that the temperature becomes T1. After that, when the
temperature becomes stable at T1, the above measurement sequence is performed. By
repeating these procedures, the temperature dependence of the specific heat can be
obtained.

H

Hanging wires

Addenda

Sample

Heater

Thermometer

AddendaI+

I+

I-

I+

V+

V+ V-

V-

(b)(a)

Figure 2-4-1: (a) Schematic diagram of the sample setting for the specific heat mea-
surements. The cell is installed in the cryostat into the superconducting magnet. (b)
Wiring diagram to the addenda. Those located behind the addenda are indicated by
broken lines.
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Figure 2-4-2: Sequence of the specific heat measurement by the relaxation method.

2-5 Magnetostriction Measurements

Magnetstriction data at 1.4 K in magnetic fields of up to 55 T were taken at the Institute
for Solid State Physics, The University of Tokyo by using a pulse magnet, a capacitance
bridge (1615A, General Radio, USA) and a home made dilatometer by a capacitance
method [57]. Figure 2-5-1(a) draws a schematic view of the capacitance dilatometer for
the magnetostriction measurements. The cell inside the cryostat consists of a sample
stage, a cylinder, a piston, and two electrodes. The sample with polished parallel-flat
surfaces and the width of several millimeters is fixed to a sample stage with a diameter
of 8 mm using the adhesive Stycast 1266. Then, a 6 mm-diameter gold-deposited quartz
disc as an electrode is fixed on the opposite side of the sample. The other electrode is
glued to the piston, and the two electrodes are placed inside the cylinder facing each
other, and then the sample stage, the cylinder, and the piston are fixed by the Stycast.
At this time, two Kapton sheets with the thickness of 12.5 µm are sandwiched between
electrodes in order to maintain an appropriate gap. The Kapton sheets are removed
when the adhesive becomes dried and hardened. After that, the cell is attached to the
probe, and wiring is made and the setting is completed. In this device, the change
in the electric capacitance between the electrodes caused by the change in the sample
length in magnetic fields is detected with the capacitance measuring system as shown
in Fig. 2-5-1(b). By this method, highly sensitive magnetostriction measurements with
about ∆L/L ∼ 10−6 is possible.
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(a)
(b)

Figure 2-5-1: (a) Schematic illustration of the capacitance dilatometer for the magne-
tostriction measurements. (b) Schematic block diagram of the capacitance measuring
system in pulsed fields. A sample, namely, a device under test (DUT) and a field
pick-up coil (PUC) are located in a cryostat. Quoted from [57].
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3 S = 1/2 Quasi-1D Antiferromagnet BaCo2V2O8

3-1 Introduction

3-1-1 Fundamental Properties (Crystal Structure, Low-Field Magnetism)

BaCo2V2O8 possesses a quasi-1D structure separated by nonmagnetic Ba2+ and V5+

ions as shown in Fig. 3-1-1, where edge-shared CoO6 octahedra form a screw-chain
rotating around the four-fold c-axis [25]. It belongs to a tetragonal system (space group
I41/acd with lattice constants a = 12.4441(6) Å and c = 8.4153(10) Å). Co2+ ions
(3d7) work as an effective spin S = 1/2 owing to the combined effects of a crystalline
field and a spin-orbit coupling in octahedral surrounding, and the g-values show large
anisotropy [35, 36]. Therefore BaCo2V2O8 is usually regarded as an Ising-like chain.
A magnetic phase transition occurs at 5.4 K at zero magnetic field [27]. On applying

(a) (b)

Ba2+

V5+

Co2+

O2-

Figure 3-1-1: Crystal Structure of BaCo2V2O8 [25], drawn by using the VESTA soft-
ware program [58]. (a) The picture is the view projected from the a-axis to the bc-
plane. (b) The picture is the view projected from the c-axis to the ab-plane. The
arrows indicate the rotational directions of the screw chains when proceeding to the
c-axis direction.

magnetic fields along the c-axis, a magnetic order to disorder transition was observed
at a moderately low critical field around 4 T below approximately 2 K [27,59], and an
incommensurate spin-density-wave state was identified above the critical field below
approximately 1 K [60–63], in agreement with the theory for the S = 1/2 quasi-1D
Ising-like antiferromagnet. In subsequent studies on the effect of transverse magnetic
fields, peculiar anisotropic behavior has been observed. The magnetization reaches the
saturation near 40 T for H ∥ [110]. In sharp contrast, for H ∥ [100], the magnetization
is not saturated in magnetic fields of up to 50 T as shown later, and a phase transition
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takes place near 10 T [64–66]. In order to understand these anisotropic behaviors,
an effective spin model including four-site periodic effective fields was suggested [65].
Magnetic excitations were discussed based on the effective model [67, 68]. Moreover,
the 1D quantum critical point (QCP) was found other than the 3D QCP [69, 70],
and the E8 particles were observed at the 1D QCP by neutron scattering and NMR
experiments [71] and THz spectroscopy [72].

Figure 3-1-2(a) shows the temperature dependences of the magnetic susceptibility
χ = M/H (where M is the magnetization and H is the external magnetic field) for
H ∥ c and H ⊥ c at 1 T. The magnetic susceptibility for H ∥ c shows a broad
maximum near 30 K, which is typical of a low-dimensional antiferromagnet, and a
steep decrease below ∼ 5 K indicates the magnetic phase transition from a disordered
state to an ordered one for H ∥ c. In contrast, the magnetic susceptibilities for H ⊥ c
increase gradually with decreasing temperature and a small hump appears near 30 K,
and then, a cusp is observed at approximately 5 K. Therefore, BaCo2V2O8 possess a
large magnetic anisotropy and the c-axis is the easy-axis. Figure 3-1-2(b) displays the
magnetization as a function of applied magnetic field parallel and perpendicular to the
c-axis below 90 kOe at 2 K. When the magnetic field is applied perpendicular to the
c-axis, the magnetization increases almost linearly with respect to the magnetic field,
whereas an abrupt increase in the magnetization is observed at around 4 T when the
magnetic field is applied parallel to the c-axis.

The temperature dependences of the specific heat at various magnetic fields are
given in Fig. 3-1-3 [27, 28]. At zero magnetic field, the AF order occurs at the Néel
temperature TN = 5.4 K. When a magnetic field is applied in the perpendicular
direction to the c-axis, the phase transition temperature does not change so much
with respect to the magnetic field, whereas the phase transition temperature decreases
largely as the magnetic field increases when the magnetic field is applied parallel to
the c-axis.

(a) (b)

Figure 3-1-2: (a) Temperature dependences of the magnetic susceptibility χ(= M/H)
for H ∥ c and H ⊥ c at 1 T. (b) Low field magnetization up to 90 kOe for H ∥ c and
H ⊥ c at 2 K. Quoted from [27].
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(a) (b)

Figure 3-1-3: Temperature dependences of the specific heat at indicated various mag-
netic fields for (a) H ∥ c and (b) H ⊥ c. Quoted from [27,28].

Figure 3-1-4: Magnetic phase diagram (temperature versus magnetic field) for H ∥ c.
Quoted from [27].
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Figure 3-1-4 represents the magnetic phase diagram (temperature versus magnetic
field) for H ∥ c obtained from the specific heat measurements. In BaCo2V2O8, the
magnetic field parallel to the c-axis induces the phase transition from the ordered state
to the disordered state below TN. The solid line is the fitting curve using the formula
H = Hc (1 − T/TN)1/3 as indicated in the figure, and Hc is the critical field at T = 0 K.

3-1-2 High-Field Magnetism in Longitudinal Magnetic Fields

Figure 3-1-5 shows the high-field magnetization curve of BaCo2V2O8 at 1.3 K, measured
in pulsed magnetic fields for H ∥ c and the theoretical curve based on the Bethe ansatz
exact theory [30]. Three peaks of the field derivative of the magnetization are observed.
One of them, the transition magnetic field Hc = 3.9 T, is consistent with the results
of specific heat measurements in Ref. 27. The peak at Hs = 22.7 T indicates the
saturation magnetic field to the field-induced ferromagnetic phase, and the middle
peak at H

′
c = 19.5 T is the magnetic field where the magnetization is a half of the

saturation value. The magnetization curve has a downward convex shape below Hs,
implying that the influence of quantum fluctuations is strong. The linear increase of
the magnetization above Hs is considered to the Van-Vleck paramagnetic contribution.
This magnetization curve can be well explained by S = 1/2 1D XXZ model. The

Figure 3-1-5: High field magnetization curve and the field derivative of the magneti-
zation at 1.3 K for H ∥ c. Solid and dashed curves are experimental and theoretically
calculated magnetization, respectively. Quoted from [30].

effective spin Hamiltonian of the S = 1/2 1D XXZ model is given by

H = J
∑
j

{
Sz
jS

z
j+1 + ε

(
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j S
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j S
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∑
j

Sz
j (3-1-1)

where Sα
j is the spin-1/2 operator at site j for α (x or y or z ) direction, J is the

AF exchange constant between the nearest-neighbor spins, ε (< 1) is an Ising-like
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anisotropy parameter, µB is the Bohr magneton, gz is the g-factor along the z-axis,
and Hz is the external magnetic field applied along the z direction. The parameters
used to reproduce the magnetization curve are J/kB = 65 K, ε = 0.46, and gz = 6.2.

The ε− h phase diagram of the S = 1/2 1D XXZ model in longitudinal magnetic
fields at zero temperature was made from the theoretical study as shown in Fig. 3-1-
6 [16,60], where ε is the above anisotropy parameter and h is the external magnetic field
Hz normalized by the AF exchange constant J (h = Hz/J). From this phase diagram,
we found that the ground state at zero field is a magnetically ordered Néel state. On
applying the magnetic fields along the z-axis, a magnetic order to disorder transition
takes place, passing through a TL spin liquid state to the field-induced ferromagnetic
state. The field-induced TL spin liquid state is considered to be a quantum critical

Figure 3-1-6: The magnetic field versus the anisotropic parameter ε phase diagram
calculated in longitudinal magnetic fields. Quoted from [60].

state in which the spin correlation shows a power-law decay. The TL parameters ηz and
ηx, which satisfy the relation ηzηx = 1, are critical exponents that are characteristic
of a TL spin liquid state and are related to the incommensurate correlation of the
z component, expressed as ⟨Sz

0S
z
r ⟩ − m2 ≃ cos (2kF r) r

−ηz (m is the magnetization,
kF = π (1/2 −m)) and the staggered correlation of the x component, expressed as
⟨Sx

0S
x
r ⟩ ≃ (−1)r r−ηx , respectively. r is the distance between the spins S0 and Sr. A

schematic view of these components is shown in Fig. 3-1-7 [61]. In a TL spin liquid state
of the S = 1/2 1D Ising-like XXZ model, in a magnetic field applied along the z-axis
direction, the incommensurate correlation is dominant in the low magnetic field region
where ηz < ηx, while the staggered correlation is dominant in the high magnetic field
region where ηz > ηx. Since BaCo2V2O8 has ε = 0.46, the aforementioned correlation
change must be realized when a magnetic field is applied along the c-axis as shown in
Fig. 3-1-6.
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(a)

(b)

x

z
H

Figure 3-1-7: A schematic view of the spin correlations in the TL spin liquid state of the
S = 1/2 1D Ising-like antiferromagnet above Hc. (a) The incommensurate correlation
of the z component. (b) The staggered correlation of the x component.

(a) (b)

Magnetic field (T)

Figure 3-1-8: (a) Temperature dependence of the specific heat for H ∥ c at designated
magnetic fields. Each specific heat shifts up by 400 mJ/Kmol with decreasing field
from 12 T. Inset shows an extended figure of the specific heat observed at 9 T. (b)
The results of the magnetocaloric effect measurements by ascending and descending
the magnetic field along the c-axis. Quoted from [60].

Figures 3-1-8(a) and 3-1-8(b) indicate the temperature dependence of the specific
heat down to 0.2 K at designated magnetic fields, and the magnetocaloric effect down
to 0.5 K when changing magnetic fields applied along the c-axis, respectively [60]. The
magnetic phase diagram as shown in Fig. 3-1-9 was obtained from these experimental
results. It was known that the field-induced phase transition occurs at about 4T, but
as can be seen from the figure, a new phase was found to exist in the region below
1.8 K and above 4 T approximately. Neutron scattering experiments were performed
to investigate the magnetic properties of this new phase as shown in Fig. 3-1-10 [61].
Up to 3.75 T, a single peak was observed at the position (4, 0, 3), which indicates
a commensurate, whereas above 4 T, two peaks were observed at incommensurate
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Figure 3-1-9: Magnetic phase diagram of BaCo2V2O8 in the longitudinal magnetic
fields. Neutron scattering experiments have been performed in magnetic fields at indi-
cated temperatures shown by broken arrows. Quoted from [60].

positions that separate from the l = 3 position with increasing the magnetic field
(Fig. 3-1-10(a)). Fig. 3-1-10(b) represents the plot of these peak positions with respect
to the magnetic field, and the inset of Fig. 3-1-10(b) shows the plot of the magnetic
field dependence of 2kF/π = (1 −m/ms) (ms is the saturated magnetization) using
the distance from l = 3. This neutron scattering experiment shows that the new
phase had an incommensurate correlation. This new phase must be the longitudinal
incommensurate correlation predicted by theoretical studies on the S = 1/2 1D XXZ
model.
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(a)

(b)

Figure 3-1-10: (a) Magnetic field dependence of neutron diffraction profiles of (4, 0, l)
scan measured at various temperatures. (b) Magnetic field dependence of the peak
position of the observed neutron scan profile. Inset shows the field dependence of
a normalized incommensurate modulation 2kF/π. The broken line is the theoretical
magnetization 1 −m/ms curve obtained by the calculation based on the Bethe ansatz
exact theory. Quoted from [61].
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Magnetic field (T)

Figure 3-1-11: Frequency dependence of the ESR spectra observed in (a) static and
(b) pulsed magnetic fields for H ∥ c. Quoted from [59].

(a) (b)

Figure 3-1-12: (a) Frequency versus resonance magnetic field plots of ESR along the
c-axis. The thin solid lines below Hc are guide for the eyes. Above Hc, gray (B), orange
(M), blue (L), and red (P) solid curves indicate theoretical excitation energies at the
momentum q = 0 for B, π/2 for M and L, and π for P, as indicated by the arrows in
(b). (b) DSSFs S(q, ω) calculated by the exact diagonalization for the total magne-
tization with 1/4 of the saturation value. Gray and black circles indicate S+−(q, ω)
and S−+(q, ω), respectively. The size of the circle corresponds to the magnitude of the
DSSF. Quoted from [59,74]
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Figures 3-1-11(a) and 3-1-11(b) depict the ESR spectra observed at various frequen-
cies in static and pulsed magnetic fields applied parallel to the c-axis, respectively [59].
In Fig. 3-1-12(a), the plot of resonance magnetic fields indicated by the arrows in
Figs. 3-1-11(a) and 3-1-11(b) against the frequencies is displayed. At zero magnetic
field, there are discrete energy levels such as 400 GHz, 600 GHz, 750 GHz, etc. As
shown in Fig. 3-1-13, these energy levels are generated because the excitation spinon
band, which is a continuum in a pure one-dimensional antiferromagnet, is discretized
by the interchain interaction and the discrete energy levels are called the Zeeman lad-
der [19,73]. One ESR branch from the lowest mode of 400 GHz at zero field decreases
as the magnetic field increases, and shows a softening at Hc = 4 T where a field-induced
order-disorder transition occurs as represented in Fig. 3-1-14. The ground state and
the excited ones of the S = 1/2 1D Ising-like antiferromagnet below Hc represent a
Néel order and spinon bands, in which spinon (domain walls) can propagate freely in
the chain, as shown in Fig. 3-1-15. Above Hc, a pair of spinon (domain walls) propa-
gate freely in the chain to destroy the magnetic order [73]. In addition, the resonance
mode labeled L seems to show softening at Ha where the magnetization shows a value
of 1/2 of the saturation magnetization, and the Q mode is observed above the satu-
ration magnetic field Hs in Fig. 3-1-12(a). Other branches labeled B, P and M are
also observed in Fig. 3-1-12(a). The modes observed below Hs are well consistent with
the results of the dynamical spin structure factors (DSSFs) calculated by the exact
diagonalization for the total magnetization with 1/4 of the saturation value as shown
in Fig. 3-1-12(b).

Consequently, the experimental results of magnetization, ESR, and neutron scatter-
ing agree well with the theoretical results of numerical calculations, and thus BaCo2V2O8

has been actively studied as a model material for the S = 1/2 1D XXZ model.

ESR transition

ESR transition

Interchain interaction

Figure 3-1-13: Magnetic excitation spectrum of the S = 1/2 1D Ising-like antifer-
romagnet. In the case of a pure 1D chain, the magnetic excitation spectrum is a
continuum (spinon band), but the continuum becomes discretized by the interchain
interactions [19,73]. The orange arrow indicates the corresponding ESR transition.
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Figure 3-1-14: Spinon band excitations in magnetic fields. The blue arrow indicates
the ESR excitation between the ground state and the lowest excited state. Hc is the
critical field where the softening of the excited state occurs.

chain direction (z-axis)Ground state

Excited states

Ψ1

Ψ3

Ψ5

Domain wall propagation

(a)

(b)

Figure 3-1-15: (a) Néel ordered ground state along the chain (z-axis in the Ising-like
model). (b) Spinon (domain wall) excited states. Domain walls indicated by dotted
lines propagate freely inside the chain to destroy the Néel order.
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3-1-3 High-Field Magnetism in Transverse Magnetic Fields

In a simple one-dimensional XXZ antiferromagnet described by Eq. (1-1-1), the trans-
verse magnetic field perpendicular to the chain causes the same effect in all directions
perpendicular to the chain owing to its symmetry. It was not thought to be important
to pay particularly attention to the direction of the transverse magnetic field at the
early stage of the studies on BaCo2V2O8 because of the tetragonal system. However,
it was later found that the behavior was different depending on the magnetic field
direction, [100] and [110]. Figures 3-1-16(a) and 3-1-16(b) display the temperature
derivative of magnetic susceptibility at various fields and the field derivative of the
magnetization curves at various temperature in transverse fields along the [100] direc-
tion [65]. The phase diagram made from the peaks seen in these figures is shown in
Fig. 3-1-17. Previous specific heat results for H ⊥ c [28] in Fig. 3-1-3(b) corresponds to
the case for the magnetic field applying along the [110] direction. Looking at the phase
diagram for H ∥ [100] in Fig. 3-1-17, the phase boundary drops off sharply at around
10 T in response to the rapid suppression of the Néel order by the magnetic field,
whereas for H ∥ [110], the Néel order seems to be maintained up to higher magnetic
field than 9 T. Such differences are also observed in the thermal expansion measure-
ments (Fig. 3-1-18), the magnetostriction measurements, and the thermal conductivity
measurements (Fig. 3-1-19) [64, 66].

(a) (b)

Figure 3-1-16: (a) Temperature derivative of magnetic susceptibility (dχ/dT ) and (b)
field derivative of magnetization (dM/dH) curves, observed for H ∥ [100]. Quoted
from [65].

The results of the magnetization measurements in transverse fields for [100] and
[110] directions at 1.3 K are depicted in Fig. 3-1-20. In this figure, the contribution of
the Van-Vleck paramagnetism is subtracted. For H ∥ [110], the magnetization reaches
the saturation value at 40.9 T, while for H ∥ [100], the magnetization curve gently
increases with rounding even above 50 T, and the magnetization does not saturate.
In BaCo2V2O8, the principle axes of CoO6 octahedron deviates from the crystal axes
as shown in Figs. 3-1-21(a)–(c). A rounding of the magnetization curve in a high
magnetic field was also reported in quasi-1D S = 1/2 Heisenberg antiferromagnets
such as Cu pyrimidine nitrate and Cu benzoate [75,76], and the magnetization process
was well reproduced by introducing effective staggered magnetic fields owing to the
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Figure 3-1-17: Phase diagram in different transverse fields along [100] and [110] direc-
tions [65]. Closed circles and squares are transition points obtained from the magneti-
zation and magnetic susceptibility measurements for H ∥ [100]. Open circles are those
from the previous specific heat measurements for H ∥ [110] [28].

Temperature (K)
0 2 4 6

(a) (b)

Figure 3-1-18: Temperature dependences of the thermal expansion for (a) H ∥ [100] (at
represents the a-axis in tetragonal system) and (b) for H ∥ [110] at designated magnetic
fields. The temperatures of the inflection point varies depending on the direction of
the magnetic fields. Quoted from [66].
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(a) H // [100] (b) H // [110]

Figure 3-1-19: Temperature dependences of the thermal conductivity along the c-axis
for (a) H ∥ [100] and (b) for H ∥ [110] at designated magnetic fields. The temperatures
of the inflection point varies depending on the direction of the magnetic fields. Quoted
from [66].

Figure 3-1-20: The solid lines show the experimental results, for which Van-Vleck con-
tributions are subtracted, of the high-field magnetization measurements in transverse
fields at 1.3 K. Open squares and circles represent the theoretical curves calculated
using a Density Matrix Renormalization Group method with the effective fields for
ϕ1 = 45◦ and ϕ1 = 0◦, respectively. In the inset, the experimental and the calculated
results before subtracting the Van-Vleck contribution are shown. Quoted from [65].
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Figure 3-1-21: Schematic view of (a) Co−O chain and (b) CoO6 octahedron in
BaCo2V2O8. (c) Relation between the XY Z and ξψζ-coordinate systems. The ef-
fective fields hY and hZ appear for (d) ϕ1 = 0◦ and (e) ϕ1 = 45◦. The directions of hY
and hZ are Y - and Z-axis directions, respectively. Quoted from [65].

alternation of local crystal structure around Cu2+ ion [76, 77]. It was also reported
in the 1D Cu2+ compound CuCl2 · 2 ((CD3)2SO) that the staggered magnetic fields
suppress the AF order [78]. Thus, in BaCo2V2O8, the model is suggested in which
effective staggered magnetic fields arise from the local crystal structure as the four-
step periodical arrangements of CoO6 octahedra and affect the magnetization process
in transverse fields for [100] and [110] directions. The effective spin Hamiltonian based
on this model is written as,

Hchain =J
∑
j

{
Sz
jS

z
j+1 + ε

(
Sx
j S

x
j+1 + Sy

j S
y
j+1

)}
− µB

∑
j

{
gxxH0S

x
j + hyS

y
j sin [2ϕ1 + π(j − 1)]

+ hzS
z
j cos

[
ϕ1 +

π(j − 1)

2

]}
, (3-1-2)

where Sα
j , J , ε (< 1), µB are the same as in Eq. (3-1-1) and, gxx is the g-factor along

the x-axis, H0 is the external magnetic field applied along the x direction, hy and hz are
effective magnetic fields induced along the y and z directions, respectively. The effective
magnetic fields, which appear in external magnetic fields for ϕ1 = 45◦ and ϕ1 = 0◦, are
depicted in Figs. 3-1-21(d) and 3-1-21(e). (In these figures, the capital letters X, Y , and
Z are used instead of small letters x, y, and z.) The angle ϕ1 is the angle formed by ψ
axis of the magnetic principle axis and the y axis in the xy-plane. The important point
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is that hy takes the maximum absolute value for ϕ1 = 45◦ while alternately changing
direction, whereas it disappears for ϕ1 = 0◦. The ratio of the external magnetic field
to the internal effective magnetic field is defined as the parameters Cy = hy/gxxH0 and
Cz = hz/gxxH0. They are calculated with the parameters J/kB = 65 K, ε = 0.46,
Cy = 0.4, and Cz = 0.1

√
2. The g-values are gxx = 2.95 for ϕ1 = 0◦ and gxx = 2.95 for

ϕ1 = 45◦. As a result, the experimental magnetization curves are reproduced well by
the theoretical calculation.

3-1-4 Purpose of This Study

From these magnetic and thermal measurements in transverse magnetic fields along
the [100] and [110] directions, it has been found that physical properties (magneti-
zation, specific heat, magnetostriction, thermal expansion and thermal conductivity
are different largely for these directions. To clarify the difference in the properties
between these field directions, we investigate from the view point of spin excitations
especially by high-field ESR. In the present paper, we report on magnetic properties of
BaCo2V2O8 in transverse magnetic fields. The density-matrix renormalization group
(DMRG) method is used to study the magnetic field dependences of the magnetization
and the ESR spectra numerically. The elementary excitation associated with the lowest
ESR branch is discussed in terms of the spinon using the Jordan-Wigner transformation
as well.

38



3-2 Experiment and Calculation

3-2-1 Crystal Growth

Single crystal samples of BaCo2V2O8 used in this study were grown by the floating-zone
(FZ) method, as reported in detail in Ref. 79 but using Co3O4 instead of CoC2O4 · 2 H2O.
First, a polycrystalline sample of BaCo2V2O8 was synthesized by the solid-state reac-
tion. The starting materials BaCO3 (99.99+%), Co3O4 (99.9%), and V2O5 (99.99%)
were weighted in the stoichiometric proportions and well mixed. Next, the mixture
in a Pt crucible was heated using the muffle furnace at 950 °C for 12 hours under air.
Then, the mixture was pulverized well and compacted into pellets, and heated again at
950 °C for 60 hours on a Pt sheet under air. In both steps, it took 4 hours to raise the
temperature to 950 °C, and after heating, it was naturally cooled to room temperature.
The above sequence is shown in Fig. 3-2-1. The chemical reaction formula is described
below,

3 BaCO3 + 2 Co3O4 + 3 V2O5 −−→ 3 BaCo2V2O8 + 3 CO2 + O2. (3-2-1)

Co3O4 is composed of Co2+ and Co3+ ions, but at the temperature 900 °C or higher,
it decomposes into CoO composed of Co2+ ions, and thus the temperature was set to
950 °C.
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Figure 3-2-1: (a) First step of the solid state reaction sequence of BaCo2V2O8. The
muffle furnace was used for heating. (b) Second step of the solid state reaction. The
mixture was compacted into pellets.

The synthesized powder sample (before FZ synthesis) was checked by X-ray diffrac-
tion (XRD) using Rigaku RINT-2000. Figure 3-2-2 shows an X-ray diffraction pattern
compared with its simulation pattern taken by RIETAN-FP [80] through VESTA [58]
as shown in Fig. 3-2-2. The characteristic peak was observed to compare with the sim-
ulation pattern, and no peaks from impurities were observed. Then, the powder was
pressed into a rod under the hydrostatic pressure and sintered at 950 °C for 24 hours for
use in the FZ furnace. Finally, single crystal growth was performed by a floating zone
method as depicted in Fig. 3-2-3. The feed and seed rods were rotated at 30 rpm in
opposite directions to stir the melt and make the temperature as uniform as possible.
As grown single crystal rod about 4 mm in diameter and 50 mm in length was obtained
by pulling the rod at the speed of 0.5 mm/h in a mixture of flowing oxygen (20%) and
nitrogen (80%) at ambient pressure (see Fig. 3-2-4(a)).
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Figure 3-2-2: XRD pattern of a powder sample of BaCo2V2O8 and the simulation result
performed on RIETAN-FP [80].

We determined the crystal axes by the back-reflection Laue method compared to
the simulation pattern using LauePt software [81] as shown in Fig. 3-2-5, and cut
out the single crystal rod into blocks and plates (see Fig. 3-2-4(b)) by a diamond wire
saw. Figure 3-2-6 shows the XRD patterns by Bruker D2 PHASER on the plate-shaped
single crystal sample to confirm the surface directions. The quality of the single crystal
samples were found to be high enough, because the Laue pattern was clear with no
spot splitting, and the XRD pattern was in agreement with the simulation results.
The block-shaped samples were used for magnetic susceptibility and magnetostriction
measurements, and the plate-shaped samples were used for ESR and specific heat
measurements.
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Figure 3-2-3: (a) Illustration of infrared image furnace for crystal growth. (b)
Schematic view of crystal growth.

(a) (b)

Figure 3-2-4: (a) Synthesized single crystal rod of BaCo2V2O8 obtained by the FZ
method. (b) Plate-shaped single crystal sample of BaCo2V2O8 viewed from the c-axis.

(b)(a)

Figure 3-2-5: (a) Back-reflection Laue pattern taken from the (001) face of BaCo2V2O8.
(b) The simulated Laue pattern using LauePt software [81].
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Figure 3-2-6: The XRD pattern of the plate-shaped single crystal samples of
BaCo2V2O8 from (a) c-plane and (b) a-plane. RIETAN-FP [80] was used for peak
assignment.
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3-2-2 Experimental Results

The temperature dependences of magnetic susceptibilities χ = M/H (where M is the
magnetization and H is the external magnetic field) of BaCo2V2O8 single crystals in
magnetic fields along the [001], [100], and [110] directions of tetragonal symmetry at
µ0H = 0.1 T are depicted in Fig. 3-2-7. The broad peak of the susceptibility for
H ∥ [001](c-axis) is observed near 35 K, typical of a low-dimensional antiferromagnet.
The susceptibility along the c-axis represents an abrupt decrease below 5 K, and those
along the [100] and [110] directions overlap in most temperature regions with a peak
at about 5 K, corresponding to the Néel temperature, but below TN, the susceptibility
of [100] direction has a slightly larger than that of [110] direction. These observations
are the same as those reported in Refs. 27 and 28. The large magnetic anisotropy in
magnetic susceptibility exists between H ∥ [001] and the other directions. Since no
rapid increase of the susceptibility at low temperature was observed in any magnetic
field direction, it was assessed that there were few paramagnetic impurity.
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Figure 3-2-7: Temperature dependences of the magnetic susceptibilities of single crys-
tals of BaCo2V2O8. Squares, circles, and triangles represent [001], [100], and [110]
directions of the external magnetic field, respectively.

Figures. 3-2-8(a) and 3-2-9(a) show the frequency dependence of the ESR absorp-
tion spectra in Voigt configuration at 1.4 K in pulsed magnetic fields and those at 1.5 K
in static magnetic fields for H ∥ [100] and H ∥ [110], respectively. We observed several
strong and weak signals with small splittings that are probably caused by magnetic
domains due to the structural phase transition from tetragonal to orthorhombic sym-
metry at TN [66]. The sharp peaks indicated by the plus signs are the signals of DPPH
as a magnetic field calibration sample.

Figures 3-2-8(b) and 3-2-9(b) represent the frequency versus resonance-field plot
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Figure 3-2-8: (a) ESR spectra at 1.4 K and 1.5 K for H ∥ [100] in Voigt configuration.
The sharp peaks indicated by the plus signs are the signals of DPPH. (b) Resonant
frequency versus resonant field plot and (c) magnetization curve and the field derivative

of magnetization (dM/dH) at 1.3 K, both for H ∥ [100] [30]. H
[100]
c is the magnetic

field at an anomaly observed in dM/dH.
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Figure 3-2-9: (a) ESR spectra at 1.4 K for H ∥ [110] in Voigt configuration. The
sharp peaks indicated by the plus signs are the signals of DPPH. (b) Resonant fre-
quency versus resonant field plot and (c) magnetization curve and the field derivative

of magnetization (dM/dH) at 1.3 K, both for H ∥ [110] [30]. H
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c and H
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magnetic fields at anomalies observed in dM/dH.
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for H ∥ [100] and H ∥ [110], respectively. The data points on probably the same
ESR branch are indicated by the same colors and markers. Weak resonance signals
are plotted by cross markers. The signals of DPPH are omitted and paramagnetic
resonance lines are drawn instead. For comparison, the positions of the anomalies
observed in the field derivative of magnetization (dM/dH) in Figs. 3-2-8(c) and 3-2-

9(c), are shown as vertical dashed lines, where H
[100]
c = 10 T, H

′[110]
c = 30.8 T, and

H
[110]
s = 40.9 T. The lowest energy gap at zero magnetic field is observed at 400 GHz

and two main ESR branches indicated by filled black circles appear from this gap. The
upper ESR branches monotonically increase as the magnetic field increases for both
[100] and [110] directions, whereas the lower ESR branches for H ∥ [100] and H ∥ [110]
behave differently.

For H ∥ [100], the lower mode decreases quickly with increasing magnetic field and

exhibits softening near H
[100]
c . Another lower ESR branch appearing from 400 GHz

at zero magnetic field, indicated by filled green diamonds in Fig. 3-2-8(b), shows no

softening of the mode but disappears near H
[100]
c . An ESR branch with a finite gap

turns up from about H
[100]
c and increases with changing its slope on further applying

magnetic fields up to 53 T. In the field region below H
[100]
c , numerous resonance modes

with various zero field gaps are found to originate from a Zeeman ladder, and have been
observed in previous studies [32, 59, 67]. Between the lowest and highest modes, we
observed some additional modes and one of them marked by open rhombuses appears
from 300 GHz at about 10 T. This linear mode is not a paramagnetic resonance due
to a paramagnetic impurity because there is a finite gap at zero magnetic field when
extrapolating linearly. For H ∥ [110], as shown in Fig. 3-2-9(b), no softening of the
excitation mode was observed and another mode marked by inverted triangles seems to
show softening at around H

′[110]
c where an anomaly was observed in the magnetization

curve and its dM/dH (clear peak) as indicated in Fig. 3-2-9(c). This might be caused
by the softening at a different q value like π/2 as observed in the ESR branches for
H ∥ [001] [59]. This matter will be discussed in the last paragraph on P.54.

The excitation mode that appears near 460 GHz (∼1.9 meV) in zero field indi-
cated by open blue hexagons is observed in transverse magnetic fields (H ∥ [110]
and H ∥ [100]), and no such excitation mode appears in longitudinal magnetic fields
(H ∥ [001]) [59]. This excitation mode is expected to be a longitudinal (fluctuation)
mode and was observed by neutron scattering experiments [32, 68]. The longitudinal
mode is associated with the domain-wall excitation caused by flipping an even number
of spins in a domain and has a change in a total spin ∆Sz = 0, which forbids the
conventional ESR transition. This situation corresponds to the ESR for H ∥ [001]. On
the other hand, a transverse mode is generated by flipping an odd number of spins,
indicating that ∆Sz = ±1, and the ESR transition is allowed. Here, we note that the
longitudinal and transverse modes are separated when Sz is conserved, whereas they
are mixed owing to the transverse magnetic fields. As a result, the ESR transition
to the longitudinal mode is allowed in the transverse magnetic fields, leading to the
excitation mode at 460 GHz.

The ESR spectra for H ∥ [100] at designated temperatures below 4.2 K for the
two frequencies as shown in Figs. 3-2-10(a) and 3-2-10(b). For simplicity, the ESR

signals related to the phase transition at about H
[100]
c are indicated by black arrows,

omitting the ESR signals unrelated to that. The resonance fields were determined
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Figure 3-2-10: (a), (b) ESR spectra at designated temperatures below 4.2 K for H ∥
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[100]
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indicated by black arrows. Other signals are omitted for simplicity. (c) The frequency-
magnetic field plot of the resonance fields for the softening mode. Dashed lines are
guide for the eyes.
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by analyzing the magnitude and the phase of the observed signals. Therefore, the
resonance field does not correspond with the position where the transmission amplitude
is smallest. At low frequencies, for example 56.7 GHz, the resonance field which belongs
to the softening mode related to the phase transition changes largely with temperature,
but as the frequency increases, for example 141.8 GHz, this change is gradual with
temperature. Figure 3-2-10(c) shows the frequency versus resonance fields plot for the
softening mode. The result indicates that the resonance fields at low frequencies vary
with temperature, and the critical field decreases as the temperature rises.
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Figure 3-2-11: Temperature dependences of specific heat for (a) H ∥ [100] and (b)
H ∥ [110]. (c) Phase diagram obtained from specific heat, ESR, magnetization mea-
surements.

Figures 3-2-11(a) and 3-2-11(b) demonstrate the temperature dependences of spe-
cific heat for H ∥ [100] and H ∥ [110] in designated magnetic fields. In both [100]
and [110] directions, the temperature at the peak of the specific heat decreases as the
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magnetic field increases. However, the temperature at the peak decreases gradually for
H ∥ [110], whereas it drops rapidly toward H

[100]
c for H ∥ [100]. The peak of the specific

heat is λ-shaped, implying the second phase transition to a long-range ordered phase at
low temperatures. Fig. 3-2-11(c) reveals the magnetic field versus temperature phase
diagram which is assembled with the specific heat peaks and the extrapolated softening
fields extracted from the resonance points at low frequencies as shown in Fig. 3-2-10(c)
and the anomaly of the field derivative of magnetization in Ref. 65 are plotted. As you
can see, the phase boundary of the long-range order is maintained up to the high field
for H ∥ [110], while a phase transition occurs near H

[100]
c for H ∥ [100].

3-2-3 Numerical Calculation Method

Regarding the effective spin Hamiltonian for BaCo2V2O8 in transverse magnetic fields,
it has been suggested that four-site periodic effective fields are induced due to the four-
fold screw-chain structure [65]. That is, distorted CoO6 octahedra tilt and magnetic
principle axes of each Co2+ ion change with a four-site periodicity, so that the g-
tensor has off-diagonal elements, leading to effective staggered fields perpendicular to
the external magnetic field. Generated effective staggered fields depend on the external
magnetic field direction. On applying the external magnetic field along the x direction,
the staggered fields appear along both the y and z directions for H ∥ [100], while the
staggered field is generated only along the z direction for H ∥ [110], as shown in Figs. 3-
2-12(a) and 3-2-12(b). In addition to the above situations, the interchain interactions
should be relevant in a real material. Hence, we include the effect of the interchain
interactions as well. Thus the effective spin Hamiltonian is given by,

H = Hchain + HMF
inter, (3-2-2)

where Hchain is the spin Hamiltonian (Eq. (3-1-2)) and HMF
inter is a mean-field term

representing the interchain interaction as explained below. In numerical calculations,
we used the parameters in Ref. [65]: J/kB = 65 K, ε = 0.46, gxx = 2.75 and ϕ = π/4
for H ∥ [100], gxx = 2.95 and ϕ = 0 for H ∥ [110], Cy ≡ hy/gxxH0 = 0.4, and
Cz ≡ hz/gxxH0 = 0.1

√
2, which were evaluated so as to fit the magnetization curve.

We also studied with several other values of Cy.
To discuss the effect of the interchain interaction in quasi-1D BaCo2V2O8, we in-

corporated a weak Ising coupling between neighboring chains:

Hinter = Jinter
∑
j

∑
⟨µ,ν⟩

Sz
j,µS

z
j,ν , (3-2-3)

where Sz
j,µ denotes the spin operator at site j in a chain µ. In a chain mean-field

treatment, the coupling of a chain µ to its neighboring chains ν is approximated as

Jinter
∑
j

∑
ν

Sz
j,µS

z
j,ν ≃ Jinter

∑
j

∑
ν

Sz
j,µ⟨Sz

j,ν⟩. (3-2-4)

By replacing ⟨Sz
j,ν⟩ with mj irrespective of ν, we finally obtain a mean-field Hamiltonian

for a single chain,

HMF
inter = J ′

∑
j

mjS
z
j , (3-2-5)
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Figure 3-2-12: Schematic view of the effective staggered fields acting on the Co2+ ion
site for (a) H ∥ [100] and (b) H ∥ [110] in BaCo2V2O8. The hy and hz represent the
effective staggered fields along the y and z directions, respectively. The x-, y- and z-
axes represent the coordinate system when the external magnetic field is applied along
the x-direction. (a) The x-, y-, and z-axes correspond to the a-, a-, and c-axes of the
tetragonal crystal system, respectively. (b) The x-axis is tilted by 45◦ relative to the
a-axis in the c-plane.

where J ′ = zJinter and z is the number of neighboring chains, while mj should be
determined self-consistently. In a simple Néel state with mj = m(−1)j, the mean-
field term is expressed by −heff

∑
j(−1)j+1Sz

j , while heff is determined self-consistently
via J ′|⟨Sz

j ⟩| = heff . However, we note that the amplitudes of the staggered magnetic
moments would not be equivalent at every site but show a four-site periodicity owing
to the hz term in Eq. (3-1-2). Thus, we assumed a four-site periodic structure for mj

and determined the modulated structure self-consistently.
We performed numerical calculations to examine the magnetic properties of the

effective spin model in Eq. (3-2-2) by using the DMRG methods [82, 83]. All the cal-
culations were done with the open boundary condition at zero temperature. Magnetic
structures and magnetization data were obtained by standard static DMRG calcula-
tions. For magnetic excitations, we calculated the DSSFs given by

Sα(q, ω) = − 1

π
Im⟨ψG|Sα†

q

1

ω + EG −H + iη
Sα
q |ψG⟩

− 1

π

η

ω2 + η2
⟨Sα

q ⟩2, (3-2-6)

where Sα
q is the Fourier transform of the α component of the spin, q is the momentum,

|ψG⟩ is the ground state, EG is the ground-state energy, and η is a small broadening
factor set to 0.05 in units of J . In the second term, we subtracted a Lorentzian peak
at zero energy because of the contribution of a finite magnetic moment induced by
the magnetic field. The spectral intensity of q = 0, π/2, and π were calculated by
dynamical DMRG runs with 128 sites to compare with experimentally observed ESR
spectra. The number of states kept in the renormalization steps was 40, and the
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truncation error was typically 10−3−10−5, which is sufficient for comparison with the
experimental data.

3-2-4 Comparison with Numerical Results

A difference is observed between the spin excitations for H ∥ [100] and H ∥ [110]. The
magnetic excitation becomes soft at the transition field at about 10 T for H ∥ [100],
while no softening of the spin excitation occurs up to the saturation field for H ∥ [110].
Therefore, we study the spin excitation behaviors by numerical calculations.

First, we demonstrate the numerical results for H ∥ [100]. The observed transition
field is about 10 T, but the transition field calculated with the parameters in Ref. 65,
e.g. the staggered field parameter Cy = 0.4, was about 6 T. In the following, we
consider two types of ingredients to adjust this transition field. The first one is the
inclusion of interchain interactions J ′, and the second one is the change in the staggered
field parameter Cy. Figures 3-2-13 and 3-2-14 display the calculated Sz component
at the indicated different Co site and the calculated magnetization curves compared
with the experimental one when J ′ (Cy = 0.4 fixed) and Cy (J ′/J = 0 fixed) are
changed, respectively. When the J ′ increases, the transition field also increases as
shown in Fig. 3-2-13(a)–(d), but the magnetization curve hardly changes (Fig. 3-2-
13(e)). Therefore, the calculated results with J ′/J = 0.02 reproduce sufficiently the
experimental results.

When J ′ is fixed to zero, the transition field increases with decreasing the Cy as
indicated in Fig. 3-2-14(a)–(d). The magnetization curve does not change much in
low magnetic fields below 20 T, but a remarkable change appears in high magnetic
fields above 20 T. In this case, we need to take the Cy = 0.25 to meet the observed
transition field in the low field region, while the parameter Cy = 0.4 is required to
reproduce the magnetization curve in the high field region (Fig. 3-2-14(e)). The result
of magnetostriction along the field direction as shown in the inset of Fig. 3-2-14(e) may
be evidence for the crystal distortion to give rise to the change of Cy in the external
magnetic field. Therefore, we take the Cy = 0.25 in the low magnetic field region.

As demonstrated above, two sets of parameters (J ′/J = 0.02, Cy = 0.4) and (J ′/J =
0, Cy = 0.25) bring about the transition field close to the observed one for H ∥ [100].
Accordingly, the magnetic excitation modes for H ∥ [100] are calculated using these
parameter sets. We also calculate the magnetic excitation modes up to the saturation
field for H ∥ [110] using the same parameters as above to confirm that no softening of
the modes takes place below the saturation field as observed by experiment.

Calculated DSSFs at q = 0 as a function of magnetic field for H ∥ [100] and
H ∥ [110] are shown in Fig. 3-2-15 with experimental energy modes extracted from
Figs. 3-2-8(b) and 3-2-9(b). The calculated DSSFs indicate the average of the x and
y components according to the experimental situation in Voigt configuration. Since
the staggered magnetic field along the y direction disappears for H ∥ [110], only the
interchain interaction is taken into account in Figs. 3-2-15(b) and 3-2-15(d). As shown
in Figs. 3-2-15(a) and 3-2-15(c), the calculated descending mode goes down toward the
transition field at about 10 T, but the intensity for J ′/J = 0.02 is more prominent.
In addition, the calculated excitation mode above the transition field in Fig. 3-2-15(a)
agrees well with the experimental one. Accordingly, the experimental results are re-
produced better by introducing the interchain interaction J ′ rather than the change in
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Figure 3-2-13: (a) – (d) Magnetic-field dependences of the z component of the spin
(Sz) at each site, calculated for various J ′ values at Cy = 0.4. Open squares, open
circles, closed circles, and closed diamonds denote the calculated Sz data for sites 1,
2, 3, and 4, respectively. (e) Magnetization curve obtained from the experiment where
the van Vleck contribution is subtracted, and those from the theoretical calculations
for J ′/J = 0 and 0.02 at Cy = 0.4. µ0 is the permeability of vacuum.
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the staggered field parameter Cy. When the interchain interaction is introduced, the
transition field is about 10 T, but the transition field for J ′/J = 0, namely pure 1D
case, is about 6 T. This must be consistent with the NMR study on BaCo2V2O8, which
shows a 1D quantum critical point at 6 T [71].

In the numerical results, the lowest excitation appears around 400 GHz at 0 T and
does not exhibit softening until the saturation field around 40 T for H ∥ [110]. This is
consistent with the experimental observation, although there are several differences be-
tween the numerical results and the experimental observations. The calculated DSSFs
do not change much by the interchain interactions. For this direction (H ∥ [110]), the
transition field coincides with the saturation field. The observed lowest mode decreases
with increasing magnetic field below 10 T, while the calculated mode indicates nearly
constant up to approximately 10 T and then increases gradually up to approximately
15 T. This behavior is largely different between experiment and calculation. In Fig. 3-
2-16, we plot the x component of DSSF for (a) J ′/J = 0.02 and (c) J ′/J = 0 with the
observed descending modes for H ∥ [110] and its y component for (b) J ′/J = 0.02 and
(d) J ′/J = 0 with the observed ascending modes for H ∥ [110]. As for the descending
mode near zero field, the difference between experiment and calculation is considerably
large. The reason for this difference in the descending mode and the x component of
the DSSF is not clear at present.

As mentioned in Sect. 3-2-2, the energy mode marked by inverted triangles seems
to show softening at around 30 T where an anomaly was observed in the magnetization
curve (a peak of dM/dH). This is probably caused by the softening at a different q
value like π/2 as indicated in Figs. 3-2-17(a) and 3-2-17(b). In addition, the observed
ESR branch above approximately 40 T is reproduced by the y component of the DSSF
in Fig. 3-2-17(d).
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Figure 3-2-15: Frequency versus magnetic field diagram for the averaged DSSFs of
the x and y components at q = 0 for H ∥ [100] [(a) and (c)] and H ∥ [110] [(b) and
(d)] together with the main experimental ESR branches marked by symbols. µ0 is the
permeability of vacuum. The numerical results of the intensity are plotted with the
scale given in the color bar. Between (a) and (c), different sets of values for Cy and J ′

are used in the calculations. For (b) and (d), the same J ′ values are used as in (a) and
(c), respectively.
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and (d), the same J ′ values are used as in (a) and (c).
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3-3 Discussion

We observed that a longitudinal AF order is quickly suppressed by a transverse stag-
gered field, and that the transition to a disordered state occurs at a relatively low critical
field, compared with the transition to a disordered state due to a transverse uniform
field. This difference is intuitively understandable in terms of the combined effects
of the transverse field and transverse exchange interaction. The transverse staggered
field induces a transverse staggered moment, while the transverse exchange interac-
tion develops transverse AF correlations. In other words, they cooperate to stabilize
a transverse AF configuration, indicating that the system easily attains the disordered
state with the transverse AF configuration. On the other hand, the transverse uniform
field induces a transverse uniform moment, competing with the transverse exchange
interaction that yields transverse AF correlations. Therefore, a higher field is required
to realize a disordered state with a transverse ferromagnetic configuration.

It is worth noting that, even though the critical field differs substantially between
the cases H ∥ [100] and H ∥ [110], we observed a descending mode in the q = 0 excita-
tion with increasing transverse field for both field directions. This descending mode is
in fact characteristic of the transverse Ising model (see Appendix I for theoretical de-
tails). To understand this point, it is useful to recall the XY model, whose excitations
are described by particle-hole excitations of spinless fermions (spinons) via the Jordan-
Wigner transformation. Applying a longitudinal field to the XY model produces a
shift in the chemical potential of spinons, leading to a change in the excitation spec-
trum. The same analysis should be applied to the transverse Ising model after rotating
the spin coordination to align the field direction to the z-axis [17,84]. It turns out that
the spinon band is composed of particle and hole bands, whose mixing produces an
excitation gap. The transverse field shifts the energies of these bands in opposite di-
rections and they eventually split above a critical field. Meanwhile, the excitation gap
shrinks, closes at the critical point, and subsequently increases. This scenario holds in
the present XXZ model with effective staggered fields, while the critical field depends
on ε and Cy. The difference between H ∥ [100] and H ∥ [110] is attributed to the
presence of Cy. Indeed, taking into account Eq. (A1-9) in Appendix I, the critical field
for H ∥ [100] should decrease with increasing Cy, consistent with observations in Fig.
3-2-14.

Finally, we discuss the difference in the disordered states above the transition field
between two different field directions, namely, longitudinal H ∥ [001] and transverse
H ∥ [100]. Above the transition field for H ∥ [001], a TL spin liquid state appears [60],
where the linear dispersion moves on the momentum axis and the gapless momentum is
related to the magnetization. Figure 3-3-1 shows the DSSF S(Q,E) calculated by the
DMRG method using the Hamiltonian of Eq. (3-1-2) with the parameters in Ref. 65 for
H ∥ [100] [67]. Here, S(Q,E) and S(q, ω) are identical. Since no interchain interaction
is included in this calculation, 10 T is located above the transition field Hc (6 T).
Focusing on the spectra at 10 T, the spin gap opens at any Q value in each component.
Figure 3-3-1(g) and 3-3-1(h) indicate the intensities of DSSFs at Q = 0 for Sx and
at Q = π for Sz, respectively. Both pictures clearly show a peak at a finite energy,
evidencing for the spin gap opening. Therefore, for H ∥ [100], above Hc a disordered
state is not a TL spin liquid and may be close to a field-induced ferromagnetic state
or a paramagnetic state. This difference in behavior for these different field directions
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is remarkable.

SX, 10 T, Q = 0 SZ, 10 T, Q = π(h)(g)

Figure 3-3-1: Each component of the DSSF S(Q,E) calculated by the DMRG method
using the Hamiltonian (Eq. (3-1-2)) with the parameters in Ref. 65 for H ∥ [100].
(a)–(c) and (d)–(f) are at 0 T and 10 T as located above the transition field (6 T),
respectively. (g) and (h) represent the intensity of the x component of S(Q,E), Sx,
at Q = 0 and that of the z component of S(Q,E), Sz, at Q = π both at 10 T as a
function of energy E (meV), respectively. In each panel, a peak appears at a finite
energy, indicating that the spin gap opens at any Q value by combining with the energy
dispersions in all the figures at 10 T ((d)–(f)). (a)–(f) are Quoted from [67]. (g) and
(h) are Quoted from [85].
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3-4 Conclusion

In summary, we have performed magnetic susceptibility, high-field multi-frequency
ESR, specific heat, and the magnetostriction measurements on the S = 1/2 quasi-1D
Ising-like antiferromagnet BaCo2V2O8 in the transverse fields H ∥ [100] and H ∥ [110].

A softening of the lowest ESR branch was observed near Hc = 10 T as the order-
disorder transition field for H ∥ [100], whereas no softening was observed up to the
saturation field for H ∥ [110]. The observation of this softening at Hc was reproduced
by DMRG calculations of DSSF S(q, ω) at q = 0 using two parameter sets, one with
the staggered magnetic field parameter Cy = 0.4 and the interchain interaction J ′/J =
0.02, and the other with Cy = 0.25 and J ′/J = 0.

The magnetization curve for H ∥ [100] can be reproduced using Cy = 0.4, regard-
less of the interchain interaction. The change in Cy at low fields for the latter case
is considered from a large change in magnetostriction. The agreement between the
experiment and the calculation is satisfactory in the former case. We have discussed
elementary excitation within a spinon context by using the Jordan-Wigner transfor-
mation. The descending mode observed in the ESR measurements is regarded as the
lowest particle-hole spinon excitation.

We compared the main ESR branches for H ∥ [110] with the calculated DSSFs
S(q, ω) at q = π/2 and π. The DSSFs at q = π/2 seem to be related to the ESR
branches which show softening at around 30 T where an anomaly was observed in the
field derivative of the magnetization. In addition, the observed ESR branch above
approximately 40 T is reproduced in the DSSF at q = π.

Finally, we discussed the disordered state above the transition field for H ∥ [100].
Above the transition field for H ∥ [001], a TL spin liquid state is realized, whereas a
disordered state above the transition field for H ∥ [100] may be close to a field-induced
ferromagnetic state or a paramagnetic state, because the spin gap opens at any q from
the calculated DSSFs S(q, ω).
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4 S = 1/2 Honeycomb-Lattice Antiferromagnet

Cu2(pymca)3(ClO4)

4-1 Introduction

4-1-1 Fundamental Properties of M2(pymca)3(ClO4) (M=Fe, Co, Ni, Cu)

As mentioned in the last part of Sect. 1-2-2, the pymca (pyrimidine-2-carboxylate) is
used as an appropriate organic bridging ligand to construct a honeycomb-lattice mag-
net by connecting transition-metal ions. Since the exchange interactions in molecule-
based magnets are caused via bridging ligands, the dimensionality and the topology
of the magnets strongly depend on the nature of bridging ligands. Therefore, the
selection of appropriate bridging ligand is important for the fabrication of honeycomb-
lattice magnets. The oxalate (ox, C2O

2–
4 ) and pyrimidine groups have been used

extensively in the construction of magnets with interesting structural features (three-
dimensional, layered and chain structures). For example, the bimetallic oxalate com-
pound N(C5H11)4MnFe(ox)3 has a honeycomb-lattice structure of Mn and Fe ions
bridged by ox groups and behaves as a two-dimensional (2D) ferrimagnet [86]. The
pymca is structurally analogous to the ox and pyrimidine bidentate bridging ligand.

(a)

(b)

O
M H

Cl

N

c

ba

c

ba

C

Figure 4-1-1: Crystal structure of M2(pymca)3(ClO4) (M=Fe,Co,Ni,Cu) [87,88], drawn
by using the VESTA software program [58]. The picture is the view projected (a) from
the c-axis to the ac-plane, and (b) from the direction perpendicular to the c-axis.
Oxygen atoms on ClO –

4 are omitted for clarity. The black thin solid lines indicate the
unit cells. As will be described later, a new crystal structure has been proposed for
Cu2(pymca)3(ClO4).
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(a)

(c) (d)

(b)

Cu2(pymca)3(ClO4)

H=1 kOe

Figure 4-1-2: Temperature dependences of the magnetic susceptibility for
M2(pymca)3(ClO4) (M= (a)Fe, (b)Co, (c)Ni, (d)Cu) polycrystalline samples. The
solid lines in (c) and (d) represent the calculated susceptibilities for the S = 1 and
S = 1/2 honeycomb-lattice Heisenberg antiferromagnets with the fitting parameters
shown in Table 4-1-1. Quoted from [87,88].

Honda et al. reported the structures and the magnetic properties of M2(pymca)3(ClO4)
(M=Fe, Co, Ni, and Cu) [87,88]. All these compounds except for Cu compound crys-
tallize in a trigonal crystal system, space group P31m at room temperature, and their
crystal structures are honeycomb-lattice layers stacked along the c-axis as shown in
Fig. 4-1-1. Cu2(pymca)3(ClO4) was first recognized as the same trigonal crystal sys-
tem, but later its structure was found to be more complex as described in the next
subsection. In 2D honeycomb-lattice systems, spin quantum number and anisotropy
of magnetic ions play important roles in magnetic ordering.

Figure 4-1-2 show the temperature dependences of the magnetic susceptibilities on
polycrystalline samples of the aforementioned four compounds [87, 88]. These exhibit
a round maximum, which is characteristic of low-dimensional antiferromagnets. In
Figs. 4-1-2(c) and 4-1-2(d), the solid lines indicate the calculated susceptibilities for
the S = 1 and S = 1/2 honeycomb-lattice Heisenberg antiferromagnet model. The
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Figure 4-1-3: Temperature dependences of the specific heat for Fe(pymca)3(ClO4) and
Ni(pymca)3(ClO4) in zero field. The inset displays the expanded figure of low temper-
ature part near the AF transition for the Ni compound. Quoted from [88].

Table 4-1-1: Magnetic parameters for Fe2(pymca)3(ClO4), Co2(pymca)3(ClO4),
Ni2(pymca)3(ClO4), and Cu2(pymca)3(ClO4) [87,88].

Fe2X
a) Co2X Ni2X Cu2X

C (emu/K mol) 7.30 6.44 2.43 0.77
ΘCW (K) −50.1 −74.1 −120.2 −26.8
J/kB (K) – – 44.0 37
TN (K) 17.5c) 8.9b) 28.0c) –

a) X stands for (pymca)3(ClO4)
b) Determined by magnetic susceptibility measurements
c) Determined by specific heat measurements
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spin Hamiltonian based on this model is written as,

H = J
∑
j

Sj · Sj+1 − gµBH
∑
j

Sj (4-1-1)

where Sj is Heisenberg spin in the honeycomb layer, J is the intralayer nearest-neighbor
exchange constant, µB is the Bohr magneton, and g is the g-factor of the transition
metal ions. Using S = 1, J/kB = 44.0 K, and g = 2.18 for the Ni compound, and
S = 1/2, J/kB = 37 K, and g = 2.08 for the Cu compound, the model calculations
provide reasonable reproduction of the experimental data.

The magnetic susceptibility of the Co compound has a clear bend at 8.9 K showing
an AF transition. The Fe and Ni compounds also have AF transitions at 17.5 K and
28.0 K, respectively, from the specific heat measurements as shown in Fig. 4-1-3 [88].
While, unlike the three honeycomb compounds, the Cu compound shows no magnetic
LRO down to 2 K from the magnetic susceptibility measurements in Fig. 4-1-2(d),
although distant exchange interactions are not expected from its crystal structure. The
magnetic parameters of the four honeycomb-lattice compounds are shown in Table 4-
1-1.

4-1-2 Crystal Structure of Cu2(pymca)3(ClO4)

Normally, the orbital correlation energy is an order of magnitude larger than the spin
exchange interaction, and thus an orbital ordering at a high temperature is accompa-
nied by cooperative Jahn–Teller distortion. On the contrary, if the orbital energy is
reduced to the same scale as the spin exchange interaction, leading to a novel spin-
orbital entangled state, a possible quantum spin-orbital liquid.

As mentioned above, the crystal structure of Cu2(pymca)3(ClO4) was initially re-
garded as a regular honeycomb-lattice, and the magnetic order was not confirmed down
to 2 K. Thus Cu2(pymca)3(ClO4) is expected to be the second example of a quantum
spin-orbital liquid material composed of Cu2+ ions, followed by 6H-Ba3CuSb2O9 [89–
93]. However, its structure, derived from synchrotron radiation X-ray diffraction data,
was determined to be a rhombohedral system (space group R3c with lattice con-
stants a = 16.6120(9) Å, c = 35.486(4) Å) as being a distorted honeycomb-lattice
at 100 K [94]. More specifically, it contains two crystallographically inequivalent Cu
sites (denoted Cu1 and Cu2), separated by atomic distances 5.5932(11), 5.5112(12),
and 5.5083(15) Å as shown in Fig. 4-1-4. From this finding, there are three types of
hexagonal ring in the honeycomb layer. The latter two Cu-Cu distances are close to
each other. Therefore, this compound can be regarded as magnetically weakly coupled
hexagons.
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a

b

5.5932(11) Å5.5083(15) Å5.5112(12) Å

Figure 4-1-4: Schematic drawing of honeycomb-layer of Cu2(pymca)3(ClO4) deter-
mined by synchrotron radiation X-ray diffraction analysis at 100 K [94]. Hydrogen
atoms and ClO –

4 ions are omitted for clarity. The black thin solid line indicates the
unit cell. Three kinds of Cu−Cu distances are drawn by different colors.

4-1-3 Purpose of This Study

It was found that Cu2(pymca)3(ClO4) does not possess a regular honeycomb-lattice
structure and shows no AF LRO down to 2 K. Therefore, we would like to evaluate the
exchange interactions between the neighboring Cu ions and clarify the reason why this
compound exhibits no LRO down to 2 K by magnetic measurements in high magnetic
fields.
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4-2 Experiment and Calculation

4-2-1 Sample preparation

Polycrystalline Cu2(pymca)3(ClO4) samples used in this study were provided by As-
sociate professor Z. Honda at Saitama University. This compound was synthesized
by a hydrothermal reaction of 2-cyanopyrimidine (2-cp) with Copper(II) perchlorate
hexahydrate (Cu(ClO4)2 · 6 H2O). By putting the materials into a Teflon-lined au-
toclave as depicted in Fig. 4-2-1(a), and sealing the autoclave and heating them at
383 K in an electric furnace for 24 hours under autogenous pressure followed by slow
cooling to room temperature, the hydrolysis of 2-cp and the consequent formation of
polynuclear pymca bridging were caused. As a result, Cu2(pymca3(ClO4) samples were
synthesized [87]. The chemical reaction formula is given below,

3 (2−cp) + 2 Cu(ClO4)2 + 6 H2O −−→ Cu2(pymca)3(ClO4) + 3 NH4ClO4. (4-2-1)

By this procedure, it is possible to grow a very small single crystal as shown in Fig. 4-
2-1(b), but since it is too small to be used in the following experiments, polycrystalline
samples which were characterized by XRD were used.

2-cp

Cu(ClO4)2∙6H2O

(a)
(b)

Figure 4-2-1: (a) Schematic view of a Teflon-lined autoclave for hydrothermal syn-
thesis. Copper(II) perchlorate hexahydrate (Cu(ClO4)2 · 6 H2O), 2-cyanopyrimidine
(2-cp), and H2O were put into an autoclave, sealed and heated in an electric furnace.
(b) Photo of a single crystal of Cu2(pymca)3(ClO4). In the experiments, polycrystalline
samples were used because of the tiny single crystals.

4-2-2 Experimental Results

Figure 4-2-2 represents the temperature dependence of the magnetic susceptibility
χ = M/H (where M is the magnetization and H is the external magnetic field) of
a polycrystalline Cu2(pymca)3(ClO4) sample (open squares) measured at µ0H = 0.1 T
between 1.9 and 300 K using a superconducting quantum-interference device (SQUID)
magnetometer (Quantum Design MPMS XL-7). The magnetic susceptibility shows a
broad maximum near 25 K and a steep increase below 5 K, reflecting the susceptibil-
ity from a paramagnetic impurity. To obtain the intrinsic magnetic susceptibility of
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Figure 4-2-2: Temperature dependence of magnetic susceptibility χ (= M/H) and in-
verse magnetic susceptibility (inset) of a polycrystalline sample of Cu2(pymca)3(ClO4).
The open squares and triangles represent the measured magnetic susceptibility and the
magnetic susceptibility subtracted the paramagnetic-impurity contribution, given by
the Curie term from the measured data, respectively. In the inset, the solid line is a
linearly-fitted result from 100 K to 300 K, as the Curie-Weiss law.

0.2

0.1

0.0
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Figure 4-2-3: Temperature dependence of the specific heat C of a polycrystalline sample
of Cu2(pymca)3(ClO4) in zero field down to 0.6 K.
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the sample, we subtracted the paramagnetic-impurity component, given by the Curie
term, from the measured magnetic susceptibility (open squares). For this calculation,
we assumed the paramagnetic component with S = 1/2 expressed as αC/T , where
C is the Curie constant with the g-value (2.13) determined by multi-frequency ESR
as described below, and thus the impurity concentration is extracted as α = 1.8 %.
The resulting intrinsic magnetic susceptibility shows a monotonic decrease toward zero
upon cooling from 20 K. From the Curie-Weiss fitting of the reciprocal susceptibility
between 100 K and 300 K, we obtained the Weiss temperature ΘCW = −49.3 K as
shown in the inset of Fig. 4-2-2, indicating that AF interactions are dominant in this
compound. Figure 4-2-3 indicates the temperature dependence of the specific heat
(open circles) measured in zero magnetic field, using a Quantum Design PPMS mea-
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Figure 4-2-4: (a) X-band spectra of a polycrystalline Cu2(pymca)3(ClO4) sample mea-
sured at designated temperature. The blue dashed line at 50 K indicates a fit to a
single Lorentzian function. The numbers with a cross inside the parentheses next to
the temperatures represent scaling factors to improve the readability of the spectra.
(b) ESR spectra of a polycrystalline Cu2(pymca)3(ClO4) sample at 1.5 K. The blue
arrows represent the ESR resonance fields. The sharp peaks indicated by the black
arrows are signals from DPPH.

surement system by the relaxation method. No anomalies and no peaks were observed
down to 0.6 K, thus providing no evidence for a long-range magnetic order.

X-band ESR spectra for a polycrystalline Cu2(pymca)3(ClO4) sample at the speci-
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Figure 4-2-5: Resonant-frequency versus resonance-magnetic-field plot of a polycrys-
talline Cu2(pymca)3(ClO4) sample. The red circles and the green triangle represent
the resonance points at 1.5 K and 3.1 K, respectively. The blue solid line is the result
of linear fit with g = 2.13.

fied temperatures, which were obtained by using an X-band ESR spectrometer (Bruker
EMX) with a He-flow cryostat (Oxford Instruments), are shown in Fig. 4-2-4(a). The
blue dashed line at 50 K indicates a fit to a single Lorentzian function, indicative of an
exchange-coupled system. ESR spectra at various temperatures, not only at 50 K, can
be fitted to a single Lorentzian function. The g-value deduced from the linear fits at the
lowest temperatures (1.5 K and 3.1 K), g = 2.13, is almost temperature-independent
between 3 K and 292 K. Figure 4-2-4(b) represents ESR spectra at 1.5 K with DPPH.
Since a resonator was used for the measurement, the transmission intensity is increased
at resonant field.

The frequency versus resonant field-plot was obtained from these measurements as
shown in Fig. 4-2-5. Each point can be fitted well with a linear line passing through
the origin as paramagnetic resonance with g = 2.13, implying no magnetic order which
is consistent with the result of the specific heat measurement. As suggested by the
increase in magnetic susceptibility at low temperatures, the ESR signals arising from
paramagnetic impurities are observed at low temperatures.

Figures 4-2-6(a) and 4-2-6(b) demonstrate the high-field magnetization curves for a
polycrystalline sample of Cu2(pymca)3(ClO4) at 1.4 K and 4.2 K and their field deriva-
tives of the magnetization curves at 1.4 K, respectively, measured in pulsed magnetic
fields. Three step-like increases are observed in the magnetization curve at 1.4 K,
and are reflected in the three peaks in the corresponding dM/dH. The magnetiza-
tion values in the almost flat regimes near 35 T and 60 T match to one third and
two thirds of the saturation value evaluated from the g-value (2.13) of this compound.
Even the maximum observed magnetization value does not reach the saturation value
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(1.07µB/Cu2+). This magnetization curve is not explained by the magnetization of
the S = 1/2 simple honeycomb-lattice antiferromagnet (HLA) with uniform exchange
interactions, as shown later to indicate a monotonic increase up to the saturation field.
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Figure 4-2-6: (a) High-field magnetization (M) for a polycrystalline
Cu2(pymca)3(ClO4) sample in magnetic fields of up to 70 T at 1.4 K and up to
50 T at 4.2 K. The black dashed lines correspond to one-third and two-third of the
saturation magnetization expected from the g-value. (b) The field derivatives of the
magnetization curves (dM/dH) at 1.4 K. In both figures, the solid and dotted lines
indicate the field-ascending and descending processes, respectively, as represented by
the arrows.

4-2-3 Numerical Calculation Method

Next, observed magnetization curves were analyzed by a quantum Monte Carlo (QMC)
method implemented with the ALPS package [95]. Our used QMC code was based on
the directed-loop algorithm in the stochastic-series-expansion representation [96–98].
The Hamiltonian used in the QMC calculation is the decomposition of the exchange
interaction J in Eq. (4-1-1) into three types of the exchange interactions JA, JB, and
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JC based on the crystal structure in Ref. 94 as shown in Fig. 4-2-7. The calculation
was performed for the system size of 72 with periodic boundary condition. The details
of the size dependence will be described in Appendix III. The size of 72 is enough to
obtain the thermodynamic limit of physical quantity.

1
2

3
4 10

9
8

7
6

5
12

11

13

25

37

49

61 72JA

JB

JC

Figure 4-2-7: Schematic view of the honeycomb-lattice with three types of the nearest-
neighbor interactions (JA, JB, and JC) used in the QMC calculation. The numbers
represent the site numbers.

4-2-4 Comparison with Numerical Results

First, we confirm the experimental outcome. The magnetic susceptibility, specific heat,
and magnetization measurements suggest that the ground state must be a nonmagnetic
singlet state with an excitation energy gap to the triplet state. The finite magnetization
at low fields is thought to arise partly from the magnetic impurities, the contribution
of which is also observed in the magnetic susceptibility in Fig. 4-2-2. However, the
origin of the small finite slope of the magnetization curve below 20 T is not clear at
present.

The structural analysis suggests three different exchange paths, but two of them
must be almost equal because of the local environment around the Cu2+ ions and the
bonding between Cu2+ ions. We, however, first calculated the magnetization curve for
a regular HLA, in which the magnitudes of all the exchange interactions were identical
(i.e., JA = JB = JC), as shown by the darkest blue line with marker in Fig. 4-2-8.
As the magnetic field increases, this magnetization curve increases continuously from
zero with a concave curvature, which is a gapless feature and does not correspond to
experimental observation.

In order to open the energy gap, different exchange interactions should be included
in the calculation. Figure 4-2-8 displays the results of magnetization curves calculating
for the exchange interaction ratio JC/JA from 0.0 to 1.0 in 0.1 increments when the
normalized temperature T ∗ by JA is 0.032. One-third and two-thirds magnetization
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plateaus are found to appear as JC/JA approached from 1.0 to 0.0. Based on the above
description, the calculated magnetization curve reproduces the observed behavior when
JA/kB = 43.7 K, JA = JB and JC/JA = 0.2 as shown in Fig. 4-2-9. However, above
the 2/3 magnetization plateau, the calculated magnetization differs completely from
the observed one. The calculated curve increases toward the saturation value, while
the observed one shows the behavior implying another magnetization plateau.

h

m

T* = 0.032
JB/JA = 1

JC/JA = 0.0 JC/JA = 1.0

Figure 4-2-8: Numerically calculated magnetization curves at various ratio JC/JA from
0 to 1 every 0.1 step when JA = 1 and JB/JA = 1. m is the magnetization per spin, h
is the normalized magnetic field (= gµBH/JA), and T ∗ is the normalized temperature
(= kBT/JA). The error bars of the magnetization are omitted for simplicity, since the
width of the errors are less than the size of the markers.
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Figure 4-2-9: High-field magnetization curves for a polycrystalline Cu2(pymca)3(ClO4)
sample at 1.4 K (solid line) and for a HLA calculated by QMC method for parameter
sets of exchange constants (JA = JB, JC/JA = 0.2, JA/kB = 43.7 K) at T ∗ = kBT/J =
0.032 with g = 2.13, as described in the text (orange dashed line).
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4-3 Discussion

We next discuss how to change the magnetization plateaus based on the QMC calcu-
lations. Our measured magnetization curve of Cu2(pymca)3(ClO4) indicates one-third
and two-thirds magnetization plateaus in the JA-JB-JC HLA model. We therefore inves-
tigate the magnetization curves by changing the ratios of exchange bonds. Numerical
calculation results, for a fixed ratio JC/JA = 0.2, are shown in Fig. 4-3-1. The field
range of each magnetization plateau increases as JB/JA increases. The observed mag-
netization curve is reproduced most accurately when JC/JA = 0.2 and JB/JA = 1.0.
This finding corresponds to the fact that two out of three Cu-Cu exchange bonds have

h

m

JB/JA = 0.0 JB/JA = 1.5

T* = 0.032
JC/JA = 0.2

Figure 4-3-1: Numerically calculated magnetization curves at various ratio JB/JA from
0 to 1.5 every 0.1 step when JA = 1 and JC/JA = 0.2. m, h, and T ∗ are defined as
well in Fig. 4-2-8. The error bars of the magnetization are omitted for simplicity, as
the same reason in the caption of Fig. 4-2-8.

a similar bond length, as stated in Sect. 4-1-2. The lengths of these two are only about
1% different from each other. However, the small difference may affect the overlap of
electron orbitals of Cu2+ ions, resulting in a large change in the exchange interaction.
The calculations reveal that one small and two large exchange bonds are required to
observe the 1/3 and 2/3 magnetization plateaus in a distorted HLA. These calculations
do not reproduce step-like features in the magnetization above the 2/3 magnetization
plateau. In addition, the temperature dependence of the magnetic susceptibility calcu-
lated using the same parameters for the magnetization is shown in Fig. 4-3-2. Although
the qualitative behavior of the calculated susceptibility agrees with the experimental
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one, there is a quantitative difference between them. Better parameters to reproduce
the observed magnetic susceptibility are g = 2.08 and JC/JA = 0.5. However, the
g-value determined by ESR measurements is 2.13 at any temperature, which disagrees
with the above value (2.08). Thus, further theoretical and experimental studies on this
compound may be necessary. Experiment in magnetic fields beyond 70 T would be
required and a more sophisticated and suitable model needs to be considered for this
compound.

Takano calculated the phase diagram of the S = 1/2 JA-JB-JC model on the HLA
at 0 K by a nonlinear σ model [99]. For the parameter window ln (JA/JC), ln (JB/JC) ∈
[−3, 3], an AF LRO phase and a gapped spin liquid phase are separated as shown in
Fig. 4-3-3. The AF phase is symmetric against the JA = JB line. Our compound
Cu2(pymca)3(ClO4) is located in the AF LRO phase (JA/JC = JB/JC = 5) in the
calculation. Later, Shimokawa calculated numerically the phase diagram for the same
model by a QMC method [100]. In the parameter window JA/JC, JB/JC ∈ [0.1, 10],
the calculated AF LRO phase is small compared with the calculated one by Takano.
As a result, our compound is in the spin liquid phase as indicated in Fig. 4-3-4. This
is consistent with our observation. The ground state is a singlet with an excitation
gap. There are six types of singlet states in the spin liquid phase, as illustrated in
Fig. 4-3-4. Three of them are different dimer states which appear in three regimes of
(JA ≫ JB ∼ JC), (JB ≫ JA ∼ JC), and (JC ≫ JA ∼ JB). The others are different
singlet states consisting of singlet clusters of six spins which appear in three regimes
between the dimer-state regimes. They can continuously vary to each other as changing
the parameters in the singlet phase.
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Figure 4-3-2: Temperature dependence of the intrinsic magnetic susceptibility and
numerically calculated one for indicated different parameter sets.
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Quoted from [99].
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Figure 4-3-4: Phase diagram of the S = 1/2 JA-JB-JC model on the HLA in the
parameter window JA/JC, JB/JC ∈ [0.1, 10] by a quantum Monte Carlo method [100].
The error bars indicate the calculation errors. The schematic views of the singlet states
(yellow circles) in the honeycomb-lattice.
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4-4 Conclusion

In conclusion, we performed magnetic susceptibility, specific heat, ESR, and mag-
netization measurements on polycrystalline Cu2(pymca)3(ClO4) samples, regarded as
a spin-1/2 HLA. The magnetic susceptibility showed a broad maximum near 25 K,
characteristic of a low-dimensional antiferromagnet. The specific heat at zero field
decreased smoothly down to 0.6 K, indicating no long-range magnetic order down to
this temperature. Each ESR spectrum of the polycrystalline sample could be fitted
to a single Lorentzian function. The high-field magnetization up to 70 T shows three
step-like features that are notably reproduced, except for the magnetization near 70 T,
by a QMC calculation using the exchange constants JA/kB = 43.7 K, JA = JB, and
JC/JA = 0.2. We found that the distortion of the honeycomb-lattice, resulting in hav-
ing two large and one small exchange interactions, causes this step-like magnetization.
The parameters used for the calculation were found to be located in the spin liquid
phase calculated by a QMC method, which agrees with the experimental observation.
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5 Summary

We summarize our studies on two types of the spin-1/2 low-dimensional antiferromag-
nets BaCo2V2O8 and Cu2(pymca)3(ClO4).

S= 1/2 quasi-one-dimensional antiferromagnet BaCo2V2O8

� Single crystals BaCo2V2O8 were grown by the floating-zone method.

� The field-induced order-disorder transition, observed by the specific heat mea-
surements, occurs at approximately 10 T for H ∥ [100].

� Electron spin resonance measurements were performed, and the lowest excita-
tion mode with an energy gap of about 400 GHz in zero magnetic field exhibits
softening at 10 T for H ∥ [100], whereas, for H ∥ [110], it does not up to the
saturation field.

� Magnetic excitations were calculated by the density-matrix renormalization group
method using the Hamiltonian, that reflects the crystal structure of BaCo2V2O8,
and the calculations reproduced the observed modes for H ∥ [100] well and did
not so much for H ∥ [110].

� The transition magnetic field of 10 T for H ∥ [100] was reproduced by the calcula-
tions for two cases, the staggered magnetic field parameter Cy change (Cy = 0.25
below 20 T and Cy = 0.4 above 20 T) and the finite interchain interaction J ′

(0.02J). Overall, the latter is appropriated.

� The disordered state above the critical magnetic field for H ∥ [100] is consid-
ered to be a field-induced ferromagnetic state or a paramagnetic state, unlike a
Tomonaga-Luttinger spin liquid state for H ∥ [001].

S= 1/2 honeycomb-lattice antiferromagnet Cu2(pymca)3(ClO4)

� Specific heat measurements in zero field revealed no long-range magnetic order
down to 0.6 K.

� A paramagnetic signal with g = 2.13 and a single-Lorentzian shape was observed
for a polycrystalline sample in the electron spin resonance measurements.

� The magnetization measurements were performed in magnetic fields of up to 70 T
at 1.4 K, and the magnetization curve represented three step-like features.

� The calculated magnetization by the quantum Monte Carlo (QMC) method using
the distorted honeycomb-lattice Hamiltonian with JA/kB = 43.7 K, JB/JA = 1,
and JC/JA = 0.2 reproduced the observed magnetization curve, except for the
magnetization near 70 T.

� The parameters used for the calculation were found to be located in the spin
liquid phase (gapped) calculated by a QMC method.

� The observed magnetization near 70 T and magnetic susceptibility do not agree
with those of the calculation, Therefore, further experiments and calculations
including model improvements are required.
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Appendix I

In this appendix, we consider from a theoretical point of view that a transverse magnetic
field causes the phase transition in BaCo2V2O8. The Hamiltonian expressed in terms
of fermion operators, obtained through the Jordan-Wigner transformation, is useful for
gaining insight into elementary spinon excitations. Here, we analyze the effective spin
model for BaCo2V2O8 in transverse fields by using the Jordan-Wigner transformation.
For simplicity, we ignore the z-component of the effective staggered fields, namely the
hz term in Eq. (3-2-2), because our numerical results indicate that the critical field
is relatively insensitive to hz when compared with the significant effect of hy. We do
not include the interchain interaction HMF

inter in the present argument. J is set equal to
unity. Thus, we consider the Hamiltonian given by

H =
∑
j

{
Sz
jS

z
j+1 + ε

(
Sx
j S

x
j+1 + Sy

j S
y
j+1

)}
− µB

∑
j

{
gxxH0S

x
j + hyS

y
j sin [2ϕ+ π(j − 1)]

}
. (A1-1)

To apply the Jordan-Wigner transformation, we rotate the spin coordination so as
to align the field direction with the z-axis [17,84]. For H ∥ [100] (ϕ = π/4), the hy term
is of +−+− type. Accordingly, the spin coordination is rotated in the following order:
(1)Rx(π) on even sites, (2) Rz′(θ) on all sites with θ = tan−1(gxxH0/hy) = tan−1(1/Cy),
and (3) Rx′′(π/2) on all sites, where Rα(ψ) performs the rotation by an angle ψ around
the α axis. Using these rotations, Eq. (A1-1) is transformed into

H100 =
∑
j

S⃗jM100S⃗j+1 − A100x
∑
j

Sz
j , (A1-2)

M100 =

 ε cos 2θ 0 ε sin 2θ
0 −1 0

ε sin 2θ 0 −ε cos 2θ

 , (A1-3)

where A100 ≡ gxx(sin θ + Cy cos θ) = gxx
√

1 + C2
y denotes an effective g-factor, esti-

mated to be 2.96 with gxx = 2.75 and Cy = 0.4, and x ≡ µBH0. The spin operators
are written in the post-rotated frame.

In the Jordan-Winger transformation, the spin operators S⃗j are represented by

spinless fermion (spinon) operators f †
j (fj) as

S+
j = (S−

j )† = exp

(
iπ

j−1∑
i=1

f †
i fi

)
f †
j , (A1-4)

Sz
j = f †

j fj −
1

2
. (A1-5)

We focus on the one-body Hamiltonian to obtain an intuitive picture of the elementary
excitation. Thus, we eliminate the Sx

j S
z
j+1, S

z
jS

x
j+1, and Sz

jS
z
j+1 terms. Equation (A1-2)

is transcribed into a fermionic representation as

H100 =
∑
j

[
T−(θ)

2

(
f †
j fj+1 + f †

j+1fj

)
+
T+(θ)

2

(
f †
j f

†
j+1 + fj+1fj

)
− A100xf

†
j fj

]
, (A1-6)
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Figure A1-1: The spinon bands given by Eq. (A1-8) are plotted for x = 0 (black solid
line), 0.15 (blue broken line), and 0.225 (red dotted broken line). The arrows indicate
the spinon particle-hole excitations, which are associated with the lowest excitation
observed by ESR. The arrow length indicates the magnitude of the excitation energy,
which decreases with increasing magnetic field, i.e., x. Quoted from [101].

where T±(θ) ≡ 1
2

(ε cos 2θ ± 1). In momentum space, Eq. (A1-6) is transformed into

H100 =
1

2

∑
k

Ψ†
k

(
ηk iT+(θ) sin k

−iT+(θ) sin k −ηk

)
Ψk, (A1-7)

where Ψ†
k ≡

(
f †
k , f−k

)
, and ηk ≡ T−(θ) cos k − A100x.

Diagonalizing the 2 × 2 matrix in Eq. (A1-7) yields the spinon band

E100(k) = ±
√
η2k + [T+(θ) sin k]2. (A1-8)

As shown in Fig. A1-1, the spinon band is composed of particle and hole bands, while
they are mixed and a band gap appears. The lower band is fully occupied in the
ground state. An elementary excitation is associated with particle-hole excitations
from the “valence” band to the “conduction” band. We note that, as indicated by the
arrows in Fig. A1-1, the top of the valence band and the bottom of the conduction
band have the same momentum, so that the lowest excitation has zero momentum.
With increasing transverse field, the particle and hole band energies shift in opposite
directions, and eventually split above a critical field. According to this band shift, the
excitation gap shrinks, closes at the critical point, and subsequently increases. The
excitation gap corresponds to a spinon gap below the critical field. The descending
mode observed in the ESR measurements, shown in Fig. 3-2-15, can be associated
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with the lowest particle-hole excitation of a spinon. Thus, the elementary excitation is
described within a spinon picture, despite the presence of the effective staggered field .

We next discuss the dependence of the critical field. We note that the momentum
position of the band gap is k = π/2 in zero field and moves to k = π with increasing
transverse field. Therefore, the critical field is determined by E100(π) = 0 as

xc(100) =
1

2A100

(1 − ε cos 2θ). (A1-9)

A100 simply specifies a scale factor, while the critical field depends on ε and Cy through
a factor (1−ε cos 2θ) with θ = tan−1(1/Cy). With increasing Cy, θ varies monotonically
from π/2 to 0, such that (1−ε cos 2θ) changes from (1+ε) to (1−ε). This suggests that
the critical field should decrease because of the effective staggered field if ε is finite.
The relevance of ε and Cy is consistent with the intuitive interpretation, discussed in
Sect. 3-3, that the longitudinal antiferromagnetic order is quickly suppressed owing to
the combined effects of the transverse field and transverse exchange interaction.

For the case of H ∥ [110] (ϕ = 0), the same procedure can be followed with only
slight modifications. Because the hy term disappears for ϕ = 0, the rotation Rx(π)
on even sites (which was the first process for H ∥ [100]) is unnecessary, and Cy = 0.
The critical field is given by setting Cy = 0 in Eq. (A1-9). Consequently, the difference
between H ∥ [100] and H ∥ [110] is attributed to the presence of Cy.
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Appendix II

In this appendix, the program used for the calculation of the magnetization process
for Cu2(pymca)3(ClO4) by quantum Monte Carlo (QMC) method implemented with
the ALPS package is shown. ALPS has several lattices and Hamiltonians prepared
in advance, but users can also define their own lattice and Hamiltonian. In this pro-
gram, the calculation was performed through python using uniquely defined lattice and
Hamiltonian.

The first program list defines the honeycomb-lattice with three types of nearest-
neighbor interactions. The number of spins is 72. In the List A2-1, the lines in
XML file represent “VERTEX” and “EDGE” elements that correspond to the site
and the bond, respectively. Each tag <...> in the XML file consists of <element,
attribute, attribute,...>. Each element provides the attribute (“type”) that indicates
the type used when constructing the Hamiltonian. When the two “id” attributes in the
<VERTEX> are assigned to the attributes “source” and “target” in the <EDGE>,
the bond between two sites can be defined.

List A2-1: JAJBJC-honeycomb-lattices.xml

1 <LATTICES>
2

3 <GRAPH name="honeycomb lattice 6x6" dimension="2" vertices="72" edges
="108">

4 <VERTEX id=" 1" type=" 1"/>
5 <VERTEX id=" 2" type=" 2"/>
6 <VERTEX id=" 3" type=" 1"/>
7 <VERTEX id=" 4" type=" 2"/>
8 <VERTEX id=" 5" type=" 1"/>
9 <VERTEX id=" 6" type=" 2"/>

10 <VERTEX id=" 7" type=" 1"/>
11 <VERTEX id=" 8" type=" 2"/>
12 <VERTEX id=" 9" type=" 1"/>
13 <VERTEX id=" 10" type=" 2"/>
14 <VERTEX id=" 11" type=" 1"/>
15 <VERTEX id=" 12" type=" 2"/>
16 <VERTEX id=" 13" type=" 1"/>
17 <VERTEX id=" 14" type=" 2"/>
18 <VERTEX id=" 15" type=" 1"/>
19 <VERTEX id=" 16" type=" 2"/>
20 <VERTEX id=" 17" type=" 1"/>
21 <VERTEX id=" 18" type=" 2"/>
22 <VERTEX id=" 19" type=" 1"/>
23 <VERTEX id=" 20" type=" 2"/>
24 <VERTEX id=" 21" type=" 1"/>
25 <VERTEX id=" 22" type=" 2"/>
26 <VERTEX id=" 23" type=" 1"/>
27 <VERTEX id=" 24" type=" 2"/>
28 <VERTEX id=" 25" type=" 1"/>
29 <VERTEX id=" 26" type=" 2"/>
30 <VERTEX id=" 27" type=" 1"/>
31 <VERTEX id=" 28" type=" 2"/>
32 <VERTEX id=" 29" type=" 1"/>
33 <VERTEX id=" 30" type=" 2"/>
34 <VERTEX id=" 31" type=" 1"/>
35 <VERTEX id=" 32" type=" 2"/>
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36 <VERTEX id=" 33" type=" 1"/>
37 <VERTEX id=" 34" type=" 2"/>
38 <VERTEX id=" 35" type=" 1"/>
39 <VERTEX id=" 36" type=" 2"/>
40 <VERTEX id=" 37" type=" 1"/>
41 <VERTEX id=" 38" type=" 2"/>
42 <VERTEX id=" 39" type=" 1"/>
43 <VERTEX id=" 40" type=" 2"/>
44 <VERTEX id=" 41" type=" 1"/>
45 <VERTEX id=" 42" type=" 2"/>
46 <VERTEX id=" 43" type=" 1"/>
47 <VERTEX id=" 44" type=" 2"/>
48 <VERTEX id=" 45" type=" 1"/>
49 <VERTEX id=" 46" type=" 2"/>
50 <VERTEX id=" 47" type=" 1"/>
51 <VERTEX id=" 48" type=" 2"/>
52 <VERTEX id=" 49" type=" 1"/>
53 <VERTEX id=" 50" type=" 2"/>
54 <VERTEX id=" 51" type=" 1"/>
55 <VERTEX id=" 52" type=" 2"/>
56 <VERTEX id=" 53" type=" 1"/>
57 <VERTEX id=" 54" type=" 2"/>
58 <VERTEX id=" 55" type=" 1"/>
59 <VERTEX id=" 56" type=" 2"/>
60 <VERTEX id=" 57" type=" 1"/>
61 <VERTEX id=" 58" type=" 2"/>
62 <VERTEX id=" 59" type=" 1"/>
63 <VERTEX id=" 60" type=" 2"/>
64 <VERTEX id=" 61" type=" 1"/>
65 <VERTEX id=" 62" type=" 2"/>
66 <VERTEX id=" 63" type=" 1"/>
67 <VERTEX id=" 64" type=" 2"/>
68 <VERTEX id=" 65" type=" 1"/>
69 <VERTEX id=" 66" type=" 2"/>
70 <VERTEX id=" 67" type=" 1"/>
71 <VERTEX id=" 68" type=" 2"/>
72 <VERTEX id=" 69" type=" 1"/>
73 <VERTEX id=" 70" type=" 2"/>
74 <VERTEX id=" 71" type=" 1"/>
75 <VERTEX id=" 72" type=" 2"/>
76 <EDGE source=" 1" target=" 2" type="1"/>
77 <EDGE source=" 2" target=" 3" type="2"/>
78 <EDGE source=" 3" target=" 4" type="3"/>
79 <EDGE source=" 4" target=" 5" type="1"/>
80 <EDGE source=" 5" target=" 6" type="2"/>
81 <EDGE source=" 6" target=" 7" type="3"/>
82 <EDGE source=" 7" target=" 8" type="1"/>
83 <EDGE source=" 8" target=" 9" type="2"/>
84 <EDGE source=" 9" target=" 10" type="3"/>
85 <EDGE source=" 10" target=" 11" type="1"/>
86 <EDGE source=" 11" target=" 12" type="2"/>
87 <EDGE source=" 12" target=" 1" type="3"/>
88 <EDGE source=" 13" target=" 14" type="2"/>
89 <EDGE source=" 14" target=" 15" type="3"/>
90 <EDGE source=" 15" target=" 16" type="1"/>
91 <EDGE source=" 16" target=" 17" type="2"/>
92 <EDGE source=" 17" target=" 18" type="3"/>
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93 <EDGE source=" 18" target=" 19" type="1"/>
94 <EDGE source=" 19" target=" 20" type="2"/>
95 <EDGE source=" 20" target=" 21" type="3"/>
96 <EDGE source=" 21" target=" 22" type="1"/>
97 <EDGE source=" 22" target=" 23" type="2"/>
98 <EDGE source=" 23" target=" 24" type="3"/>
99 <EDGE source=" 24" target=" 13" type="1"/>

100 <EDGE source=" 25" target=" 26" type="3"/>
101 <EDGE source=" 26" target=" 27" type="1"/>
102 <EDGE source=" 27" target=" 28" type="2"/>
103 <EDGE source=" 28" target=" 29" type="3"/>
104 <EDGE source=" 29" target=" 30" type="1"/>
105 <EDGE source=" 30" target=" 31" type="2"/>
106 <EDGE source=" 31" target=" 32" type="3"/>
107 <EDGE source=" 32" target=" 33" type="1"/>
108 <EDGE source=" 33" target=" 34" type="2"/>
109 <EDGE source=" 34" target=" 35" type="3"/>
110 <EDGE source=" 35" target=" 36" type="1"/>
111 <EDGE source=" 36" target=" 25" type="2"/>
112 <EDGE source=" 37" target=" 38" type="1"/>
113 <EDGE source=" 38" target=" 39" type="2"/>
114 <EDGE source=" 39" target=" 40" type="3"/>
115 <EDGE source=" 40" target=" 41" type="1"/>
116 <EDGE source=" 41" target=" 42" type="2"/>
117 <EDGE source=" 42" target=" 43" type="3"/>
118 <EDGE source=" 43" target=" 44" type="1"/>
119 <EDGE source=" 44" target=" 45" type="2"/>
120 <EDGE source=" 45" target=" 46" type="3"/>
121 <EDGE source=" 46" target=" 47" type="1"/>
122 <EDGE source=" 47" target=" 48" type="2"/>
123 <EDGE source=" 48" target=" 37" type="3"/>
124 <EDGE source=" 49" target=" 50" type="2"/>
125 <EDGE source=" 50" target=" 51" type="3"/>
126 <EDGE source=" 51" target=" 52" type="1"/>
127 <EDGE source=" 52" target=" 53" type="2"/>
128 <EDGE source=" 53" target=" 54" type="3"/>
129 <EDGE source=" 54" target=" 55" type="1"/>
130 <EDGE source=" 55" target=" 56" type="2"/>
131 <EDGE source=" 56" target=" 57" type="3"/>
132 <EDGE source=" 57" target=" 58" type="1"/>
133 <EDGE source=" 58" target=" 59" type="2"/>
134 <EDGE source=" 59" target=" 60" type="3"/>
135 <EDGE source=" 60" target=" 49" type="1"/>
136 <EDGE source=" 61" target=" 62" type="3"/>
137 <EDGE source=" 62" target=" 63" type="1"/>
138 <EDGE source=" 63" target=" 64" type="2"/>
139 <EDGE source=" 64" target=" 65" type="3"/>
140 <EDGE source=" 65" target=" 66" type="1"/>
141 <EDGE source=" 66" target=" 67" type="2"/>
142 <EDGE source=" 67" target=" 68" type="3"/>
143 <EDGE source=" 68" target=" 69" type="1"/>
144 <EDGE source=" 69" target=" 70" type="2"/>
145 <EDGE source=" 70" target=" 71" type="3"/>
146 <EDGE source=" 71" target=" 72" type="1"/>
147 <EDGE source=" 72" target=" 61" type="2"/>
148 <EDGE source=" 2" target=" 13" type="3"/>
149 <EDGE source=" 4" target=" 15" type="2"/>
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150 <EDGE source=" 6" target=" 17" type="1"/>
151 <EDGE source=" 8" target=" 19" type="3"/>
152 <EDGE source=" 10" target=" 21" type="2"/>
153 <EDGE source=" 12" target=" 23" type="1"/>
154 <EDGE source=" 14" target=" 25" type="1"/>
155 <EDGE source=" 16" target=" 27" type="3"/>
156 <EDGE source=" 18" target=" 29" type="2"/>
157 <EDGE source=" 20" target=" 31" type="1"/>
158 <EDGE source=" 22" target=" 33" type="3"/>
159 <EDGE source=" 24" target=" 35" type="2"/>
160 <EDGE source=" 26" target=" 37" type="2"/>
161 <EDGE source=" 28" target=" 39" type="1"/>
162 <EDGE source=" 30" target=" 41" type="3"/>
163 <EDGE source=" 32" target=" 43" type="2"/>
164 <EDGE source=" 34" target=" 45" type="1"/>
165 <EDGE source=" 36" target=" 47" type="3"/>
166 <EDGE source=" 38" target=" 49" type="3"/>
167 <EDGE source=" 40" target=" 51" type="2"/>
168 <EDGE source=" 42" target=" 53" type="1"/>
169 <EDGE source=" 44" target=" 55" type="3"/>
170 <EDGE source=" 46" target=" 57" type="2"/>
171 <EDGE source=" 48" target=" 59" type="1"/>
172 <EDGE source=" 50" target=" 61" type="1"/>
173 <EDGE source=" 52" target=" 63" type="3"/>
174 <EDGE source=" 54" target=" 65" type="2"/>
175 <EDGE source=" 56" target=" 67" type="1"/>
176 <EDGE source=" 58" target=" 69" type="3"/>
177 <EDGE source=" 60" target=" 71" type="2"/>
178 <EDGE source=" 62" target=" 1" type="2"/>
179 <EDGE source=" 64" target=" 3" type="1"/>
180 <EDGE source=" 66" target=" 5" type="3"/>
181 <EDGE source=" 68" target=" 7" type="2"/>
182 <EDGE source=" 70" target=" 9" type="1"/>
183 <EDGE source=" 72" target=" 11" type="3"/>
184 </GRAPH>
185

186 </LATTICES>

The following List A2-2 defines the spin Hamiltonian. The lines until <BOND-
OPERATOR> in the list are extracted from the source file of ALPS program. From
the line <HAMILTONIAN>, the parameters JA, JB, JC, and h are defined in the
<PARAMETER> lines. The <SITETERM> and <BONDTERM> lines define the
Zeeman and the exchange interaction terms in the Hamiltonian. By assigning the
“type” attributes in the <SITETERM> and <BONDTERM>, the sites and bonds
with the same “type” attributes in the <VERTEX> and the <EDGE> elements are
used for the calculation.

List A2-2: JAJBJC-honeycomb-model.xml

1 <MODELS>
2

3 <SITEBASIS name="spin">
4 <PARAMETER name="local_spin" default="local_S"/>
5 <PARAMETER name="local_S" default="1/2"/>
6 <QUANTUMNUMBER name="S" min="local_spin" max="local_spin"/>
7 <QUANTUMNUMBER name="Sz" min="-S" max="S"/>
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8 <OPERATOR name="Splus" matrixelement="sqrt(S*(S+1)-Sz*(Sz+1))">
9 <CHANGE quantumnumber="Sz" change="1"/>

10 </OPERATOR>
11 <OPERATOR name="Sminus" matrixelement="sqrt(S*(S+1)-Sz*(Sz-1))">
12 <CHANGE quantumnumber="Sz" change="-1"/>
13 </OPERATOR>
14 <OPERATOR name="Sz" matrixelement="Sz"/>
15 </SITEBASIS>
16

17 <BASIS name="spin">
18 <SITEBASIS ref="spin"/>
19 <CONSTRAINT quantumnumber="Sz" value="Sz_total"/>
20 </BASIS>
21

22 <BONDOPERATOR name="exchange" source="x" target="y">
23 Sz(x)*Sz(y) + 1/2*( Splus(x)*Sminus(y) + Sminus(x)*Splus(y) )
24 </BONDOPERATOR>
25

26 <HAMILTONIAN name="spin">
27 <PARAMETER name="JA" default="0"/>
28 <PARAMETER name="JB" default="0"/>
29 <PARAMETER name="JC" default="0"/>
30 <PARAMETER name="h" default="0"/>
31 <BASIS ref="spin"/>
32 <SITETERM type="1" site="i">
33 -h*Sz(i)
34 </SITETERM>
35 <SITETERM type="2" site="i">
36 -h*Sz(i)
37 </SITETERM>
38 <BONDTERM type="1" source="i" target="j">
39 JA*exchange(i,j)
40 </BONDTERM>
41 <BONDTERM type="2" source="i" target="j">
42 JB*exchange(i,j)
43 </BONDTERM>
44 <BONDTERM type="3" source="i" target="j">
45 JC*exchange(i,j)
46 </BONDTERM>
47 </HAMILTONIAN>
48

49 </MODELS>

After loading the XML files of the lattice and the model, a series of parameter set
(spin quantum number, temperature, Monte Carlo steps, JA, JB, JC, and magnetic field
h) is produced. This parameter set is used for QMC calculation given in the List A2-3
(python file). From the calculated results, the magnetization data are extracted and
stored after changing text format. The magnetic susceptibility can be calculated in the
same way.

List A2-3: mag Honeycomb.py

1 import pyalps
2

3 JBname = 1.0
4 JCname = 0.2
5
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6 parms = []
7 for hloop in range(0,71):
8 h = hloop*0.05
9 parms.append({

10 ’LATTICE_LIBRARY’: "JAJBJC-honeycomb-lattices.xml",
11 ’LATTICE’ : "honeycomb lattice 6x6",
12 ’MODEL_LIBRARY’ : "JAJBJC-honeycomb-model.xml",
13 ’MODEL’ : "spin",
14 ’local_S’ : 0.5,
15 ’T’ : 0.032,
16 ’THERMALIZATION’ : 100000,
17 ’SWEEPS’ : 200000,
18 ’JA’ : 1.0,
19 ’JB’ : JBname,
20 ’JC’ : JCname,
21 ’h’ : h,
22 })
23

24 input_file = pyalps.writeInputFiles(’mag_JB=’+str(JBname)+’_JC=’+str(
JCname),parms)

25 pyalps.runApplication(’dirloop_sse’,input_file,Tmin=30,MPI=4)
26

27 data = pyalps.loadMeasurements(pyalps.getResultFiles(prefix=’mag_JB
=’+str(JBname)+’_JC=’+str(JCname)),’Magnetization Density’)

28 magnetization = pyalps.collectXY(data,x=’h’,y=’Magnetization Density
’)

29

30 f = open(’mag_JB=’+str(JBname)+’_JC=’+str(JCname)+’.dat’,’w’)
31 f.write(pyalps.plot.convertToText(magnetization))
32 f.close()
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Appendix III

In this appendix, the size dependence on the quantum Monte Carlo calculation of the
magnetization process for Cu2(pymca)3(ClO4) is described.

Figure A3-1 shows the results of calculated magnetization curves for the exchange
interaction ratio JC/JA from 0.0 to 1.0 in 0.1 increment at the normalized temperature
T ∗ = 0.032 for 18 spin with periodic boundary condition. Compared with Fig. 4-2-8,
the magnetization is nearly identical when JC/JA is small, but pseudo plateaus appear
as JC/JA approaches to 1.0.

The calculated magnetization curves of a regular honeycomb-lattice (JA = JB =
JC = 1) for the system sizes of 18, 72, and 162 are represented in Fig. A3-2. Looking
at this figure, the system size of 18 are significantly different from the others (72 and
162 sizes), which are almost the same. Therefore, various calculations in Sect. 4 were
performed with 72 spins.

m

h

T* = 0.032
JB/JA = 1
18 spins

JC/JA = 0.0 JC/JA = 1.0

Figure A3-1: Numerically calculated magnetization curves at various ratio JC/JA from
0 to 1 every 0.1 step when JA = 1 and JB/JA = 1. m, h, and T ∗ are defined as well in
Fig. 4-2-8. The error bars of the magnetization are omitted for simplicity, as the same
reason in the caption of Fig. 4-2-8.
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18 spins

72 spins

162 spins

m

h
Figure A3-2: Numerically calculated magnetization curves for various system sizes (18,
72, and 162) at JA = JB = JC = 1. m, h, and T ∗ are defined as well in Fig. 4-2-8. The
error bars of the magnetization are omitted for simplicity, as the same reason in the
caption of Fig. 4-2-8.
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Baraden, and J.A. Mydoshi, Phys. Rev. B 78, 024420 (2008).
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