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Abstract

At modern collider facilities, such as the Relativistic Heavy Ion Collider and the Large
Hadron Collider, heavy nuclei are collided at ultrarelativistic energy to create a multipar-
ticle system. Experimental observables suggest that a new phase of nuclear matter, the
quark-gluon plasma is realized in the collision center. The suppression of the yields of
quarkonium states which are heavy quark-antiquark bound states is one of the observ-
ables to probe color screening and suggest the formation of the quark-gluon plasma. An
understanding of the dynamical evolution of heavy quarkonium is a key factor in achiev-
ing insights into the properties of the quark-gluon plasma created in heavy ion collision
experiments.

We theoretically study the dynamics of quarkonia in the quark-gluon plasma based
on open quantum systems approach. We in particular focus on the dissipative effects on
the relative motion of the in-medium quarkonium state, which has not yet been discussed
enough. We first construct the equation of motion of the relative motion of a quarkonium
in the form of the Lindblad equation. This Lindblad equation can be systematically de-
rived from and thus related to the quantum chromodynamics, which goes beyond several
phenomenological models. The Lindblad operators show the information about the in-
teractions between a quarkonium and the surrounding quark-gluon plasma. The potential
between the heavy quark pair is included in the Hamiltonian part of the Lindblad equation.

From the numerical simulations of the Lindblad equation in both U(1) and SU(3) color
cases, we next discuss the relative motion of a quarkonium. We for the first time include
both quantum dissipation and color degrees of freedom in SU(3) color case, which ex-
pects more realistic simulations. To implement the corresponding dynamics, we apply
the stochastic unraveling called the quantum state diffusion method. In this method, the
full quantum Lindbladian evolution is then cast into a nonlinear stochastic Schrödinger
equation, which is numerically solved in our simulations instead of the Lindblad equa-
tion. This provides a direct link from quantum chromodynamics to the phenomenological
models which are based on the nonlinear Schrödinger equations. Our simulations in one
spatial dimension and at a fixed temperature show that the dissipative effects indeed allow
the relative motion of the constituent quarks in a quarkonium at rest to be thermalized.
This is assisted by the interplay of quantum dissipation and fluctuations. To relate the sim-
ulations to quarkonia in relativistic heavy ion collisions, we consider the time-dependent
temperature of the expanding quark-gluon plasma. The dissipation turns out to be effec-
tive to the dynamics of in-medium quarkonia from the early stage, which is well within
the short lifetime of the quark-gluon plasma in the experiments. This implies that the pre-
vious studies which lack dissipative effects and are based on complex potential, stochastic
potential and effective theory of quarkonia are not adequate.
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Chapter 1

Introduction

One of the aims in physical communities is to explore the behavior of elementary parti-
cles, which are considered as the most fundamental in all the existing substances and mat-
ter. Quark is one of the kinds of the elementary particles. The number of kinds of quarks
is six, up, down, strange, charm, bottom, and top quarks. Their kinds are called flavor.
These quarks and antiquarks constitute the hadrons, which are classified into mesons and
baryons. Interaction in the quark systems is strong interaction and is mediated by gluon.
Their dynamics is governed by quantum chromodynamics. Quarks and gluons are funda-
mental constituents in this theory and they have the color degrees of freedom. Depending
on their conditions such as the temperature, they expect to show different aspects than in
our world. Over the past few decades, the properties of nuclear matter in extreme condi-
tions have been actively studied. In this Chapter, Sec. 1.1 provides the brief introduction
of quantum chromodynamics and the expected phases of the matter in the extreme con-
ditions. Sec. 1.2 introduce relativistic heavy ion collision experiments to explore such
matter, showing some observables of quarkonia.

1.1 Quantum Chromodynamics

1.1.1 Lagrangian and Characteristics
Strong interaction is one of the most fundamental and important forces in nature and
works between quarks and gluons, which constitutes a lot of kinds of hadrons. This is de-
scribed by the quantum chromodynamics, which is called QCD in short. The Lagrangian
is given by

LQCD =
∑
f

ψ̄f (iγ
µDµ −m)ψf −

1

4
F a
µνF

aµν , (1.1)

where ψf = ψif denotes the quark field with three color indexes i = 1, 2, 3 and with mass
m and γµ does Dirac matrices with µ = 0, 1, 2, 3. The index f denotes the flavor of the
quarks. In analogy to the three primary colors of light, the quark color indexes are often
called red, green, and blue. The gluon field is denoted by Aaµ and SU(3) generator by ta

with eight color indexes a = 1, 2, · · · 8. The covariant derivative on quark filed Dµ and
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Chapter 1. Introduction 1.1. Quantum . . .

the field strength F a
µν are respectively defined by

Dµ = ∂µ − igAµ, Aµ ≡ Aaµt
a (1.2)

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν . (1.3)

Here, g is the coupling constant of the interaction. From this Lagrangian Eq. (1.1), the
evolution of the fields and the interaction between the fields is determined. As the photon
mediates the interaction in quantum electrodynamics, the gluon mediates the interaction
in QCD. However, the gluons carry colors and can interact with themselves as in the last
term in Eq. (1.3). In another viewpoint, for the QCD Lagrangian to satisfy gauge invari-
ance, gluons have self-interaction terms. The QCD Lagrangian has the gauge invariance
under the local gauge transformation

ψ′(x) = V (x)ψ(x), (1.4)

gA′
µ(x) = V (x)(gAµ(x)− i∂µ)V (x)† (1.5)

with V (x) = e−iθ
a(x)ta , where θa(x) is real.

One of the characteristics of QCD is found, asymptotic freedom[1, 2]. Asymptotic
freedom is the property that the interaction becomes weaker when a momentum transfer
is larger. Thus the interaction becomes weaker in a shorter range scale. This dependence
is revealed by the renormalization group equation at the one-loop level. The resultant
coupling constant is dependent on the renormalization scale Q, which is often set to the
processes of interest

αs(Q) ≡
g(Q)2

4π
=

1

4πb ln
(
Q2/Λ2

QCD

) , b =
1

(4π)2

(
11− 2

3
Nf

)
. (1.6)

The coupling is characterized by the scale parameter ΛQCD ∼ 250 MeV estimated experi-
mentally, which characterizes typical energy scale in QCD as the coupling diverges when
Q = ΛQCD.

Considering the light quarks such as up and down quarks in particular, whose masses
are smaller than the QCD scale ΛQCD. The Lagrangian with Nf flavors holds approxi-
mately chiral symmetry under the transformation ψ′

f,R/L = exp(iθaR/Lt
a)ff ′ψf ′,R/L on the

right-handed ψf,R and left-handed quarks ψf,L, where ta includes SU(Nf ) generators plus
the operator proportional 1 and normalized by Tr[2tatb] = δab. In the massless limit, this
symmetry completely holds. In this transformation, ψ̄ψ is not invariant, which implies
that it is expected to serve as an order parameter of the symmetry breaking[3, 4].

QCD has another characteristic, which is called color confinement[5]. In the lower
energy scale, the effective coupling becomes stronger and thus the interaction between
quarks becomes stronger. This implies that infinite work is needed in taking infinitely
away a single quark from the hadrons, without dynamical quarks. If there are dynamical
quarks, at some distance between two quarks to be taken away from the hadron, the quark-
antiquark pair creation occurs from the vacuum to make two pairs of quark and antiquark.
A colored quark does not individually exist and such a particle is confined in the hadrons,
which means the observed particles are colorless.
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Chapter 1. Introduction 1.2. Relativistic Heavy . . .

1.1.2 Phases in QCD matter
As stated above, quarks and gluons are confined in the hadrons in our world with low
temperature and baryon density. However, from the property of the effective small cou-
pling above the QCD energy scale, the matter composed of the deconfined quarks and
gluons are expected in extreme conditions with a higher temperature[6, 7]. This matter is
called the quark-gluon plasma. The lattice QCD simulations at zero baryon chemical po-
tential, which is the non-perturbative first principle solution based on QCD, have revealed
that the transition occurs at the transition temperature around 155 MeV. They also have
shown that the thermodynamical physical quantity such as energy density changes con-
tinuously and that the transition is classified to the crossover transition[8, 9, 10, 11]. With
finite chemical potential, the transition between the hadron and the quark-gluon plasma
phases has been predicted to be the first-order transition and the critical point has been
also predicted by some model calculations[12, 13, 14, 15]. In a small chemical potential
region, the lattice QCD calculations have been also performed with the Taylor expansion
method[16]. In low temperature and high-density region, theoretically predicted phases
are various, one of which is the color superconductivity phase where the attractive interac-
tion between colored quarks works like Cooper pair in electric superconductivity[17, 18].

The quark-gluon plasma is expected to have existed in the early Universe with high
temperature ∼ 2×1012 K just after the Big Bang. The color superconductivity is expected
to be in the center of a neutron star with high baryon density higher than nuclear density
∼ 3×1014 g/cm3. These phases are schematically summarized in the diagram in Fig. 1.1.

Fig. 1.1: Schematic sketch of QCD phase diagram in temperature and baryon chemical potential
plane.

1.2 Relativistic Heavy Ion Collision Experiments
As stated above, the phase of the quark-gluon plasma is expected where high temperature
or high baryon density is achieved. To create such an extreme condition, relativistic heavy
ion collision experiments have been performed in some facilities and are planned at the
new facilities. At the Alternating Gradient Synchrotron (AGS) at Brookhaven National
Laboratory (BNL) and the Super Proton Synchrotron (SPS) at the European Organization
for Nuclear Research (CERN), the fixed target experiments had been performed. The
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Chapter 1. Introduction 1.2. Relativistic Heavy . . .

beam energy or collision energy per nucleons
√
sNN in the center of mass frame is respec-

tively 5 GeV for gold-gold (Au-Au) collisions at AGS facility or 17 GeV for lead-lead
(Pb-Pb) collisions at SPS facility. In these experiments, the clear signatures of the cre-
ation of the quark-gluon plasma were not obtained. After these fixed-target experiments,
instead, the experiments where two accelerated heavy nuclei collide with each other have
been performed, which can achieve higher beam energies. The heavy ion collisions can
be performed and achieved at

√
sNN = 200 GeV for Au+Au collisions at RHIC and at√

sNN = 5.02 TeV for Pb-Pb collisions at LHC. In these heavy ion collisions, we have
accumulated several pieces of evidence of the production of the quark-gluon plasma and
data to explore the interacting matter under extreme conditions. As a comparison of the
preceding results of AGS and SPS, the multiplicity of the particle production at mid ra-
pidity was observed to be almost flattened, which is expected to reflect the transparency
of the accelerated nuclei. With agreements to the experimental situations, or in order
to describe the boost invariant system in the z direction where the two heavy nuclei go
and collide, we apply Bjorken description where the proper time τ =

√
t2 − z2 and the

rapidity y = 1
2
log
(
t+z
t−z

)
are introduced[19].

At LHC, the crossover regions near the temperature axis have been searched while
the more dense regions have been searched as in beam energy scan program often called
BES in short, which searches for the existence of the critical point at RHIC[20, 21].
Shortly, the colliders at a few GeV beam energy order in this research field plan to at-
tack the much more dense region at Facility for Antiprotons and Ions Research (FIAR)
at Helmholtzzentrum für Schwerionenforschung GmbH (GSI), Nuclotron-based Ion Col-
lider Facility (NICA) at Joint Institute for Nuclear Research (JINR), and in J-PARC HI
program at J-PARC.

1.2.1 Dynamical Picture of Relativistic Heavy Ion Collisions
The heavy nuclei such as Au and Pb in the relativistic heavy ion collision experiments are
accelerated to near the speed of light and the theoretical description of what happens in
the experiments is now based on the Bjorken description.In these high energetic setups,
two Lorentz contracted nuclei collide with each other and pass through each other, leaving
some parts of the kinetic energies of the incident nucleons at the colliding point. These
degrees of freedom are transformed into the hot medium with low baryon density, in
which gluons and quarks are created. They interact with each other and the medium
becomes equilibrated quark-gluon plasma. In the RIHC experiments, quark-gluon plasma
has been proved to behave like an almost perfect fluid and the hydrodynamical description
can be applied to it[22, 23]. In the following, we dare to divide the dynamics in heavy ion
collisions at RHIC and LHC into several stages in a standard picture as in Fig. 1.2.

1. Equilibration
After colliding two Lorentz contracted heavy nuclei, the hot and low baryon-density
medium is created at the colliding point. The gluons and quarks produced there
then interact with each other and the matter composed of them become equilibrated
from the nonequilibrium stage after some certain proper time τ0 ≲ 1 fm, which is
typically estimated by hydrodynamical simulations.

2. Quark-gluon plasma
After the interactions, the medium is locally thermalized, which is what we call the
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Chapter 1. Introduction 1.2. Relativistic Heavy . . .

Fig. 1.2: Time evolution of the medium in a heavy ion collision. The axis t represents the evolution
time and the axis z does the beam direction. The picture in the bottom is taken from
Ref. [24].

quark-gluon plasma, QGP in short. In the ideal hydrodynamical expansions without
the viscosity toward the longitudinal direction 1, the temperature cools according to

T (τ) = T0

(τ0
τ

)c2s
, (1.7)

where T0 is the temperature at τ = τ0 with τ representing the time after the colli-
sions and cs represents the sound velocity, which takes c2s =

1
3

for a relativistic ideal
noninteracting massless gas.
We here should note quarkonia, namely the bound states of heavy quark and its
antiquark, which are the main object to be focused on in this thesis, are so heavier
than the temperature that their thermal production can be suppressed.

3. Hadronization
In the space-time evolution of the quark-gluon plasma, its temperature decreases to
the temperature around which the transition to the hadron phase is realized, and the
medium particles experience the transition. The hadrons then interact with other
hadrons and their species can change in inelastic scatterings. After these inelastic
interactions, their species are fixed and the hadrons can still experience elastic scat-
terings. When the expansion length of the hadronic matter is larger than the mean
free paths of the hadronic particles, their momenta then do not change.

4. Observation
Finally, these hadrons are observed via the detectors. We note that leptons and
photons are also observed and that they are not affected by strong interactions and
the medium evolution.

1In the experiments, the three dimensional expansion expects to start at the characteristic time scale
estimated to R/cs ∼ 12 fm with Au radius R from the rarefaction wave propagation[25].
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1.2.2 Observables on Quarkonium
Since the quark-gluon plasma is a matter in the deconfined phase, we have to explore
the medium by the indirect hadron observables and by direct signals of photons and lep-
tons from the quark-gluon plasma as well as the equilibration stage in the experiments.
About forty years ago, quarkonium of the heavy quark bound state was proposed as a
clear probe of the deconfined medium. The theoretical basis of this proposal is Debye
screening phenomenon as explained later in Sec. 2.1. This behavior of quarkonium is of-
ten called quarkonium suppression, and upsilon, one of the quarkonium particles, works
well in the experiments in this context. In the experiments, indeed, data on quarkonium
states, whose dynamics is focused on in this thesis, have been obtained and expected to
have the information of the deconfined medium[26, 27, 28, 29, 30, 31, 32, 33]. Studies
on quarkonia productions and their in-medium evolutions can thus provide a window to
diagnosing the properties of the quark-gluon plasma.

We here present the experimental results of quarkonium suppression. Quarkonium is
detected via leptonic decay and the distribution is reconstructed by the leptonic invariant
mass. Fig. 1.3 presents the dimuons invariant mass distribution which is produced in
proton-proton (p-p) collisions and in Pb-Pb collisions at CMS facility. In the panel, the

Fig. 1.3: The invariant mass distribution of muon pairs in proton-proton collisions and Pb-Pb col-
lisions. The picture is taken from Ref. [30].

solid blue line is the fitting to the mass spectrum in Pb-Pb collisions and the dashed red
represents the fitted p-p collision data, showing the separate peaks for each upsilon state
Υ(1S), Υ(2S), and Υ(3S). Corresponding to the three states, the three peaks can be read.
Comparing two collision cases, the peaks of the upsilons states are strongly suppressed,
especially for the higher excited state such as Υ(2S) and Υ(3S). The higher excited
states are found more suppressed in heavy ion collisions, which is often called sequential
suppression in the order of the binding energy. In the experimental analysis, the double
ratios of the yield in proton-proton collisions and in nucleus-nucleus (A-A) collisions

[Υ(2S)/Υ(1S)]AA
[Υ(2S)/Υ(1S)]pp

,
[Υ(3S)/Υ(1S)]AA
[Υ(3S)/Υ(1S)]pp

(1.8)

is introduced, which can cancel cold nuclear matter effects coming from the presence of
the nucleus and the efficiency of the detectors[31, 32, 33]. The double ratios are measured
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as 0.308± 0.055(stat)± 0.019(syst) for Υ(2S) and less than 0.26 within the 95% confi-
dence level for Υ(3S) in Pb-Pb collisions as Fig. 1.4 shows[32]. The experimental results

Fig. 1.4: The double ratios for Υ(2S) (Left) and for Υ(3S) (Right). The pictures are taken from
Ref. [32].

on quarkonium suppression are also quantified with the nuclear modification factor

RAA =
YAA

⟨Ncoll⟩Ypp
. (1.9)

Here Ypp denotes the yield of the quarkonium per nucleon-nucleon collision in proton-
proton collisions and YAA denotes that in nucleus-nucleus collisions. ⟨Ncoll⟩ represents
the number of nucleon-nucleon binary collisions. For the estimation of the number of
nucleon-nucleon binary collisions, the Glauber model can be applied. Assuming that the
nucleus-nucleus collision is a superposition of nucleon-nucleon collisions, the nuclear
modification factor is RAA = 1 without the medium effects. Fig. 1.5 shows that the the
upsilon suppression has been observed by RAA < 1, which indicates the medium effects.

Fig. 1.5: (Left) RAA for the Υ(1S), Υ(2S) and Υ(3S) at
√
sNN = 5.02TeV. (Right) Comparison

of RAA of the upsilon states at
√
sNN = 5.02TeV and

√
sNN = 2.76TeV and sequential

suppression. The pictures are taken from Ref. [30].

From the improvement of the theoretical approaches to these experiments results, it is
now the era of interpreting the data by theoretical inputs and predictions as shown in the
right panel in Fig. 1.4. This panel tells that the theoretical calculations with mixing the
hydrodynamical evolution of the quark-gluon plasma medium and the complex potential
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Chapter 1. Introduction 1.3. Contents of Thesis

model on quarkonium seem to reproduce the data. These theoretical improvements on
quarkonium physics are briefly summarized in Chap. 2 and also in this context in Sec. 4.2,
where our motivation is stated. Thus more theoretical and experimental improvements
step by step will provide more precise determinations of properties of the deconfined
quark-gluon plasma medium.

The experimental results on another quarkonium state of charmonium have also been
accumulated [34, 35, 36]. The suppression of upsilon yields is larger in the LHC experi-
ments than in the RHIC experiments[37, 38]. However, the suppression of J/ψ yields is
less in more central collisions at the LHC than at the RHIC as Fig. 1.6 shows. This can be

Fig. 1.6: (Left) Nuclear modification factor of J/ψ at ALICE facility and at PHENIX facility.
(Right) Updated nuclear modification factor of J/ψ at ALICE facility. The left and right
pictures are taken from Ref. [39] and Ref. [40].

interpreted by the phenomenon of the regeneration of J/ψ state from an initially uncor-
related charm quark-antiquark pair in the hadronization due to the larger number of the
production of J/ψ particles in higher energy collisions at the LHC. Thus the suppression
and the regeneration effects are important to the dynamics of the charmonium state.

Flow observables of J/ψ particle is also observed[41, 42]. Flow is a collective motion
of the produced bulk matter in the collisions. The anisotropic matter leads the azimuthal
distribution of the particle production, one of whose signatures is called the elliptic flow.
The finite value of the elliptic flow of J/ψ suggests that J/ψ might be partially equi-
librated in the medium. Although for upsilon, the finite value is zero consistent within
the error bars[43], the equilibration with the surrounding medium can be important in the
dynamics of the quarkonium state.

1.3 Contents of Thesis
The dynamics of quarkonia is expected to start in the early stage of the heavy ion colli-
sions due to its larger mass than the medium temperature. As mentioned in Sec. 1.2.1, the
dynamics in heavy ion collisions is composed of multiple stages. Therefore, to precisely
understand the experimental results of quarkonium observables, we should take into ac-
count the whole dynamics in all the stages. In this thesis, the one stage of the quarkonium
whole dynamics, in particular, quarkonium in the thermal quark-gluon plasma medium is
focused on for simplification. We then discuss the real-time quantum dynamics of quarko-
nium in the quark-gluon plasma via the Lindblad equation with color degrees of freedom
by an open quantum system framework. In this framework, we systematically incorporate

12



Chapter 1. Introduction 1.3. Contents of Thesis

the interactions between the quarkonium system and the quark-gluon plasma environment
at high temperatures. We focus on the dissipative effects on the dynamics, to which more
attention has been paid, as well as the color transition effects.

This thesis is organized as follows. In Chap. 2, we overview the description of an
in-medium quarkonium, which reveal not only its static property in Sec. 2.1 but also its
dynamical aspects in Sec. 2.2.

In Chap. 3, we explain the general basics of open quantum systems. To be the con-
trast, we show the general description of closed systems in Sec. 3.1. We next explain
how the open systems are described in Sec. 3.2. There, we introduce the assumptions of
time scale hierarchy on open systems for the simplification of the description which are
often applied in this framework. The equation of motion of the open system is called the
master equation, and the special master equation, which is called the Lindblad equation,
is derived in general in the regime of quantum Brownian motion. From the late evolution
of the Lindblad equation, the steady-state is characterized and the detailed balance holds.

In Chap. 4, we specialize the description of a quarkonium in the quark-gluon plasma
with the help of the effective theory of QCD. In Sec. 4.1, we derive the Lindblad operator
of in-medium quarkonium relative motion, following the simpler derivation for the case
of the single heavy quark. Its physical meanings are also discussed. The Lindblad oper-
ator can be represented in singlet-octet bases and the detailed balance relation is roughly
shown to approximately hold in the late times. In Sec. 4.2, we make clear the impor-
tant points of our study by relating and comparing them with several related theoretical
studies. There, in the two prevalent schemes of quarkonium physics, nonrelativistic QCD
and potential nonrelativistic QCD, the essential difference is the dipole approximation of
quarkonium states. It is questionable that in-medium quarkonium states are in the dipole
during the whole dynamics so that we expect nonrelativistic QCD to deal with a widely
spread state such as an excited state.

In Chap. 5, we numerically simulate the Lindbladian quarkonium dynamics. As a
way of reducing the numerical cost, we introduce the quantum state diffusion method, a
method of implementing the Lindblad equation in terms of an ensemble of stochastically
evolving wave functions in Sec. 5.1. Then, the stochastic Schrödinger equations to be
solved in U(1) and SU(3) color cases are shown in Sec. 5.2. In Sec. 5.3, we present
the numerical setups and next we present our numerical results from one-dimensional
simulations for the medium with fixed temperatures in Sec. 5.4 and with the decreasing
temperature in Sec. 5.5. From these simulations, we study the effect of dissipation and
color transitions. These discussions are based on our papers [44, 45, 46].

Chapter 6 provides a summary and an outlook of our study.
Besides these chapters, this thesis contains some appendices. In Appendix A, we show

the correlation functions of the environmental thermal gluon fields.
In Appendix B, we show that the dependence of the relative motion of a quarkonium

on the center-of-mass motion and that it is marginal.
In Appendix C, we show that the dependence of the relative motion of a quarkonium

on the environmental correlation length with the theoretical input of the heavy quark
diffusion constant. This simulation plays a role of the first try to test whether or not the
quarkonium yields in heavy ion collisions can probe the correlation length, though it is
just a simulation in one dimension.

In Appendix D, we discuss the peculiar property in SU(2) case, the residual long-
range quantum correlations even after the decoherence for in-medium quarkonium states.
We prove this property in terms of the Lindblad equation, while it is not the case in SU(3).
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Chapter 2

Quarkonium in a Medium at Finite
Temperature

In the previous Chap. 1, we show several experimental results on quarkonia in heavy
ion collisions. These results reflect the whole dynamics of quarkonia in the experiments
and to correctly interpret the experimental data we need to theoretically understand what
quarkonia experience there. In this Chap. 2, we present the theoretical tools and aspects
of quarkonium physics in a thermal medium. First, we introduce the historic study on in-
medium quarkonium in the context of plasma physics in Sec. 2.1. There, the suppression
of the yields of quarkonia in these experiments is predicted from the Debye screening
phenomenon in the deconfined medium. In addition to this discussion, in Sec. 2.2 we
explain the dynamical aspects of in-medium quarkonium. The dynamical evolution of
quarkonium has been considered and discussed using the real-time potential which is
derived in the finite temperature field theory. The frameworks of the effective theories for
the physics of heavy quarks have been also developed. From these studies, it is shown
that quarkonium has a complex-valued potential.

2.1 Conventional Picture
In 1986, Matsui and Satz discussed the behavior of a quarkonium when it is in a thermal
medium[47]. In the case of the heavy ion collision experiments, the surrounding thermal
medium is the quark-gluon plasma. In the vacuum, the binding force between a heavy
quark pair is mediated by gluon exchanges. When the quark-gluon plasma medium exits
around a quarkonium, however, the exchanged gluons interact with the medium, which
changes the binding force and the property of the quarkonium. The authors discussed
the modification like this by the analogy of the Debye screening phenomenon in plasma
physics.

In the vacuum, two heavy quarks are confined and this can be phenomenologically
modeled by the vacuum Cornell potential

V (r) = σr − α

r
, (2.1)

in which the QCD properties of the color confinement and the asymptotic freedom are
embedded in long and short distances. The potential between the heavy quark pair is
in the Coulombic form in the short distance, while it is in the linearly rising form in
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the large separation. In Eq. (2.1), the constant σ represents the string tension. In the
deconfined matter of the quark-gluon plasma, the binding of a quarkonium is weakened
by liberated surrounding color charges. The string part decreases and we expect color
screening potential

V (r) = −α
r
e−mDr, (2.2)

wheremD is Debye mass and related to Debye screening length rD = m−1
D . The screening

length tells us the specific characteristic length scale over which color interactions do not
reach each constituent of a quarkonium. The prediction of the suppression of quarkonium
yields by Matsui and Satz is based on the argument that Debye radius rD leads an upper
bound and can be shorter than the binding radius of J/ψ particle. These sizes of the bound
states are estimated with uncertainty principle pr ∼ 1 by finding the minimum value of
the energy of a heavy quarkonium

E = 2M +
1

2Mr2
+ V (r). (2.3)

From this representaion, the operation dE
dr

= 0 leads to the equation for the deconfined
medium case

mDr(mDr + 1)e−mDr =
mD

Mα
, (2.4)

which can have the finite value of r only in case of MαrD ≳ 1.2. The smallest value rD
of screening length still allow the heavy quark pair to form a bound state. The authors
chose of the parameters σ ≃ 0.16 GeV2, M = 1.56 GeV, and 0.2 ≲ α ≲ 0.5 reflecting
temperature dependence of the coupling. It is found that the binding radius rJ/ψ can
satisfy rJ/ψ > rD above the transition temperature from the lattice studies and that the
surrounding medium prevents J/ψ particle formation as their suggestions. This picture
is based on a static potential and Hamiltonian. The suppression of quarkonium yields
could be sometimes considered as a metaphor of a thermometer of the temperature of
quark-gluon plasma production[48].

2.2 Recent Developments

2.2.1 Theoretical Tools
Thermal Field Theory

We here introduce and prepare the useful tools from the thermal quantum field theory[49,
50]. With the help of the thermal field theory, we can study the properties of the equili-
brated system and also the dynamics out of the equilibrium, for which real-time formal-
ism is needed. We define the following different two-point thermal averaged forward,
backward, and retarded correlators of the operator ϕ(x) for xµ = (t, x⃗) such as mesonic
operator M(x) and the field Aaµ(x) for a thermal medium:

D> (x, x′) ≡⟨ϕ(x)ϕ(x′)⟩ , (2.5)
D< (x, x′) ≡⟨ϕ(x′)ϕ(x)⟩ = D> (x′, x) , (2.6)
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DR (x, x′) ≡ iθ(t− t′) ⟨[ϕ(x), ϕ(x′)]⟩ , (2.7)

with time-dependent Heisenberg operator ϕ(x) = eix
µpµϕ e−ix

µpµ . The thermal average
of an operator O is defined by

⟨O⟩ = 1

Z(β)
Tr
(
Oe−βH

)
, Z(β) = Tr

(
e−βH

)
(2.8)

with the inverse temperature β, Hamiltonian H , and the partition function Z. With these
definitions, we obtain Kubo-Martin-Schwinger relation in Fourier space

D< (ω, q⃗) = ±e−βωD> (ω, q⃗) , (2.9)

in which the upper sign is for bosons and the lower sign for fermions. From these corre-
lators, the spectral function ρ(ω, x⃗) is defined by

ρ(ω, x⃗) ≡ D> (ω, x⃗)−D< (ω, x⃗) = 2ImDR (ω, x⃗) . (2.10)

These correlators can be obtained from the Euclidean correlators with imaginary-time
formalism, in which the partition function is represented by

Z(β) =

∫
Dϕ exp

[
−
∫ β

0

dτ

∫
dx3LE(τ, x⃗)

]
(2.11)

with the boundary ϕ(0, 0⃗) = ϕ(β, 0⃗) for bosons or ϕ(0, 0⃗) = −ϕ(β, 0⃗) for fermions and
the Fourier transfrom of the imaginary-time propagator DE (τ, x⃗) ≡

⟨
ϕ(τ, x⃗)ϕ(0, 0⃗)

⟩
is

defined through

DE(iqn, x⃗) =

∫ β

0

dτeiqnτDE(τ, x⃗), (2.12)

DE(τ, x⃗) = T
∑
n

e−iqnτDE(iqn, x⃗), (2.13)

with discrete frequencies qn = 2πn
β

for bosons or qn = 2π(n+1)
β

for fermions. The real-time
formalism is connected to the imaginary time formalism by the analytic continuation of
imaginary-time to real-time t→ −iτ as

DE (τ, x⃗) = D> (−iτ, x⃗) , DR (ω, q⃗) = DE (iqn → ω + iϵ, q⃗) . (2.14)

Effective Theory

If a system of interest has a separated hierarchy of energy scales, we can construct and em-
ploy a powerful treatment of an effective theory. An effective theory is constructed with
the separation of the scales, systematic expansions in the power counting, and symme-
tries. The construction is regarded as top-down from the original Lagrangian with a wider
range of energy scales, that is, by integrating out the higher energy scales and deriving
the Lagrangian which is effective in the lower energy scales. This construction is by e.g.
matching the correlator calculated both in the original theory and in the effective theory
below a certain energy cutoff Λ in a perturbative way or non-perturbative way. In lower
power counting order terms, the more dominant contributions appear in the physical pro-
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cesses to be considered. In the framework of the effective theories of heavy quark physics
in QCD, non-relativistic QCD (NRQCD) and potential non-relativistic QCD (pNRQCD)
are two prevalent schemes.

In quarkonium physics, the separation scales exist in the energy scale:

Mv2 ≪Mv ≪M, (2.15)

with the large mass M and the relative velocity inside a quarkonium v. The mass M is a
hard scale for the pair creation of a quarkonium from parton hard scatterings in heavy ion
collisions. The soft scale Mv may control the typical size of the bound state, considering
the Coulomb bound state. The softer scale Mv2 is related to the binding energy of the
quarkonium state and its excitation. These separations allow us to construct an effective
theory.

Suppose the energy cutoff scale ΛNRQCD introduced with Mv ≪ ΛNRQCD ≪ M ,
which focuses on physical processes by quark-gluon plasma medium particles with energy
or momentum below ΛNRQCD. In this regime, the pair production of a heavy quark and its
antiquark, which is a characteristic in the relativistic field theory, can be neglected since
such high energy scales are integrated out. NRQCD is thus a non-relativistic effective
description of the heavy quarks due to its large massM and small velocity v. The NRQCD
Lagrangian for heavy quarks is established as

L = ψ̄

(
iD0 +

D⃗2

2M
+ c

σ⃗ · B⃗
2M

)
ψ + (antiquarks) +O

(
1

M2

)
· · · (2.16)

in the literatures[51, 52]. The heavy quark field ψ and the anti heavy quark field is
separated[53, 54], and the coefficients of each term in the Lagrangian is determined by the
matching procedure. The matching is based on the requirement that the effective theory
reproduces the physics of the full QCD theory below the cutoff and the matching coeffi-
cients depend on the cutoff. Also, the relevant scales of the heavy quarks and gluons are
typically estimated by the power counting with v. It is ψ ∼ (Mv)

3
2 , A0 ∼ Mv2, A⃗ ∼

Mv3 from the equation of motion of the gauge field, assuming that the typical momen-
tum of a heavy quark is Mv. In this counting, we may approximate Di ∼ ∂i and drop
chromo-magnetic term in the sub-leading order.

When we are interested in the quarkonium binding whose physical scales ∼ Mv2,
NRQCD has extra degrees of freedom and the integration of them can lead to another
effective theory, which is called pNRQCD[51, 52]. pNRQCD focuses on a further lower
energy scale with another energy cutoff scale to study the binding property of quarkonium
and describes a quarkonium in the QCD medium non-relativistically for T ≪ Mv and
ΛQCD ≪ Mv. pNRQCD has been established by matching the calculation of heavy
quark correlation functions both in NRQCD and in pNRQCD at the energy cutoff scale
ΛpNRQCD with Mv2 ≪ ΛpNRQCD ≪Mv. Within this hierarchy, quarkonia whose typical
sizes are given by (Mv)−1 can be seen as localized dipoles form the gluons. The resultant
effective Lagrangian is expanded with the coupling gr and 1/M . The degrees of freedom
of the color singlet field S(R⃗, r⃗) and color octet field O(R⃗, r⃗) with the center-of-mass
coordinate R⃗ and the relative coordinate r⃗:

L =

∫
d3rTr

[
S†
(
i∂t −

p2

M
− Vs(r)

)
S + O†

(
iDt −

p2

M
− Vo(r)

)
O

]
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+ Tr[O†r⃗ · gE⃗S + S†r⃗ · gE⃗O] +
1

2
Tr[O†r⃗ · gE⃗O+O†Or⃗ · gE⃗] + · · · . (2.17)

This Lagrangian tells that the singlet and octet evolves in the potentials Vs(r) and Vo(r)
which is determined by the matching procedure.

2.2.2 Dynamical Aspects of Quarkonium
Potential Definition

In the previous Sec. 2.1, we see the behavior of a quarkonium from the just static aspects
in a thermal medium. Beyond the static aspects, the real-time potential is introduced,
which shows that quarkonium has an imaginary part of the potential. It in turn sheds
light on the dynamical aspects of the thermal medium which can affect the fate of an
in-medium quarkonium state and its properties.

We here define the point-split meson operator MΓ. The information as to what kind
of meson particles is considered is encoded by Γ such as γµ matrix. Connecting the Dirac
fields for two heavy quarks Q and Q̄ with the Wilson line W (x⃗, y⃗, t) and Γ, the meson
operator is defined as

MΓ(r⃗ = x⃗− y⃗, t) = Q̄(x⃗, t)ΓW (x⃗, y⃗, t)Q(y⃗, t) , (2.18)

W (x⃗, y⃗, t) = exp

[
−ig

∫ y

x

dzµAµ(z)

]
. (2.19)

We here consider the gauge invariant meson forward correlator in the medium

D>(r⃗, t) = ⟨MΓ(r⃗, t)M
†
Γ(r⃗, 0)⟩ . (2.20)

In the heavy quark mass limit, this correlator is found to be proportional to the Wilson
loop. From the QCD Lagrangian, in the heavy quark mass limit where the heavy quark
does not move in space, the quark propagator G(x, y) satisfies[

γ0(i∂0 − gA0(x)
)
−M ]G(x, y) = δ(4)(x− y). (2.21)

in the leading order of the mass. In the heavy quark mass limit where the heavy quark
does not move in space, the infinitely heavy quark propagator is represented by Wilson
line plus phase factor e−iMt. The meson correlator is thus expressed by real-time Wilson
loop with Aµ = Aaµt

a

W□(r⃗, t) = P exp

[
−ig

∮
Aµdzµ

]
(2.22)

where P represents path-ordering of the operators. In the non-perturbative calculations
based on lattice QCD formalism in the Euclidean time[55], the potential V (r⃗) between
the pair of a heavy quark and its antiquark with an infinite mass in the vacuum is defined
through the Wilson loop in the limit of late imaginary time τ → ∞

V (r⃗) = lim
τ→∞

V (r⃗, τ), V (r⃗, τ) ≡ ∂τ ⟨W□(r⃗, τ)⟩(E)

⟨W□(r⃗, τ)⟩(E)
. (2.23)

The real-time potential in Minkovskian spacetime is introduced accordingly by Wil-
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son loop at finite temperatures and thus defined with meson correlator in the heavy quark
mass limit

V (r⃗) = lim
t→∞

i∂t log ⟨W□(r⃗, t)⟩(M) = lim
t→∞

i∂t logD
>(r, t). (2.24)

Perturbative Calculation

Now we calculate the static potential Eq. (2.24) using the field theoretical tools in the
Euclidean time and extract static Minkovskian real-time potential by analytic continuation
of Wick rotation τ → it. This evaluation was perturbatively done with hard thermal loop
resummation technique at high temperature where the temperature dominates over other
scales in the loop calculations[56, 57, 58]. In these studies, it is shown that the potential
of a quarkonium is complex-valued and its expression is given with Debye mass mD by

ReV (r) = −CFα
[
mD +

exp (−mDr)

r

]
, α =

g2

4π
(2.25)

ImV (r) = −CFαTϕ (mDr) , ϕ(x) = 2

∫ ∞

0

dz
z

(z2 + 1)2

[
1− sin(zx)

zx

]
. (2.26)

The functional form of the imaginary part of the potential ϕ(x) is shown in Fig.2.1. The
function ϕ(x) approaches the constant 1 for infinitely large x > 0. The imaginary part of

2 4 6 8 10
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Fig. 2.1: The functional form of the imaginary part of the potential ϕ(x).

the potential can be interpreted as the outcomes from interactions or scatterings between
the medium gluons mediating the binding of a quarkonium state. The imaginary part of
the potential increases as the temperature increases, while the binding energy decreases.
Therefore, quarkonium dissociation is interpreted under the different interplay between
the binding energy and the thermal width at different temperatures.

Lattice Calculation

The complex potential has been also studied by lattice QCD, which allows non-perturbative
simulations. At a finite temperature case, contrary to the vacuum case, it is difficult to ex-
tract the real-time potential from Eq. (2.23) because of small τ ∼ T−1 in the temporal
direction in lattice setups. Instead, the spectral decomposition of the Wilson loop is ex-
pected as a connection between the imaginary time formalism for it → τ in lattice QCD
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and the real-time potential[59]. The authors define the spectral decomposition of the Wil-
son loop by

W□(r⃗, t) =

∫
dωe−iωtρ□(r, ω) (2.27)

and the in-medium potential by

V (r) = lim
t→∞

∫
dωωe−iωtρ□(r, ω)∫
dωe−iωtρ□(r, ω)

, (2.28)

where the definition of the potential in the vacuum Eq. (2.23) is included for the spectral
function of the Wilson loop ∝ δ(ω−V (r)). In the lattice studies, from the discrete data on
the correlation functions, its spectral decomposition has been performed with the help of
the maximum entropy method[59, 60]. From the lowest lying peak in the spectral function
in the small ω regions corresponding to the late-time limit, the real part of the potential
Re V (r) and the imaginary part Im V (r) can be inferred from the position of the peak
structure and the thermal width by the fitting of the structure. These lattice studies have
shown that, at higher temperatures, the contribution of the imaginary part of the potential
becomes larger while the real part transforms into the screened potential form from the
vacuum potential[61, 62]. The information of the thermal width explains the lifetime of
the particle, which represents the decay rate of annihilation and excitation to other states
from energy and momentum exchanges with the surrounding thermal medium. We note
that the thermal width does not tell which state a quarkonium state is excited to.

Towards Phenomenology

As its phenomenological applications, the survival probabilities of in-medium quarko-
nium states are evaluated via Schrödinger equation with this complex-valued potential[63,
64, 65]. There, the in-medium wave function does not evolve unitarily with the real bind-
ing energy. Instead, the existence of the imaginary part of the binding energy from the
non-hermiticity is interpreted as the decay rate of the occupations of quarkonium states.
We note that the potential defined and derived above does govern the time evolution of
the mesonic correlator, not that of the wave function of a quarkonium. It does represent
how fast the coherence between the wave function and the initial wave function loses. In
the different prospect of the Schrödinger equation for the mesonic correlator, the spec-
tral function can be calculated via the imaginary part of the potential in this Schrödinger
equation[66, 67].

The existence of the imaginary part of the potential implies that a quarkonium even
in a thermal state is not stationary but genuine dynamical from the medium effects. The
question of the stability of quarkonium which is put into a thermal QCD medium from
the vacuum is not answered, and quarkonium evolution is time-dependent. Thus, to un-
derstand the quarkonium stability or melting, a real-time description is needed in addition
to considering the surrounding medium effects. The survival of quarkonium states is ex-
pected to be affected by how the medium modifies the binding of a quarkonium and how
long it exists in the medium after it is put from the vacuum.

The non-hermiticity is compensated by the stochastic potential model[68], in which
a quarkonium wave function obeys the unitary evolution. In this model, the quarkonium
potential terms include the stochastic noise from the thermal fluctuations in addition to the
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screening potential. This model has been revealed the decoherence to quarkonium wave
function contributes its in-medium evolution[68, 69]. However, the dissipative effects are
not considered during the evolution.

As another phenomenological model, Schrödinger-Langevin equation is presented
and it is in the form of the nonlinear Schrödinger equation with the stochastic term[70].
Even though it includes the medium effects coming from the potential, the fluctuations,
and the drag forces as in classical Langevin equation, its connection to the microscopic
theoretical background remains unclear, in which context this model is one of the attempts
to effectively describe a quantum system of an in-medium quarkonium.

With the motivation of dealing with the interactions between a quarkonium and the
thermal quark-gluon plasma medium, the theoretical framework of the open quantum
systems provides the promising way of the real-time description, which is explained in
the next Sec. 3. We note that the effective theories of NRQCD and pNRQCD mentioned
above are in the fields of open quantum systems. The several studies based on the open
quantum system framework are successful in deriving several kinds of the equations of
motions of an in-medium quarkonium, providing several viewpoints for the qualitative or
quantitative explanations of the experimental data[69, 71, 72, 73, 74, 75, 76].
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Chapter 3

Theory of Open Quantum Systems

In this Chap. 3, the concept and the framework of the open quantum systems are intro-
duced and reviewed. In the quantum mechanics of the closed system, the time evolution
of the wave function is described by Schrödinger equation, which is unitary evolution as
seen in Sec. 3.1. However, in the situations where some irreversible processes such as
energy dissipation exist, the description of Schrödinger equation generally breaks down.
This stems from whether or not the system we consider is closed. If there is an irreversible
process, the system of interest is found to be open, whose dynamics can be described by
the open quantum systems approach. We in Sec. 3.2, explain how open systems are de-
scribed, comparing the description of closed systems. In this approach, the dynamics can
be described with the equation of motion for the density matrix for the open quantum
system, which is called master equation. The main object in the framework of the open
quantum systems is master equation. In describing the open systems, the procedures of
deriving the master equation can be complicated and demanding and some approxima-
tions are often taken, which is shown in Sec. 3.2.1. In Sec. 3.2.2, with these assumptions
in quantum Brownian motion regime, we derive the master equation which can describe
energy dissipation and the relaxation to equilibrium states.

3.1 Formalism in Closed Systems
For the description of closed systems, Schrödinger equation for the wave function can
work. In another point of view of the density matrix composed of the wave functions,
the closed systems can be also described by von Neumann equation in the Schrödinger
picture

d

dt
ρ(t) = −i[H(t), ρ(t)], ρ(t) =

∑
α

ωαU(t, t0) |ψα(t0)⟩ ⟨ψα(t0)|U †(t, t0) (3.1)

from an initial state of the density matrix

ρ(t0) =
∑
α

ωα |ψα(t0)⟩ ⟨ψα(t0)| (3.2)

with some wights ωα > 0 for each state ψα(t0). Eq. (3.1) can be decomposed into the
unitary evolution of the state vector |ψα⟩ from time t0 to time t, which is formulated by
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the Schrödinger equation with unitary operator U(t, t0)

|ψ(t)⟩ = U(t, t0) |ψ(t0)⟩ , U(t, t0) = T exp

[
−i
∫ t

t0

dsH(s)

]
, (3.3)

where T denotes time ordering.
Except for the Schrödinger picture, other equivalent pictures exist, Heisenberg picture,

which is here symbolized by H, and the Interaction picture, which is here symbolized by
I. First, an operator O(t) in the Schrödinger picture is related to OH in the Heisenberg
picture through

OH(t) = U †(t, t0)O(t)U(t, t0). (3.4)

In the Heisenberg picture, the density matrix is fixed to ρ(t0) at the initial time t = t0. An
expectation value of a physical operator, that is, an observable is calculated by

⟨O(t)⟩ = Tr{OH(t)ρH(t0)} = Tr{O(t)ρ(t)}, (3.5)

which shows observables are independent of both of the pictures. The Interaction picture
features the interaction between the two systems that we consider. Let us assume the
Hamiltonian of the two systems plus the interaction between them is

H(t) = H0 +Hint(t), (3.6)

where Hint(t) represents the interactions and H0 does the isolated residual part of the
two systems. The total system is closed and unitarily evolves with the unitary operator
U(t, t0). We here define the following operators

U0(t, t0) ≡ exp [−iH0(t− t0)] , UI(t, t0) ≡U †
0(t, t0)U(t, t0). (3.7)

The density matrix and the operator OI in the Interaction picture are introduced by

ρI(t) ≡ UI(t, t0)ρ(t0)U
†
I (t, t0), (3.8)

OI(t) ≡ U †
0(t, t0)O(t)U0(t, t0). (3.9)

The observable O in the Interaction picture is calculated by

⟨O(t)⟩ = Tr{OI(t)ρI(t0)} = Tr{O(t)ρ(t)}, (3.10)

and the von Neumann equation Eq. (3.1) is transformed into

d

dt
ρI(t) =− i[HI(t), ρI(t)]. (3.11)

This equation can be iteratively solved, which leads the equivalent integral form

ρI(t) = ρI(t0)− i

∫ t

t0

ds[HI(s), ρI(s)] (3.12)

and makes the starting point in the derivation of master equation of open systems as in the
next Sec. 3.2.
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3.2 Formalism in Open Systems
The description of open quantum systems is originally based on the description of closed
quantum systems in the previous Sec. 3.1. The open quantum system, which is symbol-
ized here by S, couples to the surrounding system, which is often called by the environ-
ment and symbolized here by E. The combined sets of the open system and the environ-
ment constitute the total closed system, which obeys quantum unitary evolution. On the
other hand, when the open system S is interested in and only focused on, its dynamics is
induced by the interactions between them and not unitary at all.

The situation as mentioned above can be mathematically and physically formulated as
follows. We now consider a total closed system that is composed of the open system S of
interest and the environment E. We then assume the Hilbert space H and the Hamiltonian
of the total system H in the Interaction picture

H =HS ⊗HE, (3.13)
H =HS ⊗ IE + IS ⊗HE +Hint(t), (3.14)

Hint(t) =
∑
i

Si(t)⊗ Ei(t) ≡
∑
i

(
eiHStSie−iHSt

)
⊗
(
eiHEtEie−iHEt

)
, (3.15)

where the representation of the Interaction picture I are dropped. Here HS and HE respec-
tively represent the Hilbert space of the open system and the environment, and the tensor
product of them constitutes the Hilbert space of the total system. The self-Hamiltonians
of the system and the environment are respectively denoted by HS and HE, and Hint(t)
describes the interactions between them, which is represented by the tensor product of the
open system part Si(t) and the environment part Ei(t).

When we are just interested in some variable A of the open system which acts only on
the Hilbert space of the open system, the object to be focused on is

⟨A⟩ = TrS[ρSA], (3.16)

with ρS ≡ TrE ρ, which is called reduced density matrix for the open system. The
operations of TrS and TrE denote the integration of the variables of the open system and
the environment, respectively. Deriving the master equation of the reduced density matrix
for the dynamics is one of the important things in the open quantum systems approach.
The first procedure to tackle this is to substitute Eq. (3.12) into Eq. (3.11), which explicitly
derives the master equation for the reduced density matrix ρS

d

dt
ρS(t) =−

∫ t

0

ds TrE [Hint(t), [Hint(s), ρ(s)]]

=−
∫ t

0

ds TrE [Hint(t), [Hint(t− s), ρ(t− s)]] , (3.17)

where we assume TrE[Hint(t), ρ(0)] = 0. This assumption is validated by the sets of the
transformations of

H ′
int = Hint − TrE[HintρE(0)], H ′

S = HS + TrE[HintρE(0)], (3.18)

for the initial density matrix ρ(0) = ρS(0) ⊗ ρE(0). This remains the total Hamiltonian
the same as before, which allows one to take TrE[H

′
int(t), ρ(0)] = 0.
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3.2.1 Sets of Approximations
For the simpler description of Eq. (3.17), some additional approximations are often im-
posed as in the following.

Born Approximation

Although Eq. (3.17) partially contains the density matrix of the total system ρ(t), by con-
sidering Born approximation, the master equation can be expressed just in terms of ρS(t).
Born approximation is based on the assumption that the system S and the environment E
weakly interact with each other. This assumption characterizes the density matrix of the
total system as

ρ(t) = ρS(t)⊗ ρE, (3.19)

which reflects that the environment states are not affected by their interactions.

Timescale Hierarchy Assumptions

In open quantum systems approach, two kinds of the sets of timescale hierarchies are of-
ten applied. One of them is called by quantum optical regime and the other is called by
quantum Brownian motion regime. In these regimes, the three timescales are involved,
especially, the typical timescale τS of the intrinsic evolution of the system S with Hamil-
tonian HS which is estimated by the inverse of the energy gap between the eigenstates,
the typical correlation time τE of the environment medium E over which the environmen-
tal correlation function damps, and the relaxation time τR of the system S which is the
timescale of the master equation and in which the reduced density matrix of the system
varies appreciably. The relaxation timescale is e.g. for a single particle case, estimated by
the timescale of the momentum damping. The above two regimes take the assumptions
are listed in Table 3.1.

Table 3.1: Separation of timescales in quantum optical and quantum Brownian motion regimes.

Regime Sets of timescale approximations
quantum optical τE ≪ τR, τS ≪ τR

quantum Brownian motion τE ≪ τR, τE ≪ τS

Markovian Approximation

Markovian approximation is applied in τE ≪ τR. It provides a coarse-grained description
of time evolution, dropping the memory effect of the evolution in Eq. (3.17). When the
environmental correlation function decays faster than the system state varies, Eq. (3.17)
reduces to the simpler form. The integrand ρ(t − s) there can be replaced by ρ(t) and
the integrand boundary after the transformation of the integrand variable s → t − s can
be changed to the infinity, since the corrections are in higher orders in the expansions of
Hint and the environmental correlations remain finite over the shorter timescale s ∼ τE
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than the timescale of interest t ∼ τR. We can then obtain the course-grained Markovian
master equation

d

dt
ρS(t) = −

∫ ∞

0

ds TrE [Hint(t), [Hint(t− s), ρS(t)⊗ ρE]] . (3.20)

Rotating Wave Approximation

When τS ≪ τR, the applied approximation is called rotating wave approximation, which
is not imposed in our discussions on in-medium quarkonium in Chap. 4. Let us define
the projection Π(ϵ) onto the eigenstate |ϵ⟩ of HS with the eigenvalue ϵ. Introducing the
following operators

Si(ω) =
∑
ω=ϵ′−ϵ

Π(ϵ)SiΠ(ϵ′), Si =
∑
ω

∑
ω=ϵ′−ϵ

Si(ω) (3.21)

SiI(ω) =e
iHStSi(ω)e−iHSt = e−iωtSi(ω), (3.22)

the interaction Hamiltonian is given by

Hint(t) =
∑
i

∑
ω

e−iωtSi(ω)⊗ Ei(t). (3.23)

in the Interaction picture. Then in Eq. (3.20), the factor
∑

ω

∑
ω′ e−i(ω−ω

′)t appears where
we note ω and ω′ represents the energy difference of the two different processes. The
typical intrinsic timescale of the system is τS ∼ |ω − ω′|−1 while the relaxation time
scale τR is assumed longer than τS . In the time scale τR considered, the rapidly oscillating
factors in the time scale of τS drop, and the ω = ω′ part remains. This is often applied
in quantum optical systems with some discrete energy levels, which leads to the simpler
derivation of the master equation.

Gradient Expansions

The gradient expansion of the interaction parts is applied in τE ≪ τS and the detail is
explained in the next Sec. 3.2.2 for the description of the quantum Brownian motion. In
this thesis, the discussions on an in-medium quarkonium are performed in the regime
of the quantum Brownian motion. The timescales for an in-medium quarkonium can be
typically estimated as follows. The timescales for a bottomonium with bottom quark mass
Mb ∼ 4.7 GeV and the medium temperature T ∼ 0.4 GeV are estimated by assuming the
Coulombic bound state as

τS
−1 ∼ Ebinding ∼

1

2

Mb

2
α2 ≃ 1

2
· 4.7 GeV

2
· (0.3)2 ∼ 0.1 GeV, (3.24)

τE
−1 ∼ T ∼ 0.4 GeV. (3.25)

It should not be assured that the regime of quantum Brownian motion does not makes
sense for an in-medium quarkonium when the resulting relaxation timescale is long. We
then discuss the dynamics of in-medium quarkonia by applying Markovian approximation
and the gradient expansions.
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3.2.2 Quantum Brownian Motion
In addition to Born and Markovian approximations, we assume that the typical time scale
of the intrinsic evolution of the system is longer than the typical environment correlation
time, τE ≪ τS , which can lead to the gradient expansion in the master equation.

With Eq. (3.15), Eq. (3.20) turns to

d

dt
ρS(t) = −

∫ ∞

0

ds
∑
i,j

TrE[ρE(t)E
i(t)Ej(t− s)]

×
[
Sj(t− s)ρS(t)S

i(t)− Si(t)Sj(t− s)ρS(t)
]
+ h.c.. (3.26)

Since TrE[ρE(t)E
i(t)Ej(t − s)] takes finite for small time s ∼ τE for τE ≪ τS , we take

the gradient expansions of Sj(t− s) in terms of s,

Sj(t− s) ≃Sj(t)− sṠ(t) + · · ·
=Sj(t)− is

[
HS, S

j(t)
]
+O(s2). (3.27)

The leading-order and next-to-leading-order terms of the gradient expansions in Eq. (3.27)
shows that the stochastic effects of the random forces and the dissipative effects of the fric-
tion force in recoils of a Brownian particle during collisions in the surrounding medium as
explained in Chap.4. We note that the equilibration is not achieved if the next-to-leading
order term of quantum dissipation is ignored, which is what we call the recoilless limit.

Here we introduce the Fourier component of the environmental correlation function

Γij(ω) ≡
∫ ∞

0

dseisωTrE[ρEE
i(t)Ej(t− s)] =

∫ ∞

0

dseisωTrE[ρEE
i(s)Ej(0)] (3.28)

with the assumption of the invariance of time translation. It can be decomposed into the
two parts of the hermitian part Dij(ω) and the anti hermitian part iV ij(ω)

Dij(ω) = Γij(ω) + Γji
∗
(ω), V ij(ω) = 1

2i
[Γij(ω)− Γji

∗
(ω)]. (3.29)

The values Dij(ω = 0) and V ij(ω = 0) can be expressed by the real-valued spectral
density function

σij(ω) ≡
∫ ∞

−∞
ds eisωTrE

[
ρE[E

i(s), Ej(0)]
]
] = (1− eβω)Dij(ω) (3.30)

with the help of Kubo-Martin-Schwinger relation Dij(ω) = eβωDji(−ω). With the spec-
tral function, we can define the following complex numbers

Dij ≡Dij(ω = 0) = T
dσij

dω

∣∣∣∣
ω=0

, V ij ≡ V ij(ω = 0) =

∫ ∞

−∞

dω

2π

σij(ω)

ω
, (3.31)

ηij ≡ −idΓ
ij(ω)

dω

∣∣∣∣
ω=0

= −1

2

∫ ∞

−∞

dω

2π

1

ω

d

dω

[
σij(ω)

1− e−βω

]
− i

4

dσij

dω

∣∣∣∣
ω=0

. (3.32)
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With these quantities, Eq. (3.26) is then transformed into

d

dt
ρS(t) =

∑
i,j



Dij
(
Sj(t)ρS(t)S

i(t)− 1
2
{Si(t)Sj(t), ρS(t)}

)
−iV ij (Si(t)Sj(t)ρS(t)− ρS(t)S

i(t)Sj(t))

−ηij
(
Ṡj(t)ρS(t)S

i(t)− Si(t)Ṡj(t)ρS(t)
)

−ηij∗
(
Si(t)ρS(t)Ṡ

j(t)− ρS(t)Ṡ
j(t)Si(t)

)


, (3.33)

up to the next-to-leading order gradient expansion. Let us here assume that the matrixDij

is positive semidefinite and that (D−1)ij exists, which derives the simpler form

d

dt
ρS(t) = −i [∆HS(t), ρS(t)] +

∑
i,j

Dij

[
S̃j(t)ρS(t)S̃

i† − 1

2

{
S̃i†(t)S̃j(t), ρS(t)

}]
,

(3.34)

∆HS(t) ≡
∑
i,j

V ijSi(t)Sj(t) + i

2

∑
i,j

(
ηijS

i(t)Ṡj(t)− η∗ijṠ
j(t)Si(t)

)
, (3.35)

S̃i(t) ≡ Si(t)−
∑
j,k

(D−1)ijη
jkṠk(t). (3.36)

In the regime of quantum Brownian motion with weak coupling, the real part of ηij ,
Re ηij , can be often approximated to be negligible with the cutoff frequency of spectral
function and the assumption of the time scale hierarchies [77, 78]. Thus in this regime,
ηij is approximately proportional to the imaginary part of ηij , Im ηij , and Eq. (3.36) thus
reads

S̃i(t) = Si(t) +
i

4T
Ṡi(t). (3.37)

When the matrix D is positive semidefinite, Eq. (3.34) can be cast into an equivalent
form with the diagonalized matrix D′ with non-negative eigenvalues, which is obtained
by some unitary transformation U that satisfies the relations to the new operators Li

D ′
ij =UikDklU

†
lj, S̃i = UijL

j. (3.38)

With these new operators, after some algebra, Eq. (3.34) can be transformed into the
diagonalized form

d

dt
ρS(t) = −i [∆HS(t), ρS(t)] +

∑
k

D ′
kk

[
Lk(t)ρS(t)L

k† − 1

2

{
Lk†(t)Lk(t), ρS(t)

}]
,

(3.39)

which is in what we call Lindblad master equation form[79]. The Lindblad master equa-
tion, which is composed of the Lindblad operators Lk, satisfies the condition in which it
is Markovian, trace-preserving, and positive during the evolution of the reduced density
matrix. Since we can probabilistically interpret the dynamics of the open system as a
mixed state, the Lindblad master equation is thus useful and reasonable in this regard.

If the description is moved into the Schrödinger picture, we employ the relation be-
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tween the Schrödinger picture S and the Interaction picture I,

d

dt
ρS(t) = −i [HS, ρS(t)] + e−iHst

(
d

dt
ρIS(t)

)
e−iHst. (3.40)
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Chapter 4

Lindblad Equation for Quarkonium in
the Quark-Gluon Plasma

In this Chap. 4, the Lindblad equation for a quarkonium in the quark-gluon plasma is
derived and focused on in the open quantum systems framework explained in the previous
Chap. 3. We start the discussions on an in-medium quarkonium by taking, as a starting
point, the non-relativistic QCD effective description and the corresponding Hamiltonian
of the composed total system of a quarkonium and the quark-gluon plasma[51, 52]. Based
on the open quantum systems framework with the non-relativistic QCD, we derive the
Lindblad equation for a quarkonium in the quark-gluon plasma. To interpret the physical
meanings encoded in its Lindblad operator, we first, for simplicity, consider the case for
a single heavy quark in a thermal medium[80], which is partially related to the Caldeira
Leggett model[81]. We then extend it to a two-particle system in a thermal medium, that
is, a quarkonium in the quark-gluon plasma of interest in our case. We also derive and
interpret the corresponding Lindblad operator by the analogy to the single heavy quark
case or the Caldeira Leggett model. From the Lindblad operator, we trace out the center
of mass motion to focus in particular on the relative motion of a quarkonium in color
singlet-octet bases with the simple assumption as explained later.

4.1 Derivation of Lindblad Operator
The non-relativistic QCD theory is one of the effective descriptions of heavy quarks
in the non-relativistic regime. In this description, the creation and annihilation of a
heavy quark pair can be neglected and the description of the heavy quarks reduces to
the quantum mechanical limit. Since the framework of open systems is constructed by
the Hamiltonian formalism, the corresponding Hamiltonian is needed for heavy quark
systems in the thermal quark-gluon plasma medium. Though this procedure of taking the
Hamiltonian[68, 82, 83], we begin with

HQ =
p2Q
2M

⊗ IQGP + IQ ⊗HQGP +

∫
d3x

[
δ (x⃗− x⃗Q) t

a
Q

]
⊗ gAa0(x⃗), (4.1)

HQQc =

(
p2Q
2M

+
p2Qc

2M

)
⊗ IQGP + IQQc ⊗HQGP

+

∫
d3x

[
δ (x⃗− x⃗Q) t

a
Q − δ (x⃗− x⃗Qc) t

a∗
Qc

]
⊗ gAa0(x⃗), (4.2)
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where HQGP denotes the Hamiltonian for the thermal quark-gluon plasma sector and the
matrices taQ and ta∗Qc

are in the color SU(Nc) algebra with Q and Qc representing a heavy
quark and its antiquark. We note that x⃗Q, x⃗Qc , and A0 are operators.

4.1.1 Single Quark Case
In this section, from the non-relativistic Hamiltonian (4.1), we start to derive the Lindblad
equation, and relate it to the Caldeira Leggett model, which is one of the prototypes of a
quantum Brownian particle. The indexes i in Eq. (3.31) and Eq. (3.32) thus hereafter turn
to be the continuous variable of the position x⃗ and the discrete indexes of heavy quark
colors a. Following the discussions in Sec. 3.2.2, the ingredients for the master equation
are defined and obtained,

Sa(x) =δ (x⃗− x⃗Q) t
a
Q, (4.3)

Ṡa(x) =

[
− i

2M
∇2
xδ (x⃗− x⃗Q)−

1

M
∇⃗xδ (x⃗− x⃗Q) · p⃗Q

]
taQ (4.4)

Dab(x⃗− y⃗) = T
d

dω
σab(ω, x⃗− y⃗)

∣∣∣∣
ω=0

= D(x⃗− y⃗)δab, (4.5)

Vab(x⃗− y⃗) =− 1

2

∫ ∞

−∞

dω

2π

σab(ω, x⃗− y⃗)

ω
≡ V(x⃗− y⃗)δab, (4.6)

σab(ω, x⃗− y⃗) =

∫ ∞

−∞
dteiωtTrQGP

(
ρQGP

[
gAa0(t, x⃗), gA

b
0(0, y⃗)

])
, (4.7)

ηab(x⃗− y⃗) =− i

4T
Dab(x⃗− y⃗), (4.8)

whose analytic expressions in momentum space for soft external momentum scale are
listed in Appendix A. Then the Lindblad equation for a single heavy quark in a thermal
medium is derived form Eq. (3.39) after some algebra,

d

dt
ρQ(t) =− i [HQ, ρQ] +

∑
a

∫
k

[
2La(k⃗)ρQL

a†(k⃗)−
{
La†(k⃗)La(k⃗), ρQ

}]
, (4.9)

La(k⃗) =

√
D(k⃗)

2
eik⃗·x⃗Q/2

(
1− k⃗ · p⃗Q

4MT

)
eik⃗·x⃗Q/2taQ

=

√
D(k⃗)

2
eik⃗·x⃗Q

(
1− k⃗ · p⃗Q

4MT
+

k⃗2

8MT

)
taQ, (4.10)

where we note ∆HQ in Eq. (3.39) is constant and dropped and
∫
k

denotes
∫

d3k
(2π)3

in short.
This Lindblad operator was also derived in the influence functional formalism[68, 82].
The numerical simulations of a single heavy quark case with this Lindblad operator was
done[80], which is quite similar to our discussions for an in-medium quarkonium.

The information of the interactions is embedded in the non-unitary part of the Lind-
blad master equation, in particular, in the Lindblad operator. When considering the mo-
mentum eigenstates, the operator eik⃗·x⃗QtaQ acting on such states represents the momentum
transfer of the quark by k⃗ and changes the heavy quark color state. It is expected that the
coefficientD(k⃗) represents how frequently these processes occur and the next-to-leading-
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order term modifies the rate.
Here we estimate the transition rate between the process and its inverse process p⃗ ⇄

p⃗+ k⃗ as

Γ
p⃗→p⃗+k⃗

Γ
p⃗+k⃗→p⃗

=

[
1− k⃗·p⃗

4MT
− k⃗2

8MT

]2
[
1 + k⃗·p⃗

4MT
+ k⃗2

8MT

]2 . (4.11)

With the approximation by the Taylor-expansions in small x of

(1 + x)2

(1− x)2
∼ e4x, (4.12)

Eq. (4.11) are estimated and the detailed balance approximately holds as

Γ
p⃗→p⃗+k⃗

Γ
p⃗+k⃗→p⃗

≃ exp

(
Ep⃗ − Ep⃗+k⃗

T

)
(4.13)

with the kinetic energy defined by Ep⃗ ≡ p⃗2/2M with momentum p⃗. Equilibration expect
to lead to the Boltzmann distribution and the next-to-leading-order gradient expansion is
essential to satisfying the detail balance. If we neglect the next-to-leading-order term, the
rate for the process is equal to the rate for the inverse process. The leading-order and the
next-to-leading-order terms in the Lindblad operator (4.10) derived by the gradient ex-
pansion can be interpreted as thermal fluctuating effects by random forces and dissipative
effects by frictional forces during collisions with surrounding medium particles, as will
be seen from the classical limit of the master equation.

Relation to Caldeira Leggett Model

Caldeira Leggett model[81] is the prototype of a colorless Brownian particle and the cor-
responding master equation is

∂

∂t
ρQ(t, x⃗, y⃗) =i

∇2
x −∇2

y

2M
ρQ(t, x⃗, y⃗)

+
∇2D(0)

6

[
(x⃗− y⃗)2 +

x⃗− y⃗

2MT
· (∇⃗x − ∇⃗y)

]
ρQ(t, x⃗, y⃗). (4.14)

It is known that Caldeira Leggett model is not in the Lindblad form and that, however, by
introducing the additional term

+
∇2D(0)

6

[
− 1

16M2T 2
(∇⃗x + ∇⃗y)

2

]
ρQ(t, x⃗, y⃗) (4.15)

to the right hand side of Eq. (4.14), it can be transformed into the Lindblad form with the
corresponding Lindblad operator up to its coefficient

L =

(
x⃗Q +

ip⃗Q
4MT

)
. (4.16)
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On the other hand, after tracing over the internal color degrees of freedom in Eq. (4.9)
with CF = N2

c−1
2Nc

, the density matrix ρ̄Q = TrcolorρQ satisfies

∂

∂t
ρ̄Q(t, x⃗, y⃗) = i

∇2
x −∇2

y

2M
ρ̄Q(t, x⃗, y⃗)−CF

[
F1(⃗0)− F1(x⃗− y⃗)

]
ρ̄Q(t, x⃗, y⃗)

+CF

[
F⃗2(x⃗− y⃗) · (∇⃗x − ∇⃗y)

]
ρ̄Q(t, x⃗, y⃗)

+CF

[
F ij
3 (x⃗− y⃗)∂ix∂

j
y + F ii

3 (⃗0)
∇2
x +∇2

y

6

]
ρ̄Q(t, x⃗, y⃗),

(4.17)

F1(r⃗) ≡ D(r⃗) +
∇2D(r⃗)

4MT
+

∇4D(r⃗)

64M2T 2
, F⃗2(r⃗) ≡ ∇⃗

(
D(r⃗)

4MT
+

∇2D(r⃗)

32M2T 2

)
, (4.18)

F ij
3 (r⃗) ≡ −∂i∂jD(r⃗)

16M2T 2
. (4.19)

Eq. (4.17) with CF = 1 can be reduced to the Caldeira Leggett model master equation
plus Eq. (4.15) by taking the semi classical limit |x⃗− y⃗| → 0 and expanding D(x⃗− y⃗) up
to the second order. This can be compensated for the expansion of small x⃗Q in Eq. (4.10)
up to the leading order. In this regard, the Caldeira Leggett model is expected just for the
localized state. In Ref. [84], it may be considered to lack the typical coherent length scale
of the thermal environment. Thus, the simple application of the Caldeira Leggett model to
the in-medium quarkonium relative motion is questionable, since the quarkonium spatial
size in particular for the deeply bound ground state can be the same order of the typical
environmental correlation length. The relative motion has the same number of dimensions
of degrees of freedom as the Caldeira Leggett model, though.

Here, we consider the Wigner transformation of the master equation for Caldeira
Leggett model, which is defined by

f(t, r⃗, p⃗) ≡
∫
d3s e−ip⃗·s⃗ρQ

(
t, r⃗ +

s⃗

2
, r⃗ − s⃗

2

)
, x⃗ = r⃗ +

s⃗

2
, y⃗ = r⃗ − s⃗

2
. (4.20)

We note f(t, r⃗, p⃗) is can be regarded as the phase space distribution except for the fact that
it can be negative at some points. In this respect, the evolution of the density matrix can
be seen as the Fokker Planck equation which has the corresponding Langevin equation.
Here, we assume, for simplicity,

F1(r⃗) ≃ D(r⃗) +
∇2D(r⃗)

4MT
, F⃗2(r⃗) ≃ ∇⃗F1(r⃗), F ij

3 (r⃗) = 0 (4.21)

in the order of the gradient expansions and the time evolution of f(t, r⃗, p⃗) in the semi
classical limit |r⃗| → 0 with κ ≡ −∇2D(⃗0)

3
is

∂f(t, r⃗, p⃗)

∂t
=− p⃗ · ∇⃗r

M
f(t, r⃗, p⃗) +

∂

∂p⃗
·
[ κ

2MT
p⃗f(t, r⃗, p⃗)

]
+
κ

2

∂

∂p⃗
· ∂f(t, r⃗, p⃗)

∂p⃗
. (4.22)

We note Eq. (4.22) is in the same form of Kramers equation for the distribution function
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W (x⃗, v⃗, t) in the position-velocity space

∂W (x⃗, v⃗, t)

∂t
=

3∑
i=1

[
− ∂

∂xi
vi +

∂

∂vi
(Γvi) + Γv2th

∂2

∂vi∂vi

]
W (x⃗, v⃗, t), (4.23)

where vth =
√

T
M

is the thermal velocity[85]. This can be described by the equivalent
Langevin equation. In the Langevin equation, the stochastic force and drag force are
included as

˙⃗x =v⃗, ˙⃗v = −Γv⃗ + Ξ⃗(t), ⟨Ξi(t)Ξj(t′)⟩Ξ =
2ΓT

M
δ(t− t′)δij, (4.24)

the last equation of which represents the relation with the statistical average of the stochas-
tic force Ξ(t)[85]. The correspondence between Eq. (4.22) and Eq. (4.23) is given by
Γ = κ

2MT
.

4.1.2 Extension to Quarkonium Case
We next move onto the case of a quarkonium in the quark-gluon plasma. As in the case
of a single heavy quark case, the discussions start form the Hamiltonian (4.2). The dif-
ferences from the discussions for a single heavy quark in Sec. 4.1.1 are the expression
of Sa(x) and the existence of the correction to the Hamiltonian ∆HQQc in the gradient
expansions. The expressions for Sa(x) and Ṡa(x) are

Sa(x⃗) =δ (x⃗− x⃗Q)
(
taQ ⊗ 1

)
− δ (x⃗− x⃗Qc)

(
1⊗ ta∗Qc

)
(4.25)

Ṡa(x⃗) =

[
− i

2M
∇2
xδ (x⃗− x⃗Q)−

1

M
∇⃗xδ (x⃗− x⃗Q) · p⃗Q

] (
taQ ⊗ 1

)
(4.26)

−
[
− i

2M
∇2
xδ (x⃗− x⃗Qc)−

1

M
∇⃗xδ (x⃗− x⃗Qc) · p⃗Qc

] (
1⊗ ta∗Qc

)
(4.27)

And the correction to the Hamiltonian is calculated as

∆HS =

[
−2V (x⃗Q − x⃗Qc)−

1

8MT

{
p⃗Q − p⃗Qc , ∇⃗D (x⃗Q − x⃗Qc)

}]
(taQ ⊗ ta∗Qc

). (4.28)

We note that ∆HS is composed of the leading and the next-to-leading order terms in
the gradient expansions. The leading term is from the gluon interactions and included
in the Hamiltonian term as the quarkonium potential V (x⃗Q − x⃗Qc) = −2V (x⃗Q − x⃗Qc).
The induced potential term here can improve the Ṡa(x⃗) and accordingly the Lindblad
operator. Following the same steps as in a single heavy quark case, the resultant effective
Hamiltonian is

Heff ≡
p2Q + p2Qc

2M
+

[
V (x⃗Q − x⃗Qc)−

1

8MT

{
p⃗Q − p⃗Qc , ∇⃗D (x⃗Q − x⃗Qc)

}] (
taQ ⊗ ta∗Qc

)
.

(4.29)
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The Lindblad master equation for a quarkonium in the quark-gluon plasma is derived after
some algebra, as follows

d

dt
ρQQc(t) =− i [Heff , ρQQc ] +

∑
a

∫
k

[
2La(k⃗)ρQQcL

a†(k⃗)−
{
La†(k⃗)La(k⃗), ρQQc

}]
,

(4.30)

La(k⃗) =

√
D(k⃗)

2

[
eik⃗·x⃗Q/2

(
1− k⃗ · p⃗Q

4MT

)
eik⃗·x⃗Q/2

(
taQ ⊗ 1

)
− eik⃗·x⃗Qc/2

(
1− k⃗ · p⃗Qc

4MT

)
eik⃗·x⃗Qc/2

(
1⊗ ta∗Qc

)
−V (x⃗Q − x⃗Qc)

4T

(
eik⃗·x⃗Q − eik⃗·x⃗Qc

)
ifabc

(
taQ ⊗ ta∗Qc

)]
. (4.31)

The first two terms of the Lindblad operator are similar to U(1) case. Similarly, they
can be interpreted as thermal fluctuating effects by random forces and dissipative effects
by frictional forces during collisions with surrounding medium particles. The operator
eik⃗·x⃗QtaQ acting on such states represents the momentum transfer of the heavy quark Q
by k⃗ and changes the heavy quark color state and also the corresponding operator for the
antiquark Qc exists. Including the next-to-leading-order term can be interpreted as the
modification of the rate, resulting in the momentum dependent rate as in Eq. (4.11).

Reduction to Relative Motion

Since quarkonium is a two-body system, its dynamics is composed of the two dynamics,
the center of mass motion and the relative motion. In the role of quarkonia in heavy ion
collisions, the dissociation of a quarkonium bound state, charmonium or bottomonium in
the quark-gluon plasma is closely related to the relative distance between the two heavy
quarks in the quarkonium potential. We hereafter are motivated to focus on the relative
motion by tracing out the center of mass motion.

The procedure of tracing out the center of mass motion from the explicit Lindblad
equation (4.30) can be directly performed by

ρrQQc
(r⃗, s⃗) =

∫
dR⃗dS⃗ ρQQc(x⃗Q, x⃗Qc , y⃗Q, y⃗Qc)δ(R⃗− S⃗)

≡TrR[ρQQc ], (4.32)

where the center of mass coordinates of R⃗ and S⃗, and the relative coordinates of r⃗ and s⃗
are defined by

R⃗ =
x⃗Q + x⃗Qc

2
, r⃗ = x⃗Q − x⃗Qc, S⃗ =

y⃗Q + y⃗Qc
2

, s⃗ = y⃗Q − y⃗Qc. (4.33)

Accordingly we introduce the center of mass momentum and the relative momentum as

P⃗ = p⃗Q + p⃗Qc , p⃗ =
p⃗Q − p⃗Qc

2
. (4.34)

This procedure results in the master equation for the relative motion, which shows that
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the relative motion is coupled to the center of mass motion and that they are not able to be
completely decoupled at all. In the following, we take the specific assumption and derive
the Lindblad operator for the relative motion. In these coordinates, the Hamiltonian and
the Lindblad operators are

Heff =
P⃗ 2

4M
+
p⃗2

M
+

[
V (r⃗)− 1

4MT

{
p⃗, ∇⃗D (r⃗)

}] (
taQ ⊗ ta∗Qc

)
≡HR +Hr, (4.35)

La(k⃗) =

√
D(k⃗)

2

[
eik⃗·R⃗

{
1− k⃗

4MT
·
(
1

2
P⃗ + p⃗

)}
eik⃗·r⃗/2

(
taQ ⊗ 1

)
− eik⃗·R⃗

{
1− k⃗

4MT
·
(
1

2
P⃗ − p⃗

)}
e−ik⃗·r⃗/2

(
1⊗ ta∗Qc

)
−eik⃗·R⃗V (r⃗)

4T

(
eik⃗·r⃗/2 − e−ik⃗·r⃗/2

)
ifabc

(
taQ ⊗ ta∗Qc

)]
≡eik⃗·R⃗Ca(k⃗, Or, P⃗ ), (4.36)

where the operators Hr and Or ∈ {r⃗, p⃗, ta ⊗ 1, 1⊗ ta∗} are only for the relative coordi-
nate and the color space. The operator Ca(k⃗, Or, P⃗ ) is defined like the above. To proceed
further, we assume that the center of mass time scale is longer than that of the relative
motion because the potential bends the trajectories of the relative motion 1 2. This as-
sumption allows us to fix the center-of-mass momentum P⃗ = P⃗CM in the equation and
represent the quarkonium density matrix by

ρQQc = |P⃗CM⟩ ⟨P⃗CM| ⊗ ρrQQc
, (4.37)

and express the Lindblad master equation for the relative motion by ρrQQc
with the Lind-

blad operator Ca(k⃗, Or, P⃗CM) as below. We then can calculate

TrR

(
La(k⃗)ρQQcL

a(k⃗)
)
= Ca(k⃗, Or, P⃗CM)ρ

r
QQc

Ca†(k⃗, Or, P⃗CM), (4.38)

TrR

(
La†(k⃗)La(k⃗)ρQQc

)
= Ca†(k⃗, Or, P⃗CM)C

a(k⃗, Or, P⃗CM)ρ
r
QQc

, (4.39)

TrR

(
ρQQcL

a†(k⃗)La(k⃗)
)
= ρrQQc

Ca†(k⃗, Or, P⃗CM)C
a(k⃗, Or, P⃗CM). (4.40)

The last thing to be calculated is TrR[Heff , ρQQc ] and its calculation can be done noting

TrR(O
1O2) = TrR(O

2O1) (4.41)

for any operator O1 = O1
R ⊗ 1 and O2. This relation is derived as follows. For the

eigenstates in the Hilbert space for the center of mass motion HR indexed by the integers

1As in Ref. [86], with pNRQCD construction where M ≫ Mv ≫ Mv2, T , the virial theorem tells
p⃗2/M is in the same scale as the potential ∼ Mv2. The center of mass momentum is P⃗CM ≪ Mv since
the momentum ∼ Mv is already integrated out, and thus the center of mass kinetic energy is neglected by
power counting. Ref. [87] also includes the center of mass motion, but neglects it in the case of P⃗CM < T .

2We note that Eq. (4.30) are formulated in the position and momenta of the individual heavy quarks,
where both the physics of relative and center of mass coordinates is present, and simulating them might
expect to support this assumption if it shows their different time scales.
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iR and those in the Hilbert space for the relative motion Hr indexed by the integers ir, we
calculate[
TrR(O

1O2)
]
irjr

= [(O1O2)kRkR ]irjr =
(
O1

R

)kRlR δirmr(O
2)lRkRmrjr

=
(
O1

R

)kRlR (O2)lRkRirjr
,

(4.42)[
TrR(O

2O1)
]
irjr

= [(O2O1)kRkR ]irjr = (O2)kRlRirmr

(
O1

R

)lRkR δmrjr = (O2)kRlRirjr

(
O1

R

)lRkR
=
(
O1

R

)lRkR (O2)kRlRirjr
=
(
TrR(O

1O2)
)
irjr

. (4.43)

We then obtain

TrR [HR, ρQQc ] = 0, TrR [Hr, ρQQc ] =
[
Hr, ρ

r
QQc

]
. (4.44)

After these steps, the Lindblad equation for the relative motion of a quarkonium in the
quark-gluon plasma is thus finally reduced to

d

dt
ρrQQc

(t) =− i
[
Hr, ρ

r
QQc

]
+
∑
a

∫
k

[
2La(k⃗)ρrQQc

La†(k⃗)−
{
La†(k⃗)La(k⃗), ρrQQc

}]
,

(4.45)

La(k⃗) ≡AQ
(
taQ ⊗ 1

)
−BQc

(
1⊗ ta∗Qc

)
+ CQQc if

abc
(
taQ ⊗ ta∗Qc

)
. (4.46)

AQ =

√
D(k⃗)

2

{
1− k⃗

4MT
·
(
1

2
P⃗CM + p⃗

)}
eik⃗·r⃗/2 (4.47)

BQc =

√
D(k⃗)

2

{
1− k⃗

4MT
·
(
1

2
P⃗CM − p⃗

)}
e−ik⃗·r⃗/2 (4.48)

CQQc =

√
D(k⃗)

2

{
−V (r⃗)

4T

(
eik⃗·r⃗/2 − e−ik⃗·r⃗/2

)}
(4.49)

The constituents of the Lindblad operator AQ, BQc , and CQQc are defined like the above.
As the constituents of the Lindblad equation, the functions of the potential V (x⃗) and the
medium correlations D(x⃗) determine the in-medium dynamics of a quarkonium. We note
the shifted momentum form these operators is ±k⃗/2 since we here consider the relative
motion and that the transferred momentum for a heavy quark and antiquark is k⃗ as in
Eq. (4.31) and Eq. (4.34). We will later find CQQc in Eq. (4.46) is related only to the
different color transitions as in Eq. (4.53).

Here we remark the relation to the stochastic potential model[68, 69, 88] in this thesis.
The stochastic potential model describes the decoherence phenomenon of the quarkonium
wave function. The Hamiltonian is composed of the kinetic term, the potential term, and
the stochastic noise term. This stochastic description can be shown to be transformed
into the Lindblad master equation by gradient expansion just up to the leading order. In
this respect, the leading-order gradient expansion shows the fluctuating forces from the
medium since the spatial derivative of the stochastic noise term in the Hamiltonian of the
stochastic potential model represents stochastic forces to a quarkonium. Thus, the next-to-
leading order term gives the dissipative effects on the in-medium quarkonium dynamics,
so that the detailed balance relation does not hold just up to the leading-order gradient
expansion in the recoilless limit. The two cases with and without dissipation differ in
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whether or not recoils of a heavy quark are considered in that the momentum operator can
change the heavy quark position. Recoils can translate the heavy quarks and contribute
more to a localized wave function than to an extended wave function, which we will come
back to the phenomenological case with the more realistic setup in Sec. 5.5.

We note that in U(1) case we can ignore the terms stemming from color factors such
as taQ and ta∗Qc

in the Lindblad operator. In these derivations for both U(1) and SU(Nc)
color cases, the center of mass momentum P⃗CM is an external parameter given by hand
and can depend on time. This explicit dependence in the Lindblad operator (4.46) can
provide one of the ways of describing a traversing quarkonium in the quark-gluon plasma
medium with the quarkonium small velocity P⃗CM/2M . As discussed in Appendix B, we
find that this effect on the quarkonium relative motion is mild and we then fix P⃗CM = 0
in all of the following simulations in Sec. 5.4 and Sec. 5.5.

Eq. (4.45) can also be represented in the singlet-octet bases 3. The resultant Lindblad
equation for the density matrix

ρrQQc
=

(
ρrs 0
0 ρro

)
, ρro =

∑
i

ρroi . (4.50)

with the four different Lindblad operators in the singlet-octet bases and P⃗CM = 0,

d

dt
ρrQQc

= −i
[
Hr, ρ

r
QQc

]
+

4∑
i=1

∫
k

[
2Li(k⃗)ρrQQc

Li†(k⃗)−
{
Li†(k⃗)L

a†
(k⃗)Li(k⃗), ρrQQc

}]
,

(4.51)

Hr =

(
p2

M
0

0 p2

M

)
+

[
V (r⃗)− 1

4MT

{
p⃗, ∇⃗D (r⃗)

}]( CF 0
0 − 1

2NC

)
, (4.52)

L1(k⃗) =
1√
2Nc

[
AQ −BQc +

Nc

2
CQQc

]( 0 1
0 0

)
,

L2(k⃗) =
√
CF

[
AQ −BQc −

Nc

2
CQQc

]( 0 0
1 0

)
,

L3(k⃗) =

√
N2
c − 4

4Nc

[
AQ −BQc

]( 0 0
0 1

)
, L4(k⃗) =

√
Nc

4

[
AQ +BQc

]( 0 0
0 1

)
.

(4.53)

In a single heavy quark case, we have seen the detailed balance approximately holds.
In a quarkonium case, similarly, the detailed balance is expected to hold. We here consider
color singlet-octet transitions caused by L1(k⃗) and L2(k⃗). In the Lindblad operator (4.53),
the terms containing the factorsM and V (r) stem from the next-to-leading-order gradient
expansion. Though it is difficult to find the analytic solutions of the steady-states, the
information of the distribution of the steady-states as a solution of the Lindblad equation
may be classically or qualitatively inferred.

In the Lindblad operators, the momentum operator p⃗ mixes the color singlet and octet
states at different spatial points. When we extract only the dynamics in the color spaces,
it is an easy approximation to take the static limit of the infinite heavy quark mass. Sup-

3We suppose SU(3) color case later in the numerical simulations.
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posing that L1(k⃗) and L2(k⃗) in this limit act on the spatial eigenstate |x⃗⟩, we obtain

L1(k⃗) |x⃗⟩ =

√
D(k⃗)

2

√
1

2Nc

[
(eik⃗·x⃗/2 − e−ik⃗·x⃗/2)

{
1− NcV (x⃗)

8T

}]
|x⃗⟩ , (4.54)

L2(k⃗) |x⃗⟩ =

√
D(k⃗)

2

√
CF

[
(eik⃗·x⃗/2 − e−ik⃗·x⃗/2)

{
1 +

NcV (x⃗)

8T

}]
|x⃗⟩ . (4.55)

By sandwiching ⟨x⃗| in Eqs. (4.54) and (4.55), the ratio of the transition rate between the
color singlet and octet states caused by L1(k⃗) and L2(k⃗) is thus represented by

Γ2
s→o

Γ1
o→s

∝

[
1− NcV (x⃗)

8T

]2
[
1 + NcV (x⃗)

8T

]2 . (4.56)

When the energy gap between the singlet and the octet state, the difference of the potential
Vo(x⃗)− Vs(x⃗) is smaller than the temperature, Eq. (4.56) can be approximated by

Γ2
s→o

Γ1
o→s

∝ e−
1
T
[Vo(x⃗)−Vs(x⃗)], Vs(x⃗) ≡

N2
c − 1

2Nc

V (x⃗), Vo(x⃗) ≡ − 1

2Nc

V (x⃗). (4.57)

In Eq. (4.57), Vs(x⃗) and Vo(x⃗) respectively represent the singlet attractive and octet re-
pulsive potential. Eq. (4.57) implies that the energy difference in a singlet-octet transition
appears in the exponent and that the detailed balance in the color space is approximately
satisfied in the late time limit. These discussions imply that the leading-order gradient ex-
pansion cannot lead the detailed balance form and that including the next-to-leading-order
gradient expansion can play a partial role in satisfying the detailed balance relation.

4.2 Comparison to Related Studies
More attention has been paid to the in-medium quarkonium dynamics with the Lind-
blad master equation in the open quantum systems framework recently. The two major
schemes of the non-relativistic QCD (NRQCD) and the potential non-relativistic QCD
(pNRQCD) effective theories in Sec. 2.2.1 have been often applied. These effective the-
ories are established with some specific hierarchies of energy scales in the heavy quark
system of interest. The essential difference between them is whether or not they are in the
dipole limit of quarkonium states and the applicability of pNRQCD is limited in terms
of the sizes of quarkonium states. However, as the excited states of a quarkonium have
the more spread wave functions than the ground state, the question whether the whole
interactions in the quarkonium dynamics in the quark-gluon plasma can be approximated
by the dipole interactions or not is not clear.

We in turn mention recent developments in several studies based on either NRQCD
or pNRQCD as in Fig. 4.1. Along the first branch in NRQCD scheme, with the help of
the Lindblad master equation obtained after tracing out the medium degrees of freedom,
the in-medium dynamics of quarkonia has been discussed. Now it is possible to discuss it
with quantum dissipative effects by systematically deriving the Lindblad master equation
with a set of approximations of time hierarchies. This is also based on the calculations
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Fig. 4.1: Different approaches based on open quantum systems to in-medium quarkonium dy-
namics. Our work is via nonlinear stochastic Schrödinger equation, or quantum state
diffusion method (Sec. 5).

in the small couplings. The first simulation of quantum dissipation is done in Ref. [89],
where the discussion, however, is not complete in that the additional term is needed for
quarkonium Lindbladian dynamics. The Lindbladian dynamics can be cast into the non-
linear stochastic Schrödinger equation by quantum state diffusion method[90], which can
connect some phenomenological models in this form with a theoretical basis. By tak-
ing the classical limit, quarkonium dynamics can be effectively described by generalized
Langevin equation with a stochastic force with the degrees of freedom of heavy quark
colors, where the drag coefficient depends on the relative distance and the interference
inside the heavy quark pair is introduced[71, 72]. In the context of classicalization, it was
pointed out that in the single quark case it is questionable whether or not the superposition
state is neglected in the time scale of interest even after the decoherence processes to the
classical dynamics[91].

In the second branch, that is, pNRQCD scheme, with the help of the time scale sepa-
rations, for a weakly coupled medium, the Lindblad master equation reduces to the Boltz-
mann equation of the distribution function of quarkonia after the Wigner transformation[75].
The improvement of this study is discussed in Ref. [83]. Going towards the non-perturbative
regime, for a strongly coupled medium, the in-medium quarkonium dynamics is described
by the Lindblad master equation with the heavy quark diffusion constant, the transport
coefficient. This factor has been now estimated from the chromoelectric field correlator
form perturbative lattice QCD results[92, 93].

In the summary of the characteristics of our work[44, 45, 46] among these studies, our
analysis focuses on its Lindbladian dynamics affected by both the medium fluctuations
and the dissipative effects in addition to the potential screening effect, and expects to deal
with more excited quarkonium states.
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Chapter 5

Numerical Simulations

In this Chap. 5, we discuss the quarkonium dynamics in the quark-gluon plasma from the
Lindblad master equation derived in Sec. 4.1.2. In our study, the quantum dissipation and
also the color transitions of quarkonium states are focused on. To discuss and interpret
them, we need to numerically solve the Lindblad master equation, which demands a high
numerical cost because the density matrix is in a matrix form. With the spatial coordinate
discretized into O(Nx), the cost becomes proportional to O(N2

x). We first explain how to
reduce the cost via one of the stochastic unraveling methods, which is called the quantum
state diffusion in Sec. 5.1. In Sec. 5.2, we next show the equation to be simulated instead
of the Lindblad master equation, via the quantum state diffusion method. Then we show
the numerical setups in the one-dimensional case in Sec. 5.3 and the numerical results
both in U(1) and in SU(3) cases. We take two kinds of the simulation conditions: fixed
temperature and time-dependent temperature. In the fixed temperature case, we confirm
the equilibration of an in-medium quarkonium and show how the dissipation affects the
quarkonium states in Sec. 5.4. In the phenomenological application to quarkonia in heavy
ion collisions, we consider the decreasing temperature in time and simulate how different
charmonium states and bottomonium states evolve in the presence of the dissipation is
Sec. 5.5. From these simulations, we emphasize the dissipative effects on the in-medium
quarkonium dynamics.

5.1 Quantum State Diffusion Method
Even though we could directly solve the Lindblad master equation (4.51) to analyze the
relative motion of a quarkonium in the quark-gluon plasma, the time cost in the numerical
calculations for unraveling its dynamics with the Lindblad master equation is expected to
be high. The method of the quantum state diffusion is good for the reduction of the cost
time by transforming the deterministic Lindblad master equation for a density matrix to
the stochastic equation for a state vector as follows[94]. In this respect, the method of
quantum state diffusion is one of the stochastic unravellings.

We here consider the stochastic differential equation in the Ito form

|dψ⟩ ≡ |ψ(t+ dt)⟩ − |ψ(t)⟩ = |v⟩ dt+
∑
k

|fk⟩ dξk (5.1)

for the state vector |ψ⟩. With ensemble average over completely infinite set of the wave
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functions, the density matrix is defined by

ρ = M [|ψ⟩ ⟨ψ|] , (5.2)

and it evolves according to the Lindblad master equation

d

dt
ρ = −i [H, ρ] +

∑
k

[
2LkρL

†
k −

{
L†
kLk, ρ

}]
. (5.3)

M [O] here expresses a mean over a distribution of O, or an expectation value of O.
The terms |v⟩ dt and

∑
k |fk⟩ dξk in Eq. (5.1) respectively represent the drift and fluc-

tuation term. The differential stochastic complex fluctuations dξk satisfy

M [Re (dξi) Re (dξj)] =M [Im (dξi) Im (dξj)] = δijdt, (5.4)
M [Re (dξi) Im (dξj)] =0, (5.5)

M [dξi] =0. (5.6)

The fluctuations at the different time are independent and Eq. (5.1) represents Markovian
property.

To keep the norm of the state vector |ψ⟩, the differential change in the state vector
from the fluctuations in the infinitesimal time is orthogonal to the state

⟨ψ |fk⟩ = 0. (5.7)

Taking the means over |dψ⟩ and |dψ⟩ ⟨dψ| leads to

M[|dψ⟩] = |v⟩ dt, (5.8)

M[|dψ⟩ ⟨dψ|] =2
∑
k

|fk⟩ ⟨fk| dt. (5.9)

With these properties above, the change of the density matrix is

dρ ≡ρ(t+ dt)− ρ(t) = M [|ψ⟩ ⟨dψ|+ |dψ⟩ ⟨ψ|+ |dψ⟩ ⟨dψ|] , (5.10)

ρ̇ = |ψ⟩ ⟨v|+ |v⟩ ⟨ψ|+ 2
∑
k

|fk⟩ ⟨fk| . (5.11)

By the projection onto the density matrix ρψ = |ψ⟩ ⟨ψ| at the initial time, the stochastic
terms |fk⟩ are calculated by the component of ρ̇ which is orthogonal to the state |ψ⟩

2
∑
k

|fk⟩ ⟨fk| = (I− ρψ)ρ̇(I− ρψ). (5.12)

It turns clearly with the help of the Lindblad master equation,

2
∑
k

|fk⟩ ⟨fk| = (I− ρψ)ρ̇(I− ρψ) =
∑
k

2(I− ρψ)LkρψL
†
k(I− ρψ) (5.13)

≡
∑
k

2 |Lk,∆ψ⟩ ⟨Lk,∆ψ| , (5.14)

where Lk,∆ is defibed by Lk,∆ ≡ L− ⟨L⟩ψ and ⟨O⟩ψ represents the expectation value of

42



Chapter 5. Numerical Simulations 5.1. Quantum State . . .

O with respect to the state |ψ⟩. On the other hand, the drift term is given by

|v⟩ = ρ̇ |ψ⟩ − |ψ⟩ ⟨v|ψ⟩ , (5.15)

from which

⟨v|ψ⟩ = 1

2
⟨ψ| ρ̇ |ψ⟩+ iη (5.16)

is followed and η ∈ R. Since η is just some non-physical phase change of the state, we
can set η = 0 and thus derive

|v⟩ = −iH |ψ⟩+
∑
k

(
2 ⟨L†

k⟩ψ Lk − L†
kLk − ⟨L†

k⟩ψ ⟨Lk⟩ψ
)
|ψ⟩ . (5.17)

The equation via the quantum state diffusion method, which is in the form of the nonlinear
stochastic Schrödinger equation, is finally formulated by

|dψ⟩ ≡ |ψ(t+ dt)⟩ − |ψ(t)⟩

= −iH |ψ(t)⟩ dt+
∑
k

(
2 ⟨L†

k⟩ψ Lk − L†
kLk − ⟨L†

k⟩ψ ⟨Lk⟩ψ
)
|ψ(t)⟩ dt

+
∑
k

(
Lk − ⟨Lk⟩ψ

)
|ψ(t)⟩ dξk. (5.18)

The nonlinearity stems form the expectation values of the Lindblad operator ⟨Lk⟩ψ and
⟨L†

k⟩ψ. As is shown above, the ensemble average of the solution of Eq. (5.18) for the wave
functions ψ provides the approximate solution for the Lindblad master equation (5.3) for
the density matrix. As a remark, the direct solution may be considered more reliable
as it does not require any additional approximations which are needed for the stochastic
unraveling.

In a practical numerical simulation, the “simplified” nonlinear stochastic Schrödinger
equation

|dψ⟩ ≡ |ψ(t+ dt)⟩ − |ψ(t)⟩

= −iH |ψ(t)⟩ dt+
∑
k

(
2 ⟨L†

k⟩ψ Lk − L†
kLk

)
|ψ(t)⟩ dt+

∑
k

Lk |ψ(t)⟩ dξk (5.19)

was proposed[90]. This is derived by dropping from Eq. (5.18) the scalar terms, ⟨L†
k⟩ψ ⟨Lk⟩ψ dt

and ⟨Lk⟩ψ dξk, which are constant with respect to the spatial variable x⃗ in ψ(x⃗), since they
just contributes the state norm, not the spatial structure of the wave function. This mod-
ification to Eq. (5.19), however, does not preserve the norm of the wave function and
it is compensated by introducing the density matrix composed of the normalized wave
functions for different samplings

ρ(t) ≡ M

[
|ψ(t)⟩ ⟨ψ(t)|
⟨ψ(t)|ψ(t)⟩

]
. (5.20)

This simplified version has been recently applied for the discussions on the equilibration
of a single heavy quark in the quark-gluon plasma[80].
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5.2 Nonlinear Stochastic Schrödinger Equation
Let us introduce our simulation prescription by applying the quantum state diffusion
method to our case of the relative motion of a quarkonium in the quark-gluon plasma
in Eq. (4.45). In SU(3) case, we instead solve Eq. (4.51), which has the quarkonium state
vector or wave function with two color components of singlet and octet. The evolution
equation for the wave function via the quantum state diffusion method consists of three
parts: the effective Hamiltonian term, as well as the additional terms related to the Lind-
blad operators and the stochastic terms. They represent a stochastic integrodifferential
equation, that is, the nonlinear stochastic Schrödinger equation, whose explicit form will
be shown in Eq. (5.21) for U(1) case and Eq. (5.33) for SU(3) color case.

5.2.1 U(1) Case
For U(1) case, the nonlinear stochastic Schrödinger equation is

dψ(x⃗) = dt
[
i
∇⃗2

M
ψ(x⃗)− iV (x⃗)ψ(x⃗)

]
+

2dt

⟨ψ|ψ⟩

{∫
dy⃗
(
G̃1(x⃗, y⃗)N(y⃗)ψ(x⃗) + ⃗̃H1(x⃗, y⃗) ·N(y⃗) ∇⃗xψ(x⃗)

+ ⃗̃G2(x⃗, y⃗) · J⃗(y⃗) ψ(x⃗) + H̃ ij
2 (x⃗, y⃗) J

j(y⃗)∇i
xψ(x⃗)

)}
− dt

[
I1(x⃗)ψ(x⃗) + I⃗2(x⃗) · ∇⃗ψ(x⃗) + I ij3 (x⃗)∇i∇jψ(x⃗)

]
+
[
ζ1

( x⃗
2

)
ψ(x⃗)− ζ⃗2

( x⃗
2

)
· ∇⃗ψ(x⃗)

]
, (5.21)

with

G1(x⃗) = D(x⃗) +
∇⃗2

8MT
D(x⃗), G⃗2(x⃗) = ∇⃗D(x⃗) +

∇⃗∇⃗2

8MT
D(x⃗) , (5.22)

G̃1(x⃗, y⃗) = G1

( x⃗− y⃗

2

)
−G1

( x⃗+ y⃗

2

)
, (5.23)

⃗̃G2(x⃗, y⃗) =
1

4MT

[
G⃗2

( x⃗− y⃗

2

)
+ G⃗2

( x⃗+ y⃗

2

)]
, (5.24)

⃗̃H1(x⃗, y⃗) =
1

4MT

[
[∇⃗D]

( x⃗− y⃗

2

)
− [∇⃗D]

( x⃗+ y⃗

2

)]
, (5.25)

H̃ ij
2 (x⃗, y⃗) =

1

16M2T 2

[
[∇i∇jD]

( x⃗− y⃗

2

)
+ [∇i∇jD]

( x⃗+ y⃗

2

)]
, (5.26)

I1(x⃗) = D(⃗0)−D(x⃗)

+
∇⃗2D(⃗0)

4MT
+

(∇⃗2)2D(⃗0)

64M2T 2
+

(∇⃗2)2D(x⃗)

64M2T 2
+

∇⃗2D(x⃗)

4MT
, (5.27)

I⃗2(x⃗) =
∇⃗∇⃗2D(x⃗)

16M2T 2
− ∇⃗D(x⃗)

2MT
, I ij3 (x⃗) =

∇i∇jD(⃗0)

16M2T 2
+

∇i∇jD(x⃗)

16M2T 2
, (5.28)

N(x⃗) = ψ†(x⃗)ψ(x⃗) , J⃗(x⃗) = ψ†(x⃗)∇⃗ψ(x⃗) , (5.29)

ζ1(x⃗) = dξ(x⃗)− dξ(−x⃗) + ∇⃗2dξ(x⃗)

2MT
− ∇⃗2dξ(−x⃗)

2MT
, (5.30)
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ζ⃗2(x⃗) =
∇⃗dξ(x⃗)
2MT

− ∇⃗dξ(−x⃗)
2MT

. (5.31)

5.2.2 SU(3) Color Case
For SU(3) color case, the nonlinear stochastic Schrödinger equation for the colored state
with two components

|ψ⟩k =
(

|ψs⟩
|ψo⟩

)
k

(5.32)

in color singlet octet bases is

dψ(x⃗)k

= dt

 i ∇⃗
2

M
ψs(x⃗) + CF

[
−iV (x⃗)ψs(x⃗) +

∇⃗D(x⃗)
2MT

∇⃗ψs(x⃗) + ∇⃗2D(x⃗)
4MT

ψs(x⃗)
]

i ∇⃗
2

M
ψo(x⃗)− 1

2Nc

[
−iV (x⃗)ψo(x⃗) +

∇⃗D(x⃗)
2MT

∇⃗ψo(x⃗) + ∇⃗2D(x⃗)
4MT

ψo(x⃗)
] 

k

+
2dt

⟨ψ|ψ⟩
1

2Nc

∫
dy
[
G̃1

1(x⃗, y⃗)
]
N1(y⃗)ψ̃1(x⃗)k

+
[
⃗̃H1
1 (x⃗, y⃗)

]
N1(y⃗) · ∇⃗ψ1(x⃗)k

+
[
⃗̃G1
2(x⃗, y⃗)

]
· J⃗1(y⃗)ψ1(x⃗)k+

[
H̃1,ij

2 (x⃗, y⃗)
]
J j1(y⃗) · ∇⃗ψ1(x⃗)k

+
[
Nc
V (x)

4T
K1
S(x⃗, y⃗) +Nc

V (y)

4T

(
1 +

∇2

8MT

)
K1
S(x⃗, y⃗)

+
N2
c

4

V (x)V (y)

4T 2
K1
S(x⃗, y⃗)

]
N1(y⃗)ψ1(x⃗)k

+
[
Nc
V (y)

4T

∇⃗
4MT

K1
S(x⃗, y⃗)

]
N1(y⃗) · ∇⃗ψ1(x⃗)k

+
[
Nc
V (x)

4T
K⃗2
S(x⃗, y⃗)

]
· J⃗1(y⃗)ψ1(x⃗)k

+
2dt

⟨ψ|ψ⟩
CF

∫
dy
[
G̃2

1(x⃗, y⃗)
]
N2(y⃗)ψ2(x⃗)k+

[
⃗̃H2
1 (x⃗, y⃗)

]
N2(y⃗) · ∇⃗ψ2(x⃗)k

+
[
⃗̃G2
2(x⃗, y⃗)

]
· J⃗2(y⃗)ψ2(x⃗)k+

[
H̃2,ij

2 (x⃗, y⃗)
]
J j2(y⃗)∇iψ2(x⃗)k

−
[
Nc
V (x)

4T
K1
S(x⃗, y⃗) +Nc

V (y)

4T

(
1 +

∇2

8MT

)
K1
S(x⃗, y⃗)

− N2
c

4

V (x)V (y)

4T 2
K1
S(x⃗, y⃗)

]
N2(y⃗)ψ2(x⃗)k

−
[
Nc
V (y)

4T

∇⃗
4MT

K1
S(x⃗, y⃗)

]
N2(y⃗) · ∇⃗ψ2(x⃗)k

−
[
Nc
V (x)

4T
K⃗2
S(x⃗, y⃗)

]
· J⃗2(y⃗)ψ2(x⃗)k

+
2dt

⟨ψ|ψ⟩
N2
c − 4

4Nc

∫
dy
[
G̃3

1(x⃗, y⃗)
]
N3(y⃗)ψ3(x⃗)k+

[
⃗̃H3
1 (x⃗, y⃗)

]
N3(y⃗) · ∇⃗ψ3(x⃗)k

+
[
⃗̃G3
2(x⃗, y⃗)

]
· J⃗3(y⃗)ψ3(x⃗)k+

[
H̃3,ij

2 (x⃗, y⃗)
]
J j3(y⃗)∇iψ3(x⃗)k
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+
2dt

⟨ψ|ψ⟩
Nc

4

∫
dy
[
G̃4

1(x⃗, y⃗)
]
N4(y⃗)ψ4(x⃗)k+

[
⃗̃H4
1 (x⃗, y⃗)

]
N4(y⃗) · ∇⃗ψ4(x⃗)k

+
[
⃗̃G4
2(x⃗, y⃗)

]
J⃗4(y⃗)ψ4(x⃗)k+

[
H̃4,ij

2 (x⃗, y⃗)
]
J j4(y⃗) · ∇⃗ψ4(x⃗)k

− dt

⟨ψ|ψ⟩
1

2Nc

[
I1(x⃗) + I⃗2(x⃗) · ∇⃗+ I ij3 (x⃗)∇i∇j

+
Nc

2

V (x⃗)

2T
L1(x⃗) +

Nc

2

∇iV (x⃗)

2T
Li2(x⃗) +

N2
c

4

V (x⃗)2

4T 2
L3(x⃗)

]
ψ̌1(x⃗)k

− dt

⟨ψ|ψ⟩
CF

[
I1(x⃗) + I⃗2(x⃗) · ∇⃗+ I ij3 (x⃗)∇i∇j

− Nc

2

V (r)

2T
L1(x⃗)−

Nc

2

∇iV (x⃗)

2T
Li2(x⃗) +

N2
c

4

V (x)2

4T 2
L3(x⃗)

]
ψ̌2(x⃗)k

− dt

⟨ψ|ψ⟩
N2
c − 4

4Nc

[
I1(x⃗) + I⃗2(x⃗) · ∇⃗+ I ij3 (x⃗)∇i∇j

]
ψ̌3(x⃗)k

− dt

⟨ψ|ψ⟩
Nc

4

[
I41 (x⃗) + I⃗42 (x⃗) · ∇⃗+ I4,ij3 (x⃗)∇i∇j

]
ψ̌4(x⃗)k

+
1√
2Nc

[(
1 +

∇⃗2

2MT

)
ζ11

( x⃗
2

)
+ ζ⃗12

( x⃗
2

)
· ∇⃗+

Nc

2

S(x)

2T
ζ11

( x⃗
2

)]
ψ̃1(x⃗)k

+
√
CF

[(
1 +

∇⃗2

2MT

)
ζ21

( x⃗
2

)
+ ζ⃗22

( x⃗
2

)
· ∇⃗ − Nc

2

S(x)

2T
ζ21

( x⃗
2

)]
ψ̃2(x⃗)k

+

√
N2
c − 4

4Nc

[(
1 +

∇⃗2

2MT

)
ζ31

( x⃗
2

)
+ ζ⃗32

( x⃗
2

)
· ∇⃗
]
ψ̃3(x⃗)k

+

√
Nc

4

[(
1 +

∇⃗2

2MT

)
ζ41

( x⃗
2

)
+ ζ⃗42

( x⃗
2

)
· ∇⃗
]
ψ̃4(x⃗)k , (5.33)

with

G1(x⃗) = D(x⃗) +
∇⃗2

8MT
D(x⃗), G⃗2(x⃗) = ∇⃗D(x⃗) +

∇⃗∇⃗2

8MT
D(x⃗), (5.34)

G̃1
1(x⃗, y⃗) = G̃2

1(x⃗, y⃗) = G̃3
1(x⃗, y⃗) = G1

( x⃗− y⃗

2

)
−G1

( x⃗+ y⃗

2

)
, (5.35)

G̃4
1(x⃗, y⃗) = G1

( x⃗− y⃗

2

)
+G1

( x⃗+ y⃗

2

)
, (5.36)

⃗̃G1
2(x⃗, y⃗) =

⃗̃G2
2(x⃗, y⃗) =

⃗̃G3
2(x⃗, y⃗) =

1

4MT

[
G⃗2

( x⃗− y⃗

2

)
+ G⃗2

( x⃗+ y⃗

2

)]
, (5.37)

⃗̃G4
2(x⃗, y⃗) =

1

4MT

[
G⃗2

( x⃗− y⃗

2

)
− G⃗2

( x⃗+ y⃗

2

)]
, (5.38)

⃗̃H1
1 (x⃗, y⃗) =

⃗̃H2
1 (x⃗, y⃗) =

⃗̃H3
1 (x⃗, y⃗)

=
1

4MT

[
[∇⃗D]

( x⃗− y⃗

2

)
− [∇⃗D]

( x⃗+ y⃗

2

)]
, (5.39)

⃗̃H4
1 (x⃗, y⃗) =

1

4MT

[
[∇⃗D]

( x⃗− y⃗

2

)
+ [∇⃗D]

( x⃗+ y⃗

2

)]
, (5.40)

H̃1,ij
2 (x⃗, y⃗) = H̃2,ij

2 (x⃗, y⃗) = H̃3,ij
2 (x⃗, y⃗)

=
1

16M2T 2

[
[∇i∇jD]

( x⃗− y⃗

2

)
+ [∇i∇jD]

( x⃗+ y⃗

2

)]
, (5.41)
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H̃4,ij
2 (x⃗, y⃗) =

1

16M2T 2

[
[∇i∇jD]

( x⃗− y⃗

2

)
− [∇i∇jD]

( x⃗+ y⃗

2

)]
, (5.42)

I11 (x⃗) = I21 (x⃗) = I31 (x⃗)

= D(⃗0)−D(x⃗) +
∇⃗2D(⃗0)

4MT
+

(∇⃗2)2D(⃗0)

64M2T 2
+

(∇⃗2)2D(x⃗)

64M2T 2
, (5.43)

I41 (x⃗) = D(⃗0) +D(x⃗) +
∇⃗2D(⃗0)

4MT
+

(∇⃗2)2D(⃗0)

64M2T 2
− (∇⃗2)2D(x⃗)

64M2T 2
, (5.44)

I⃗12 (x⃗) = I⃗22 (x⃗) = I⃗32 (x⃗) =
∇⃗∇⃗2D(x⃗)

16M2T 2
, I⃗42 (x⃗) = −∇⃗∇⃗2D(x⃗)

16M2T 2
, (5.45)

I1,ij3 (x⃗) = I2,ij3 (x⃗) = I3,ij3 (x⃗) =
∇i∇jD(⃗0)

16M2T 2
+

∇i∇jD(x⃗)

16M2T 2
, (5.46)

I4,ij3 (x⃗) =
∇i∇jD(⃗0)

16M2T 2
− ∇i∇jD(x⃗)

16M2T 2
, (5.47)

ψ1(x⃗) =

(
0 1
0 0

)
ψ(x⃗), ψ2(x⃗) =

(
0 0
1 0

)
ψ(x⃗), (5.48)

ψ3(x⃗) = ψ4(x⃗) =

(
0 0
0 1

)
ψ(x⃗), (5.49)

ψ̌1(x⃗) =

(
0 0
0 1

)
ψ(x⃗), ψ̌2(x⃗) =

(
1 0
0 0

)
ψ(x⃗), (5.50)

ψ̌3(x⃗) = ψ̌4(x⃗) =

(
0 0
0 1

)
ψ(x⃗), (5.51)

ψ̃1(x⃗) =

(
0 0
1 0

)
ψ(x⃗), ψ̃2(x⃗) =

(
0 1
0 0

)
ψ(x⃗), (5.52)

ψ̃3(x⃗) = ψ̃4(x⃗) =

(
0 0
0 1

)
ψ(x⃗), (5.53)

N1(x⃗) = ψ†(x⃗)ψ̃1(x⃗), J⃗1(x⃗) = ψ†(x⃗)∇⃗xψ̃1(x⃗), (5.54)

N2(x⃗) = ψ†(y)ψ̃2(x⃗), J⃗2(x⃗) = ψ†(x⃗)∇⃗xψ̃1(x⃗), (5.55)

N3(x⃗) = N4(x⃗) = ψ†(y)ψ̃3(x⃗), J⃗3(x⃗) = J⃗4(x⃗) = ψ†(x⃗)∇⃗xψ̃3(x⃗), (5.56)

K1
S(x⃗, y⃗) = D

( x⃗− y⃗

2

)
−D

( x⃗+ y⃗

2

)
, (5.57)

K⃗2
S(x⃗, y⃗) =

1

4MT

[
[∇⃗D]

( x⃗− y⃗

2

)
+ [∇⃗D]

( x⃗− y⃗

2

)]
, (5.58)

L1(x⃗) = 2D(⃗0)− 2D(x⃗) +
∇⃗2D(⃗0)

4MT
, L⃗2(x⃗) =

∇⃗D(x⃗)

4MT
, (5.59)

L3(x⃗) = D(⃗0)−D(x⃗) , (5.60)
ζ11 (x⃗) = ζ21 (x⃗) = ζ31 (x⃗) = dξ(x⃗)− dξ(−x⃗), ζ41 (x⃗) = dξ(x⃗) + dξ(−x⃗) , (5.61)

ζ⃗12 (x⃗) = ζ⃗22 (x⃗) = ζ⃗32 (x⃗) =
∇⃗dξ(x⃗)
2MT

− ∇⃗dξ(−x⃗)
2MT

, (5.62)

ζ⃗42 (x⃗) =
∇⃗dξ(x⃗)
2MT

+
∇⃗dξ(−x⃗)
2MT

. (5.63)
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5.3 Simulation Setups
We perform numerical simulations for the relative motion of an in-medium quarkonium
with the fixed center of mass momentum PCM = 0 via the quantum state diffusion method,
ignoring the heavy quark colors for U(1) case while including them for SU(3) case. We
numerically solve the Hamiltonian term via the 4th-order Runge-Kutta method and the
Lindblad terms via a simple forward Euler time step. We introduce the singlet potential
with CF ,1

VDebye(x) = CFV (x) = − CFα√
x2 + xc2

e−mD|x|. (5.64)

as the regularized Debye screening potential with the cutoff parameter xc at the origin in
the denominator, which behaves as ∝ − 1

|x| near the origin and exhibits screening effect
in the long distance. This is motivated by the phenomenological implications to the three
dimensional case, since we do not consider to solve the rigorous one dimensional case,
in which the potential is linear in the relative distance. We chose the cutoff length as the
inverse of a heavy quark mass, which is needed because the non relativistic description
|p| < M breaks down at this scale[95]. We here also approximate the correlation function

D(x) = γ exp

(
− x2

l2corr

)
(5.65)

and then noise correlation function M [dξ(x)dξ(y)∗] is accordingly M [dξ(x)dξ(y)∗] =
D(x − y)dt, while other noise correlation functions are zero. The parametrization for
these functions is chosen in the following, referring to Eqs. (A.7) and (A.8) and also the
references[69, 80, 88],

CFα = 0.3, mD = 2l−1
corr = 2T, γ =

T

π
, (5.66)

which does not break the scale hierarchy assumptions. The setting mD = 2/ℓcorr in
Eq. (5.66) is estimated by equating the full width half maximum of D(r) in Eq. (A.7) and
that in Eq. (5.65).

By numerically solving the nonlinear stochastic Schrödinger equation for the relative
motion of an in-medium quarkonium in the quark-gluon plasma in U(1) and SU(3) color
cases with these settings, we analyze and discuss the full dissipative dynamics. We note
that the simulation by the stochastic potential model is equivalent to that by the stochastic
evolution obtained after discarding all terms stemming from the next-to-leading gradi-
ent expansions in the quantum state diffusion equation, even though the former is linear
while the latter is nonlinear in the quarkonium wave function. The discarded terms are
negligible in the T/M → 0 limit except for the kinetic energy. To show how the dissipa-
tion influences the evolution of quarkonium states, we compare to the simulations in the
stochastic potential model without the dissipative effects[69, 88], which is the motivation
of our work.

In the simulations in the following section, the temperature of the quark-gluon plasma
is chosen to be the fixed temperature T/M = 0.1 or 0.3 in Sec. 5.4 and T (t) = T0 ·
[t0/(t0+ t)]1/3 with t0 = 0.84 fm and T0 = 0.47 GeV for the case of the Bjorken expand-

1We interpret CF = 1 and CFα = α for U(1) case while CF =
N2

c−1
2Nc

for SU(Nc) case.
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ing quark-gluon plasma in Sec. 5.5. In these simulations, the center of mass momentum
of a quarkonium is set to PCM = 0 as the dependence of the quarkonium dynamics on
the center of mass momentum is found to be small, which is shown in Appendix B. In the
numerical simulations of the quarkonium dynamics, we have to discretize the space and
time by ∆x = 1/M and ∆t = 0.1M(∆x)2. We set the spatial discretization ∆x much
finer than the typical medium length scales m−1

D ∼ lcorr/2 ∼ 1/2T . We also take the
volume of the system L = Nx∆x much larger than such medium length scales. Then,
these parameters and numerical setups are summarized in Table 5.1.

Table 5.1: Numerical setups, the parametrization of the potential V (x) and the correlationsD(x),
and the center-of-mass momentum.

∆x ∆t Nx γ lcorr CFα mD xc PCM

1/M 0.1M(∆x)2 254 T/π 1/T 0.3 2T 1/M 0

Finally, let us remark on the boundary conditions used for the wave function ψ(x) and
the noise field dξ(x). In the simulations with a finite volume [−L/2, L/2] for both U(1)
and SU(3) cases, we impose the periodic boundary conditions on the wave function ψ(x),

ψ

(
L

2
, t

)
= ψ

(
−L
2
, t

)
. (5.67)

Then we are careful to the boundary condition for the noise field appearing in the stochas-
tic evolution in the quantum state diffusion approach. Considering the wave function evo-
lution only due to the noise field dξ(x) at the boundary x = L/2. The stochastic evolution
in ψ

(
L
2
, t+ dt

)
− ψ

(
L
2
, t
)

is typically[
dξ

(
L

4

)
± dξ

(
−L
4

)]
ψ

(
L

2

)
. (5.68)

On the other hand, at the boundary x = −L/2, the wave function evolution only due to
the noise field is [

dξ

(
−L
4

)
± dξ

(
L

4

)]
ψ

(
−L
2

)
. (5.69)

The boundary condition on wave function (5.67) requires the boundary condition for the
noise field

dξ

(
−L
4

)
= dξ

(
L

4

)
, (5.70)

which means that the noise field dξ(x) obeys a periodicity of L/2. Thus we take the
volume size to be doubled, comparing to the previous study of a single heavy quark in
quark gluon plasma[80] as in Table 5.1. Thus we take the volume size to be doubled,
comparing to the previous study of a single heavy quark in quark gluon plasma[80] as in
Table 5.1. Correspondingly, as in [80], the correlation function D(r) for the noise field
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dξ(x) for x, y ∈ [−L/4, L/4] should be interpreted as D(rxy) with

M[dξ(x)dξ∗(y)] = D(rxy)dt, rxy ≡ min

{
|x− y|, L

2
− |x− y|

}
, (5.71)

which is all that is needed for solving the quantum state diffusion equation.

5.4 Simulations at Fixed Temperature

5.4.1 U(1) case
Here consider U(1) case in this Sec. 5.4.1. Through the simulations of Eq. (5.21) or
Eq. (4.45), we study how quantum dissipation affect the dynamical evolution of quarko-
nium relative motion by neglecting the dissipative parts form the full dissipative dynam-
ics. We can also simulate the effects of the center of mass motion of a quarkonium on
its dynamical evolution of the relative motion, which are, however, found to be mild and
shown in Appendix B.

We first show how the quantum dissipation influences the dynamics of the relative
motion. From our numerical results, we confirm that the quarkonium system approaches
a steady-state at late times due to the quantum dissipation. The steady-state is found to be
independent of the initial conditions with which the numerical simulations are performed.
Furthermore, we also find that the distribution of the steady-states appearing at late times
is close to the Boltzmann distribution, in which the temperature is at least within 10% of
the simulation input of the temperature of the thermal quark-gluon plasma medium by the
fitting. Therefore, the quarkonium system appears to approach the genuine thermal equi-
librium state at late times, which is assisted by the interplay of both quantum fluctuations
and dissipation.

We next show how the dynamical evolution depends on the temperature and the heavy
quark mass by comparing with simulations of the two temperature cases T/M = 0.1 and
T/M = 0.3. By rescaling the evolution time t by the heavy quark relaxation time τeq, we
find that a similar relaxation behavior shows up in both of the cases.

Equilibration with Quantum Dissipation

We first prepare either the ground state or the first excited state of the Hamiltonian

HDebye =
p2

M
− α√

x2 + x2c
e−mD|x| (5.72)

as the two initial conditions of the simulations. We note that this Hamiltonian HDebye

is different from the effective Hamiltonian Heff in the Lindblad master equation (4.45)
for U(1) case. With these two initial conditions, we simulate the dynamics and calculate
the occupation numbers of the ground state and the excited states in the two temperature
setups T/M = 0.1 and T/M = 0.3.

In Fig. 5.1, we plot the occupation numbers Ni(Mt) of the i-th eigenstates for the
ground state (i = 0), the first excited state (i = 1) of the Hamiltonian HDebye as a func-
tion of (nondimensional) time Mt. The occupation numbers of the ground state and the
first excited state are respectively represented by the red and blue lines. The difference
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Fig. 5.1: Time evolution of the occupation numbers of the ground state N0 (red line), the first
excited state N1 (blue line) with respect to (nondimensional) time Mt. The system
reaches a steady-state at late times, which is independent of the initial conditions. Error
bars represent the statistical errors within the ensemble average.

between the solid lines and the dashed lines is their initial conditions. Specifically, for
the solid lines, the initial condition is the ground state while for the dashed lines, it is
the first excited state. From these results, we find that as (nondimensional) time Mt in-
creases, each of the occupation numbers respectively takes some constant value which
is irrespective of the initial condition within the statistical error bars. This behavior of
the time evolution of the occupation numbers tells that the dynamics of quarkonium rela-
tive motion relaxes and becomes equilibrated in the thermal quark-gluon plasma with the
dissipative effects. If we calculate the partition function Z with the Hamiltonian HDebye

and the (nondimensional) eigenenergy Ei/M , then e−E0/T/Z ≃ 0.107 and e−E1/T/Z ≃
0.040. These are almost within the 10% level to the values N eq

0 ≃ 0.096 ± 0.005 and
N eq

1 ≃ 0.044± 0.001 at Mt = 4650 in the simulations in Fig. 5.1.
We in turn plot in Fig. 5.2, as a function of the (nondimensional) eigenenergy Ei/M

of the Hamiltonian HDebye, the occupation numbers of the lowest twenty one levels at
Mt = 4650 for T/M = 0.1, which is well within the steady state regime. By fitting
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Fig. 5.2: Steady state distributions of the eigenstates in −0.10 ≤ Ei/M ≤ 0.06 atMt = 4650 for
T/M = 0.1. The data is fitted by the Boltzmann distribution ∝ exp[−Ei/Tfit] for levels
with the relative velocity less than 0.5 (lowest twenty-one levels). The fitted temperatures
are Tfit/M = 0.099± 0.004.
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the data with the Boltzmann distribution ∝ exp(−Ei/Tfit), the fitted temperature Tfit
reads Tfit/M = 0.099± 0.004, which is approximately the same as the setup temperature

T/M = 0.1. We limit the fitting range to the eigenstates ϕi with the velocity
√

⟨p2⟩ϕi
M/2

<
0.5, which leads to the fitting of the lowest twenty-one levels. We expect the deviation of
the ground state from the fitting line to come from its binding energy which is near the
boundary of the applicability τE ≪ τS . We also show the results for the same analysis
with T/M = 0.3 at time Mt = 900 in Fig. 5.3. The fitting range corresponds to the
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Fig. 5.3: Steady state distributions of the eigenstates in −0.10 ≤ Ei/M ≤ 0.06 at Mt = 900 for
T/M = 0.3. The data is fitted by the Boltzmann distribution ∝ exp[−Ei/Tfit] for levels
with the relative velocity less than 0.5 (lowest twenty-one levels). The fitted temperatures
are Tfit/M = 0.288± 0.013.

lowest twenty-one levels also in this case. Fitting the distribution data by the Boltzmann
distribution ∝ exp(−Ei/Tfit) results in the fitted temperature Tfit/M = 0.288 ± 0.013.
In the steady-states, the distribution of the eigenstates approaches the black dotted lines,
which shows the Boltzmann distribution with the setup temperatures T/M = 0.1 and
T/M = 0.3. Even though we approximately solve the Lindblad master equation and
do not find the exact analytic solution, we find that the distribution in the presence of
quantum dissipation approaches the thermally equilibrated one which is independent of
the initial states and that it is approximately in the Boltzmann distribution.

We hereafter focus on the quantum dissipative effects on the relative motion as stated
in Sec. 4.2. In order to discuss the effects of the dissipation and its importance, by drop-
ping the O(T/M) terms in Eq. (5.21), we can compare the simulations of the full dis-
sipative dynamics and those without dissipation. We show this comparison performed
at T/M = 0.1 in Fig. 5.4. We can see the clear differences from dissipation not only
in the asymptotic behavior on long time scales but also in the initial behavior. The red
and blue lines represent the time evolution of the occupation numbers of the ground and
the first excited state, respectively, in the case with dissipation, while the dark-green and
green lines do in the case without dissipation. Fig. 5.4 tells that when the dissipation is
switched off, the initial decay rate of the ground state becomes larger and the production
rate of the first excited states accordingly becomes larger. Furthermore, the occupation
numbers of the ground and the first excited state decrease and approach the smaller value
equally after enough time, which is underestimated comparing the case with dissipation.
This can be interpreted in terms of the Lindblad operator (4.46). This can be physically
interpreted as follows. The dissipation or equivalently drag force plays a role in prevent-
ing the heavy quark pair of a quarkonium from dissociating in the quark-gluon plasma and
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Fig. 5.4: Effect of the dissipation on the occupation numbers. Shown is the time evolution of the
occupation numbers of the ground stateN0, the first excited stateN1 with dissipation (red
and blue lines) and without dissipation (dark-green and green lines). The bars represent
statistical errors.

also balancing itself with the thermal fluctuations to maintain the system in equilibrium.
Since the momentum operator is not included in the Lindblad operator without dissipa-
tion as in Eq. (4.46), the transition rate does not depend on the states. Even in the initial
evolution, we can see the clear effects of the dissipation, and therefore, we conclude that
the dissipative effects cannot be neglected even in the short time scale. As an example
of such a short time scale, we later consider the typical finite lifetime scale ∼10 fm of
the quark-gluon plasma. In our setups, for a bottomonium particle, 10 fm corresponds
to about (nondimensional) time Mt ∼ 480 and we will come back to this phenomeno-
logical case of the more realistic setup in Sec. 5.5. In this short time scale, as we can
see in Fig. 5.4, it is suggested that the dissipative effects on the quarkonium dynamics
in the quark-gluon plasma are important and that considering dissipative effects in the-
oretical discussions on quarkonium dynamics is also important, even though the above
simulations do not consider the temperature change in the experiments.

Dependence of Temperature and Heavy Quark Mass

We here study how the time evolution of the occupation numbers depends on the temper-
ature at the fixed heavy quark mass, where we can also see the dependence on the heavy
quark mass at the fixed temperature. We prepare the initial state of the ground state of
the Hamiltonian HDebye. We then simulate the evolution at T/M = 0.1 and T/M = 0.3
and show the results in Fig. 5.5 (a). For bottomonium case, these settings correspond to
comparing T ≃ 0.47 GeV and T ≃ 1.41 GeV, respectively. In Fig. 5.5 (a), the red and
green lines represent the time evolution of the occupation numbers of the ground and the
first excited state respectively in the case of T/M = 0.1, while the blue and pink lines do
in the case of T/M = 0.3. Fig. 5.5 (a) tells that the relaxation to the equilibrium takes
place much faster in higher temperature case T/M = 0.3 than in T/M = 0.1 case. The
following physical effects contribute this behavior. First, the heavy quark damping rate γ
becomes larger in higher temperatures. Second, the spatial extent of the wave function of
the ground state becomes more extended, which receives the decoherence effect more eas-
ily. In order to cancel out the first effect, we scale the (nondimensional) time by the unit
of heavy quark damping timescale τeq ≡MTl2corr/γ = πM/T 2 estimated in the classical
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Fig. 5.5: (a) Time evolution of the occupation numbers of the lowest two levels, for T/M = 0.1,
N0 (red line) andN1 (green line), and for T/M = 0.3, N0 (blue line) andN1 (pink line).
(b) Time evolution of the occupation numbers of the lowest two levels as a function of
rescaled time by heavy quark damping rate τeq. (c) Time evolution of the occupation
numbers of the lowest two levels as a function of rescaled time by the temperature. In
the above figures, we show the results for T/M = 0.3 only until the system reaches a
steady-state. The bars represent the statistical errors.
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limit and plot the rescaled (nondimensional) time in Fig. 5.5 (b). There is still a difference
between T/M = 0.1 and T/M = 0.3 cases, which we expect it to stem from the effect
of the decoherence to the ground state wave function as follows. The decoherence rate
for a wave function of size ℓψ ≡

√
⟨x2⟩ψ is estimated from stochastic potential model as

τ−1
dec = D(0)−D(ℓψ), which amounts to τdec ≃ 456/M and 19/M for the ground state at
T/M = 0.1 and 0.3, respectively. By rescaling it with τeq, we estimate τdec/τeq = 1.45
for T/M = 0.1 and τdec/τeq = 0.55 for T/M = 0.3, respectively. This can qualitatively,
but roughly,2 show the reason why the initial decay for T/M = 0.3 case is faster than
T/M = 0.1 case even after the rescaling.

As mentioned above, the settings T/M = 0.1 and T/M = 0.3 are respectively inter-
preted as a bottomonium and a charmonium at the fixed temperature T = 0.47 GeV. We,
in turn, find that as shown in Fig. 5.5 (c), the relaxation of a bottomonium to the equilib-
rium proceeds more slowly than that of a charmonium again with the same two physical
effects as above.

5.4.2 SU(3) Color Case
In the previous Sec. 5.4.1, we have numerically solved the colorless quantum state diffu-
sion equation or the Lindblad master equation for colorless quarkonium relative motion.
We have there shown that the dissipation has non-negligible effects for the description of
the in-medium quarkonium dynamics. However, these simulations lack the color degrees
of freedom of a quarkonium, and we next consider its dynamics including SU(3) color
states. In this section, we then in SU(3) color case simulate how dissipative effects appear
in the dynamics as well as the color transition effects in the fixed temperature case. In the
following simulations of Eq. (5.33) or Eq. (4.51) for SU(3) color case with the setups in
Sec. 5.3, we fix the center of mass momentum PCM = 0 as taken in U(1) case. The differ-
ent points are the following. Two kinds of the potential appear, specifically the attractive
potential for the singlet states and the repulsive potential for the octet states. The singlet
potential is strengthened and the octet potential is weakened in its strength, The state vec-
tor in the quantum state diffusion evolution, which is affected by these potentials, has the
two components of the color singlet and the color octet. In these setups, the mixing of the
different color states is induced by the Lindblad operators (4.53).

Equilibration with Quantum Dissipation

First, we simulate how the color transitions and the quantum dissipation influences the
dynamics of the quarkonium relative motion. We prepare either the singlet ground state
or the singlet first excited state of the Hamiltonian

HSinglet,Debye =
p2

M
− CFα√

x2 + x2c
e−mD|x| (5.73)

as the two initial conditions of the following simulations. With these two initial condi-
tions, the wave functions are evolved by nonlinear stochastic Schrödinger equation (5.33).
From the ensemble average of the wave functions, we then numerically construct the den-
sity matrix and calculate the occupation probabilities of the several singlet and octet states

2To be strict, the inclusion of the dissipation changes the initial decay rate from the estimate by the
decoherence rate as we saw in the previous section.
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in the temperature setup T/M = 0.1.
The results of the time evolution of occupation probabilities are shown in Fig. 5.6. We

 0.001

 0.01

 0.1

 1

 0  1000  2000  3000  4000  5000  6000

N
i

Mt

N0(Mt=0)=1, N0(Mt)
N1(Mt)

N1(Mt=0)=1, N0(Mt)
N1(Mt)

Fig. 5.6: Time evolution of the occupation numbers of the ground state N0 (red line), the first
excited state N1 (blue line) with respect to (nondimensional) time Mt. The system
reaches a steady-state at late times, which is independent of the initial conditions. Error
bars represent the statistical errors within the ensemble average.

there plot the occupations Ni(Mt) of the i-th eigenstates for the ground state (i = 0), the
first excited state (i = 1) of the Hamiltonian HSinglet,Debye as a function of (nondimen-
sional) time Mt. The occupation probabilities of the ground state and the first excited
state are respectively represented by the red and blue lines. The difference between solid
lines and the dashed lines is their initial conditions. As in U(1) case, specifically, for the
solid lines, the initial conditions are the ground state while for the dashed lines, the initial
conditions are the first excited state. From Fig. 5.6, we find that as (nondimensional) time
Mt increases, each of the occupation probabilities respectively relaxes to some static con-
stant value which is independent of the initial conditions within the statistical error bars.
This indicates that quarkonium relative motion in the quark-gluon plasma goes to equi-
librium and that it approaches a steady-state in the presence of the dissipation. If we
calculate the partition function Z in SU(3) case with the (nondimensional) eigenenergy
Ei/M of the HamiltonianHSinglet,Debye, then e−E0/T/Z ≃ 0.0128 and e−E1/T/Z ≃ 0.005.
These are almost within the 20% level to the values N eq

0 ≃ 0.0105 ± 0.0020 and N eq
1 ≃

0.0048 ± 0.0002 at Mt = 5580 in the simulations in Fig. 5.6. We note that the dotted
red line in Fig. 5.6 seems to show the oscillating behavior which might reflect the singlet
octet transitions.

Comparing Fig. 5.6 with the results for U(1) case, the equilibration becomes delayed
and the occupation probabilitiesNi(Mt) becomes smaller. These differences are expected
to appear partially from the fact that quarkonia experience color excitations of the singlet
and the octet in SU(3) case. Quarkonia thus take more various colorful states than in the
U(1) case, which can decrease the occupation probabilities of every singlet state in the
thermal states, compared to the U(1) case. If a singlet wave function transit into an octet
wave function, it is difficult for this wave function to return the original singlet state since
the wave function can be extended by the repulsive octet potential after the transition.
This seemingly leads to the more delayed and slower equilibration. However, this can
be compensated by the decay factor of the singlet sector in SU(3) case which becomes
CF times as large as in U(1) case and thus the time to take for the equilibration appear
approximately similar to that in U(1) case.
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We also plot the time evolution of the occupations of the total singlet and octet color
states in Fig. 5.7. Fig. 5.7 shows that the singlet and octet states occupation probabilities
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Fig. 5.7: Time evolution of the occupations of the singlet (red line) and octet (blue line) color
states with respect to (nondimensional) time Mt. The color states reach a steady state
which is independent of the initial conditions. Error bars represent the statistical errors
within the ensemble average.

relax to the respective constant value independent of the initial conditions within the sta-
tistical error bars. We also show the spatial distribution in the singlet and octet sectors in
Fig. 5.8 and Fig. 5.9. The singlet first excited state is more unstable to the interactions
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Fig. 5.8: The spatial distribution of the singlet at
Mt = 186, 1860 from the two initial
conditions.
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Fig. 5.9: The spatial distribution of the octet at
Mt = 186, 1860 from the two initial
conditions.

with the medium than the singlet ground state and the behavior of the equilibration of the
color space is different in two initial conditions. It also implies that the equilibration of
the singlet and octet states is achieved faster than the quarkonium equilibration of each
singlet state is achieved.

We in turn show in Fig. 5.10, the steady distribution of the eigenstates of the Hamil-
tonian HSinglet,Debye. We there plot, as a function of the (nondimensional) eigenenergy
Ei/M of the Hamiltonian HSinglet,Debye with T/M = 0.1, the occupations probabilities of
the lowest twenty one levels at Mt = 5580 when the distribution approaches the steady
state regime. By fitting the data with the Boltzmann distribution ∝ exp(−Ei/Tfit), the
fitting temperature Tfit is found Tfit/M = 0.101 ± 0.026, which is almost the same as
the setup temperature T/M = 0.1. We set the fitting range to the eigenstates ϕi which
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Fig. 5.10: Steady state distributions of the eigenstates in −0.10 ≤ Ei/M ≤ 0.06 at Mt=5580
for T/M = 0.1. The data is fitted by the Boltzmann distribution ∝ exp[−Ei/Tfit] for
levels with relative velocity less than 0.5 (lowest twenty-one levels) The fitted temper-
atures are Tfit/M = 0.101 ± 0.026. The dotted black line represents the Boltzmann
distribution N eq

i ∝ exp[−Ei/T ] with T/M = 0.1 satisfying N eq
0 = 0.0128.

have the velocity
√

⟨p2⟩ϕi
M/2

< 0.5. From these results, we therefore find that the steady dis-
tribution at late times is close to the Boltzmann distribution and that quarkonium system
becomes genuinely thermalized at late times in the presence of the dissipation and colors.

5.5 Simulations in the Bjorken expanding quark-gluon
plasma

5.5.1 U(1) case
In this Sec. 5.5.1, in turn, we take in U(1) case into account the time-dependent back-
ground, that is, the Bjorken expanding quark-gluon plasma medium with the temperature
T (t) in order to relate our these simulations to quarkonia, specifically charmonia or bot-
tomonia, in heavy ion collision experiments. This can be achieved by solving the quantum
state diffusion equation for the environment undergoing Bjorken expansion with the time-
dependent temperature. We take

T (t) = T0

( t0
t0 + t

) 1
3
, T0 = 0.47 GeV, t0 = 0.84 fm, (5.74)

in our numerical parameter for the temperature. To relate the observable of quarkonium
yields in heavy ion collisions, we define occupation numbers by projecting the wave func-
tions onto the eigenstates of the Hamiltonian with the vacuum Cornell potential

HCornell =
p2

M
− α√

x2 + x2c
+ σx, (5.75)

α = 0.3, σ = 1.12 GeV/fm, M =

{
4.7 GeV (bottom),
1.6 GeV (charm),
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and numerically evaluate them. We can thus relate the quarkonium yield with these occu-
pation numbers at kinetic freezeout and this effective description is based on the following
assumptions. The first one is that the quarkonium wave function at the hadronization is
the same as the vacuum eigenstate. The second one is that the quarkonium does not in-
teract significantly with other hadronic matter. Then the probability to find a quarkonium
state at the final stage can be obtained by projecting the bound state in the vacuum Cor-
nell potential onto the density matrix at the temperature when the quark-gluon plasma
medium is vanishing. In our simulations, even though the projection is performed during
the whole evolution of in-medium quarkonia, the occupation numbers at that temperature
as mentioned above are meaningful for phenomenological implications. In the numerical
simulations, though the initial quarkonium state in heavy ion collisions is not well under-
stood and it is still an open question, we prepare the eigenstate of HCornell as an initial
quarkonium wave function for the simplification. We note that during the evolution by
quantum state diffusion equation, we employ the Debye screening potential VDebye(x) as
a potential V (x). We simulate the time evolution of the occupation number of the bot-
tomonium states and the charmonium states up to the physical time around 18 fm when
the medium temperature is about 170 MeV in our setups.3 To see the effect of quantum
dissipation, we also simulate quarkonium dynamics dropping the dissipative terms as in
Fig. 5.4 in Sec. 5.4.1. We plot the results in Fig. 5.11, in which the solid lines represent
bottomonium case and the dashed lines represent charmonium case. For bottomonium
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Fig. 5.11: Time evolution of the occupation numbers of the ground state and the first excited state
in Cornell potential both for bottomonium and for charmonium. We plot the simulation
with dissipation and without dissipation. The bars represent statistical errors.

case with dissipation, the red line represents the time evolution of the occupation number
of the ground state with the initial condition of the ground state while the purple line rep-
resents that of the first excited state with the initial condition of the first excited state. The
gray lines represent the simulations without dissipation, and the different plot marks on
them correspond to the simulations with dissipation from the different initial conditions.
For the charmonium case with dissipation, the blue line represents that of the ground state
with the initial condition of the ground state while the green line represents that of the
first excited state with the initial condition of the first excited state. Each kind of the plot
marks on the gray lines represents the corresponding initial conditions from which our

3The typical lifetime of the quark-gluon plasma is ∼ 10 fm in full three-dimensional hydrodynamic
simulations.
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simulations without dissipation are performed. From Fig. 5.11, we find that the occupa-
tion numbers of the first excited states decay faster and more than those of the ground
states both for bottomonium state and for charmonium state. This behavior supports the
phenomenological idea of sequential melting, which represents the more suppression of
the yields of the higher excited states. This thus qualitatively agrees to the behavior of the
nuclear modification factor RAA in heavy ion collisions in Sec. 1.2.2. We also see that the
ground state and the first excited state of the charmonium states decay faster than those
of the bottomonium states. From the point of view of the decoherence, the decoherence
of the wave function affects charmonium states more than bottomonium states because
bottomonium is more localized.

As shown by the gray lines in Fig. 5.11, the dissipative effects seem to be milder
and less important than in the case of the fixed temperature in Fig. 5.4 because the de-
coherence and damping proceed much slower at lower temperatures. We find that the
dissipative effects on the relative motion of a quarkonium in the quark-gluon plasma are
non-negligible for the ground states while they are marginally effective for the first excited
state. The reason why dissipation affects the ground state more is that the wave function
decoherence is effective more for widely spread states such as excited states and that the
relative importance of the dissipation on the ground state accordingly enhances as found
in the single heavy quark case[80].

5.5.2 SU(3) color case
In this Sec. 5.5.2, we consider the Bjorken expanding quark-gluon plasma medium mainly
in SU(3) color case and make a closer look at charmonia or bottomonia in heavy ion col-
lision experiments. Thus we are motivated to simulate the dynamics in the quark-gluon
plasma medium with the time-dependent temperature as we did in U(1) case. We take,
as an initial quarkonium wave function, the ground state and the first excited state of the
vacuum Hamiltonian HCornell

4. We then simulate, with and without dissipation, how the
occupation numbers of the bottomonium states and the charmonium states evolve up to
the physical time around 18 fm when the medium is vanishing. We in Fig. 5.12 plot the
results and show the dissipative effects on the quarkonium dynamics. The solid lines rep-
resent bottomonium case and the dashed lines represent charmonium case. For bottomo-
nium case with dissipation, the red line represents the time evolution of the occupation
numbers of the ground state with the initial condition of the ground state while the purple
line represents that of the first excited state with the initial condition of the first excited
state. For charmonium case with dissipation, the blue line represents that of the ground
state with the initial condition of the ground state while the green line represents that of
the first excited state with the initial condition of the first excited state. The gray lines
represent the simulations without dissipation, and the different plot marks on them are
for the simulations with dissipation from the different initial conditions for both bottomo-
nium and charmonium. From Fig. 5.12, as sequential melting phenomena seen in nuclear
modification factor RAA in heavy ion collisions in Sec. 1.2.2, we find that the occupation
numbers of the first excited states decay faster and more than those of the deeply bound
ground states both for bottomonium state and for charmonium state.

4Several quarkonium production models exists and among them, the color singlet model and color octet
model have been developed and discussed[39]. As as initial state of the simulations, in Ref. [73] the authors
take the spatially localized state reflecting that quarkonia are produced by hard collisions in the experiments.
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Fig. 5.12: Time evolution of the occupation numbers of the ground state and the first excited state
in Cornell potential both for bottomonium and for charmonium. We plot the simulation
with dissipation and without dissipation. The bars represent statistical errors.

Even though the one-dimensional simulations of the stochastic potential model show
the results similar to that of the complex potential model[88], the dissipation leads the dif-
ference in theoretically evaluating quarkonium yields. Thus, the preceding discussions on
quarkonium dissociation without dissipation such as some approaches based on complex
potential, stochastic potential model, and potential non-relativistic QCD are not adequate
and theoretical discussions including dissipation will provide some more promising im-
plications on the experimental interpretations. If we prepare and find more realistic initial
conditions for the simulation from the theoretical and experimental researches, we expect
more reliable simulations and interpret quarkonium dynamics more precisely.

We, at last, show the density matrix and discuss the spatial distribution of the wave
function in the octet sector. In Fig. 5.13 and Fig. 5.14, we show the density matrix in
the octet sector |ρo(x, y)|2 at the final time of the simulations ∼ 18 fm when the initial
condition is the Cornell ground state. From the initial states in the singlet sector, the
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Fig. 5.13: The octet density matrix of charmo-
nium states at the last simulation time.
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Fig. 5.14: The octet density matrix of bottomo-
nium states at the last simulation time.

density matrix of the octet experiences the decoherence and begin to take the diagonal
form along the line of y = x. The singlet bottomonium states are more deeply bound
than the singlet charmonium states, and the smaller occupancies around the diagonal line
y = x are expected to be found for the bottomonium case. The diagonal lines in Fig. 5.13
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and Fig. 5.14 represent the spatial distributions in the octet sector and the time evolution of
the corresponding distributions is shown in Fig. 5.15 and Fig. 5.16. The time evolution of
the spatial distributions in the singlet sector is also shown in Fig. 5.17 and Fig. 5.18. The
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Fig. 5.15: Spatial distributions of charmonium
states in the octet sector.
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Fig. 5.16: Spatial distributions of bottomonium
states in the octet sector.
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Fig. 5.17: Spatial distributions of charmonium
states in the singlet sector.
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Fig. 5.18: Spatial distributions of bottomonium
states in the singlet sector.

charmonium states in the singlet can be more excited than the bottomonium states. For
charmonia, the occupancy near the origin is higher and for bottomonia, the occupancies
are distributed spatially in the repulsive octet potential.

Other than SU(3) color case, when we consider SU(2) color case, we face the pecu-
liar property in the evolution of the density matrix or the wave function in the nonlinear
stochastic Schrödinger equation, which is shown in Appendix D. It is that the density
matrix in the triplet sector |ρt(x, y)|2 even at the final time of the simulations remains
finite both in the diagonal line of y = x and in the non-diagonal line of y = −x, which
tells quantum long-range correlations of the states in the thermal bath from the SU(2)
theoretical simulations.
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Summary

In this thesis, we study the dynamics of quarkonium in the quark-gluon plasma. We
regard the quarkonium system as an open quantum system in a thermal bath. Based on
the framework of the open quantum system and quantum chromodynamics, we derive the
Lindblad equation for the relative motion of the quantum Brownian heavy quark pair.

The Lindblad equation ensures the basic physical properties of positivity, hermiticity,
and unitarity of the reduced density matrix. In this Lindblad equation for the quarkonium
relative motion, three kinds of forces, Debye screened potential force, stochastic force,
and drag force govern the time evolution of an in-medium quarkonium. The information
of the interactions is embedded in the Lindblad operators. The effects of the stochastic
force and the drag force are represented by the momentum shift in collisions and the
change of the collision rate with the recoil of heavy quarks during collisions, respectively.
Although the Lindblad operator for the relative motion of the heavy quark pair depends
on the center of mass momentum, we just considered the static case (PCM = 0) in the
simulations since its dependence is found to be small. Thus a full quantum mechanical
and Lindbladian simulation with dissipation was performed for heavy quarks in the quark-
gluon plasma.

We solved the Lindblad equation by a stochastic unravelling method called the quan-
tum state diffusion. Applying this method, any Lindblad master equation is shown to
be equivalent to a nonlinear stochastic Schrödinger equation by which we can correctly
produce a mixed state ensemble for the density matrix. In our numerical simulation in
one dimension, we first checked the basic properties of the master equation for both U(1)
and SU(3) color cases. The occupation number of eigenstates relaxes toward a value
independent of the initial condition, and the steady state distribution is consistent with
the Boltzmann distribution. We also studied the effects of quantum dissipation and color
transitions by comparing a simulation without them. The quantum dissipation delays the
relaxation toward equilibrium, which is consistent with our intuitive classical picture that
the drag force prevents a heavy quark pair from dissociating. We then simulated the tem-
perature and heavy quark mass dependences on the time evolution. The time evolution
strongly depends on these quantities but is found to scale to a considerable extent with the
heavy quark damping time. The color transitions in SU(3) case may delay the relaxation
comparing with U(1) case, since the octet states have more difficulty in transiting into the
singlet states than the singlet do into the octet.

We finally considered the Bjorken expanding quark-gluon plasma in relativistic heavy
ion collisions and solved the master equation with a time-dependent temperature. By sim-
ulating the bottomonium and charmonium yields, we found that charmonium dissociates
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faster than bottomonium and that the excited states decay faster than the ground states. We
also found that the quantum dissipation delays the ground state dissociation compared to
the case without dissipation while the excited state dissociation is insensitive to it. There-
fore the dissipation can affect the yields of quarkonia in heavy ion collision experiments.
This difference comes from the fact that the decoherence due to thermal fluctuation drives
the dissociation for an extended state while it is ineffective for a localized state such as
the ground state. The dissipation thus becomes as important as the decoherence for a lo-
calized state. In this regard, our simulations suggest that, when discussing the in-medium
quarkonium dynamics, it is not adequate that one refers to and relies on the theoreti-
cal approaches without dissipation which are based on the complex potential model, the
stochastic potential model and potential non-relativistic QCD effective theory.

To proceed further to future comprehensive discussions with more realistic simula-
tions, we need to extend our discussions to a three-dimensional simulation and couple
it with a three-dimensional hydrodynamic background. In the three-dimensional simula-
tion, our simulations will contain the degrees of freedom of the radial direction, which is
included in the potential non-relativistic QCD approach, where the dissipative effects on
the quarkonium dynamics have not been simulated. By comparing such simulations with
our simulations, it may be then made clear whether or not the dipole approximation of
quarkonium state is appropriate in the dynamics.
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Appendix A

Environmental Correlation Functions

The explicit forms of the physical quantities D(x⃗) and V (x⃗) are evaluated in the thermal
quantum field theory. First, the two point retarded correlator in momentum space for soft
scale momentum Qµ = (ω, q⃗) is calculated in Coulomb gauge:

GR,µν(Q) =

∫
d4xeiQx iθ(t)⟨[Aµ(t, x⃗), Aν(0, 0⃗)]⟩ = −P µν

T

Q2 − ΠT

+
Q2

q2
−δµ0δν0

Q2 − ΠL

, (A.1)

where PT represents the transverse projection

P ij
T = δij − qiqj

q2
, P 00

T = P 0j
T = P i0

T = 0. (A.2)

Here we define two kinds of self energies

ΠL(Q) = −m2
D

Q2

q2
(1− F (ω/q)), ΠT (Q) =

m2
D

2

[
1 +

Q2

q2
(1− F (ω/q))

]
(A.3)

F (x) ≡ x

2

[
ln

∣∣∣∣x+ 1

x− 1

∣∣∣∣− iπθ(1− |x|)
]
, m2

D =
1

3
g2T 2

(
Nc +

1

2
Nf

)
, (A.4)

which are approximated by hard thermal loop scheme with Nc and Nf respectively rep-
resenting the numbers of the color degrees of freedom and the numbers of the flavors of
quarks. In the region of small ω, the longitudinal self energy and accordingly the retarded
correlator are obtained:

ΠL(ω, q⃗) = −m2
D

Q2

q2

(
1− ω

2q
log

q + ω

q − ω
+ iπ

ω

2q

)
≃ m2

D

(
1 + iπ

ω

2q

)
, (A.5)

GR
00(ω, x⃗) ≃

∫
d3q

(2π)3
eiq·x⃗

−1

q2 +m2
D + i

πm2
Dω

2q

. (A.6)

Thus from Kramers Kronig relation, we can evaluate the following functions in Sec.4:

D(x⃗) = T
d

dω
σ(ω, x⃗)

∣∣∣∣
ω=0

= 2g2T
∂

∂ω
ImGR

00(ω, x⃗)

∣∣∣∣
ω=0

= g2T

∫
d3q

(2π)3
eiq⃗·x⃗

πm2
D

q (q2 +m2
D)

2 , (A.7)

V (x⃗) = −2V(x⃗)

65



Appendix A. Environmental Correlation Functions

=

∫ ∞

−∞

dω

2π

σ(ω, x⃗)

ω
= g2

∫ ∞

−∞

dω

2π

2 ImGR
00(ω, x⃗)

ω
= g2ReGR

00(ω, x⃗)
∣∣
ω=0

= − g2

4π|x⃗|
e−mD|x⃗| (A.8)

Since these results are obtained by hard thermal loop approximation, the applicability of
these expressions is for |x⃗| ≳ m−1

D .
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Appendix B

Dependence of the Center of Mass
Motion

Here in U(1) case, we test the effects of the center-of-mass motion on the relative motion
of a quarkonium at T/M = 0.1. We set the center-of-mass momentum at different val-
ues PCM/M = 0, 0.4, 0.6, 0.8, 1.0 equivalent to the velocity vCM = 0, 0.2, 0.3, 0.4, 0.5.
In Fig. B.1, shown are the time evolution of the ground state occupations and also the
occupation for each eigenstate at late times Mt = 4650 when the system has reached a
non-equilibrium steady state. The results are quite insensitive to the values of PCM.
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Fig. B.1: (Top) Effects of the center-of-mass motion on the ground state occupation number.
(Bottom) Effects of the center-of-mass momentum on the eigenstate occupation num-
bers at late enough time Mt = 4650. The center-of-mass momentum is PCM/M =
0, 0.4, 0.6, 0.8, 1.0. The bars represent statistical errors.
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Appendix C

Dependence of Heavy Quark Diffusion
Constant

In our analysis and simulations, quarkonia can probe fundamental length scales of the
quark-gluon plasma, the screening length mD

−1 and the correlation length lcorr. The
screening length has been evaluated via the real-part of the heavy quark potential and
the heavy quark free energies in various lattice QCD simulations[96, 97]. The real part
of the potential in which the screening length appears has been studied by lattice QCD
calculations.

Through our simulations, we relate the correlation length to debye mass, respecting
the fitting the correlation function (A.7) by Gaussian from. While it is related ideally in
the high-temperature region, in other regions the relation might be different. Considering
this context, the correlation length could be regarded as a parameter independent of other
parameters.

The correlation length is related to the imaginary part of the potential, or in particular,
the correlation function D function. However, the non-perturbative lattice QCD results on
complex potential have larger error bars in the imaginary part than in the real part. Precise
determination of the correlation length is now difficult from these results. Some studies
by lattice QCD may provide improvement in the future.

We then test whether or not we read it from the experimental results with our sim-
ulations in U(1) case. First, we relate the results from other studies to the correlation
length and obtain the information of the correlation length. We here constrain the form of
the environmental correlation function by employing the heavy quark diffusion constant
obtained from other studies such as lattice QCD and hydrodynamics[98], in which the
Fig. C.1 are shown.

We define the heavy quark diffusion constant with drag coefficient η as

D =
T

Mη
. (C.1)

From the Fig. C.1, we estimate D ∼ 4
2πT

, which is within the common range where the
preceding studies shows the similar results. On the other hand, from the classical limit of
the master equation which is typically described by

d

dt
p = − γ

MTl2corr
p , (C.2)
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Fig. C.1: Heavy quark diffusion constant from several studies. This figure is taken from Ref. [98].

as discussed in Ref. [80]. We can deduce the heavy quark diffusion constant by comparing
the drag coefficient in Eq. (C.2) and thus constrain γ with a parameter lcorr as

D =
T 2l2corr
γ

,
γ

l2corr
=
π

2
T 3 (C.3)

We then simulate the time evolution of the occupations of the quarkonium state when
varying the correlation length lcorr = c

T
with c = 0.25, 0.5, 1.0, 1.25, 1.5. The simulation

setups are listed in Table C.1 in case 2πTD = 4.

Table C.1: Numerical setups

∆x ∆t Nx T γ lcorr α mD rc
1/M 0.1M(∆x)2 508 0.1M, 0.3M π

2
l2corrT

3 0.3 2T 1/M

We show the results of the time evolution of the occupation number of the vacuum
Cornell eigenstates for charmonium and bottomonium in the top of Fig. C.2. We also
simulate as the above, varying the heavy quark diffusion constant 2πTD = 2, 8 and
accordingly, γ being changed. The results are also shown in the middle and bottom of
Fig. C.2.

From these results, we can see, when the diffusion constant is fixed and change the
time evolution of the correlation length, the survival probability of the Cornell ground
state is sensitive to the correlation length. We also may find whether or not the diffusion
constant is large does not affect the charmonium ground state almost up to the lifetime of
the quark-gluon plasma. On the other hand, the bottomonium counterpart is sensitive to
how large the diffusion constant is. It does give a non-negligible contribution to the exper-
imental observables. It may imply that the observables such as nuclear modification factor
should have information on the correlation length of the quark-gluon plasma with the in-
terplay to heavy quark diffusion constant. Therefore, the yields of quarkonia can work as
measures of the correlation length. The former is one of the dynamical properties and has
not yet been precisely analyzed by the lattice QCD approach. If the experimental instru-
ments have the above resolution, we might extract its information and its measurement,
which might become the value of the reference length for the hydrodynamical description
of the quark-gluon plasma.
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Fig. C.2: Time evolution of the occupation of the charmonium or bottomonium ground state with
different correlation lengths. The bars represent the statistical errors. (top) 2πTD = 4
case. (middle) 2πTD = 2 case. (bottom) 2πTD = 8 case.
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Appendix D

SU(2) symmetry of the Lindblad
equation

Here we prove the Lindblad master equation in SU(2) case to satisfy the following sym-
metry by the transformation

ρSAB,kl (r⃗, r⃗
′, t) = −ϵAjϵBiρij,kl (−r⃗, r⃗′, t) , (D.1)

ρS∗kl,AB (r⃗, r⃗′, t) = −ρkl,ij (r⃗,−r⃗′, t) ϵAjϵBi, (D.2)

ρSS
∗

ij,kl (r⃗, r⃗
′, t) = ϵinϵjmρmn,pq (−r⃗,−r⃗′, t) ϵkqϵlp. (D.3)

If we can show the symmetry on Eq. (D.1), accordingly we show the symmetry on
Eq. (D.2) and Eq. (D.3) since they are regarded as the conjugate. The transformation
can be considered as the parity transformation and the exchanges of color indexes, which
here we call S transformation. The Lindblad operator (4.46) is

La(k⃗) = AQ(p⃗, r⃗)
(
taQ ⊗ 1

)
−BQc(p⃗, r⃗)

(
1⊗ ta∗Qc

)
+ CQQc(r⃗) if

abc
(
taQ ⊗ ta∗Qc

)
, (D.4)

and the Lindblad master equation (4.45) with the Hamiltonian H ≡ Hijkl(p⃗, r⃗) is

d

dt
ρ(t) =− i [H, ρ] +

∫
k

∑
a

[
2La(k⃗)ρLa†(k⃗)−

{
La†(k⃗)La(k⃗), ρ

}]
, (D.5)

Hijkl(p⃗, r⃗) =
p⃗2

M
(1⊗ 1)ijkl +

[
V (r⃗)− p⃗ · ∇⃗D (r⃗) + ∇⃗D (r⃗) · p⃗

4MT

] (
taQ ⊗ ta∗Qc

)
ijkl

.

(D.6)

With σab2 = −iϵab and −ϵabtαbe = tαdaϵde, we show the some useful relations in SU(2)

−ϵAjϵBi
(
taQ ⊗ 1

)
ijab

=
(
1⊗ ta∗Qc

)
ABij

ϵibϵja, (D.7)

−ϵAjϵBi
(
1⊗ ta∗Qc

)
ijab

=
(
taQ ⊗ 1

)
ABij

ϵibϵja, (D.8)

−ϵAjϵBiifabc
(
tbQ ⊗ tc∗Qc

)
ijkl

= ifabc
(
tbQ ⊗ tc∗Qc

)
ABij

ϵilϵjk, (D.9)

−ϵAjϵBi
(
taQ ⊗ ta∗Qc

)
ijkl

=
(
taQ ⊗ ta∗Qc

)
ABji

ϵjbϵia, (D.10)

where we note

(ta ⊗ ta∗)ij,kl = (ta)ik (t
a∗)jl = (ta)ik (t

a)lj , (D.11)
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Appendix D. SU(2) symmetry of the Lindblad equation

(ta ⊗ 1)ij,kl = (ta)ik δjl, (D.12)

(1⊗ ta∗)ij,kl = δik (t
a∗)jl = δik (t

a)lj . (D.13)

Thus, the S transformation on the Lindblad operator correspond to the representation of
the operators

−ϵAjϵBiAQ(−p⃗,−r⃗)
(
taQ ⊗ 1

)
ijkl

= BQc(p⃗, r⃗)
(
1⊗ ta∗Qc

)
ABij

ϵilϵjk, (D.14)

−ϵAjϵBiBQc(−p⃗,−r⃗)
(
1⊗ ta∗Qc

)
ijkl

= −AQ(p⃗, r⃗)
(
taQ ⊗ 1

)
ABij

ϵilϵjk, (D.15)

−ϵAjϵBiCQQc(−r⃗) ifabc
(
taQ ⊗ ta∗Qc

)
ijkl

= −CQQc(r⃗) if
abc
(
taQ ⊗ tc∗Qc

)
ABij

ϵilϵjk. (D.16)

The latter relations lead

−ϵAjϵBiLa(−p⃗,−r⃗, k⃗)ijkl = La(p⃗, r⃗, k⃗)ABij[−ϵilϵjk], (D.17)

−ϵAjϵBiL†a(−p⃗,−r⃗, k⃗)ijkl = L†a(p⃗, r⃗, k⃗)ABij[−ϵilϵjk]. (D.18)

From the above relations, we show the S transformation on the Lindblad master equation
as follows

−ϵAjϵBiHijkl(−p⃗,−r⃗) = HABij(p⃗, r⃗)[−ϵilϵjk], (D.19)

−ϵAjϵBiLa(−p⃗,−r⃗, k⃗)ijabρabcd (−r⃗, r⃗ ′, t)L†a(p⃗, r⃗, k⃗)cdkl

= La(p⃗, r⃗, k⃗)ABij[−ϵibϵja]ρabcd (−r⃗, r⃗ ′, t)L†a(p⃗, r⃗, k⃗)cdkl, (D.20)

−ϵAjϵBiL†a(−p⃗,−r⃗, k⃗)ijabLa(−p⃗,−r⃗, k⃗)abcdρcdkl (−r⃗, r⃗ ′, t)

= L†a(p⃗, r⃗, k⃗)ABij[−ϵibϵja]La(−p⃗,−r⃗, k⃗)abcdρcdkl (−r⃗, r⃗ ′, t)

= L†a(p⃗, r⃗, k⃗)ABijL
a(p⃗, r⃗, k⃗)ijab[−ϵadϵbc]ρcdkl (−r⃗, r⃗ ′, t) . (D.21)

Therefore the S transformed density matrix −ϵAjϵBiρij,kl (−r⃗, r⃗ ′, t) satisfy the same Lind-
blad master equation, which is the symmetry of the Lindblad master equation.

From this property, as shown in Fig. D.1 and Fig. D.2, the density matrix in the triplet
sector |ρt(x, y)|2 even at the final time of the simulations remains finite both in the diago-
nal line of y = x and in the non-diagonal line of y = −x, which tells quantum long-range
correlations of the states in the thermal bath from the SU(2) theoretical simulations.
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Fig. D.1: The triplet density matrix of charmo-
nium states at the last simulation time.
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nium states at the last simulation time.
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