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Chapter 1

Foreword

Mesoscopic systems have served as an important experimental platform for
studying the quantum and correlated nature of electronic systems. Various
quantum effects have been investigated by measuring their transport prop-
erties. In particular, since Klaus von Klitzing observed the quantum Hall
effect (QHE) [1], many researchers have focused on the effect to investigate
numerous physical characteristics, such as edge states and topological insu-
lators. The quantum Hall effect breakdown (QHEBD), which occurs when a
high electric field or bias current is applied to the sample, is a significant ef-
fect to understand the non-equilibrium state of the effect. More experimental
results are necessary for complete understanding.

Conductance, G, is often evaluated by measuring dc current that corre-
sponds to the time average of electron number passing through a device.
Besides, the current noise, which corresponds to the fluctuation of the cur-
rent, is useful for gaining more in-depth insight into quantum transport [2–
4]. For example, the noise measurements have successfully revealed the frac-
tional charge of tunneling quasiparticles in fractional quantum Hall systems
[5–8] and correlated electron transport through Kondo impurities [9–12]. The
measurement method is suggested to probe novel mesoscopic phenomena,
such as anyonic correlations in fractional quantum Hall systems [13, 14] and
violation of Bell inequalities in an electronic interferometer [15].

In this Thesis, we studied the current noise from two perspectives: mea-
surement technique and physics. First, we developed a noise measurement
system for future physical experimental measurements. We succeeded in in-
creasing the gain of the signal from the sample and reducing the external
noise. Also, the quantum Hall effect breakdown in a monolayer graphene
Hall bar was studied. It is a more potential material than the GaAs/AlGaAs
heterostructure because graphene can adjust the carrier type and carrier den-
sity. Further, we observed the increases in the temperature of the electrons
by analyzing the current noise, which supports one of the theoretical QHEBD
models.

This thesis consists of seven chapters. In Chapter 2, we introduce several
backgrounds about our research: mesoscopic physics, Landauer-Büttiker for-
mula. We elucidate the theoretical background of the current noise in Chap-
ter 3 and expound on the method of how to measure the current noise in
Chapter 4. While Chapter 5 shows our achievement of developing a noise
measurement system, Chapter 6 shows the study of a non-equilibrium trans-
port in quantum Hall effect on the graphene Hall bar. The sample comprises
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a hBN/monolayer graphene/hBN. In Chapter 7, we summarize the Thesis.
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Chapter 2

Mesoscopic Transport

A mesoscopic system is a conductor whose size is shorter than the mean free
path or the coherence length of the electrons. In this regime, we study quan-
tum mechanics by manipulating electronic circuits. Here, we briefly intro-
duce Landauer formula, two-dimensional electron gas, and the phenomena
in the mesoscopic world.

2.1 Landauer Formula

We briefly introduce the Landauer formula according to Ref. [16].
We consider two-terminal measurement for convenience, as shown in Fig.

2.1. We assume that +k states exist in a single transverse mode according to

�2

E

�1

Lead L Lead R

T
M modesM modes

E

k k

FIGURE 2.1: Schematic diagram for understanding the Landauer formula.
A conductor has a transmission probability of T and M transverse modes
[16].

arbitrary function g(E(+k)). The current per unit length in a conductor is
expressed as

I = env, (2.1)

where e is the elementary charge, n is the carrier density, and v is the drift
velocity. Since the charge density in a conductor of length L for a single +k
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state equal to g(E(+k))/L, Eq. (2.1) is expressed as

I+k =
e
L ∑

k
vg(E(+k)). (2.2)

By replacing the sum with the integral, the current is given by

I+k =
2e
h

∫ ∞

µ1

g(E(+k))dE. (2.3)

When the M transverse modes exist in the mesoscopic conductor, the current
is given by

I+k =
2e
h

∫ ∞

−∞
g(E(+k))M(E)dE. (2.4)

When the transverse modes are independent of the energy for µ1 < E < µ2,
the current is expressed as

I =
2e
h

M (µ1 − µ2) . (2.5)

Assuming the mesoscopic conductor has the transmission probability T ,
then the transmitted current is expressed as

IT =
2e
h

MT (µ1 − µ2) . (2.6)

The conductance is given by

G =
I

(µ1 − µ2) / |e| =
2e2

h
MT . (2.7)

Equation (2.7) is called the Landauer Formula.

2.2 Two-Dimensional Electron Gas System

The two-dimensional electron gas (2DEG) is a useful stage for a mesoscopic
system, such as the quantum point contact and the quantum Hall effect. The
2DEG appears when the electron is confined in z-direction for some rea-
son. We deal with two types of 2DEG: a semiconductor heterostructure and
graphene.

2.2.1 Semiconductor Heterostructure

One of the most used semiconductor heterostructures with a 2DEG system is
GaAs/AlGaAs. It was invented by Takashi Mimura and Satoshi Hiyamizu,
who researched GaAs high-electron-mobility transistors in Fujitsu Laborato-
ries in 1979 [17, 18]. Figure 2.2 shows the heterostructure of the GaAs/AlGaAs.
When the AlGaAs and GaAs are attached, the narrow band gaps of GaAs are
bent downward, while the wide band gaps of the AlGaAs are bent upward
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due to the wide mismatch of the Fermi energy. The conduction band of the
GaAs state obtains a small potential. The electronic wave functions in the
potential are confined in the z-direction. Therefore, at the interface between
them, a thin two-dimensional conducting layer is formed [16]. Researchers
can fabricate high-quality structures with molecular-beam epitaxy.

The Hamiltonian of a free particle is given by

H =
−→p 2

2m
, (2.8)

where m is the mass of a particle. In 2DEG, since the particle is confined, the
Hamiltonian Eq. (2.8) is expressed as

H =
p2

x
2m

+
p2

y

2m
. (2.9)

Thus, the eigenenergy of the Hamiltonian is expressed as

E =
h̄2

2m

(
k2

x + k2
y

)
. (2.10)

The typical properties of 2DEG is well known. The mobility is about 106 cm2/Vs,
the carrier density ranges from 2× 1011 cm−2 to 2× 1012 cm−2, the mean free
path is about 30 µm, and the Fermi wave length is about 40 nm [16].

EF

AlGaAs

z

EF
EF

AlGaAs GaAs

z

EF

GaAs

2DEG

b)a)

FIGURE 2.2: Schematic diagram of conduction and valence band of the Al-
GaAs and GaAs. a) Energy bands when AlGaAs and GaAs are far enough
apart. b) Energy bands when AlGaAs and GaAs are attached. A thin two-
dimensional conducting layer is formed at GaAs conduction band [16].

2.2.2 Graphene

We briefly introduce graphene according to Refs. [19–24]. A monolayer
graphene is a single layer comprising carbon atoms in a honeycomb lattice.
Figure 2.3 a) shows the schematic of graphene. The electrons in 2s, 2px, 2py,
and 2pz orbitals significantly act for graphene structure. The 2s, 2px, and
2py comprising a sp2 hybridization form a σ band, the 2pz orbital forms a
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half-filled π band. The σ band leads to a planar structure to bond the car-
bon atoms, while the perpendicular π band leads to the conduction of the
electrons, hopping to the nearest neighbor.

We will detail the band structure of the graphene because it is particular.
The lattice vectors [see Fig. 2.3 a)] can be written as

−→a1 =
(√

3a, 0
)

, −→a2 =

(√
3a
2

,
3a
2

)
, (2.11)

where a ≃ 1.42 Å is the lattice distance. The reciprocal-lattice vectors are
given by

−→
b1 =

(
2π√

3a
,−2π

3a

)
,

−→
b2 =

(
0,

4π

3a

)
, (2.12)

as shown in Fig. 2.3 b). Of particular importance for the physics of graphene
are the two points, K and K′, at the corner of the graphene Brillouin zone.
These are named Dirac points for reasons that will become clear later. Their
positions in the vector space are given by

−→
K =

(
4π

3
√

3a
, 0
)

,
−→
K′ =

(
− 4π

3
√

3a
, 0
)

(2.13)

at the corner of the Brillouin zone, as shown in Fig. 2.3 b). We will explain
the band structure using the tight-binding model. A trial wave function, Ψk,
is expressed as∣∣∣Ψk

〉
= CA

∣∣∣ψA
〉
+ CB

∣∣∣ψB
〉

,
〈

Ψk
∣∣∣−→r 〉 = Ψk (−→r ) , (2.14)

where k is the wave vector, ψA(B) is the wave function on the A(B) atom, and
CA(B) is the eigenfunctions for the coefficients. According to Bloch's theorem,
the

∣∣∣ψA(B)
〉

is expressed as

∣∣∣ψA(B)
〉
=

1√
N

∑
j

exp
(

ik
−→
R A(B)

j

) ∣∣∣ϕA(B)
〉

, (2.15)

where N is the number of elementary cells, Rj is the Bravais lattice site,

and ϕ is the wave function of pz orbital of carbon atoms,
〈

ϕ
A(B)
j

∣∣∣−→r 〉 =

ϕ
(−→r −−→

R A(B)
j

)
. The Schrödinger equation, H

∣∣Ψk〉 = E
∣∣Ψk〉 is expressed

as (
ε0 t f (k)

t f ′(k) ε0

)(
CA

CB

)
= E

(
1 s f (k)

s f ′(k) 1

)(
CA

CB

)
, (2.16)
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A sublattice
B sublattice

�2 �1

�3
a=1.4 A

Rj

K

K'

M

�

a) b)

c)

a2

a1

b1

b2

FIGURE 2.3: Schematic diagram of graphene. a) Honeycomb lattice of
graphene. Reprinted figure with permission from [23] Copyright 2021 by
the American Physical Society. b) Reciprocal lattice of the triangular lat-
tice. Reprinted figure with permission from [23] Copyright 2021 by the
American Physical Society. c) Energy dispersion in graphene. Right panel:
zoom-in of the energy bands in the vicinity of the Dirac cone. Reprinted
figure with permission from [19] Copyright 2021 by the American Physical
Society.

where ε0 is the on-site energy,

f (k) ≡ ∑
j=1,2,3

exp(i
−→
k · −→δj ),

δ1 =
a
2

(√
3, 1
)

, δ2 =
a
2

(
−
√

3, 1
)

, δ3 = (0,−a) ,〈
ϕA(B)

∣∣∣H ∣∣∣ϕA(B)
〉
= t,

〈
ϕA(B)

∣∣∣ ϕA(B)
〉
= s,

t is the hopping amplitude between the nearest neighbors (j, A) and (i, B)
[see (δ1, δ2, δ3) in Fig. 2.3 a)], and s is the overlap correction. The energy E is
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given by

E =
ε0 ± t | f (k)|
1 ± s | f (k)| . (2.17)

Here, + is for the conduction band, π∗, − is for the valence band, π band. Ac-
cording to the numerical calculation [20] or the spectroscopic measurements
[21], the hopping amplitude for the next nearest neighbor is neglected and
s ≪ 1. For convenience, we assume that s ≪ 1 and ε0 = 0. The energy, E, is
expressed as

E = ±t | f (k)|

= ±t

√√√√3 + 2 cos
(√

3kxa
)
+ 4 cos

(√
3kxa
2

)
cos

(
3kya

2

)
. (2.18)

The energy dispersion is shown in Fig. 2.3 c).
In the vicinity of the Fermi energy, E = 0, K and K′ vectors in Eq. (2.13)

exist.
−→
k is expressed as

−→
k =

−→
K + −→q . f (k), near the K and K′ points, is

expressed as

f (k) = ∑
j=1,2,3

ei
−→
K ·−→δj ei−→q ·−→δj

= ∑
j=1,2,3

ei
−→
K ·−→δj × ∑

p

(
i
(−→q · −→δi

))p

p!
. (2.19)

After some algebra, the Hamiltonian in Eq. (2.16) is expressed as

H = ξ h̄vF
(
qxσx + ξqyσy) , (2.20)

where vF is the Fermi velocity,

vF =
1
h̄

∂E
∂k

= ±3at
2h̄

, (2.21)

and used the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
. (2.22)

The valley degeneracy is expressed as ξ, where ξ = + denotes the K point
and ξ = − denotes the K′ point. The distribution in the vicinity of the K and
K′ vectors is expressed as

E±
(−→q ) ≃ ±vFh̄

∣∣−→q ∣∣+O
[
(q/K)2

]
. (2.23)

The conical shape of the band structure makes massless Dirac Fermion,
and since the energy dispersion seems to be the massless particle in the Ein-

stein's energy–momentum relation, E = ±
√

m2c4 +−→p 2c2, where c is the
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light velocity with m → 0. The massless Dirac Fermion is predicted theo-
retically [25, 26] and observed experimentally [27–30]. Since the K and K′

points are equivalent in the reciprocal space, graphene has a two-fold valley
degeneracy. Because of the four-fold degeneracy, including the spin degen-
eracy, graphene has the half-integer quantum Hall effect. The details will be
explained in Section 2.4.

2.3 Quantum Point Contact

Quantum point contact (QPC) has the simplest structure and is used for a
test because its main properties are quantized conductance and can partition
currents. In this Thesis, we fabricated the QPC on the GaAs/AlGaAs 2DEG
as a test sample for the renovated noise measurement setup.

QPC is composed of fine metallic gate leads deposited on the 2DEG sur-
face, as shown in Figure 2.4. Applying negative voltages to the gate leads can

x

y

100 nm

FIGURE 2.4: False-color SEM image of the QPC fabricated by me. The
width of the gap between gate leads is 75 nm. It is fabricated by accumu-
lating a thickness of 5 nm of Ti and 50 nm of Au.

increase the Schottky barrier in the 2DEG region. The high barriers create a
region where carriers do not exist, the depletion layer. The carrier density
can be controlled by applying an appropriate voltage. Broadening the size of
the depletion region is also possible with the strong negative voltage of leads.
As shown in Fig. 2.4, the narrow conductor can be created, where the yellow
regions are the gate with gold metal, and the black region is GaAs, which
has the 2DEG beneath it. This structure is called a QPC. The conductance of
QPC versus gate voltage is shown in Fig. 2.5. At a large negative voltage, the
conductance becomes zero. The region is called pinch-off. The conductance
for the finite voltage has a step-like shape, with each height being 2e2/h. The
quantized conductance is obtained from the discrete energy level between
the QPC region.

The potential energy of QPC has a saddle-point because of the low energy
in leads and high potential barrier in the depletion layer [see Fig. 2.5 b)].
Büttiker argued this model [32]. The saddle-point model potential in the xy-
plane is given by

V(x, y) = V0 −
1
2

mω2
xx2 +

1
2

mω2
yy2.
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4

3

2

1

0

C
on

du
ct

an
ce

 (
2e

2 /h
)

-0.9 -0.8 -0.7 -0.6
VSG (V)

a) b)

FIGURE 2.5: a) Conductance of the QPC. The QPC depletes the ballistic
channel as the negative voltage is applied to the gate. The step-like shape
of conductance is one of the main properties of QPC (results of Ch. 5).
b) QPC forms the saddle-point potential comprising discrete energy lev-
els only in one direction. Reprinted by permission from Springer Nature:
Springer Nature NATURE PHYSICS [31], 2021. .

Here, V0 is the electronic potential at the saddle, and ωx and ωy are the angu-
lar frequency along the x-axis and y-axis. Consequently, the area can be de-
scribed by a harmonic oscillator. The energy-dependent transmission proba-
bility of electrons from the n-th incident channel to the m-th outgoing channel
is expressed as [33, 34]

Tmn =
δmn

1 + eπεn
, εn = 2

ε − h̄ωy

(
n + 1

2

)
− V0

h̄ωx
,

where δmn is the Kronecker delta. Electrons can only transport when the inci-
dent and outgoing channels match each other. The transmission probabilities
for n = 0, 1, 2, · · · can be plotted, as shown in Figure 2.6. Consequently, as the
QPC gate is closed, the conductance decreases step by step with a quantized

value, G = M
2e2

h
T , due to the Landauer formula in Eq. (2.7).

2.4 Quantum Hall Effect

The quantum Hall effect is one of the most significant effects in the two-
dimensional system. We introduce the quantum Hall effect briefly according
to Refs. [16, 35].

The classical Hall effect was discovered in 1879 by Edwin Herbert Hall
[36]. He found that the transverse resistance in a thin metal in the strong
magnetic field can be calculated as

RH =
B

ene
, (2.24)
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FIGURE 2.6: Transmission and conductance of QPC channel. Reprinted
figure with permission from [32] Copyright 2021 by the American Physical
Society.

where e is the carrier charge, ne is the carrier density, and B is a planer mag-
netic field.

In the 2DEG, the quantum Hall effect was discovered in 1980 by Klaus
von Klitzing [1]. The quantum Hall effect is independent of the geometry of
samples, and the quantized Hall resistance is precise for integer numbers n,
nh
2e2 .

Considering the conductance in a 2DEG, the Hamiltonian of an electron
in the x-y two-dimensional plane in the magnetic field is expressed as

H =

[
(ih̄∇+ eA)2

2m

]
. (2.25)

By assuming the magnetic field is parallel with the z-direction, we introduce
a vector potential of a magnetic field:

A = (0, Bx, 0) .

Equation (2.25) is given by[
p2

x
2m

+

(
py + eBx

)2

2m

]
Ψ(x, y) = EΨ(x, y).

After some algebra, the solution is given by

Ψn,k(x, y) =
1√
L

eikxun(q + qk) ≡ |n, k⟩

E(n, k) =
(

n +
1
2

)
h̄ωc, n = 0, 1, 2, · · ·
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where L is the sample length,

un(q) = e−
q2
2 Hn(q),

q = y
√

mωc/h̄ and qk = yk
√

mωc/h̄,

yk ≡
h̄k
eB

and ωc ≡
|e|B
m

and Hn(q) is the Hermite polynomial. These levels are called Landau levels.
The conduction in the regime can be explained using the Landauer for-

mula of Eq. (2.7). In the non-equilibrium state, when the longitudinal voltage
drop is VL = 0 and the Hall voltage eVH = µL − µR, the net current through
the quantum Hall state is expressed using Eq. (2.5) as

I =
2e
h

M (µL − µR) . (2.26)

Consequently, the longitudinal and Hall resistance are expressed as

RL =
VL

I
= 0, RH =

VH

I
=

h
2e2M

. (2.27)

When the Fermi energy exists between two Landau levels, the Hall resis-
tance has plateau, while the longitudinal resistance is zero. When the Zee-
man splitting exists, the Hall resistance is

RH =
h

e2n
≃ 25.8128 kΩ

n
. (2.28)

Hall conductance can be calculated by considering the density of states
[1, 35, 37]. The flux density in a high magnetic field is given by

nB =
B

h/e
. (2.29)

We assume that the Zeeman splitting exists. In this case, the localized num-
ber of states, nLL, within each Landau level equals nB [see Fig. 2.7 a)]. The
filling factor is defined as

ν =
ne

nB
. (2.30)

Using the formula of classical Hall effect given in Eq. (2.24),

RH =
hJνKe2 (2.31)

The integer part of JνK equals the Landau level, n. Here, J· · ·K is the floor
function for positive value and the ceiling function for another case.

In the quantum Hall effect regime, the carriers transport through the edge
state. The edge state has the same chemical potential as the potential of a con-
tact. Since the edge state is nondissipative, the abrupt change of the chemical
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potential appears between the contact and the edge state, as shown in Fig.
2.7 b). The spot is called hotspot [38].

�R

�Lb)

DOS

a)

nLL

nLL

n

n-1

EF

E

FIGURE 2.7: a) Density of states in a high magnetic field. The n-th Lan-
dau levels are completely filled. b) Schematic diagram of edge state and
existence of the hotspot (yellow star) in the quantum Hall effect regime.

2.4.1 Graphene

We introduce the quantum Hall effect in monolayer graphene according to
Refs. [23, 35, 37]. The Landau level of graphene differs from the levels of
conventional 2DEG. The cyclotron energy in graphene is much higher [19,
39–41] than the energy in conventional 2DEG. We explain the quantum Hall
effect with four-fold degeneracy. At a high magnetic field, the Hamiltonian
Eq. (2.20) at the K point, ξ = +, is expressed as

H = vF

(
0 px + i

(
py + eBx

)
px − i

(
py + eBx

)
0

)
. (2.32)

After some algebra, the eigenenergy is given by

E = sign(n)vF

√
2eBh̄ |n|. (2.33)

Here, n is the Landau level index n = 0,±1,±2, · · · . The positive Lan-
dau level indexes denotes electron-like Landau levels (n-type regime), and
the negative Landau level indexes denotes hole-like Landau levels (p-type
regime).

The conductance can also be explained using the density of states [35].
The Landau level increases with the step in units of four, 4n, due to the four-
fold degeneracy. The half-integer quantum Hall effect appears when n = 0,
where one has perfect electron-hole symmetry. Thus, the electron density ne
is given by [37]

ne = n
2eB

h

∣∣∣∣
K
+ n

2eB
h

∣∣∣∣
K′
+

2eB
h

∣∣∣∣
E=0

=
4eB

h

(
n +

1
2

)
. (2.34)
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The filling factor is given by

ν =
ne

nB
= ±4

(
n +

1
2

)
. (2.35)

As a consequence, the conductance is expressed as

G = ν
e2

h
= ±4

(
n +

1
2

)
e2

h
. (2.36)

2.5 Quantum Hall Effect Breakdown

The dissipationless quantum Hall effect state is observed to be broken when
the current, Isd, exceeds a critical value, Ic, called the quantum Hall effect
breakdown (QHEBD), as shown in Fig. 2.8. Many researchers have reported
the effect [42–46]. The quantum Hall effect is a significant phenomenon in the
International System of Units [47, 48]; the high bias voltage or bias current
is necessary to measure a high resolution of the resistance standard. It is
important to investigate the non-equilibrium state of the quantum Hall effect
regime to understand the quantum Hall regime to realize the high-resolution
standard resistance.

FIGURE 2.8: Hall resistance reduction due to quantum Hall effect break-
down. Reprinted figure with permission from [43] Copyright 2021 by the
American Physical Society.

Researchers have suggested models that explain the processes of QHEBD.
The two types of theories are famous: the bootstrap electron heating (BSEH)
and the quasi-elastic inter-Landau level scattering (QUILLS). Many experi-
enced researchers have tried to explain the process based on these theories.

The QUILLS model focuses on exciting electrons between inter-Landau
levels [49–51], as shown in Fig. 2.9 a). The model is like the Zener effect in a
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p-n diode, which explains that the excitation carriers exceed the band gap in
high bias voltages. The model is proposed to explain the experimental data
measured by Bliek et al. [52]. At ν = 2, the critical electric field is given by
[51]

αeEclb ≃ h̄ωc, (2.37)

where lb =
√

h̄/eB and α is a numerical factor ≃ 3. This condition can be
rewritten as

Ec =
B

αm

√
h̄eB. (2.38)

The characteristic of the model is also that Ec or Ic is proportional to B3/2

because ωc = eB/m. Many experimental [46, 50, 52–58] and theoretical [49,
51] studies also support the model.

a) b)

n th LLn th LL

n+1th LL

�F

CollisionCollision

Acceleration

holehole

FIGURE 2.9: Schematic representation of a) QUILLS and b) BSEH mod-
els. a) Excitation of electrons is caused by several reasons, such as ther-
mal fluctuation or high bias voltages. b) Small number of non-equilibrium
electrons create electron-hole pairs by collisions. Reprinted figure with
permission from [43] Copyright 2021 by the American Physical Society.

The BSEH model was proposed by Susumu Komiyama and Yasushi Kawaguchi
[59], as shown in Fig.2.9 b). This model is like the avalanche breakdown in
an insulating or p-n diode, which occurs when the accelerated carriers by
electric fields collide with bound electrons and then create free electron-hole
pairs. The model is a macroscopic model that considers the energy gain and
loss of electrons. In the model, the system is thermally fluctuating in the
QHEBD regime because the electrons scatter with the lattice. The critical
electric field, Ec, is given by [59]

Ec = B

√
2h̄

m∗τe
, (2.39)



16 Chapter 2. Mesoscopic Transport

where τe ∝ B−1 is a characteristic electron-phonon energy relaxation time.
The characteristic of the model is that Ec or Ic is also proportional to B3/2. The
current is more than an order of magnitude smaller than that given by Eq.
(2.38). Many experimental [45, 60–69] and theoretical [59] studies support
the model.

However, it is also known that the signature of the QHEBD differs de-
pending on the geometrical structure of the samples or the contact lead [70].
In this study, we measure the current noise at the QHEBD regime to under-
stand the transport of electrons, and discuss on the process of the manifesta-
tion of the QHEBD later in Chapter 6.



17

Chapter 3

Current Noise in Mesoscopic
Systems

We now introduce the current noise in mesoscopic systems mainly according
to Ref. [3, 71].

3.1 Definition of Noise

Current fluctuation, called current noise, has significant information, on elec-
tron transport in mesoscopic samples. Numerous researchers have mea-
sured the current noise to investigate physics such as the quantum Hall ef-
fect breakdown [72–74], spin transport [75, 76], non-equilibrium statistical
physics [77], Hanbury-Brown Twiss effect [78, 79], and quantum optics [80,
81].

When a resistor is connected to a voltage source that applies a bias voltage
V, an ammeter shows the electric current I that flows through the resistor, as
shown in Fig. 3.1. The current I means a time-averaged value ⟨I(t)⟩, deter-
mined by Ohm's law, I = V/R. One can also measure a finite fluctuation
∆I(t) ≡ I(t) − ⟨I(t)⟩ ̸= 0 on the current, which is the current noise. The
current noise power spectral density, which is the Fourier transform of ∆I(t),
∆I(ω) =

∫ τ/2
−τ/2 dt∆I(t) exp(iωt) for measured time −τ/2 ≤ t ≤ τ/2, is ex-

pressed as

S(ω) = lim
τ→∞

2
τ
|∆I (ω)|2

= lim
T→∞

2
τ

∫ τ/2

−τ/2
dt
∫ τ/2

−τ/2
dt′
〈
∆I(t)∆I(t′)

〉
exp

(
iω(t − t′)

)
. (3.1)

Here, ω = 2π f is an angular frequency. The physical unit of S is easily seen
from the definition. The unit of the current, [A] = [C/s], corresponds to the
number of electrons passing through the system for a finite time, while the
unit of the current noise,

[
A2/Hz

]
=
[
C2/s

]
, corresponds to the variance

of the number of electrons passing through the system for the corresponding
time.

Generally, the noise has different information at different frequency regime:
low frequency (h f ≪ kBTe) and high frequency regimes (h f ≫ kBTe), where
h is the Plank constant, f is the frequency, kB is the Boltzmann constant, and
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Resistance

I

Vbias

Voltmeter
(Digitizer)

Current
⟨��⟩

⟨��2⟩

Current
Noise

Time t

Current I

FIGURE 3.1: Schematic of the noise measurement system. A current I is
measured by the voltmeter (digitizer). The current, ⟨I⟩, has intrinsic noise,
⟨(∆I)2⟩.

Te is the temperature of the electron. This thesis focuses on the current noise
for the low-frequency regime and shows what information we can obtain.

3.1.1 1/ f Noise

We introduce the 1/ f noise according to Ref. [82].
The 1/ f noise is the power spectral density appearing in the low-frequency

regime. The 1/ f noise was named because the spectral density depends in-
versely on the frequency.

The power spectral density, S( f ), is expressed as S( f ) ≃ 1/ f γ, where f
is the frequency and γ ≃ 1 is an experimental parameter. The noise was first
discovered in vacuum tubes [83] and observed in electronic systems [84, 85].
In electronic systems, one of the main properties of noise is usually found at
f < 100 kHz. It is well-known that the 1/ f noise measurement is related to
the properties of individual devices [86].

There are mainly two types of origins for the 1/ f noise [87]; the fluctua-
tion of the carrier density, ne, and the fluctuation of the mobility, µ, because
the deviation of the current, I ∝ eneµ, can be expressed as δI ∝ e (δne) µ +
ene (δµ), where e is the charge of an electron.

The carrier-density-fluctuation mechanism is generated from carrier cap-
ture and emission back of defects of a sample [88]. Because each defects has
different capture times, the 1/ f properties appear. The mobility-fluctuation
mechanism is generated from the varying scattering cross-section of the de-
fects, such as multi-potential and carrier capture and release, etc. [89, 90].
The 1/ f noise from any mechanisms can be expressed using the Hooge pa-
rameter, αH, [91]

SI

I2 =
αH

ne f
, (3.2)

where SI ≃ (δI)2 is the power spectral density of the fluctuations due to the
current. The 1/ f noise was measured to estimate the purities of the sample,
such as the puddle of the graphene [92, 93] or breakdown mechanism of the
insulator [94].
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3.1.2 Thermal Noise

Thermal fluctuations of the carriers exist at finite temperature. The fluctua-
tion causes the noise.

When the sample is in an equilibrium state, such as zero bias, the aver-
age current, ⟨I(t)⟩, is also zero, while the current noise, ⟨(∆I)2⟩, is not zero,
originating from the thermal excitation of the carriers. The noise is referred
to as the thermal noise or Johnson-Nyquist noise [95, 96]. The noise power
spectral density, SI , is given by

SI = 4kBTeG, (3.3)

where G = I/V is the conductance of the sample. Since this noise is inde-
pendent of frequency, it is a white noise. The noise is often used to measure
the temperature of the carriers or to calibrate the noise measurement system.
Details will be discussed in Chapter 4.

3.1.3 Shot Noise

Shot noise is a consequence of charge discreteness. The shot noise appears
when the sample is in the non-equilibrium state.

Here, we consider one particle incident to a barrier that has the transmis-
sion probability T and the reflection probability R(= 1 − T ) to describe the
shot noise [3]. The incident occupation number is ni, the transmitted occu-
pation number is nT , and the reflected occupation number is nR. When a
sufficiently large number of processes occurs, we can calculate the average
and the variations of these occupation numbers. Let the incident occupation
number, n, be 1; ⟨ni⟩ = 1. Thus, ⟨nT ⟩ = T and ⟨nR⟩ = R. The deviation
from the average occupation number is expressed as

〈(
nj −

〈
nj
〉)2
〉

, where
nj is the incident, transmitted, and reflected occupation numbers. The mean-
squared fluctuations of the incident numbers will vanish 1; (ni − ⟨ni⟩)2 =
0. The correlation of the transmitted and reflected state will also vanish;
⟨nT nR⟩ = 0. Hence, the correlation of the mean-squared fluctuations of the

1Note that n2 = n in a Fermi system.
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transmitted and reflected state is given by 2〈
(ni − ⟨ni⟩)2

〉
=
〈
(∆nT )

2
〉
+ 2 ⟨∆nT ∆nR⟩+

〈
(∆nR)

2
〉

, (3.4)

where ∆nT (R) ≡ nT (R) −
〈

nT (R)

〉
. Because ⟨∆nT ∆nR⟩ = −T R 3, the

mean-squared of the transmitted and reflected states and their correlation
is given by 〈

(∆nT )
2
〉
=
〈
(∆nR)

2
〉
= − ⟨∆nT ∆nR⟩ = T R. (3.5)

Based on those relations, the total transmitted current is expressed as∫ τ/2

−τ/2
dtI(t) = enT

and on the average current is given by

⟨I(t)⟩ = e ⟨nT ⟩
τ

=
eT
τ

.

Because the power spectral density [Eq. (3.1)] of the shot noise is indepen-
dent of the frequency, we consider the zero frequency limit for convenience.
The power spectral density is expressed as

S(0) =
2
τ

∫ τ/2

−τ/2
dt
∫ τ/2

−τ/2
dt′
〈
∆I (t)∆I

(
t′
)〉

=
2e2

τ

〈
(∆nT )

2
〉

2The step-by-step solution is

0 =
〈
(ni − ⟨ni⟩)2

〉
=

〈
[(nT + nR)− (⟨nT ⟩+ ⟨nR⟩)]2

〉
=

〈
[(nT − ⟨nT ⟩) + (nR − ⟨nR⟩)]2

〉
=

〈
(nT − ⟨nT ⟩)2

〉
+ 2 ⟨(nT − ⟨nT ⟩) (nR − ⟨nR⟩)⟩

+
〈
(nR − ⟨nR⟩)2

〉
=

〈
(∆nT )

2
〉
+ 2 ⟨∆nT ∆nR⟩+

〈
(∆nR)

2
〉

.

3The step-by-step solution is

⟨∆nT ∆nR⟩ = ⟨nT nR − ⟨nT ⟩ nR − ⟨nR⟩ nT + ⟨nT ⟩ ⟨nR⟩⟩
= 0 − ⟨nT ⟩ ⟨nR⟩ − ⟨nR⟩ ⟨nT ⟩+ ⟨nT ⟩ ⟨nR⟩
= − ⟨nT ⟩ ⟨nR⟩
= −T R.
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In the Poissonian process, T is very small,
〈
(∆nT )

2
〉
≃ T [Eq. (3.5)]. Thus,

the shot noise power spectral density is

SI
P =

2e2T
τ

=
2e2

τ
⟨nT ⟩ = 2e ⟨I(t)⟩ .

If the electrons do not transport in the Poissonian process, the shot noise can
be expressed as

SI = 2eF ⟨I(t)⟩ ,

where Fano factor F = SI/SI
P. The details will be explained in Chapter 3.2.

3.2 Current Noise Based on Landauer Picture

Here, we derive the general formula for the shot noise and the averaged cur-
rent based on the Landauer picture according to Ref. [3].

3.2.1 Scattering Theory

Let the ideal infinite one-dimensional reservoirs (the leads) be connected to
the mesoscopic sample (Fig. 3.2). The Hamiltonian of the left or right lead is

H = ∑
k
(εk − µ) c†

kck, (3.6)

where εk = h̄2k2/2m is the energy of electrons, µ is the chemical potential, c†
k

is the creation operator, and ck is the annihilation operator, respectively. In
the vicinity of the Fermi energy, the linear approximation of Eq. (3.6) is given
by εk − µ = h̄vF (k − kF), where vF = h̄kF/m is the Fermi velocity, and kF is
the Fermi wavenumber.

Lead L Lead R

bR,kbL,k

aR,kaL,k

SampleSample

x=0

L

FIGURE 3.2: Schematic of a two-terminal conductor. The sample has one
transverse channel. a is the operator for the incident state upon the sam-
ple, and b is the operator for the outgoing state.
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We consider the left lead, L. We introduce creation a†
L,k and annihilation

aL,k operators in the left lead incident to the sample. In the same way, the
creation b†

L,k and annihilation bL,k operators describe electrons in the outgoing
states. In this case, the Hamiltonian is expressed as

H = ∑
k

h̄vF (k − kF) a†
L,kaL,k + ∑

k
(−h̄vF) (k + kF) b†

L,kbL,k.

Enough far from the sample, the current in the left lead is expressed as

Î(x) =
h̄e

2im

(
ψ̂†(x)

dψ̂(x)
dx

− dψ̂†(x)
dx

ψ̂(x)
)

,

where ψ̂†(x) = ∑k

(√
L
)−1

exp (ikx) ck is the field operator, ck is aL,k at k ≃
+kF, ck is bL,k at k ≃ −kF, and L is the lead length. The current can then be
expressed as

Î(x) =
h̄e
L ∑

k,k′

k + k′

2m
c†

kck′ei(k′−k)x.

We consider the vicinity of k ≃ ±kF and at x = 0, corresponding to the junc-
tion position between the lead and the sample. Thus, the current is expressed
as

Î = Î(x = 0) =
evF

L ∑
k,k′

(
a†

L,kaL,k − b†
L,kbL,k

)
(3.7)

We consider the left, L, and right, R, leads. The index of the lead α means
L and R. The operators aα,k and bα,k are related via the scattering matrix S,(

bL,k
bR,k

)
= S

(
aL,k
aR,k

)
.

Here S has the block structure

S =

(
SLL(k) SLR(k)
SRL(k) SRR(k)

)
=

(
r t′

t r′

)
,

Here, r and r′ describe electron reflection back to the left and right reser-
voirs, respectively, but t and t′ are responsible for the electron transmission
through the sample. Because the creation and annihilation operators obey
anticommutation relations[

aα,k, a†
α′,k′

]
=
[
bα,k, b†

α′,k′

]
= δα,α′δk,k′ ,

the scattering matrix S is unitary.
We can express the current from the left lead in Eq. (3.7) in terms of scat-

tering matrix S,

ÎL =
evF

L ∑
α=L,R

∑
β=L,R

∑
k,k′

a†
α,k Aαβ

L
(
k, k′

)
aβ,k′ , (3.8)



3.2. Current Noise Based on Landauer Picture 23

where
Aαβ

L
(
k, k′

)
= δL,αδL,β −

(
SLα (k)

)∗
SLβ

(
k′
)

.

3.2.2 Average Current

The creation and annihilation operators at equilibrium state are expressed as〈
a†

α,kaβ′,k′
〉
= δα,βδk,k′ fα(k),

where fα(k) is the Fermi-Dirac distribution function,

fα(k) =
1

exp [(εk − µα) /kBTe] + 1
.

The average of the current shown in Eq. (3.8) is

〈
ÎL
〉
=

evF

L ∑
k

∑
α

Aαα
L (k, k) fα(k) =

e
2πh̄

∫ ∞

−∞
dε ∑

α

Aαα
L (ε, ε) fα (ε) .

(
L−1 ∑k

)
can be changed to [

∫
dk/(2π)] in wide lead, k is changed to ε due

to εk = h̄vF (k − kF), ALL
L = |t|2 ≡ T , and ARR

L = − |t′|2 = −T , this formula
is expressed as follows:

〈
ÎL
〉
=

e
2πh̄

∫ ∞

−∞
dεT (ε) [ fL (ε)− fR (ε)] .

In the zero-temperature and the equilibrium state, [ fL (ε)− fR (ε)] is one for
0 ≤ ε ≤ eV, and otherwise zero. Thus, the current is expressed as

〈
ÎL
〉
=

e2

2π
T V,

and the conductance G is given by

G =

〈
ÎL
〉

V
=

e2

h
T . (3.9)

Equation (3.9) is referred to as the Landauer formula.
Using fL(ε)− fR(ε) = f (ε − eV)− f (ε) ≃ (−d f /dε) eV, the conductance

is expressed as

G =
e2

2πh̄

∫
dεT (ε)

(
−d f (ε)

dε

)
. (3.10)

3.2.3 General Expression for Noise

The time evolution expression of the current is expressed as

ÎL(t) = e
iHt

h̄ ÎLe−
iHt

h̄ .
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We define the correlation function, C (t, t′), using the fluctuation of the cur-
rent ∆ ÎL(t) = ÎL(t)−

〈
ÎL(t)

〉
C
(
t, t′
)
≡
〈
∆ ÎL(t)∆ ÎL(t′)

〉
=
〈

ÎL(t) ÎL(t′)
〉
−
〈

ÎL(t)
〉 〈

ÎL(t′)
〉

.

Using Eq. (3.1), the power spectral density S(ω) is expressed as

S(ω) ≡ lim
τ→∞

2
τ

∫ τ/2

−τ/2
dt
∫ τ/2

−τ/2
dt′C

(
t, t′
)

eiω(t−t′).

This equation can be expressed using ∆t = t − t′

S(ω) = lim
τ→∞

2
τ

∫ τ/2

−τ/2

∫ ∞

−∞
d (∆t)C (∆t) eiω∆t

= 2
∫ ∞

−∞
[d (∆t)]C (∆t) eiω∆t,

where we assume the ∆t is sufficiently large due to the lack of correlation
between the two current at different times. Thus, the white noise, S(ω = 0)
is expressed as

S(0) = 2
∫ ∞

−∞
dt
(〈

ÎL (t) ÎL (0)
〉
−
〈

ÎL (t)
〉 〈

ÎL (0)
〉)

. (3.11)

We obtain the expression for the power spectral density using the time evo-
lution of the current, Eq. (3.8),

S(0) = 2
∫ ∞

−∞
dt
( evF

L

)2
∑

k,k′,k′′,k′′′
∑

α,β,α′,β′
Aαβ

L
(
k, k′

)
Aα′,β′

L
(
k′′, k′′′

)
×
[〈

a†
α,kaβ,k′a†

α′,k′′aβ′,k′′′
〉
−
〈

a†
α,kaβ,k′

〉 〈
a†

α′,k′′aβ′,k′′′
〉]

× exp
(

i (εk − εk′) t
h̄

)
. (3.12)

Here, for Fermi gas at equilibrium, the expectation value is〈
a†

α,kaβ,k′a†
α′,k′′aβ′,k′′′

〉
−
〈

a†
α,kaβ,k′

〉 〈
a†

α′,k′′aβ′,k′′′
〉

=
〈

a†
α,kaβ′,k′′′

〉 〈
aβ,k′a†

α′,k′′

〉
= δα,β′δk,k′′′δβ,α′δk′,k′′ fα (k)

[
1 − fβ (k)

]
, (3.13)

using Wick’s theorem. By Riemann integral in wavenumber k and integrat-
ing with respect to t, the white noise power spectral is

S(0) =
e2

πh̄

∫
dε ∑

α,β
Aα,β

L (ε, ε) Aβ,α
L (ε, ε) fα (ε)

[
1 − fβ (ε)

]
. (3.14)
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For |eV| ≪ kBTe regime,

f (ε) [1 − f (ε)] = kBTe (−∂ f /∂ε) ,

∑
α,β

Aα,β
L (ε, ε) Aβ,α

L (ε, ε) = 2T (ε) . (3.15)

Using Eq. (3.10), equation (3.14) is expressed as

S(0) = 4kBTeG. (3.16)

The formula is the Johnson-Nyquist noise [Eq. (3.3)].
For kBTe ≪ |eV| regime can be expressed as fL (ε) = Θ (−ε + eV) and

fR (ε) = Θ (−ε). Here, Θ(x) is the Heaviside step function. At zero tempera-
ture, the power spectral density in a two-terminal measurement is expressed
as

S(0) =
e2

πh̄
ALR

L (ε, ε)ARL
L (ε, ε) |eV| . (3.17)

We assume that the energy dependence of T is very small compared to the
energy scale of the temperature and bias voltage. Since ALR

L ARL
L = |t|2 (1 −

|t|2) = T (1 − T ), the power spectral density is expressed as

S(0) =
e2

πh̄
T (1 − T ) |eV| = 2e ⟨I⟩ (1 − T ). (3.18)

At finite temperature, the formula is expressed as

S = 4kBTeG + 2e ⟨I⟩ (1 − T )

[
coth

(
eV

2kBTe
− 2kBTe

eV

)]
. (3.19)

The factor 1 − T is the Fano factor in one-dimensional channel. In the multi-
channel, Eq. (3.19) is given by

S = 4kBTeG + 2e ⟨I⟩ F
[

coth
(

eV
2kBTe

)
− 2kBTe

eV

]
, (3.20)

where F is the Fano factor

F ≡ ∑n Tn(1 − Tn)

∑n Tn
. (3.21)

Equation (3.20) is the general formation of white noise. In the equilibrium
state, kBTe ≪ |eV|, the expression is expressed as Eq. (3.16), while the ex-
pression is expressed as Eq. (3.20) in the non-equilibrium state.

For example, we introduce the current noise in the quantum point contact
(QPC). As explained in Section 2.3, the QPC has channels. Since each chan-
nel has each transmission probability T , we can calculate the Fano factor by
varying the gate voltage (Fig. 3.3). Because the current noise of QPC can be
explained easily, thus it is often used as the test sample. The details will be
explained in Chapter 5.
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a) b)

FIGURE 3.3: Conductance and current noise of QPC. a) Conductance as a
function of gate voltage. b) Fano factor as a function of conductance. The
black line is the theoretical value Reprinted figure with permission from
[97] Copyright 2021 by the American Physical Society.
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Chapter 4

Current Noise Measurement

In this Chapter, we introduce several noise measurement techniques [98].
How to measure the current noise is technically more complicated than how
to measure the conductance. Here, we show three types of examples of
the noise measurement technique development citing several references [99–
102].

4.1 Background

Usually, the current noise for the mesoscopic sample is measured below 1
K to reduce thermal excitation and maintain coherent transport. The noise
generated from the sample is remarkably small to measure using the general
ammeter. Amplifiers are important to amplify the noise up to the measur-
able quantity. We measure the voltage noise since voltage amplifiers are less
difficult to handle than the current amplifiers to directly measure the current
noise. The fluctuating current noise from the mesoscopic sample, ∆Iin(t), is
converted to the voltage signal by

∆Vin(t) = Z∆Iin(t),

where Z is the total impedance of the circuit before the input port of the am-
plifier, and ∆Vin ≡ Vin(t)− ⟨Vin⟩. Here, ⟨· · · ⟩ is a time-averaged value. The
voltmeter records the amplified voltage noise as the voltage spectral density,
SV(ω) ≡

〈
∆V2

in
〉
, via the fast Fourier transformation (FFT).

When extra electronic circuits, such as amplifiers, exist, we cannot avoid
extrinsic noise, δv, generated from them. If we build the measurement sys-
tem, as shown in Fig. 4.1 a), the amplified voltage signal is expressed with
extrinsic noise as 1

∆Vmeas = A2 (∆Vout + δv2) = A2 [A1(∆Vin + δv1) + δv2] ,

where A is the gain of an amplifier. While the extrinsic noise of “Amplifier
2”, δv2, is only amplified A2 times, δv1 is amplified A2A1 times by “Amplifier
1” and “Amplifier 2”. The extrinsic noise of the signal is mainly affected in
the first-stage amplifier of the system. Figure 4.1 b) shows the typical power
spectrum density of voltage noise ∆Vmeas in a solid red line. As shown in

1We assume that we measure the signal for infinite time.
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Fig. 4.1 b), the noise spectral density can be divided into two regions. The
1/ f noise region is dominant at low frequency (typically below 100 kHz).
The noise is originated from the amplifier, or the mesoscopic sample itself. A
higher frequency region is called the white noise; a frequency-independent
noise is dominant.

The extrinsic noise is added to the intrinsic noise from the sample, as
shown in Fig. 4.1 b) (solid black line). Below, we show how the noise mea-
surement setup changes the noise spectral density. We explain several mea-
surement systems considering only the amplifier in the first stage and extrin-
sic noise from that for convenience.

�Vin(t) �v1(t)

Voltmeter
(Digitizer)

Amplifier2

A2

�v2(t)
A1

Amplifier1

S
V

m
ea

s
(V

2 /H
z)

Frequency (Hz)
10 10k 10M

b)

a)

�Vout(t)
�Vmeas(t)

�Vin(t)
�Vin(t) with �v(t)

FIGURE 4.1: a) Amplifiers amplify not only ∆Vin(t) but also δv1 or δv2.
A1A2 times amplified δv1 is much higher than A2 times amplified δv2.
The noise floor of the system is mainly affected by δv1. b) Typical voltage
spectral density amplified by a noiseless amplifier (red solid line) and that
by a real amplifier (black solid line). This graph is shown in a log-log plot.

4.2 Straightforward Method

The straightforward method to measure noise is the simplest way that we can
think of, although it has defects. We describe this approach and the resulting
typical noise spectral density in Fig. 4.2. A typical power spectrum density is
shown in the right panel of Fig. 4.2. For the high-frequency region, the effect
of the RC low-pass filter comprising Rm and capacitor (Ccoax) of the coaxial
cables appears as

∆Vin(t)
∣∣∣∣ 1
1 + iωCcoaxRm

∣∣∣∣ ,
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where ω is the angular frequency. The low-pass filter decreases the white
noise regime below several 10 kHz when the sample is in the quantum Hall
regime. This method not only avoid extrinsic noise but also decrease mea-
surable bandwidth. Although this system may be proper for measuring the
noise for the low-frequency region, it is often difficult to obtain the white
noise regime.

Amplifier

Rm

�Vin(t)

A
Coax.

�v(t)

Voltmeter
(Digitizer)

10 10k 10M

S
V m

ea
s

(V
2 /H

z)
Frequency (Hz)

Straightforward
�Vin(t) with �v(t)

FIGURE 4.2: Straightforward setup for the voltage noise measurement
(left), and the expected voltage noise power spectral density (right). The
voltage signal v(t) is amplified through the amplifier and recorded at the
voltmeter (digitizer). Right panel: Typical power spectrum density of the
voltage noise using the straightforward method. The graph is shown in a
log-log plot. The black dashed line is a typical voltage spectrum density
amplified by a real amplifier [Fig. 4.1 b)].

4.3 Cross-correlation Method

To reduce the extrinsic noise, which is one of the problems of “the straightfor-
ward method” in Section 4.2, some researchers implement “the cross-correlation
noise measurement” [103, 104]. As shown in Fig. 4.3, the voltage signal,
∆Vin(t), amplified at two different amplifiers A1 and A2 is given by ∆VI

out(t) =
∆Vin(t) + δv1(t) and ∆VII

out(t) = ∆Vin(t) + δv2(t), respectively. Here, ∆Vin(t)
is transmitted in two paths, Amplifier 1 and Amplifier 2 lines. Both ampli-
fiers have their own extrinsic noise δvi(t) (i = 1, 2). At the digitizer, we com-
pute the cross-correlated spectral density between the two signals ∆VI

out(t)
and ∆VII

out(t).
The spectral density is given as

SV(t) =
〈

∆VI
out(t)∆VII

out(t)
〉

= ⟨[∆Vin(t) + δv1(t)] [∆Vin(t) + δv2(t)]⟩
=

〈
[∆Vin(t)]

2
〉

by taking the cross-correlation. Here, the contributions including the extrin-
sic signals, δv1(t) and δv2(t), cancel out after long-time averaging since they
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are uncorrelated. Consequently, we can record the noise spectral density of
only the intrinsic noise, as shown in the right panel of Fig. 4.3. The advan-
tage of the method is that we can obtain only intrinsic noise, which would
be impossible to obtain in “the straightforward method” in Section 4.2. This
method is often used in mesoscopic experiments, for example, Refs. [5, 76,
103].

Rm

�Vin(t)

A1

A2

Coax. 

Coax.

�v1(t)

�v2(t)
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(Digitizer)
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Cross-correlation

10 10k 10M

�Vin(t)
�Vin(t) with �v(t)

FIGURE 4.3: Cross-correlation method measurement system (left) and the
expected voltage noise power spectral density. Right panel: Typical power
spectrum density of the voltage noise using the method. The graph is
shown in a log-log plot. The red (black) dashed line is a typical voltage
spectrum density amplified by noiseless (real) amplifier, as shown in Fig.
4.1 b). The cross-correlation measurement method can reduce extrinsic
noise.

4.4 LC Circuit Method

It is necessary to avoid the RC low-pass filter effect to measure the white
noise, excluding 1/ f noise, which is another problem of “the straightforward
method” (Sec. 4.2). We use the inductor-capacitor (LC) resonant circuit, as
shown in Fig. 4.4 [12, 99, 100, 102, 105]. Near the LC resonance frequency,
the RLC impedance converts the current noise from the Rm to the voltage
noise,

|Z| =

∣∣∣∣∣
[

1
Rm

+ (iωLin)
−1 + iωCcoax

]−1
∣∣∣∣∣

=

√√√√ R2
m

1 + R2
m

(
ωCcoax − 1

ωLin

)2 . (4.1)

The resonance peak is given by

fo =
1

2π
√

LinCcoax
.
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To set the resonance peak, we install the amplifier in the refrigerator.

S
V m
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s

(V
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Frequency (Hz)

LC method with
Straightforward method
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�Vin(t) with �v(t)

Amplifier

Rm

�Vin(t)

A
Coax.

�v(t)

Voltmeter
(Digitizer)

�v(t)

FIGURE 4.4: Measurement setup for the voltage noise with LC tank to shift
the measurement band region. The noise only at a resonance frequency is
extracted. Right panel: Typical power spectrum density of the voltage
noise using this method. The graph is shown in a log-log plot. The black
dashed line is a typical voltage spectrum density amplified by real ampli-
fier as shown in 4.1 b).

The purpose of the LC tank is to shift the measurement region, where the
influence of the 1/ f noise is absent. However, the disadvantage is that we
measure the noise spectral density only at a resonance frequency; thus, we
cannot obtain the full spectra.

Equation (4.1) expresses the power spectrum density as a function of fre-
quency. Because Eq. (4.1) is the square root of the Lorentzian function, we
can fit the measured noise spectral density to the noise spectrum power, as
shown in Fig. 4.5. The noise power corresponds to the peak of the Lorentzian
function (right panel of Fig. 4.4). To extract the height of the peak, we fit the
Lorentzian function,

P( f ) = PB +
P0

1 + ( f 2 − f 2
o )

2 / ( f ∆ f3dB)
2 , (4.2)

where PB is the background noise, and ∆ f3dB is the full width at half maxi-
mum of the peak.

The resonance peak is slightly distorted from the Lorentzian line shapes
expected for an ideal RLC resonance circuit. This distortion is due to the
parasitic resistance r in the RLC tank circuit and the parasitic capacitances in
the high electron mobility transistor (HEMT) used in the cryogenic amplifier.
The details of this will be explained in Chapter 5

4.5 Noise Model

To extract SI from P, which is the same as SV , the noise measurement sys-
tem must be calibrated. An effective circuit of Fig. 4.4 is shown in Fig. 4.6.
The intrinsic current noise, ∆Iin(t), and the extrinsic current noise, δi(t), are
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FIGURE 4.5: Power spectral densities P obtained from noise data acquired
from the quantum point contact on GaAs/AlGaAs heterostructure. The
blue line is the fitting function of Eq. (4.2) over the range 1.7 to 1.85 MHz.
The details will be explained in Chapter 5

converted to the voltage noise. The amplified voltage noise, ∆Vout(t), is ex-
pressed as

∆Vout = A [(∆Iin + δi) Z + δv] .

The amplified voltage spectral density, SV(ω), is

SV ≡
〈

∆V2
out

〉
=

〈
A2 [(∆Iin + δi) Z + δv]2

〉
= A2

[(〈
∆I2

in

〉
+
〈

δi2
〉)

Z2 +
〈

δv2
〉]

= A2
[(

SI
m + SI

AMP

)
Z2 + SV

AMP

]
, (4.3)

where Z is RLC impedance, as shown in Eq. (4.1), SI
m is current noise power

spectral density of the mesoscopic sample, SI
AMP is input-referred current

noise power spectral density, and SV
AMP is input-referred voltage noise power

spectral density of the amplifier. Following the calibration, SI
AMP and SV

AMP
are extracted from thermal noise measurements. The details will be dis-
cussed in Chapter 5.

Rm

A

�v(t)

�i(t)�Iin(t) �Vout(t)

FIGURE 4.6: Circuit model used for LC circuit methods. The ∆Vout(t) ex-
traction of the noise of the mesoscopic sample SI .
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Chapter 5

Development of Cryogenic
Amplifier

5.1 Purpose of This Experiment

Over the last 30 years, shot noise in the mesoscopic system has provided
important information on the microscopic scattering properties of quantum
transport [2–4]. The electric current corresponds to the average number of
electrons that pass through the system for a finite time. In the electric cur-
rent, the noise or equivalently fluctuation, is the fluctuation of the number
of electrons passing through the system. The noise measurement is unique
because it gives information that is not available by the conventional conduc-
tance measurement.

So far, researchers have reported many noise experiments. For example,
shot noise measurements in quantum point contact (QPC) [75, 103, 106–111],
diffusive wire [112, 113], quantum dot [114–117], tunnel junctions [118], and
magnetic tunnel junctions [119, 120] have been reported. Shot noise has also
been used to probe many-body physics, such as fractional quantum charge
[5–7], Cooper pair [121], spin-dependent transport in a QPC [108–110], quan-
tum wire [122], Kondo effect [9–11, 123], quantum dots in the sequential tun-
neling [116], and cotunneling [115, 117] regimes.

The noise power spectral density quantifies the noise. As discussed in
Chapter 4 most usually, it is obtained via fast Fourier transformation (FFT) of
the time-domain signal of the current either in an autocorrelation [12, 99, 100,
102, 124] or a cross-correlation measurement [12, 99, 100, 124]. In all cases,
many efforts are required to obtain an accurate noise signal, such as using
an inductor-capacitor (LC) resonant circuit [12, 99, 100, 102], reducing the
extrinsic noise from a cryogenic amplifier [102], and widening the frequency
regime for the averaging [124]. The experimental study of anyonic statistics
at the fractional quantum Hall system using the current noise measurement
is recently reported [14]. The deviation of the noise measurement seems to
be about 0.1 × 10−29 A2/Hz. We believe that the high accuracy of the system
would lead to measure much deeper mesoscopic physics.

It is well known by the central limit theorem that N times more data is
required for

√
N times more accurate signal. Naturally, measuring the noise

for an extensive time to achieve a high signal-to-noise ratio has a practical
limitation. In this sense, improving the high electron mobility transistors
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(HEMTs) used in the cryogenic amplifiers themselves would be a good strat-
egy. Researchers usually use commercially available HEMTs, such as AV-
AGO ATF-35143 (Avago Technologies, referred to as “ATF HEMT” below),
shown in Fig. 5.1. They are designed for a GHz frequency regime at room
temperature, which could not be optimized for the use in the MHz frequency
regime at low temperature, where most of the mesoscopic noise measure-
ments are performed. We expect that reducing the noise from the HEMT in
cryogenic amplifiers is the key to a highly accurate noise measurement sys-
tem. By using the improved HEMTs, the accuracy increase on the already
reported amplifiers. There are several types of research on the fabrication of
the homemade HEMT using GaAs/AlGaAs wafers [125–127].

Here, we describe how to improve the cryogenic amplifier with a home-
made HEMT. This Chapter presents the components of a GaAs/AlGaAs wafer
of homemade HEMTs for a cryogenic amplifier designed for higher transcon-
ductance. We measure the intrinsic properties of the HEMT and the proper-
ties of cryogenic amplifiers, which include the HEMT. We demonstrate the
measurement of current noise in a gate defined GaAs/AlGaAs QPC.

2 mm

2 
m

m
0.9 mm

FIGURE 5.1: Commercial high-electron-mobility transistor (HEMT) (Av-
ago Technologies ATF-35143).

5.2 Principles of the Development

5.2.1 GaAs/AlGaAs Heterostructure as HEMT

Since 1979, Takashi Mimura and Satoshi Hiyamizu have researched GaAs
HEMT (high-electron-mobility transistor) in Fujitsu Laboratories [17, 18]. They
achieved fabricating GaAs/AlGaAs heterostructure, which has a high-speed
performance superior to that of Si MOSFETs. Stable operation of it is the
top priority for radio telescopes and was a significant HEMT strong point at
that time, compared to the parametric amplifiers being used. In mesoscopic
physics, this GaAs/AlGaAs heterostructure is a fascinating playground for
researchers to see various quantum effects. In this thesis, we follow the birth
background of the GaAs/AlGaAs heterostructure as HEMT. We use this as a
HEMT for the current noise measurement system.
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5.2.2 Voltage Amplifier

There are several types of amplifiers. Many researchers have developed de-
signs of amplifiers to reduce the 1/ f noise [102] or to widen bandwidth [124].
In this work, we only focus on the voltage amplifier, as discussed in Chapter
4.

Here, we explain the characteristics of a common source circuit with fixed
bias “CS1”, as shown in Fig. 5.2 a), with a gate supply voltage Vg and a
drain one VDD. The 330 kΩ resistor and the 100 nF capacitor connected to the
HEMT gate form an RC filter that attenuates high-frequency extrinsic noise
from the gate supply. For a set of Vg and VDD, the gain

ACS1
(
Vg, VDD

)
≡

∂Vout(Vg, VDD)

∂Vg
(5.1)

is given by1

ACS1 = −gm
RD

1 + RDgds
= −gmZout, (5.2)

where

gm
(
Vg, Vds

)
≡

∂Ich
(
Vg, Vds

)
∂Vg

, (5.3)

and

gds
(
Vg, Vds

)
≡

∂Ich
(
Vg, Vds

)
∂Vds

. (5.4)

This leads to

ACS1 = −RD
∂Ich

(
Vg, VDD

)
∂Vg

. (5.5)

Here, gm is the transconductance, gds is the drain conductance, RD is the load
resistance,

Zout =
RD

1 + RDgds
(5.6)

is the output impedance of the amplifier, Vds = VDD − RD Ich is the voltage
between the drain and source of the HEMT, and Ich

(
Vg, Vds

)
is the current

flowing in the HEMT channel. The other common source circuit with self-
bias “CS2”, is shown in Fig. 5.2 b). It has the advantage that we do not have
to apply Vg because the effective Vg is applied to the HEMT due to the RS.
We will use a CS2-type amplifier in a real noise measurement system.

1Because Vds = VDD − RD Ich, dVds
dVg

= −RD
dIch
dVg

. Note that this dIch
dVg

̸= gm. The ∆Ich is given

by ∆Ich = gm∆Vg − gds∆Vds, thus dIch
dVg

= gm − gds
dVds
dVg

. Therefore,

dVds
dVg

= −RD

(
gm − gds

dVds
dVg

)
→ A =

dVds
dVg

=
−RDgm

1 + RDgds
.
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FIGURE 5.2: a) Schematic diagram of the common-source circuit with fixed
bias “CS1”. b) Schematic diagram of the common-source circuit with self-
bias “CS2”.

The signal-to-noise ratio in the first amplification step, namely, the cryo-
genic part in Fig. 4.4, governs the resolution of the measurement system as
described in Chap. 4. While the cryogenic amplifier converts SI

in to SV
in ≡〈

∆V2
in
〉

in conjunction with the LC tank circuit, it also generates extrinsic
noise, which interferes with SI

in. With this extrinsic noise included, the re-
lation between SI

in and SV
out can be described by Eq. (4.3). When the gate

leakage current of the HEMT is negligible, both SI
HEMT and SV

HEMT originate
exclusively from the current noise SI

ch ≡
〈
∆I2

ch

〉
in the HEMT channel gener-

ated by the finite source-drain voltage [128].
At cryogenic temperature, SI

ch is given by [125]

SI
ch ≃ SI

ch-1/ f + SI
ch-shot, (5.7)

where SI
ch-1/ f and SI

ch-shot are the power spectral densities of the 1/ f noise
and the shot noise generated in the HEMT channel, respectively. It is em-
pirically known that SI

ch-1/ f increases in proportion to I2
ch and decreases in

inverse proportion to the total number of charge carriers [129]. On the other
hand, SI

ch-shot is proportional to Ich as

SI
ch-shot = 2eIchF, (5.8)

where F is the so-called Fano factor (0 ≤ F ≤ 1).
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The gain, |ACS1| ∝ ∂Ich/∂Vg, monotonically increases with P = VDD Ich
because

P = VDD Ich
(
VDD, Vg

)
= I2

ch
(
VDD, Vg

) (
RD +

1
gds

)

= I2
ch
(
VDD, Vg

)
RD +

1
∂Ich(Vg,Vds)

∂Vds

∣∣∣∣
Vg


∝ I2

ch(VDD, Vg) (5.9)

Therefore,

A ∝
∂Ich(VDD, Vg)

∂Vg
∝
√

P. (5.10)

SV
HEMT decreases in inverse proportion to

√
P, because

SV
HEMT ≃ SV

out

|Adc|2
=

SI
chR2

D

|Adc|2
≃

SI
ch-shotR

2
D

|Adc|2

=
2eIchFR2

D(
RD

∂Ich(VDD,Vg)
∂Vg

)2 ∝

√
P

P
=

1√
P

. (5.11)

5.2.3 Measurement Setup

We install a cryogenic CS amplifier in a standard measurement setup com-
prising an inductor-capacitor (LC) tank circuit [12, 101, 102]. Figure 5.3 a)
shows a block diagram of our setup installed in a dilution refrigerator, and
Fig. 5.3 b) illustrates a circuit model of the cryogenic assembly. A bias volt-
age Vbias is applied to generate a current Im flowing into a mesoscopic device
(resistance Rm) at mixing-chamber (MC) temperature. The transmitted cur-
rent Iin flows down to the cold ground through Lin = 33 µH placed on the
MC plate. Note that, even if Im is noiseless, the current flowing through the
device may reflect the discrete nature of electron charge, leading to the fluc-
tuation ∆Iin in Iin. The inductor forms the LC tank circuit with capacitance
Cin, mainly composed of the parasitic capacitance Ccoax1 of the coaxial cable.
Near the LC resonance frequency, ∆Iin yields voltage noise ∆Vin = Z1 × ∆Iin,
where

Z1 =

[
1

Rm
+ (iωLin + r)−1 + iωCin

]−1

(5.12)

is the parallel impedance of the mesoscopic device and the tank circuit. Here,
r is the total parasitic resistance of the inductor and the coaxial cable. The
voltage noise is amplified to ∆Vout by the cryogenic amplifier and again
amplified to ∆Vmeas by a commercial amplifier (NF Corporation SA-220F5,
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FIGURE 5.3: a) Schematic diagram of the noise-measurement setup using
an LC tank circuit. Mesoscopic device and amplifiers are connected via
CuNi coaxial cables, Coax. 1 and Coax. 2 with parasitic capacitances Ccoax1
and Ccoax2, respectively. A cryogenic amplifier is placed on 4 K stage of the
dilution refrigerator. b) Electronic circuit model of the cryogenic assembly.

46 dB) at room temperature. The measurement is completed by recording
∆Vmeas using a digitizer (National Instruments PXI-5922) that provides a
high-speed voltmeter. We analyze the time-domain data using FFT technique
to evaluate SI

in ≡
〈
∆I2

in
〉

from the FFT spectrum SV
meas ≡

〈
∆V2

meas
〉
.

In this Chapter, we focus on Johnson and shot noise in the low-frequency
white-noise region ( f ≪ kBTe/h and eVbias/h, where e is the elementary
charge, h is the Planck constant, kB is the Boltzmann constant, and Te is elec-
tron temperature). However, at very low frequencies (typically below 100
kHz), these noises are buried in the 1/ f noise generated in the mesoscopic
sample or the cryogenic HEMT amplifier or both. To avoid the 1/ f noise,
we designed the LC resonance frequency fo =

(
2π

√
LinCin

)−1 to be near 1.8
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MHz, where the 1/ f noise is expected to be small, by choosing Lin = 33 µH
and Cin ≃ Ccoax1 ≃ 240 pF.

5.3 Results and Discussions

5.3.1 HEMT

In principle, SV
HEMT can be suppressed by increasing gm ≡ ∆Ich/∆Vg while

keeping SI
ch low. For this purpose, we fabricate HEMTs using a GaAs/AlGaAs

heterostructure and gate patterns that are designed to be suitable for high
gm. Transport properties of the homemade HEMTs are measured at tem-
peratures below 4.2 K, where these HEMTs show no significant temperature
dependence. We note that the major features of the transport properties are
unchanged after several cooldowns.

Design

Figure 5.4 shows a schematic of the HEMT fabricated from a GaAs/Al0.33Ga0.67As
heterostructure grown by molecular beam epitaxy on a semi-insulating GaAs
substrate. The heterostructure is modulation-doped with silicon at two δ

GaAs: 10 nmGaAs: 10 nm

Al0.33Ga0.67As: 20 nmAl0.33Ga0.67As: 20 nm

10 nm10 nm

15 nm15 nm

GaAs: 500 nmGaAs: 500 nm

S.I. GaAs substrateS.I. GaAs substrate

Si-�
Si-�

2DEG

Gate metal
Ti/Au: 40 nm
Gate metal

Ti/Au: 40 nm DrainSource

FIGURE 5.4: Schematic of the HEMT structure fabricated in 2DEG in
GaAs/AlGaAs heterostructure.

planes (doping level of 6 × 1012 cm−2 for each). The two-dimensional elec-
tron gas (2DEG) located 55 nm below the surface has electron density ne =
4.0 × 1011 cm−2 and mobility µ = 3.2 × 105 cm2V−1s−1 at 4.2 K. The shal-
low depth and the high electron density of the 2DEG are advantageous for
increasing gm.
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Our HEMT was patterned using photolithography for fabricating mesa
structures, ohmic contacts of Au-Ge-Ni alloys, and a gate electrode of 10-nm-
thick titanium and 30-nm-thick gold.

For a given GaAs/AlGaAs heterostructure, the HEMT characteristics are
determined by the geometry of the gated region: the gate length L and the
channel width W. For examining gm and the noise characteristics depending
on L and W, we fabricated five sorts of HEMTs having different sets (W; L)
on the same wafer. Four of them have (W; L) = (1 mm; 2, 4, 16, or 64 µm),
and the other has (3 mm; 4 µm) [see Fig. 5.5 for an example].

1000 μm

GateGate length

DrainDrain

SourceSource

GateGate length

100 μm100 μm

FIGURE 5.5: False-color optical micrograph of a (W; L) = (1 mm; 16µm)
HEMT. The meander structure of source and drain electrodes is for sup-
pressing the ohmic contact resistances.

Characteristic of High Electron Mobility Transistors

Figure 5.6 a) presents Vg-Ich traces of four HEMTs with different L and ATF
HEMT measured at Vds = 0.27 V below 1 K. For a shorter L, a more nega-
tive Vg is necessary to pinch off the channel. Concomitantly, the slope of the
traces becomes steeper for a shorter L, resulting in a higher gm. The gm of
ATF HEMT is much smaller than the gm of homemade HEMT. Figure 5.6 b)
displays the Vg dependence of gm of HEMTs obtained by numerically differ-
entiating Ich with respect to Vg. While the 4-µm HEMT shows a single gentle
peak of height gm ≃ 80 mS, the 2-µm one shows a double peak reflecting the
irregular structure in the pinch-off trace [indicated by the vertical arrow in
Fig. 5.6 a)]. The peak height of gm is about 25 mS. The double-peak structure
is sensitive to a slight change in Vds, causing instability of the HEMT. Simi-
lar irregular features are observed in several 2-µm HEMTs, while the details
differ from HEMT to HEMT. We consider that the irregularities originated
from unintentional tunneling through impurities or defects in the gated re-
gion. Note that a higher Vds sometimes induces similar irregularities even
in the HEMTs with longer L. However, the typical Vds value, where such ir-
regularity appears in a longer L HEMT, is much higher than that of a 2-µm
HEMT. Thus, we conclude that a 4-µm HEMT is best suited for the present
study because of its high stability and high gm.



5.3. Results and Discussions 41

20

16

12

8

4

0

I c
h(
m
A
)

ATF
2�m
4�m
16�m
64�m

100

80

60

40

20

0

g m
(m
S
)

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0
Vg (V)

b)

a)

Vds = 0.27 V

below 1 K

FIGURE 5.6: a) Vg dependence of Ich of four HEMTs with different L, and
ATF HEMT at Vds = 0.27 V. b) Vg dependence of gm of five HEMTs with
L = 2, 4, 16, and 64 µm of homemade HEMTs and ATF HEMT.

Figure 5.7 a) presents the pinch-off characteristics of the (3 mm; 4 µm) and
(1 mm; 4 µm) HEMTs measured at Vds = 0.5 V at 4.2 K 2. Since the pinch-off
characteristics of ATF HEMT at Vds = 0.5 V are unstable, it is not shown.
While the pinch-off voltages are similar, the 3-mm HEMT shows more than
twice as steep Ich as the 1-mm one at −0.25 V < Vg < −0.18 V. In the gm-Vg
plot shown in Fig. 5.7 b), gm of the 3-mm HEMT at Vg = −0.19 V reaches
∼260 mS, which is about 2.5 times as large as that of the 1-mm one.

Figures 5.8 shows the Vds dependence of Ich of the (3 mm; 4 µm) and (1
mm; 4 µm) HEMTs measured at several Vg values between −0.20 and −0.26

2The saturation of Ich near 20 mA for W = 3 mm HEMT is due to parasitic resistance
of about 25 Ω, which is the sum of the ohmic contact resistance and the wiring resistance.
We do not observe such saturation for the W = 1 mm HEMT over the measured Vg range
because of its smaller contact resistance and the resultant smaller total parasitic resistance
(about 20 Ω).
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FIGURE 5.7: a) Vg dependence of Ich of two HEMTs with W = 3 mm and
W = 1 mm at Vds = 0.5 V. b) gm corresponding to the case shown in a).
Since the characteristics of ATF HEMT is unstable, it is not shown.



5.3. Results and Discussions 43

V. The drain conductance at a given set of (Vg, Vds) can be evaluated by dif-
ferentiating Ich with respect to Vds; for example, at (Vg, Vds) = (−0.25 V, 0.5
V), we find gds ≃ 0.52 mS for the W = 3 mm HEMT and 0.24 mS for the
W = 1 mm one.
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FIGURE 5.8: a) Vds-Ich traces of (W; L) = (3 mm; 4 µm) HEMT measured at
several Vg values from −0.20 V (red) to −0.26 V (purple) in 0.01 V steps.
b) Vds-Ich traces of (W; L) = (1 mm; 4 µm) HEMT in the same range of Vg.

5.3.2 Voltage Amplifier

Design

To reduce the extrinsic noise, several RC filters are embedded in “CS1”. Fig-
ure 5.9 shows an equivalent circuit and values for passive components to
reduce the extrinsic noise and to stabilize the temperature of the amplifier.
Rm placed in the mixing chamber (M/C) is used to investigate the property
as the amplifier. To test the amplifier with ATF-35143, we use the 1 kΩ resis-
tor as Rm. For the amplifier with the homemade HEMT, the QPC device is
used as Rm.

C1 is used to block the dc current to the sample. The low-pass filters are
designed with R1 (= 470 kΩ) and C2 (= 110 nF), whose cut-off frequency fc
is set to ∼3 Hz, R2 = 100 kΩ is set to reduce extrinsic noise. The components
of RD (= 500 Ω) and C3 (= 110 nF), which have fc ≃ 3 kHz, are inserted
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FIGURE 5.9: Circuit diagram of “CS1” with several RC filters.

to suppress the extrinsic noise from the outside. R3 (=10 Ω) is embedded to
protect the HEMT from accidental high voltage damage. R4 (= 10 kΩ) is em-
bedded to discharge the dc voltage between the capacitors at the end of the
cryogenic amplifier, C4, and the room temperature amplifier. C4 is inserted
to block the dc current, VHEMT

DD /RD, toward the room temperature amplifier,
and C5 phenomenologically represents a parasitic capacitance between the
amplifiers. The combined C5 and ZHEMT

out reduce the AC signal from the de-
vice. The voltage amplifier is placed at the 4 K station, whose temperature
is stable separately from the M/C temperature. The four parallel resistors
(R5 = 3.3 kΩ × 4) are connected to the electrical ground of the amplifier to
anchor the temperature of the amplifier in four kelvin.

DC Transport Properties

The voltage amplifier is fabricated and evaluated using several HEMTs. Fig-
ure 5.10 a) represents the current and gm when RD (=500 Ω) is installed as a
test at VHEMT

DD = 1.0 V in 4 K station.
Figure 5.10 a) shows the Vg dependence of Ich and Fig. 5.10 b) shows Vg

dependence of |A| at VDD = 1.0 V, while ATF HEMT circuits were measured
at VDD = 0.4 V 3. When Vg is decreased from 0 V, we observe Ich ≃ VDD/RD
down to a threshold Vg value [e.g., −0.24 V for the (3 mm; 4 µm) HEMT],
where the resistance of the HEMT channel becomes comparable to RD. When
Vg is further decreased, Ich decreases to zero, showing a finite |A| along the
way. Here, we choose the |A| peak as the operating point. For example, the

3The commercial HEMT becomes unstable above VDD = 0.4 V.
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operating point of the (3 mm; 4 µm) HEMT is set at Vg = −0.26 V, where
|A| ≃ 32, at VDD = 1.0 V.

The measured |A| is summarized in Fig. 5.11, as a function of power con-
sumption P. The (3 mm; 4 µm) HEMT shows the highest |A| over the entire
range of P 4. Figure 5.11 represents the gain (=RD × gm) following the power
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FIGURE 5.10: a) Characteristic of the current and gm on the gate voltage
of the HEMT with 1 mm and 3 mm of the gate width when RD = 500 Ω
at VDD = 1.0 V. b)|ACS1| of (1 mm; 4 µm) HEMT circuits. The operat-
ing point of the ATF HEMT is much higher than that of the homemade
HEMTs, and the gain is much smaller than that of the homemade HEMTs.

consumption of the voltage amplifiers. The gain, |A| ∝ ∂Ich/∂Vg, monoton-
ically increases with P, reflecting the

√
P dependence of Ich as described in

Eq. (5.9). The amplifiers should be operated at a lower power than the cool-
ing power (about 1 mW) of the 4 K station of the dilution refrigerator, so the
power consumption of the amplifier has to be considered. The HEMT with 3
mm of gate length at the same power consumption has the highest gain and
HEMT with 1 mm of the gate width has the second highest gain. When the
homemade HEMT is used, the amplifier has a higher gain than the ampli-
fier with the ATF HEMT. At the higher power consumption of the amplifier
with the commercial HEMTs than 200 µW, the gain could not be determined

4We restricted the measurement up to P ≃ 1 mW to avoid the temperature rise of the 4 K
stage.
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due to the unstable characteristics. The amplifier with the homemade HEMT
has stable gain at the higher power consumption than the amplifier with the
commercial one. Thus, the amplifier with the homemade one can have higher
gain than the amplifier with the commercial one.
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FIGURE 5.11: Gain |ACS1| of the three CS1 circuits plotted as a function of
P.

Noise Characteristics

We measured the noise characteristics of the (3 mm; 4 µm) and (1 mm; 4 µm)
HEMTs as well as the ATF HEMT in the CS1 circuit shown in Fig. 5.2 a) at
4.2 K. We chose RD = 500 Ω, where Zout ≃ RD = 500 Ω. In this case, SI

ch and
SV

HEMT can be evaluated as

SI
ch =

SV
out

|Zout|2
≃ SV

out

R2
D

(5.13)

SV
HEMT =

SV
out

|A|2
. (5.14)

Before examining the noise characteristics, we measured the dc transport
properties of the CS1 circuits to choose the operating point.

Figures 5.12 a) and 5.12 b) show the SI
ch and SV

HEMT spectra at the op-
erating points estimated from the measured SV

out spectra using Eqs. (5.13)
and (5.14), respectively. In these plots, the RC damping at the output due to
Zout ≃ RD = 500 Ω and Ccoax2 ≃ 75 pF [see Fig. 5.3 a)] has been numerically
compensated. Note that the data for the GaAs HEMTs were obtained at VDD
= 1 V, while those for the ATF were at 0.4 V. At low frequencies, where the
1/ f noise governs the noise characteristics, SI

ch of the GaAs HEMTs are much
larger than that of the ATF HEMT, mainly because VDD is larger in the former.
Meanwhile, near the noise-measurement frequency of fo ≃ 1.8 MHz (see Sec.
5.2.3), where the shot-noise contribution becomes dominant, SI

ch of the three
HEMTs are comparable with each other. The low-noise performance of the
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FIGURE 5.12: a) SI
HEMT and b) SV

HEMT of the three CS1 circuits.

GaAs HEMTs manifests itself in the SV
HEMT spectra; the higher gains of the

GaAs HEMTs result in the lower SV
HEMT [see Figs. 5.10 and Eq. (5.14)]. Actu-

ally, SV
HEMT of the (3 mm; 4 µm) HEMT circuit with the highest gain among

the three is the lowest over the entire range of the frequency. We note that
near fo ≃ 1.8 MHz, it is about one order of magnitude lower than that of the
ATF one [Fig. 5.12 b)].

The measured SV
HEMT is summarized in Fig. 5.13, as a function of power

consumption P. The (3 mm; 4 µm) HEMT shows the lowest SV
HEMT over the

entire range of P, and therefore it is the best suited for the present purpose
[see Fig. 5.11].

Determination of RD

Here, we discuss CS amplifiers based on the (3 mm; 4 µm) HEMT, which has
the highest |A| and the lowest SV

HEMT. The load resistance RD determines
|A|, as seen in Eqs. (5.2) and (5.5). In Fig. 5.14, the red circles show the
measured |A| for several RD values at P ≃ 1 mW at 4.2 K. The gain increases
monotonically with RD, following the curve simulated using Eq. (5.2) with
gm = 87 mS and gds = 0.67 mS. The tiny deviations of the experimental data
from the simulation are due to the changes in gm and gds caused by the shift
of the operating point depending on RD.
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The black (red) trace in Fig. 5.15 a) shows the representative SV
HEMT spec-

trum for RD = 2 kΩ with (without) the numerical compensation for the RC
damping at the output of CS1. Figure 5.15 b) shows those for RD = 200 Ω.
The effect of the RC damping in the RD = 200 Ω circuit is much smaller than
that in the RD = 2 kΩ circuit, because Zout, forming an RC filter with Ccoax2
[see Fig. 5.3 a)], monotonically decreases with RD. Figure 5.15 b) indicates
that below RD = 200 Ω, the damping effect can be neglected at the noise-
measurement frequency of f1 ≃1.8 MHz.

Figure 5.16 shows the RD dependence of SV
HEMT at 1.8 MHz. The SV

HEMT
value is minimal near RD = 200 Ω. Because of the negligible RC damping
and the low SV

HEMT, we chose RD = 200 Ω for our cryogenic amplifier 5.

5At higher RD the operating point becomes close to the pinch-off, leading to lower gm.
This increases SV

HEMT for a given SI
ch because SV

HEMT ≃ SI
ch/g2

m
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FIGURE 5.15: SV
HEMT spectra of CS1 circuits with a) 200 Ω and b) RD =
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is numerically compensated. At higher RD the operating point becomes
close to the pinch-off, leading to lower gm. This increases SV

HEMT for a
given SI

ch because SV
HEMT ≃ SI

ch/g2
m.

Self-Biasing

Unlike the CS1 circuit, the cryogenic amplifier in Fig. 5.3 b) has the self-
biasing resistor RS and the shunt capacitor CS. We examined the self-biasing
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using another common-source circuit “CS2” shown in Fig. 5.2 b). At MHz
frequencies, CS= 100 nF dominates over RS to ground the HEMT source, en-
abling us to obtain high ac gain |ACS2| = Vout/Vext while simplifying the
cryogenic assembly by removing the wiring for Vg [see Fig. 5.2 a)]. We chose
RS = 165 Ω and applied VDD = 0.883 V to set the circuit near the operating
point, where P ≃ 1.3 mW. Figure 5.17 a) shows an |ACS2| spectrum obtained
by sweeping the frequency of the external ac voltage of Vext = 1 mV RMS
and measuring the ac output. Thanks to CS, |ACS2| increases with frequency
to saturate at |ACS2| ≃ 15.6 above a few hundred kHz, which is comparable
to the gain of the CS1 circuit |ACS1| ≃ 18 (see Fig. 5.14). When the frequency
is increased above 2 MHz, |ACS2| decreases because of the RC damping at
the output of the amplifier.

Figure 5.17 b) shows that near 1.8 MHz, SV
HEMT of CS2 (≃ 1.53× 10−20 A2/Hz)

is slightly larger than that of CS1, probably because of the misalignment of
the operating point. However, it still remains much smaller than that of the
ATF one [see Figs. 5.12 b) and 5.13].
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5.3.3 Current Noise Measurement in Quantum Point Contact

Here, we demonstrate current-noise measurements performed on a QPC us-
ing the system shown in Fig. 5.3 a). The cryogenic amplifier with RD= 200 Ω
and RS= 165 Ω was activated by applying VDD = 0.883 V, the same as the CS2
circuit presented in Fig. 5.2. While the amplifier shows a slight change in its
gain in different cooldowns, it can be used after appropriate calibration, as
described in this section. The results are compared with those of the ATF-
HEMT amplifier, which has the same RD and RS values and is activated by
VDD = 1.9 V. The measurements were performed at 30 mK and zero magnetic
field.

Measurement Setup

Figure 5.18 shows a schematic of the measurement setup. The QPC, fabri-
cated in a 2DEG with an electron density ne = 1.5 × 1011 cm−2 and a mobil-
ity 6.6 × 105 cm2V−1s−1 in a GaAs/Al0.33Ga0.67As heterostructure, is formed
by applying a gate bias VSG. We measured the dc transport properties using
a standard lock-in technique by applying an ac modulation of Vbias= 10 µV
RMS (33 Hz) and measuring the current Im.

QPC

VSG

Vbias

Im

GaAs HEMT SA-220F5

SA-220F5ATF-35143

Smeas

Smeas

FIGURE 5.18: Schematic of noise-measurement setup for a QPC.

The current noise was measured through the two measurement lines con-
nected to a single output of the QPC: one comprising the GaAs-HEMT am-
plifier “GaAs line” and the other the ATF-HEMT amplifier “ATF line”. We
measured time-domain ∆Vmeas data for τint = 50 seconds at a sampling rate
of 10 MS/s and evaluated Smeas spectra near 1.8 MHz. Figure 5.19 a) shows
representative results obtained at VSG = −0.88 V, where the QPC resistance
is Rm = 21.5 kΩ. The resonance-peak height at fo = 1.794 MHz of the GaAs
line is much higher than that of the ATF line, while the background of the
former is lower than the latter. This observation suggests that the GaAs line
has a better resolution than the ATF line.

The resonance line shapes are slightly distorted from the Lorentzian line
shapes expected for an ideal RLC resonance circuit. This distortion is due to
the parasitic resistance r in the RLC tank circuit and the parasitic capacitances
in the HEMT.
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FIGURE 5.19: a) Representative noise spectra measured through the GaAs
line and the ATF line. b) Zero-bias noise spectra measured through the
GaAs line at several Rm values: Rm = 66.9 kΩ (dark red), 21.5 kΩ (red), 13.7
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Calibration

At Vbias= 0 V, the Johnson noise dominates over the other noises in the QPC,
leading to SI

in ≃ 4kBTeRe(Y1), where Re(Y1) is the real part of the admit-
tance Y1 = Z−1

1 [96]. Here, we calibrate the measurement system from the
resonance peak height of the Johnson-noise spectra. The SV

meas peak height is
described as

SV
meas = A2

RT |A( fo)|2
[∣∣∣Z2

1

∣∣∣ (SI
in + SI

HEMT

)
+ SV

HEMT

]
, (5.15)

where ART (= 400) is the gain of the room-temperature amplifier [SA-220F5
in Fig. 5.3 a)] and |A( fo)| is that of the cryogenic amplifier at f = fo [see
Eq. (4.3)]. With increasing Rm, |Z1| and hence the peak height monoton-
ically increases, as shown in Fig. 5.19 b). The open (filled) circles in Fig.
5.20 summarizes the Rm dependence of the SV

meas peak value estimated at
30 kHz bandwidths near f = fo measured through the GaAs (ATF) line,
and the blue solid (black dashed) curve is the simulation using Eq. (5.15).
Table 5.1 summarizes the parameters used for the simulations, |A( fo)|, Te,
SI

HEMT, and SV
HEMT

6. Here, we note two important findings that justify the
simulations. First, the data for both GaAs and ATF lines agree well with the
calculated curves using the same Te and SI

HEMT values over the three orders
of Rm. Second, |A( fo)| and SV

HEMT of both amplifiers are comparable to the
results obtained in Sec. 5.3.2.

|A ( fo)| Te SI
HEMT SV

HEMT
GaAs 14.9 80 mK 2.64 0.96
ATF 5.35 80 mK 2.64 17.8

TABLE 5.1: Parameters of the fit curves in Fig. 5.20. The units of SI
HEMT

and SV
HEMT are 10−27 A2/Hz and 10−20 V2/Hz , respectively.

Shot-noise Measurement

We measured the Vbias dependence of Smeas from the GaAs line and evaluated
SI

in using the parameters shown in Table 5.1. Figure 5.21 a) shows the linear
conductance G of the QPC in a unit of G0 = 2e2/h as a function of VSG [ohmic
contact resistance (≃ 2 kΩ) is subtracted]. The current-noise measurements
were performed at G/G0= 1.5, 1, 0.65, and 0, indicated by the markers super-
imposed on the trace. Figure 5.21 b) shows the Vbias dependence of the bias-
induced excess noise SI

bias = SI
in (Vbias)− SI

in(0). We observed the increase in

6In this simulation, we first examined fits to the data for the GaAs line with several sets
of |A( fo)| and Te values to obtain r, SI

HEMT, and SV
HEMT as fit parameters, while Cin = 238 pF

and Lin = 33 µH are fixed to give fo = 1.794 MHz. Then, we examined fits to the data for the
ATF line with the fixed values of Te, r, and SI

HEMT obtained from the former fit. Using this
procedure, we found that only the parameters presented in Tab. 5.1 and r = 14.7 Ω explain
our experimental data consistently within the error of approximately 4 %.
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show fitted curves.

SI
bias with |Vbias| at G/G0= 1.5 (filled circles) and 0.65 (filled squares), while it

remains zero independent of |Vbias| at G/G0= 1 (open diamonds) and 0 (open
triangles), being consistent with theory [3] and the previous experiments [97,
102, 103, 105, 106, 109, 124]. We compared the SI

bias data at G/G0= 1.5 and
0.65 with theoretical shot noise:

Sshot = 2e
Vbias

Rm
F
[

coth
(

eVbias

2kBTe

)
− 2kBTe

eVbias

]
, (5.16)

where F = ∑n,σ [Tn,σ(1 − Tn,σ)] / ∑n,σ Tn,σ is the Fano factor. Here, Tn,σ is the
transmission probability of spin σ =↑ or ↓ electrons in the n-th subband in
the QPC; in the present spin-degenerate case, we can assume Tn,↑ = Tn,↓.
The theoretical curve calculated by substituting T1,σ = 1 and T2,σ = 0.5 (T1,σ
= 0.65 and T2,σ = 0) to Eq. (5.16), shown in blue in the figure, agrees well
with the experimental result at G/G0 = 1.5 (0.65) 7.

5.3.4 Resolution of the Noise Measurement

The resolution of the current-noise measurement is evaluated as the standard
deviation of measured SI

in [12]. We repeated the Smeas measurement about
two-hundred times on the QPC set at the first conductance plateau (Rm ≃ 16

7The slight difference between the experimental data and the theoretical curve at G/G0 =
0.65 might be caused by the nonlinear bias dependence of the QPC conductance.
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FIGURE 5.21: a) Conductance behavior of the QPC as a function of VSG.
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solid curves are simulations using Eq. (5.16).

kΩ, including the Ohmic contact resistance) at Vbias= 0 V and estimated SI
in

at f = fo for these measurements. The upper panel in Fig. 5.22 a) [5.22 b)]
shows the deviation ∆SI

in = SI
in −

〈
SI

in
〉
, where

〈
SI

in
〉

is the average of the SI
in

values, measured from the GaAs (ATF) lines. The lower panel is the result of
the histogram analysis. The Gaussian fit for the histogram data shows that
the standard deviation σGaAs (σATF) of the GaAs (ATF) line is 0.52 × 10−29

A2/Hz (0.83× 10−29 A2/Hz). From the comparison between them, we found
that the GaAs-HEMT amplifier has about 1.6 times better resolution than the
ATF-HEMT amplifier. Notably, in the present experimental setup shown in
Fig. 5.18, the GaAs and ATF lines share SI

HEMT so that the lower σGaAs is
only due to the lower SV

HEMT of the GaAs line. If the ATF line is removed
to reduce SI

HEMT, the GaAs line may show even better resolution than the
present result.

It is instructive to compare our results with those in the previous study.
Reference [12] reports δSI

in = 2.8 × 10−29 A2/Hz with τint = 10 seconds for a
cross-correlation measurement using ATF-HEMT amplifiers. If we perform
a similar measurement using our GaAs-HEMT amplifiers, the standard de-
viation, or the resolution is expected to be δSI

in = 0.82 × 10−29 A2/Hz: the
shorter τint increases δSI

in by a factor of
√

5, while the cross-correlation tech-
nique decreases it by

√
2. Thus, the resolution of our setup is below one-third

of that reported in Ref. [12]. If we define the measurement efficiency by the
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FIGURE 5.22: a) and b) (Upper panels) ∆SI
in data for the same measure-

ments repeated 205 times (Rm ≃ 15 kΩ; τint = 50 seconds). (Lower
panels) Histogram analysis. Solid lines show Gaussian fits. a) GaAs
HEMT line shows σGaAs = 0.52× 10−29A2/Hz, while b) ATF HEMT shows
σATF = 0.83 × 10−29A2/Hz.

inverse of τint, which is the data integration time required to reach a certain
value of δSI

in, the efficiency of our system is more than (1/3)−2 = 9 times as
high efficiency as the previous one.

5.3.5 Current Noise Measurement in Quantum Hall Regime

We also tested current-noise measurements to show that our homemade am-
plifier can amplify the current noise signal for higher power consumption,
P ≃ 10 mW. Here, we use the (1 mm; 4 µm) HEMT. The QPC device for
another experiment was used to test the cryogenic amplifier with the home-
made HEMT. The details of the noise measurement are given below.

Measurement Setup

The QPC is defined on the surface of a GaAs/Al0.33Ga0.67As heterostructure
grown by MBE. The 2DEG has a density of 1.5 × 1011cm−2 and mobility of
6.6 × 105 cm2/V s.

Figure 5.23 shows a schematic diagram of the QPC device placed in the
MC and the noise measurement circuit. The QPC is defined by the two metal-
lic gate electrodes, where the same gate voltage, VQPC

SD , is applied. In this
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measurement, the QPC is set in the quantum Hall regime, the bulk filling fac-
tor is set to be νbulk = 4 by adjusting the back gate voltage, −0.3 V, applying
the magnetic field, −1.3 T, perpendicularly to the 2DEG. An additional gate
electrode is prepared on the 2DEG (see the right-bottom corner of the 2DEG
in Fig. 5.23 a). VDP

g is applied to this electrode to control the conductance of
the edge transport, which goes to the noise measurement part through the
Ohmic contact ΩAMP.

The conductance of the QPC is measured using the operational amplifier,
Op-amp, circuit placed in the room temperature. This circuit is connected to
one of the two Ohmic contacts (ΩCalib. or ΩShot) according to the purpose of
the measurement.

VSD

�DP

�bulk

QPC
~

�AMP�Calib.

�Shot

�S

~

FIGURE 5.23: Schematic diagram of the QPC device. The device has five
Ohmic contacts. The noise is measured at ΩAMP and the current is mea-
sured at Ωshot or ΩCalib using Op-amp, as shown in the inset.
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FIGURE 5.24: Noise power spectrum at νDP = 1. The averaged frequency
regime is shown in the inset.
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Figure 5.24 shows an example of the measured noise power spectrum of
the QPC at νDP = 1. SV

out( f ) is measured 10,000 times averaged data for
τint = 55 s. The height of the peak is fitted by Eq. (5.15).

Calibration

Figure 5.25 a) shows a schematic circuit diagram for the noise calibration.
First, VQPC

g = −3.3 V is applied to pinch off the QPC, and the QPC con-
ductance is measured through the contact ΩCalib.. Simultaneously, the noise
power at VQPC

SD = 0 is measured for νDP =1, 2, 3, and 4 by adjusting VDP
g . We

measured the thermal noise by adjusting the VDP
g to vary the νDP.

Figure 5.25 b) shows the conductance calculated by subtracting output-
current at ΩCalib from input-current by ṼQPC

SD at ΩS. We measured the noise
at the quantum Hall regime because the edge states on the quantum Hall
regime is a stable state, and the corresponding noise power density is well
known. The device has well-quantized conductance as VDP

g . The noise mea-
surement is conducted for various VDP

g settings at five temperatures (25, 65,
88, 150, and 185 mK).

The noise for calibration is measured at 10 mW of the power consumption
of the amplifier. The parameters are extracted assuming SI

in = 4kBTeG in Eq.
(5.15), where kB is the Boltzmann constant and Te is the electron temperature,
which is assumed to equal the temperature for the moment.

Figure 5.25 c) shows calibration results for various RDP(= G−1), which is
the resistance between ΩAMP and the device, at T = 25 mK. The solid curve
represents the result of the numerical fitting based on Eq. (5.15). The curve
fitting parameter originates from the combined resistance in the LC circuit
and RDP.

Figure 5.25 d) shows SV
out as a function of Te, and the result of the lin-

ear fitting. The observed linearity between 25 mK and 200 mK supports the
above assumption that the electron temperature equals the fridge tempera-
ture. From these results, A = 14 at 10 mW is extracted. Note that A is smaller
than the RD × gm = 32, as we reported already.

Shot Noise Measurement

After calibrating the thermal noise of the measurement setup, we performed
the shot (partition) noise measurement. Figure 5.26 a) shows a schematic cir-
cuit diagram for partition noise measurement at the QPC. The conductance
is measured through the contact ΩShot. To measure the shot noise, the VDP

g is
fully opened. Based on the calibration, SI

in is extracted as follows: SV
out and

G are measured at a fixed VQPC
g as a function of VQPC

SD between −60 µV and
+60 µV.

Figure 5.26 b) shows the zero-bias conductance as a function of VQPC
g . Un-

fortunately, the extra energy level in the quantum Hall effect does not appear
because the width between QPC gate electrodes is not well designed. The
partition noise at the condition indicated by the circle mark, about 1 × e2/h
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FIGURE 5.25: Schematic diagram of the noise-measurement system for
calibration and partition noise measurement. a) Conductance of the device
as a function of VDP

g . b) Schematic diagram of the noise-measurement
system for calibration. c) and d) Calibration by noise thermometry of T.
c) Sout

V as a function of RDP at temperature. Solid line is a noise model fit
described in Eq. (5.15). d) Sout

V as a function of T. Solid line is a linear fit of
Sout

V at five different temperatures between 25 mK and 200 mK.

of conductance, is shown in Fig. 5.26 c). The black line is the theoretical fit-
ting line based on Eq. (5.16). Here, Te is 25 mK. It is consistent with scattering
theory and with recent measurements on mesoscopic tunnel barriers free of
impurities.

5.4 Summary

We have presented a noise-measurement system comprising a homemade
cryogenic GaAs-HEMT amplifier. Our system was precisely calibrated by
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FIGURE 5.26: a) Schematic diagram of the noise-measurement system
for calibration and partition noise measurement. b) Linear conductance
g
(

VQPC
SD = 0

)
as a function of Vg. A black dot indicates VQPC

g settings for

the noise measurements shown in (c). c) QPC partition noise, SQPC
I , as a

function of VQPC
SD , for conductance near 1× e2/h. A solid line is theoretical

line of partition noise.

Johnson-noise thermometry. We measured the shot noise of the QPC and
quantum Hall regimes to compare the performance of the system. The sys-
tem has a higher resolution than that comprising a commercial-HEMT am-
plifier, mainly due to the high gm of the homemade HEMT. We achieved a
system with efficiency being more than nine times better than in previous
research [12].

The measurement system is as significant as investigating the physical
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meaning in the sample. A high-resolution measurement system would be
performed to measure novel mesoscopic phenomena. We believe that the
achievement described here is important as the basement for the new exper-
imental physics.
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Chapter 6

Current Noise in Quantum Hall
Effect Breakdown of Graphene

6.1 Background and Purpose

In 1980, Klaus von Klitzing measured the characterization of the electronic
transport of a silicon-based field-effect transistor [Fig. 6.1 a)] at the High
Magnetic Field Laboratory in Grenoble. On February 5th, 1980, he discov-
ered unexpected phenomena, now called the quantum Hall effect [1]. He
awarded the Nobel prize due to the observation of the plateau of the Hall
voltage [Fig. 6.1 b)]. The quantum Hall effect is a significant phenomenon
not only as a testbed of the mesoscopic system but also as a new Interna-
tional System of Units (SI). Thanks to his achievements, we can now calibrate
the resistance combined with Planck constant h and the elementary charge e,
h/e2 ≃ 25.813 kΩ [47, 48].

The high bias voltage or bias current is necessary to obtain a high reso-
lution of the resistance standard. The quantized resistance varies when the
bias voltage (bias current) exceeds the critical electric field, Ec (Ic), as shown
in Fig. 6.2 [43]. The phenomenon is called the quantum Hall effect break-
down (QHEBD). It is significant to investigate the non-equilibrium state of
the quantum Hall effect regime to realize quantum information devices or
obtain the high-resolution resistance standard.

There are two types of models to explain the QHEBD. The bootstrap elec-
tron heating (BSEH) model, proposed by Susumu Komiyama and Yasushi
Kawaguchi, explains the collision of accelerated carriers with bound elec-
trons [59]. In this model, the system fluctuates thermally because of the scat-
tering between electrons and lattices. The quasi-elastic inter-Landau level
scattering (QUILLS) explains that the excitation carriers exceed the Landau
level [49–51]. Despite these theories, complete understanding of QHEBD has
not been met. In this Chapter, we try to clarify the dominant mechanisms
of the QHEBD using conductance measurement and current noise measure-
ment.

Considerable interest has focused on current noise measurements, which
allow electron conduction in the QHEBD state to be investigated in more de-
tail [72–74, 130, 131]. For the QHEBD in GaAs/AlGaAs, the precursor phe-
nomenon at the Hall bar structure [72] and the giant Fano factor are observed
in the Corbino disk [73, 74].
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a) b)

FIGURE 6.1: a) Typical silicon MOSFET device that Klaus von Klitzing
measured. Reprinted by permission from Springer Nature: Springer Na-
ture Nature Physics [48], 2021. b) Hall resistance and longitudinal resis-
tance of a silicon MOSFET at liquid helium temperature as a function of
the gate voltage. Reprinted by permission from Springer Nature: Springer
Nature 25 Years of Quantum Hall Effect (QHE) A Personal View on the
Discovery, Physics and Applications of this Quantum Effect by Klaus von
Klitzing 2021.

FIGURE 6.2: Resistance as a function of current. Reprinted figure with
permission from [43] Copyright 2021 by the American Physical Society.
The Hall voltage increases from 350 µA.
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We studied the QHEBD using graphene as a testbed, not using GaAs/AlGaAs
heterostructure. Since graphene can adjust the carrier type and carrier den-
sity, it is a more potential material than the GaAs/AlGaAs heterostructure. It
is also known that graphene has a higher Ic due to the large value of the cy-
clotron energy [132], thus graphene would be more suitable as the resistance
standard. Given the unique band structure of graphene and its symmetry,
there is no obvious prediction for the QHEBD behavior, and detailed experi-
mental investigations are necessary. There has been much experimental [69,
132–139] and theoretical [140] interest in QHEBD studies of graphene. Only
a few experimental studies for current noise exist [141, 142]. Laitinen et al.
research a monolayer Corbino disk-shape graphene [141]. They measured
the low-frequency current noise (frequency f ≤ 10 Hz) and shot noise ex-
periments ( f = 600-900 MHz). Their results indicate intense low-frequency
noise in the rapidly growing, at steep sections of the I-V curves, which they
interpret as bunching of electrons in the avalanche generation of the BSEH
regime. On the other hand, the noise is close to the regular shot noise at mi-
crowave frequencies, although they have found 0 < F < 1.5. The Fano factor
at microwave frequencies measured at the end of the avalanche regime seems
independent of the magnetic field, as shown in Fig. 6.3 a).

b)a)

FIGURE 6.3: a) Fano factor as a function of bias current on a monolayer
Corbino disk-shape graphene at 6 and 8 T. The Fano factor is under 1.5.
Reprinted by permission from Springer Nature: Springer Nature Journal
of Low Temperature Physics [141], 2021. b) Fano factor as a function of a
magnetic field on a bi-layer Hall bar shaped graphene The Fano factor is
linearly dependent on the magnetic field. Reprinted figure with permis-
sion from [142] Copyright 2021 by the American Physical Society.

Yang et al. [142] researched a bi-layer graphene Hall bar. They measure
the shot noise experiments in the 4.5-5.5 GHz band. Their results show that
the Fano factor F ≤ 20 is linearly dependent on the magnetic field as shown
in Fig. 6.3 b).



6.2. Sample Fabrication 65

We measured the current noise experiments at about 2.75 MHz with the
monolayer Hall bar varying the carrier type, p-type and n-type. We com-
pared the QHEBD phenomenon between the GaAs/AlGaAs and monolayer
graphene.

6.2 Sample Fabrication

We fabricated the sample at Quantum Nano-electronics Lab in POSTECH,
Republic of Korea. Takashi Taniguchi and Kenji Watanabe produced graphene
and hBN flakes from the National Institute for Materials Science (NIMS) in
Japan. Here, we introduce how to fabricate hBN/graphene/hBN stacking.

6.2.1 Exfoliating 2D Crystals

We prepared graphene and hBN films by mechanical exfoliation of graphite
or hBN flakes, as shown in Fig. 6.4 [143, 144].

1. Adhesive tape is pressed against a 2D crystal so that the top few layers
are attached to the tape and is peeled away with graphite or hBN layer
sticking on it.

2. The newly made surface is again pressed along the new adhesive.

3. Si/SiO2 substrate is softly pressed against the taped to get the graphite
layers. The graphene lies on the substrate because of the van der Waals
force between the graphene and substrate.

Thick hBN flakes are necessary for encapsulating graphene to prevent envi-
ronmental effects.

a) b) c)

FIGURE 6.4: Schematic diagram describing steps of the mechanical exfo-
liation of graphene from a graphite using commercial adhesive tape. a)
Adhesive tape is pressed to graphite for exfoliation. b) Both sides of the
graphene are exfoliated with adhesion of the tape. c) Graphene is pressed
on the Si/SiO2 substrate, and peeled off by the tape. The graphene sticks
on the substrate due to the van der Waals force between graphene and the
substrate [143, 144].
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6.2.2 Stacking hBN/Graphene/hBN

We used the polymer droplets, Elvacite 2552C (Lucite International), to trans-
fer the hBN and graphene, and encapsulate [145]. Because the Elvacite is the
white polymer powder, the Elvacite has to be dissolved in anisole with a ra-
tio by volume of 1 : 1. We placed a small droplet of the Elvacite/anisole
solution on the optical microscope slide using a metal tip. We baked the op-
tical microscope slide slowly using a hotplate up to 180 °C for five minutes
to evaporate the anisole solvent. The details are as follows (see Fig. 6.5).

1. Adhesive Elvatcite stamp pressed onto the hBN flake heated to 70 ∼ 80
°C.

2. Aligned hBN stamp pressed the graphene. Then the graphene would
be picked up by van der Waals forces acting between 2D crystals.

3. Top hBN/graphene stamp picked up the bottom hBN by pressing the
bottom hBN.

4. After finishing the vdW heterostructure assembly, the final transfer was
conducted on the SiO2/Si substrate heated to 180 °C to melt the stamp.

5. The stamp residue was removed by acetone rinse.

6. The sample was annealed in the vacuum at 500 °C for one hour to evap-
orate the residue and remove bubbles between layers, as shown in Fig.
6.6.

elvacite 2552c

elvacite 2552c

SiO2

Graphene Bottom
hBN

80 oC
80 oC

80 oC

200 oC
Acetone
Cleaning

FIGURE 6.5: Schematic illustration of encapsulating graphene using the
Elvacite as an adhesion layer. a) Elvacite stamp, which has adhesive prop-
erties at 70 ∼ 80 °C, picks up the flakes. b) hBN picks up the graphene
by van der Waals force. c) Bottom hBN is picked up, in the same way,
explained in b). d) Stack is placed with melted Elvacite on the SiO2/Si
substrate heated to 180 °C. e) Stamp residue is removed by acetone rinse.



6.2. Sample Fabrication 67

10 �m

a) b)

10 �m10 �m10 �m

Bottom hBNBottom hBN
GrapheneGraphene

Top hBNTop hBN

BubblesBubbles

FIGURE 6.6: The impurities, also known as the bubble, are removed af-
ter vacuum annealing at 500 °C. Dashed lines represent, dash-dotted lines
represent, and dotted lines represent monolayer graphene, top hBN layer,
and bottom hBN layer, respectively. Circles represent bubbles between
layers. Before annealing a) and after annealing b). The bubbles are re-
moved after annealing.

6.2.3 Hall Bar Design

The hBN/graphene/hBN stack is etched to design in reactive ion etcher us-
ing plasma generated from O2 and CF4 gases. The details are as follows:

1. The Hall bar is patterned with electron beam lithography and devel-
oped [Fig. 6.7 a)]

2. The designed Hall bar is cleaned of organic impurities using oxygen
plasma.

3. Etch the top hBN layer and graphene layer using CF4 and O2 plasma.

10 �m10 �m 10 �m10 �m 10 �m10 �m
a) b) c)

FIGURE 6.7: Hall bar etching process of hBN/graphene/hBN stack.

6.2.4 One-dimensional Contact

We contact the hBN/graphene/hBN along the 1D graphene edge [146]. This
contact is a well-known method to avoid polymers and contaminate the layer
interfaces, causing bubbles and wrinkles. The details are as follows:

1. Contact-lead, slightly covering the edge of the stack, is patterned with
electron beam lithography.
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2. Etch the top hBN layer and graphene layer using CF4 and O2 plasmas.

3. Metal leads are deposited by electron beam evaporation to make elec-
trical contact.

Gr3Gr3

Gr2Gr2

Gr1Gr1

5�m5�m

FIGURE 6.8: False-color optical image of samples. The width of the sam-
ples is 1.9 µm. In this thesis, only three graphenes are referred to as the
Gr1, Gr2, and Gr3. The length of each sample is 2, 5, and 9 µm, respec-
tively. We argue about the current noise on the Gr1 sample.

6.3 Measurement Setup

Figure 6.9 shows a schematic description of the measurement setup. The
measurement is performed at 1.5 K using Kelvinox 400 (Oxford Instruments).
We performed the quantum Hall effect to the using a magnetic field applied
perpendicularly to the sample. The magnetic field is varied from 0 to 11 T.
We inserted a load resistor, 120 kΩ at room temperature, to apply the bias
voltage and current simultaneously. We measured the conductance with a
standard lock-in technique to apply an ac modulation of 0.1 V. The current
is under 1 µA due to the load resistor. As the source, SR830 (Stanford Re-
search Systems) for the lock-in amplifier, Yokogawa 7651 (Yokogawa) for the
dc source, and Multimeter 2000 (Keithley) for the bias dc meter are used.

The three samples are connected in parallel. Figure 6.9 shows that only
one sample, Gr1, is connected to the dc source, and the other samples are
disconnected. Because all samples have their ac ground (20 nF at 4 K station),
they are always in an equilibrium state when disconnected. Thus, the current
noise from the samples is expressed as

SV
meas = A2

(
SV

Gr1,thermal + SV
Gr2,thermal + SV

Gr3,thermal + SV
Gr1, Excess

)
, (6.1)

where SV
meas is the measured voltage noise, A is the total gain of the amplifier,

SV
Gr1,thermal, SV

Gr2,thermal, and SV
Gr3,thermal are the thermal noise at Gr1, Gr2, and
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Gr3, respectively, and SV
Gr1,Excess is the excess noise due to the bias at the Gr1.
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FIGURE 6.9: Schematic diagram of the measurement setup.

6.4 Results and Discussion

Hereafter, we estimated only the Gr1 sample because we did not observe
the well-quantized resistance for the other samples. The temperature of the
sample is about 1.5 K.

6.4.1 Zero-bias Conductance Measurement of Samples

Figure 6.10 a) shows the two-terminal resistance, R, as a function of the gate
voltage, Vg, for the sample at zero tesla. Figure 6.10 b) shows the mobility
being found to be µ > 2 × 103cm2/Vs. We performed a calculation based on
the Drude model to obtain the mobility.

The conductivity based on the Drude model can be expressed as

σ = neµ = CBG
∣∣Vg − VCNP

∣∣ µ. (6.2)

Here, the VCNP is the gate voltage at the charge neutrality point (CNP), and
the CBG is the capacitance of the back gate, including the bottom hBN. We
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calculated the capacitance,

(CBG)
−1 = (CSiO2)

−1 + (ChBN)
−1

=

(
εSiO2

r εo
1

dSiO2

)−1

+

(
εhBN

r εo
1

dhBN

)−1

,

where the εo is the vacuum permittivity, the εSiO2
r is the relative permittivity

of the SiO2 (= 3.9), the εhBN
r is the relative permittivity of the hBN (= 3.2),

dSiO2 is the thickness of the SiO2 (= 285 nm), and dhBN is the thickness of the
bottom hBN (= 4 nm). The mobility is obtained by differentiating Eq. (6.2),∣∣∣∣ dσ

dVg

∣∣∣∣ = CBGµ → µ =
1

CBG

∣∣∣∣ dσ

dVg

∣∣∣∣ .

10
3

2

4

6

10
4

2

4

6

10
5

2

m
ob

ili
ty

(c
m

2 V
-1

s-1
)

201612840-4-8
Vg (V)

10

8

6

4

2

0

R
es

is
tn

ac
e 

(k
Ω

)

0 T
1.5 K

a)

0 T
1.5 K

b)

FIGURE 6.10: a) Two-terminal zero-bias resistance of Gr1 as a function of
gate voltage, Vg, at 1.5 K and zero tesla. b) Mobility is over 2× 103 cm2/Vs.
The mobility may be underestimated because of the short sample length,
2 µm. The mobility of Gr3, which has a 9 µm of the sample length, is over
6 × 103 cm2/Vs (not shown here). Some conductance fluctuations may be
caused by defects of impurities.

The charge neutrality point (CNP) is shifted to Vg = +5 V. It is well
known that the carrier density in graphene is affected by adsorbate, such
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as defects [147, 148] or water molecular [149, 150], on the SiO2 substrate. All
resistance of samples has fluctuation, which may be caused by defects or im-
purities.

Fig. 6.11 b) shows the evolution of conductance as a function of Vg and
magnetic field B. The graphene has the four-fold degeneracy of the quan-
tum Hall states with ν = ±4 (|n|+ 1/2), where n is the Landau-level index.
The conductance at filling factor ν is G(Vg) = νe2/h. The electron density
is expressed as n(B) = Bν/φ0, where φ0 = h/e is the magnetic flux quan-
tum. The quantum Hall plateaus would appear linearly with the slope of the
dn/dB = ν/φ0 [151]. The black dash lines are the slope of the ν/φ0, with
ν = −6, −2, +2, and +6. The carrier density ne is here calculated from Eq.
(6.2). The yellow color implies that |ν| = 2 regime which is the zero mode
Landau-level, n = 0. We observed the different Landau-level by varying Vg,
and we enlarged quantum Hall plateau widths by applying higher magnetic
field. We only discussed the |ν| = 2 with a high magnetic field since the
conductance at |ν| = 6 regimes and at low magnetic field regimes fluctuates.

Fig. 6.11 a) shows the cross-section of the bottom panel of Fig. 6.11 at 3, 5,
and 8 T. We observed the well-quantized conductance, 2e2/h ≃ 1/12.9 kΩ,
while the plateau of the conductance at |ν| = 6 unmatched with the 6e2/h.
The cross-sections of the slope of the 2/φ0 and the three magnetic fields
are marked as up-triangles, and the cross-section of the slope of the 6/φ0
is shown as down-triangles. The deviation at ν = ±6 is because of the mix-
ing of the longitudinal and transverse conductivity [152]. We estimated the
contact resistance of the sample, about 100 Ω, from the difference of h/2e2.
The contact resistance is sufficiently low to measure for this measurement.

6.4.2 Conductance and Noise at Quantum Hall Effect Break-
down

Hereafter, we assume that the 1/ f noise is sufficiently damped because the
resonance peak is on the megahertz scale. We investigated the QHEBD of
the two-terminal sample. Figure 6.12 a) shows G(Isd) as a function of Isd
at 8 T for the vicinity of ν = −2. The curve shows an abrupt conduc-
tance decreases from 2e2/h at Isd ≃ −7 µA (as shown in Fig. 6.12 dash-
dotted line). Ic is defined as the Isd value where the difference of the conduc-
tance ∆G (Isd) = |G(0)− G(Isd)| exceeds 0.05e2/h [72]. We define the “QHE
regime”, |Isd| < |Ic|, and “Breakdown regime”, |Ic| < |Isd|. We estimated the
noise spectral density using Eqs. (4.2), and (4.3). Each colored triangle in Fig.
6.12 b) corresponds to the noise spectral density in the inset, respectively. Be-
fore the breakdown regime, the peak of the SV

meas increases [Fig. 6.12 b)]. In
the breakdown regime, SV

meas increases sharply.
To estimate the QHEBD, we bias the source-drain current of our sample in

the lines corresponding to the filling factor vicinity of |ν| = 2 with dc current
(Isd) and a small ac current (less 1 µA) at a fixed magnetic field, 8 T. We ob-
served the breakdown regime at |ν| ≃ 2 starts, where Ec = 45 kV/m (Ic = −7
µA), which is a higher breakdown electric field than the GaAs/AlGaAs case
(Ec = 0.2 ∼ 3.5 kV/m) [72–74]. The critical electric field in the works of Yang
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et al. is about 1.3× 106 V/m [142] at 4 K and 7 T, and in the works of Laitinen
et al. is about 20 kV/m at 10 mK and 5.6 T [141]. Both are much larger than
the case of the GaAs/AlGaAs. We measured the current noise by focusing on
the red, black, and blue lines that correspond to |ν| < 2, |ν| ≃ 2, and |ν| > 2,
respectively.

The SV
meas gradually increases from the breakdown regime. The gentle
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increases in the noise are characteristics of the graphene sample, while the
increases in the GaAs/AlGaAs sample are abrupt [72–74]. The increase in the
voltage noise corresponds to the increase in the temperature of the electrons.
The details will be discussed later.

Carrier Density Dependence

Here, we discuss the conductance and current noise in two regimes: the p-
type and n-type regimes.

• p-type Regime
Figure 6.13 a) shows the colorscale plot of G as a function of Isd for the
p-type regime. We observed the triangular behavior as a function of
Vg. The black dashed lines are guides to the eye. The QHEBD regime
is almost symmetric regarding Isd = 0. The behavior is one of the rea-
sons for QHEBD, which implies that the inter-, and intra- Landau level
scattering occur [58, 137, 153].

We checked that the QHEBD occurs at almost the same value of Ic
independent of the direction of the electron injecting source. For the
|ν| < 2 regime, the conductance decreases when the quantum Hall
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regime breaks down, as shown in Fig. 6.13 b). For the |ν| > 2 regime,
the conductance increases at the QHEBD regime. These phenomena
have been explained theoretically to occur as the injected electrons from
the hotspot of the Ohmic contact collapse the channel in the sample due
to puddles of localized electrons [154]. The experimental results may
be explained by the theory.

We measured the current noise at the three regimes: the red, black, and
blue lines, as shown in Fig 6.13 c). We only argue the current noise as
a function of −Isd. The current noises for all regimes increase before
the QHEBD regime. While the conductance differs between the carrier
density, the current noise has almost the same appearance for those
regimes.
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FIGURE 6.13: a) Colorscale plot of G as a function of Isd for the p-
type regime at 8 T. The black-dashed lines on the colorscale plot mark
the QHEBD region. b) Conductance measurement for the three regimes:
|ν| < 2, |ν| ≃ 2, and |ν| > 2, which correspond to the red, black, and blue
lines in a). c) Current noise measurement for the three regimes for the
same three regimes. The dash-dotted arrows imply when the quantum
Hall regimes break down.

• n-type Regime
Figure 6.14 a) shows the colorscale plot of G as a function of Isd for
the n-type regime similar to Fig. 6.13. The triangular behavior also ap-
pears in the n-type regime with slightly differed shapes. The increases
and decreases in the conductance are observed similar to the p-type
regimes.
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The current noises for the n-type regime are much larger than those
of the p-type regimes. We think the reason is that the n-type regime
is applied much higher Vg than the p-type regime. The high Vg may
fluctuate the impurities in the Si substrate. SI may include extrinsic
noise at the n-type regime. We did not observe any difference in the
noise signal for the carrier density in the same type regime.
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FIGURE 6.14: a) Colorscale plot of G as a function of Isd for the n-
type regime at 8 T. The black-dashed lines on the colorscale plot mark
the QHEBD region. b) Conductance measurement for the three regimes,
|ν| < 2, |ν| ≃ 2, and |ν| > 2, which correspond to the red, black, and blue
lines in a). c) Current noise measurement for the three regimes for the
same three regimes. The dash-dotted arrows imply when the quantum
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Magnetic Field Dependence

We measured the conductance and the current noise at |ν| ≃ 2 by varying
magnetic field for 11, 8, and 5 T. Figures 6.15 a), c), e), g), i), and k) show
the conductance of the device, G, as a function of −Isd. Figures 6.15 b), d),
f), h), j), and l) show the current noise at the same regime, SI , as a function
of −Isd in a semi-log plot. The quantized conductance, 2e2/h, breaks down
at a Ic (dash-dotted line), as shown in Fig. 6.15 a), c), and e) for the p-type
regime and g), i), and k) for the n-type regime. The decreases and increases
in conductance at the p-type and n-type regimes, respectively, are due to the
mismatch with the ν = 2.

All excess noise increases from the QHE regime, as shown in Figs. 6.15 b),
d), f), h), j), and l). The same phenomena were observed in Chida et al. stud-
ies, where the GaAs/AlGaAs Hall bar structure was measured. [72]. They
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claimed that this precursor phenomenon occurs due to the electron tunneling
process between the edge state and localized bulk state. We think our sam-
ple has many localized bulk states. Although the existence of the localized
bulk state is plausible due to the fluctuation of the conductance at 0 T and
excess noise at QHE regime, it was absent in conductance measurement at
quantum Hall regime. The current noise for p-type and n-type regimes at the
same magnetic field seems to be the qualitatively same.

To evaluate the Fano factor, ∂SI/ (2e∂Isd), we determined the highest
Fano factor as F because the excess noise is nonlinear. Figure 6.16 shows
the F as a function of B in the vicinity of the |ν| ≃ 2. The dashed lines are
guides to the eyes. Although graphene has a much higher dc current for
QHEBD than GaAs/AlGaAs, its Fano factor is much smaller (100 < F at the
GaAs/AlGaAs)[74]. The results agree with the previous results by the other
groups [141, 142]. Although Laitinen et al. showed that the Fano factor is
independent of the magnetic field for a monolayer Corbino disk graphene
[141], Yang et al. showed that it is dependent on the magnetic field for a
bi-layer Hall bar graphene [142]. Our study seems similar to that of Yang
et al.; however, they considered only backscattering current to evaluate the
Fano factor. Note that the Fano factor in our study are defined by source-
drain current as ∂SI/ (2e∂Isd). Despite the three points of the data, we might
claim that the Fano factor linearly depends on the magnetic field. The linear
dependence of the Fano factor agrees with the previous work [142].

Electron Temperature

We plotted SI as a function of Isd [in Fig. 6.15 b), d), f), h), j), and l)] in a log-
log scale because of its nonlinearity. Figure 6.17 shows the current noise for
vicinity of the ν = −2 and ν = 2 at 5, 8, and 11 T. In the vicinity of the |ν| = 2,
the SI produces the I2

sd-dependent increase. We assume that the current noise
increases due to Joule heating from the electron collision with the lattice.

We showed the electron temperature for the QHEBD regime. The electron
temperature is expressed as

Te =
SI

4kBG
(6.3)

[see Eq. (6.1)]. Figure 6.18 shows the conductance and the electron tempera-
ture at 8 T. The electron temperature for both regimes sharply increases from
the breakdown region. While the electron temperature increases up to about
400 K in the vicinity of ν = 2, it increases up to about 7000 K in the vicin-
ity of ν = +2. Note that the electron temperature does not mean the lattice
temperature; it corresponds to the carrier temperature.

Our result agrees with the previous result that the interaction of the local-
ized puddle state occurs with increases of the current noise at the precursor
regime [72]. We assumed that our sample has localized puddle states, which
occur during the process of electrons tunnelling between the edge state and
localized puddle. We speculated that the process induces during the heating
of the electrons. The results support the assumption of the BSEH model. The
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BSEH model claims that QHEBD occurs when the bounded electrons collide
with the accelerated electrons [59].

6.5 Summary

We conducted the current noise measurements for a monolayer graphene
in a non-equilibrium quantum Hall effect regime by varying the magnetic
field and the carrier density. From this study, we try to reveal the dominant
process of graphene in a non-equilibrium quantum Hall effect regime.

We observed the breakdown of the quantized conductance and the excess
noise. We suggested that the bootstrap electron heating model is dominant
from the increases in the electron temperature. Further experimental study of
QHEBD for the various shapes of samples would clarify the QHEBD mech-
anisms. One of the examples is the sample length dependence. The experi-
mental conductance measurement has been reported that the quantum Hall
effect drastically breaks down when the detector is far from the source [63].
We believe that similar phenomena would occur: the higher excess noise is
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measured when the detector is far from the source. It would be correlated
with the avalanche phenomena in the classical sandpile model [155].



80 Chapter 6. Current Noise in QHEBD of Graphene

2.4

2.2

2.0

1.8

1.6

C
on

du
ct

an
ce

 (
e2 /h

)

2.4

2.2

2.0

1.8

1.6

C
on

du
ct

an
ce

 (
e2 /h

)

8

7

6

5

4

3

2

1

0
50403020100

-Isd (�A)

500

400

300

200

100

0
50403020100

-Isd (�A)

b)

�=-2
8 T

a)

�=-2
8 T

c)

�=+2
8 T

d)

�=+2
8 T

El
ec

tr
on

 T
em

pe
ra

tu
re

 (
10

3  
K
)

El
ec

tr
on

 T
em

pe
ra

tu
re

 (
K
)

�=-2
8 T

FIGURE 6.18: Conductance and electron temperature as a function of −Isd
at 8 T.



81

Chapter 7

Conclusion

We considered the mesoscopic device measuring the current noise in this
Thesis. We investigated the current noise from two points of view: applica-
tion and physical properties. We developed the noise measurement system
from an application point of view and researched the current noise to inves-
tigate the quantum Hall effect breakdown of graphene.

The first achievement was the development of the cryogenic amplifier to
measure the high-resolution current noise signal. We successfully measured
the higher resolution of the noise signal than the previous reports [12] us-
ing the GaAs/AlGaAs HEMT. The results may contribute to probing novel
mesoscopic physics, such as anyonic correlations in fractional quantum Hall
system [13, 14] and violation of Bell inequalities in an electronic interferome-
ter [15].

The second achievement was current noise measurement in both carrier
types, p-type and n-type, to investigate the quantum Hall effect breakdown
of graphene. We fabricated a monolayer graphene Hall bar and observed the
excess current noise in the quantum Hall effect breakdown regime. Conse-
quently, we speculated that the results, such as increase electron temperature,
support the bootstrap electron heating model. We believed that the results for
measuring the current noise would help a deep understanding of the quan-
tum Hall effect breakdown phenomena. The results tell the importance of
studying the quantum Hall effect breakdown phenomena on graphene us-
ing the current noise.

As we mentioned above, the current noise has useful physical informa-
tion of the mesoscopic sample. The information does not appear in a con-
ductance measurement only. Developing a cryogenic amplifier may evolve
considering the electronic circuits or HEMT optimization. The details of the
quantum Hall effect phenomena will be revealed by measuring the various
shapes of the graphene devices.
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21. Mucha-Kruczyński, M. et al. Characterization of graphene through anisotropy
of constant-energy maps in angle-resolved photoemission. Physical Re-
view B 77, 195403 (2008).

22. Sarma, S. D., Adam, S., Hwang, E. H. & Rossi, E. Electronic transport
in two-dimensional graphene. Reviews of Modern Physics 83, 407–470
(2011).

23. Goerbig, M. O. Electronic properties of graphene in a strong magnetic
field. Reviews of Modern Physics 83, 1193–1243 (2011).

24. Bena, C. & Montambaux, G. Remarks on the tight-binding model of
graphene. New Journal of Physics 11, 095003 (2009).

25. DiVincenzo, D. P. & Mele, E. J. Self-consistent effective-mass theory
for intralayer screening in graphite intercalation compounds. Physical
Review B 29, 1685–1694 (1984).

26. Semenoff, G. W. Condensed-Matter Simulation of a Three-Dimensional
Anomaly. Physical Review Letters 53, 2449–2452 (1984).

27. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions
in graphene. Nature 438, 197–200 (2005).

28. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observa-
tion of the quantum Hall effect and Berry's phase in graphene. Nature
438, 201–204 (2005).

29. Deacon, R. S., Chuang, K.-C., Nicholas, R. J., Novoselov, K. S. & Geim,
A. K. Cyclotron resonance study of the electron and hole velocity in
graphene monolayers. Physical Review B 76, 081406 (2007).

30. Jiang, Z. et al. Infrared Spectroscopy of Landau Levels of Graphene.
Physical Review Letters 98, 197403 (2007).



84 Bibliography

31. Micolich, A. Double or nothing? Nature Physics 9, 530–531 (2013).

32. Büttiker, M. Quantized transmission of a saddle-point constriction. Phys-
ical Review B 41, 7906–7909 (1990).

33. Weissman, M. B. 1fnoise and other slow, nonexponential kinetics in
condensed matter. Reviews of Modern Physics 60, 537–571 (1988).

34. Connor, J. On the analytical description of resonance tunnelling reac-
tions. Molecular Physics 15, 37–46 (1968).

35. Goerbig, M. O. Quantum Hall Effects. arXiv: 0909.1998 [cond-mat.mes-hall]
(Sept. 10, 2009).

36. Hall, E. H. On a New Action of the Magnet on Electric Currents. Amer-
ican Journal of Mathematics 2, 287 (1879).

37. Janssen, T. J. B. M., Tzalenchuk, A, Lara-Avila, S, Kubatkin, S & Fal'ko,
V. I. Quantum resistance metrology using graphene. Reports on Progress
in Physics 76, 104501 (2013).

38. Klaß, U., Dietsche, W., von Klitzing, K. & Ploog, K. Imaging of the
dissipation in quantum-Hall-effect experiments. Zeitschrift für Physik
B Condensed Matter 82, 351–354 (1991).

39. Zhang, Y. et al. Landau-Level Splitting in Graphene in High Magnetic
Fields. Physical Review Letters 96, 136806 (2006).

40. Giesbers, A. J. M. et al. Quantum-Hall Activation Gaps in Graphene.
Physical Review Letters 99, 206803 (2007).

41. Giesbers, A. J. M. et al. Gap opening in the zeroth Landau level of
graphene. Physical Review B 80, 201403 (2009).

42. Ebert, G, von Klitzing, K, Ploog, K & Weinmann, G. Two-dimensional
magneto-quantum transport on GaAs-AlxGa1-xAs heterostructures un-
der non-ohmic conditions. Journal of Physics C: Solid State Physics 16,
5441–5448 (1983).

43. Cage, M. E. et al. Dissipation and Dynamic Nonlinear Behavior in the
Quantum Hall Regime. Physical Review Letters 51, 1374–1377 (1983).

44. Kuchar, F., Bauer, G., Weimann, G. & Burkhard, H. Non-equilibrium
behaviour of the two-dimensional electron gas in the quantized Hall
resistance regime of GaAs/Al0.3Ga0.7As. Surface Science 142, 196–202
(1984).

45. Komiyama, S., Takamasu, T., Hiyamizu, S. & Sasa, S. Breakdown of the
quantum Hall effect due to electron heating. Solid State Communications
54, 479–484 (1985).

46. Kawaji, S. et al. Breakdown of the Quantum Hall Effect in GaAs/AlGaAs
Heterostructures Due to Current. Journal of the Physical Society of Japan
63, 2303–2313 (1994).

47. Von Klitzing, K. in The Quantum Hall Effect: Poincaré Seminar 2004 (eds
Douçot, B., Pasquier, V., Duplantier, B. & Rivasseau, V.) 1–21 (Birkhäuser
Basel, Basel, 2005). ISBN: 978-3-7643-7393-1.

https://arxiv.org/abs/0909.1998


Bibliography 85

48. Von Klitzing, K. Metrology in 2019. Nature Physics 13, 198–198 (2017).

49. Heinonen, O., Taylor, P. L. & Girvin, S. M. Electron-phonon interactions
and the breakdown of the dissipationless quantum Hall effect. Physical
Review B 30, 3016–3019 (1984).

50. Eaves, L, Guimaraes, P. S. S. & Portal, J. C. Hot-electron magnetophonon
spectroscopy on micron- and sub-micron-size n+nn+GaAs structures.
Journal of Physics C: Solid State Physics 17, 6177–6190 (1984).

51. Eaves, L & Sheard, F. W. Size-dependent quantised breakdown of the
dissipationless quantum Hall effect in narrow channels. Semiconductor
Science and Technology 1, 346–349 (1986).

52. Bliek, L. et al. Breakdown of dissipationless quantum hall conduction
in narrow channels. Surface Science 196, 156–164 (1988).

53. Balaban, N. Q., Meirav, U., Shtrikman, H. & Levinson, Y. Scaling of the
critical current in the quantum Hall effect: A probe of current distribu-
tion. Physical Review Letters 71, 1443–1446 (1993).

54. Balaban, N. Q., Meirav, U. & Shtrikman, H. Crossover between differ-
ent regimes of current distribution in the quantum Hall effect. Physical
Review B 52, R5503–R5506 (1995).

55. Makarovsky, O et al. Quantum Hall effect breakdown: can the boot-
strap heating and inter-Landau-level scattering models be reconciled?
Physica E: Low-dimensional Systems and Nanostructures 12, 178–181 (2002).

56. Guimaraes, P., Eaves, L., Sheard, F., Portal, J. & Hill, G. Resonant mag-
netoresistance measurements in short (∼ 1 µm) n+nn+GaAs structures:
Investigation of the electric field dependence of quasi-elastic inter-Landau
level scattering processes. Physica B+C 134, 47–52 (1985).

57. Bliek, L et al. Critical current density for the dissipationless quantum
Hall effect. Semiconductor Science and Technology 1, 110–112 (1986).

58. Kirtley, J. R. et al. Low-voltage breakdown of the quantum Hall state in
a laterally constricted two-dimensional electron gas. Physical Review B
34, 1384–1387 (1986).

59. Komiyama, S. & Kawaguchi, Y. Heat instability of quantum Hall con-
ductors. Physical Review B 61, 2014–2027 (2000).

60. Komiyama, S. & Nii, H. Nonequilibrium electron distribution and non-
local resistance in a two-dimensional electron gas at high magnetic
fields. Physica B: Condensed Matter 184, 7–16 (1993).

61. Takamasu, T., Komiyama, S., Hiyamizu, S. & Sasa, S. Effect of finite
electric field on the quantum Hall effect. Surface Science 170, 202–208
(1986).

62. Kawaguchi, Y. et al. Disappearance of the Breakdown of Quantum Hall
Effects in Short Devices. Japanese Journal of Applied Physics 34, 4309–
4312 (1995).



86 Bibliography

63. Komiyama, S., Kawaguchi, Y., Osada, T. & Shiraki, Y. Evidence of Non-
local Breakdown of the Integer Quantum Hall Effect. Physical Review
Letters 77, 558–561 (1996).

64. Boella, G. et al. Analysis of time behavior in the breakdown of the inte-
gral quantum Hall effect. Physical Review B 50, 7608–7614 (1994).

65. Sagol, B. E., Nachtwei, G., von Klitzing, K., Hein, G. & Eberl, K. Time
scale of the excitation of electrons at the breakdown of the quantum
Hall effect. Physical Review B 66, 075305 (2002).

66. Li, M.-Y. et al. Transition dynamics in the electrical breakdown of the
quantum Hall effect. Physical Review B 85, 245315 (2012).

67. Nakajima, T. & Komiyama, S. Lifetime of dissipation-less state of quan-
tum Hall electron systems in the bistable regime. Physica E: Low-dimensional
Systems and Nanostructures 42, 1026–1029 (2010).

68. Kawaji, S., Hirakawa, K. & Nagata, M. Device-width dependence of
plateau width in quantum Hall states. Physica B: Condensed Matter 184,
17–20 (1993).

69. Alexander-Webber, J. A. et al. Phase Space for the Breakdown of the
Quantum Hall Effect in Epitaxial Graphene. Physical Review Letters 111,
096601 (2013).

70. Meziani, Y. M. et al. Behavior of the contacts of quantum Hall effect
devices at high currents. Journal of Applied Physics 96, 404–410 (2004).

71. 加藤, . < 講義ノート > メゾスコピック系の物理: 基礎から最近の
話題まで. 物性研究・電子版 3, 1. https://ci.nii.ac.jp/naid/
120005373102/en/ (2014).

72. Chida, K. et al. Observation of finite excess noise in the voltage-biased
quantum Hall regime as a precursor for breakdown. Physical Review B
87, 155313 (2013).

73. Chida, K. et al. Avalanche electron bunching in a Corbino disk in the
quantum Hall effect breakdown regime. Physical Review B 89, 235318
(2014).

74. Hata, T., Arakawa, T., Chida, K., Matsuo, S. & Kobayashi, K. Giant
Fano factor and bistability in a Corbino disk in the quantum Hall ef-
fect breakdown regime. Journal of Physics: Condensed Matter 28, 055801
(2016).

75. Kohda, M. et al. Spin–orbit induced electronic spin separation in semi-
conductor nanostructures. Nature Communications 3, 1 (Jan. 2012).

76. Arakawa, T. et al. Shot Noise Induced by Nonequilibrium Spin Accu-
mulation. Physical Review Letters 114, 016601 (2015).

77. Nakamura, S. et al. Nonequilibrium Fluctuation Relations in a Quan-
tum Coherent Conductor. Physical Review Letters 104, 080602 (2010).

78. Henny, M. The Fermionic Hanbury Brown and Twiss Experiment. Sci-
ence 284, 296–298 (1999).

https://ci.nii.ac.jp/naid/120005373102/en/
https://ci.nii.ac.jp/naid/120005373102/en/


Bibliography 87

79. Oliver, W. D. Hanbury Brown and Twiss-Type Experiment with Elec-
trons. Science 284, 299–301 (1999).

80. Dubois, J. et al. Minimal-excitation states for electron quantum optics
using levitons. Nature 502, 659–663 (2013).

81. Bocquillon, E. et al. Coherence and Indistinguishability of Single Elec-
trons Emitted by Independent Sources. Science 339, 1054–1057 (2013).

82. Balandin, A. A. Low-frequency 1/ f noise in graphene devices. Nature
Nanotechnology 8, 549–555 (2013).

83. Johnson, J. B. The Schottky Effect in Low Frequency Circuits. Physical
Review 26, 71–85 (1925).

84. FLINN, I. Extent of the 1/ f Noise Spectrum. Nature 219, 1356–1357
(1968).

85. Schoelkopf, R. J. The Radio-Frequency Single-Electron Transistor (RF-
SET): A Fast and Ultrasensitive Electrometer. Science 280, 1238–1242
(1998).

86. Balandin, A. Noise and fluctuations control in electronic devices ISBN: 1588830055
(American Scientific Publishers, Stevenson Ranch, Calif, 2002).

87. Dutta, P. & Horn, P. M. Low-frequency fluctuations in solids:1/ f noise.
Reviews of Modern Physics 53, 497–516 (1981).

88. Bernamont, J. Fluctuations de potentiel aux bornes d'un conducteur
métallique de faible volume parcouru par un courant. Annales de physique
11, 71–140 (1937).

89. Galperin, Y. M., Gurevich, V. L & Kozub, V. I. Disorder-Induced Low-
Frequency Noise in Small Systems: Point and Tunnel Contacts in the
Normal and Superconducting State. Europhysics Letters (EPL) 10, 753–
758 (1989).

90. Dmitriev, A. P., Levinshtein, M. E. & Rumyantsev, S. L. On the Hooge
relation in semiconductors and metals. Journal of Applied Physics 106,
024514 (2009).

91. Hooge, F. 1/ f noise is no surface effect. Physics Letters A 29, 139–140
(1969).

92. Xu, G. et al. Effect of Spatial Charge Inhomogeneity on 1/fNoise Be-
havior in Graphene. Nano Letters 10, 3312–3317 (2010).

93. Takeshita, S. et al. Anomalous behavior of 1/f noise in graphene near
the charge neutrality point. Applied Physics Letters 108, 103106 (2016).

94. Clauss, W et al. Self-Organized Critical Behaviour in the Low-Temperature
Impact Ionization Breakdown of p-Ge. Europhysics Letters (EPL) 12,
423–428 (1990).

95. Johnson, J. B. Thermal Agitation of Electricity in Conductors. Physical
Review 32, 97–109. ISSN: 0031-899X (1928).

96. Nyquist, H. Thermal Agitation of Electric Charge in Conductors. Phys-
ical Review 32, 110–113 (1928).



88 Bibliography

97. Muro, T. et al. Finite shot noise and electron heating at quantized con-
ductance in high-mobility quantum point contacts. Physical Review B
93, 195411 (2016).

98. kobayashi, K. What can we learn from noise? — Mesoscopic nonequi-
librium statistical physics —. Proceedings of the Japan Academy, Series B
92, 204–221 (2016).

99. Hashisaka, M. et al. Development of a measurement system for quan-
tum shot noise at low temperatures. physica status solidi (c) 5, 182–185
(2008).

100. Hashisaka, M et al. Measurement for quantum shot noise in a quantum
point contact at low temperatures. Journal of Physics: Conference Series
109, 012013 (2008).

101. Hashisaka, M. et al. Noise measurement system at electron tempera-
ture down to 20 mK with combinations of the low pass filters. Review
of Scientific Instruments 80, 096105 (2009).

102. Arakawa, T., Nishihara, Y., Maeda, M., Norimoto, S. & Kobayashi, K.
Cryogenic amplifier for shot noise measurement at 20 mK. Applied Physics
Letters 103, 172104 (2013).

103. Kumar, A., Saminadayar, L., Glattli, D. C., Jin, Y. & Etienne, B. Exper-
imental Test of the Quantum Shot Noise Reduction Theory. Physical
Review Letters 76, 2778–2781 (1996).

104. Sampietro, M., Fasoli, L. & Ferrari, G. Spectrum analyzer with noise re-
duction by cross-correlation technique on two channels. Review of Sci-
entific Instruments 70, 2520–2525 (1999).

105. Hashisaka, M. et al. Bolometric detection of quantum shot noise in cou-
pled mesoscopic systems. Physical Review B 78, 241303 (2008).

106. Reznikov, M., Heiblum, M., Shtrikman, H. & Mahalu, D. Temporal
Correlation of Electrons: Suppression of Shot Noise in a Ballistic Quan-
tum Point Contact. Physical Review Letters 75, 3340–3343 (1995).

107. Liu, R. C., Odom, B., Yamamoto, Y. & Tarucha, S. Quantum interference
in electron collision. Nature 391, 263–265 (1998).

108. Roche, P. et al. Fano Factor Reduction on the 0.7 Conductance Structure
of a Ballistic One-Dimensional Wire. Physical Review Letters 93, 116602
(Sept. 2004).

109. DiCarlo, L. et al. Shot-Noise Signatures of 0.7 Structure and Spin in a
Quantum Point Contact. Physical Review Letters 97, 036810 (2006).

110. Nakamura, S. et al. Conductance anomaly and Fano factor reduction in
quantum point contacts. Physical Review B 79, 201308 (2009).

111. Nishihara, Y. et al. Shot noise suppression in InGaAs/InGaAsP quan-
tum channels. Applied Physics Letters 100, 203111 (2012).

112. Steinbach, A. H., Martinis, J. M. & Devoret, M. H. Observation of Hot-
Electron Shot Noise in a Metallic Resistor. Physical Review Letters 76,
3806–3809 (1996).



Bibliography 89

113. Henny, M., Oberholzer, S., Strunk, C. & Schönenberger, C. 1/3-shot-
noise suppression in diffusive nanowires. Physical Review B 59, 2871–
2880 (1999).

114. Zarchin, O., Chung, Y. C., Heiblum, M., Rohrlich, D. & Umansky, V.
Electron Bunching in Transport through Quantum Dots in a High Mag-
netic Field. Physical Review Letters 98, 066801 (2007).

115. Okazaki, Y., Sasaki, S. & Muraki, K. Shot noise spectroscopy on a semi-
conductor quantum dot in the elastic and inelastic cotunneling regimes.
Physical Review B 87, 041302 (2013).

116. Gustavsson, S. et al. Counting Statistics of Single Electron Transport in
a Quantum Dot. Physical Review Letters 96, 076605 (2006).

117. Onac, E., Balestro, F., Trauzettel, B., Lodewijk, C. F. J. & Kouwenhoven,
L. P. Shot-Noise Detection in a Carbon Nanotube Quantum Dot. Phys-
ical Review Letters 96, 026803 (2006).

118. Safonov, S. S. et al. Enhanced Shot Noise in Resonant Tunneling via
Interacting Localized States. Physical Review Letters 91, 136801 (2003).

119. Sekiguchi, K. et al. Nonreciprocal emission of spin-wave packet in FeNi
film. Applied Physics Letters 97, 022508 (2010).

120. Arakawa, T. et al. Sub-Poissonian shot noise in CoFeB/MgO/CoFeB-
based magnetic tunneling junctions. Applied Physics Letters 98, 202103
(2011).

121. Jehl, X., Sanquer, M., Calemczuk, R. & Mailly, D. Detection of dou-
bled shot noise in short normal-metal/ superconductor junctions. Na-
ture 405, 50–53 (2000).

122. Chida, K. et al. Shot noise induced by electron-nuclear spin-flip scat-
tering in a nonequilibrium quantum wire. Physical Review B 85, 041309
(2012).

123. Delattre, T. et al. Noisy Kondo impurities. Nature Physics 5, 208 (2009)
5, 208–212. arXiv: 1010.4815 [cond-mat.mes-hall] (Oct. 22, 2010).

124. Hashisaka, M., Ota, T., Yamagishi, M., Fujisawa, T. & Muraki, K. Cross-
correlation measurement of quantum shot noise using homemade tran-
simpedance amplifiers. Review of Scientific Instruments 85, 054704 (2014).

125. Dong, Q. et al. Ultra-low noise high electron mobility transistors for
high-impedance and low-frequency deep cryogenic readout electron-
ics. Applied Physics Letters 105, 013504 (2014).

126. Liang, Y. X., Dong, Q., Gennser, U., Cavanna, A. & Jin, Y. Input Noise
Voltage Below 1 nV/Hz1/2 at 1 kHz in the HEMTs at 4.2 K. Journal of
Low Temperature Physics 167, 632–637 (2012).

127. Landauer, R. Spatial Variation of Currents and Fields Due to Localized
Scatterers in Metallic Conduction. IBM Journal of Research and Develop-
ment 1, 223–231 (1957).

128. Ziel, A. V. D. & Chenette, E. in Advances in Electronics and Electron
Physics Volume 46 313–383 (Elsevier, 1978).

https://arxiv.org/abs/1010.4815


90 Bibliography

129. Hooge, F. 1/ f noise in the conductance of ions in aqueous solutions.
Physics Letters A 33, 169–170 (1970).

130. Schurr, J., Moser, H., Pierz, K., Ramm, G. & Kibble, B. P. Johnson–Nyquist
Noise of the Quantized Hall Resistance. IEEE Transactions on Instrumen-
tation and Measurement 60, 2280–2285 (2011).

131. Schurr, J., Ahlers, F. & Callegaro, L. Noise and Correlation Study of
Quantum Hall Devices. IEEE Transactions on Instrumentation and Mea-
surement 62, 1574–1580 (2013).

132. Baker, A. M. R., Alexander-Webber, J. A., Altebaeumer, T. & Nicholas,
R. J. Energy relaxation for hot Dirac fermions in graphene and break-
down of the quantum Hall effect. Physical Review B 85, 115403 (2012).

133. Baker, A. M. R. et al. Energy loss rates of hot Dirac fermions in epitaxial,
exfoliated, and CVD graphene. Physical Review B 87, 045414 (2013).

134. Betz, A. C. et al. Hot Electron Cooling by Acoustic Phonons in Graphene.
Physical Review Letters 109, 056805 (2012).

135. Tan, Z. et al. Shubnikov-de Haas oscillations of a single layer graphene
under dc current bias. Physical Review B 84, 115429 (2011).

136. Betz, A. C. et al. Supercollision cooling in undoped graphene. Nature
Physics 9, 109–112 (2012).

137. Singh, V. & Deshmukh, M. M. Nonequilibrium breakdown of quantum
Hall state in graphene. Physical Review B 80, 081404 (2009).

138. Yanık, C. & Kaya, I. Local breakdown of the quantum Hall effect in
narrow single layer graphene Hall devices. Solid State Communications
160, 47–51 (2013).

139. Laitinen, A., Kumar, M., Hakonen, P. & Sonin, E. Gyrotropic Zener
tunneling and nonlinear IV curves in the zero-energy Landau level of
graphene in a strong magnetic field. Scientific Reports 8, 1 (2018).

140. Kubakaddi, S. S. Interaction of massless Dirac electrons with acoustic
phonons in graphene at low temperatures. Physical Review B 79, 075417
(2009).

141. Laitinen, A. et al. Breakdown of Zero-Energy Quantum Hall State in
Graphene in the Light of Current Fluctuations and Shot Noise. Journal
of Low Temperature Physics 191, 272–287 (2018).

142. Yang, W. et al. Landau Velocity for Collective Quantum Hall Break-
down in Bilayer Graphene. Physical Review Letters 121, 136804 (2018).

143. Novoselov, K. S. et al. Electric Field Effect in Atomically Thin Carbon
Films. Science 306, 666–669 (2004).

144. Novoselov, K. S. & Neto, A. H. C. Two-dimensional crystals-based het-
erostructures: materials with tailored properties. Physica Scripta T146,
014006 (2012).

145. Zomer, P. J., Dash, S. P., Tombros, N. & van Wees, B. J. A transfer tech-
nique for high mobility graphene devices on commercially available
hexagonal boron nitride. Applied Physics Letters 99, 232104 (2011).



Bibliography 91

146. Wang, L. et al. One-Dimensional Electrical Contact to a Two-Dimensional
Material. Science 342, 614–617 (2013).

147. Nistor, R. A., Kuroda, M. A., Maarouf, A. A. & Martyna, G. J. Doping
of adsorbed graphene from defects and impurities in SiO2substrates.
Physical Review B 86, 041409 (2012).

148. Hwang, E. H., Adam, S. & Sarma, S. D. Carrier Transport in Two-
Dimensional Graphene Layers. Physical Review Letters 98, 186806 (2007).

149. Moser, J., Verdaguer, A., Jiménez, D., Barreiro, A. & Bachtold, A. The
environment of graphene probed by electrostatic force microscopy. Ap-
plied Physics Letters 92, 123507 (2008).

150. Lafkioti, M. et al. Graphene on a Hydrophobic Substrate: Doping Re-
duction and Hysteresis Suppression under Ambient Conditions. Nano
Letters 10, 1149–1153 (2010).

151. Bolotin, K. I., Ghahari, F., Shulman, M. D., Stormer, H. L. & Kim, P.
Observation of the fractional quantum Hall effect in graphene. Nature
462, 196–199 (2009).

152. Abanin, D. A. & Levitov, L. S. Conformal invariance and shape-dependent
conductance of graphene samples. Physical Review B 78, 035416 (2008).

153. Kirtley, J. R. et al. Voltage-controlled dissipation in the quantum Hall
effect in a laterally constricted two-dimensional electron gas. Physical
Review B 34, 5414–5422 (1986).

154. Kramer, T. et al. Theory of the quantum Hall effect in finite graphene
devices. Physical Review B 81, 081410 (2010).

155. Bak, P. How nature works : the science of self-organized criticality ISBN:
9781475754261 (Springer New York, New York, NY, USA, 1996).



92

List of Publications
1. Sanghyun Lee, Masayuki Hashisaka, Takafumi Akiho, Kensuke Kobayashi,

and Koji Muraki, “Homemade cryogenic GaAs-HEMT amplifier for
current noise measurements”, (submitted to Review of Scientific Instru-
ments)

2. Sanghyun Lee, Excess noise at quantum Hall effect regime of graphene.
(in preparation)

3. T. Hata, R. Delagrange, T. Arakawa, S. Lee, R. Deblock, H. Bouchiat, K.
Kobayashi, and M. Ferrier, “Enhanced Shot Noise of Multiple Andreev
Reflections in a Carbon Nanotube Quantum Dot in SU(2) and SU(4)
Kondo Regimes”, Physical Review Letters 121, 247703 (2018).

4. Mori Watanabe, Sanghyun Lee, Takuya Asano, Takashi Ibe, Masashi
Tokuda, Hiroki Taniguchi, Daichi Ueta, Yoshinori Okada, Kensuke Kobayashi,
and Yasuhiro Niimi, “Quantum oscillations with magnetic hysteresis
observed in CeTe3 thin films”, Applied Physics Letters 117, 072403/1-5
(2020).


	Acknowledgments
	Foreword
	Mesoscopic Transport
	Landauer Formula
	Two-Dimensional Electron Gas System
	Semiconductor Heterostructure
	Graphene

	Quantum Point Contact
	Quantum Hall Effect
	Graphene

	Quantum Hall Effect Breakdown

	Current Noise in Mesoscopic Systems
	Definition of Noise
	1/f Noise
	Thermal Noise
	Shot Noise

	Current Noise Based on Landauer Picture
	Scattering Theory
	Average Current
	General Expression for Noise


	Current Noise Measurement
	Background
	Straightforward Method
	Cross-correlation Method
	LC Circuit Method
	Noise Model 

	Development of Cryogenic Amplifier
	Purpose of This Experiment
	Principles of the Development
	GaAs/AlGaAs Heterostructure as HEMT
	Voltage Amplifier
	Measurement Setup

	Results and Discussions
	HEMT
	Design
	Characteristic of High Electron Mobility Transistors

	Voltage Amplifier
	Design
	DC Transport Properties
	Noise Characteristics
	Determination of RD
	Self-Biasing

	Current Noise Measurement in Quantum Point Contact
	Measurement Setup
	Calibration
	Shot-noise Measurement

	Resolution of the Noise Measurement
	Current Noise Measurement in Quantum Hall Regime
	Measurement Setup
	Calibration
	Shot Noise Measurement


	Summary

	Current Noise in QHEBD of Graphene
	Background and Purpose
	Sample Fabrication
	Exfoliating 2D Crystals
	Stacking hBN/Graphene/hBN
	Hall Bar Design
	One-dimensional Contact

	Measurement Setup
	Results and Discussion
	Zero-bias Conductance Measurement of Samples
	Conductance and Noise at Quantum Hall Effect Breakdown
	Carrier Density Dependence
	Magnetic Field Dependence
	Electron Temperature


	Summary

	Conclusion
	Bibliography

