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0. Introduction

In the present paper we consider the Cauchy problem for the following
equation

0.1)  Lu = (i8,+rA+ Jﬁ b;(x)ds,+c(x)yu(x, £) = 0

with initial data #,(x) at =0, where 7 is a constant such that 0<7<1, and
b,(x), c(x) belong to B=(RY). B~(R}) denotes the set of C~-functions whose
derivatives of any order are all bounded. If 7 is positive, the above equation
(0.1) is the typical equation of non-kowalewskian type which is not parabolic.
The study of the equation (0.1) is important for the study of equations of general
non-kowalewskian type.

For real s let H, be the Sobolev space with the usual norm ||-||; and let
HMESQRH, be the Fréchet space with semi-norms [|«|[,, s=0, +-1, +2, ---. We

say that the Cauchy problem for (0.1) is well posed for the future (resp. for
the past) in the space H.., if there exists a constant 7>0 (resp. 7<<0) such that
for any initial data u,(x)EH., a unique solution u(x, £)EY([0, T]; H..) of (0.1),
which takes u,(x) at =0, exists. Here, f(x, £)e£)([0, T']; H.) means that the
mapping: [0, T]2¢— f(», ) H. is continuous in the topology of H...

Our purpose is to prove the following theorem corresponding to the so-
called Lax-Mizohata theorem for equations of kowalewskian type (Lax [5],
Mizohata [6]).

Theorem. In order that equation (0.1) is well posed for the future or for
the past in the space H.., it is necessary that there exist constants M and N such
that the inequality

m_ (P
02 _sup  J3['Reb,(x-+2r00)0,d0| < M log(1+p)+N
*eRM wes”! j=1Jo

holds for any p=0. S™ ! denotes the unit sphere in R™.
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RemMARK 1. ]J. Takeuchi in [8] first studied the Cauchy problem for equa-
tions of non-kowalewskian type in the frame of L? space.

ReEMARK 2. S. Mizohata in [7] proves the following. It is necessary for
(0.1) to be well posed in the space L? that the inequality (0.2) with M=0 holds
for any p=0. He proves it by constructing the asymptotic solution based on
Birkhoff [1]. In the present paper we use the energy method.

ReMARK 3. The author in [3] has given a sufficient condition for (0.1)
to be well posed in the space H... In particular, from [3] and the above theorem
we can see that in the case m=1 the condition (0.2) is necessary and sufficient
for (0.1) to be well posed for the future and for the past in the space H...

When constant 7 equals zero, equation (0.1) is kowalewskian. Then, we
remark that our theorem gives the H., version of the Lax-Mizohata theorem.
Now, a solution u(x, t) of the equation

(03)  (@+Au(x, 1) =0
with initial data u(x) at £=0 s written by
04)  ulw, 1) = Co|e" in(x+2v/ta)ds

= @o) = [emtmeia ey,

where C;‘=Se”"2dz and #,(£) is the Fourier transform for u,(x). (0.4) shows

that equation (0.3) is not well posed in the space &€, but well posed in the space
H.. & is the space of infinitely differentiable functions with the customary
topology. In fact, if (0.3) is well posed in the space &, for any compact set K
in R? and any 7>0 there exist a non-negative integer / and a compact set K’
in R™ such that

sup |u(-, *)| éCK,xf,TlEsgplﬁi’uo(ﬁl

K x[0,7]
for a constant Cy x/r. So, if the intersection of the support of #y(x) and K’
is empty, u(x, T) equals zero for a point x belonging to K. Hence, it follows
from the first equality of (0.4) that for a point x,&K

Seﬂ="uo(xo+2\/‘fz)dz —0

is valid for any w(x) whose support does not intersect K’. This is not true.
On the other hand we have from the second equality of (0.4) ||u(-, £)|,=]lu(*)Il;
(s=0, 41, :-+) for any ¢, which follows that (0.3) is well posed in the space H...
Therefore, it is natural to consider the Cauchy problem for (0.1) in the frame
of the space H.. corresponding to the frame of the space &£ for the kowalewskian
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type.
As is stated in Remark 2, we use the energy method. The technique

used in the present paper is based on [6]. But, in particular, localizations
in the present paper and [6] are quite different. Roughly speaking, in the
present paper we localize the solution of (0.1) in phase space along the classical
trajectory for the Hamiltonian —7A. The symbol w(x, ¢; £) of this localizing
(pseudo-differential) operator is defined by the solution of “‘equation of motion
for Hamilton function —7|£|?”

(0.5) o(x, t; £) = {w(x, t; £), —7|E|%},
where for C'-functions f(x, £) and g(x, £) {f, g} (», &) implies the Poisson bracket

2 (axjfaijg_aéjfaxjg)'

iz

1. Notations and preliminaries

Let x=(x,, *--, x,,) denote a point of R" and let a=(a,, -+, «,,) be a multi-
index whose components «; are non-negative integers. We use the usual
notation.

la| = ay+-+a,, 8* = xxpm, ol = a,!--a,,!

] o ] a a 6

a:: = ax:'"az::y Dx = Dxi"'D::) 6::,- = —6;'— ’
j

D, = —i0 (x> = (14 |x|?).
’ Ox;

Let S on R” denote the Schwartz space of rapidly decreasing functions.
For u(x)e S the Fourier transform #(£) is defined by

(E) = e tulw)dn, -E = mbit otk

For real s we define the Sobolev space as the completion of & in the norm

lull,={ [<e>™ a() 4y, de=(2m)nat.

We first state the definitions and theorems with respect to pseudo-differ-
ential operators without proofs. Let S’ be the set of C=-functions such
that for any «, B-we have

|P§§§(x, E)l écd,ﬂ ’

where pE)(x, £)=0¢Dip(x, £) and C, >0 are constants independent of (x, )

E€R®™. Su) is a Fréchet space provided with semi-norms |p|{?)/= max sup
EINTIETAEN:

| & (%, £)[(4, I'=0, 1, --+). The pseudo-differential operator P=p(x, D,) with
symbol o(P) (x, E)=p(x, £) is defined by
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Pg(x) = [etp(, E)(E)2E
for ¢€8. For pi(x, £)ES’ (j=1, 2) we define go(x, £) (0<6=1) by
L) a9
— O (e, e-Ompia-ts, E)dyatn

= tim [{e-"x(ey, enpn, E-+0mpia-ty, Oy,

where X(y, 7) belongs to S(R**) such that X(0, 0)=1. Then, it is known that
qi(x, D,)=py(x, D)o py(x, D,), where “°” denotes the product of operators (see
chap. 2 in [4]). We often write ¢,(x, £)=o(P,°P,) (, &).

Theorem A (Theorem 3.1 of chap. 2 in [4]). Let define q,(x, £) by (1.1).
Then, for any positive integer v we get

(%, &)= PN LP(Y)(x E)pam(x, E)+v 2 Sl(l_*_ﬁv.—i (x, £)dO
B osiIZv-17 | A SIS m=vdo 7! To.1%) ’

where
oy = Os‘“"_iﬂp(l”(x, E+On)pan(x+y, E)dydn .

Theorem B (Lemma 2.2 of chap. 7 in [4]). For g4(x, £) defined by (1.1)
we get

|gol XY= C| 1 P0r] P21 707,
where I'=142[m[2+4-1] (I=0, 1, 2, :--) and constants C, are independent of 0
(0=<60<1), but depend on I. For real r [r] denotes the largest integer not greater
than r.

Theorem C (Calderén-Vaillancourt theorem, [2] or Theorem 1.6 of chap.
7 in [4]). Let p(x, £) belong to So’o. Then, we get

l[2(x, D)$lI=Cl P15, Il
for ¢S, where ||-||=||*|ley Lb=2[m|2+1] and C>0 is a constant independent
of p(%, £) and .
Now, we shall prepare two lemmas. At first, we note that when 7 is posi-
tive,

15

T J SL,,,-«»‘rpu

(12) 3 S:Re b(x-+700) w,df= Re b,dx,

holds. Here, integral S (+++)dx; means curvilinear integral along the straight

2,5+ TPw
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line L, ,..p, from a point x&R"™ to a point x+7pweER".

Lemma 1.1. The following (i) and (ii) are equivalent.
(1) The inequality (0.2) with constants M and N holds for any p=0.
(i) The inequality

(0.2)’ sup  —3 S:Re b (%4 2700)w,d0 <M log(1+p)+N

reRM wesm-1 1

holds for any p=0.

Proof. We have only to show that (ii) yields (i). When 7 equals zero,
the proof is easy. We shall prove in the case 7>>0. By (1.2) and (ii) we have

>3 S:Re b,(x-+-2700)c,d0

> S:Re b (% 27par--270(—w)) (—w,)d0

=< Mlog(1+p)+N,

which completes the proof. Q.E.D.
We set

(13)  bx; £) = — Z}Re b()E; -

Then, we get

Lemma 1.2. Assume that for any large constants M and N the inequality
(0.2) does not hold. Then, for any large constant M there exist sequences x® € R",
o®PeS™ 1, 0,20, k=1, 2, --- such that

(1.4) pr—> 0 as k— oo,

(1.5) S:"b(x<k>+zrow<k>; ©®)d0=M log(14p,)+&
and for any t<[0, p,]

(1.6) S:b(x(")—}—Z'r&w("); ©®)d6=0 .

Proof. Noting Lemma 1.1 and the assumption in this lemma, for any
large constant M we can find sequences y® €R", s &S"1, §,20, k=1, 2, .-
such that

(1.7) S:‘b(y<*>+zfea<k>; o®)d0=M log(1+8,)+k .

Set Fy(t)= tb ® 4+ 2705®; e ®)dl and let ¢, be the point at which Fy(¢
. y
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has the minimal value on [0, §,]. Then, we shall prove that (1.4), (1.5) and
(1.6) hold, if we determine x®, »® and p, (k=1, 2, ---) by

(1.8)  a® = y® 4 271,6®, @ = o® p—5, 1,

We can see that for 1[0, p,]
19) (b 27000; a®)i0
0
= gtb(y(k) +27(t,+60)a®; a®)dO
0
t+t,
tr

= Fy(t+4)—Fy(t) -
So, the choice of #, shows that (1.6) holds for tE[O, pe)- By (1.7)~(1.9) and
Fy(t;)<F,(0)=0, we have
(1.10) S b(x® +-2700®; o®)d0

0

= Fk(sk)"Fk(tk)

= Fi(3)

= M log(1+4-8,)+k
which implies that (1.4) and (1.5) hold. Q.E.D.

2. Localization in phase space and proof of Theorem
We prove our theorem by contradiction. That is, we assume the following:

(A.1) Equation (0.1) is well posed for the future or for the past in the space

(A.2) Inequality (0.2) does not hold for any large constants M and N.
Here, we may assume without loss of generality in place of (A.1)
(A.1)" Equation (0.1) is well posed for the future in the space H..

Then, by the assumption (A.1)’ there exists a T>>0 such that for any initial
data uy(x)= H.. a unique solution u(x, {)e&([0, T]; H.) of (0.1) exists. Since
the space &§([0, T]; H.) is a Fréchet space with semi-norms (glla; HfCes Dl
s=0, +1, 42, -+, we see by the closed graph theorem that the mapping: H.,
Duy(x) —>u(x, 1)eEY[0, T]; H.) is continuous. Consequently, there exist a
non-negative integer ¢ and a constant C(7)>0 such that

21) e OI=CD)llu( ),
holds for t[0, T1.
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For the above g we take a constant M such that
2.2) M>%+2[~7g—+1]—|—3q

and fix it through sections 2 and 3. Then, since Lemma 1.2 holds from the
assumption (A.2), for this M we can take the sequences x®R", 0¥ &S"™,
P20 (k=1, 2, --+) satisfying (1.4), (1.5) and (1.6). Moreover, we take a posi-
tive constant § such that

m m
2.3) M>~2—+2[?+1:|+(3+8)q.

We can assume from (1.4) that
24) gzl pp*OET

for any k. We also fix these sequences and 8§ hereafter.
Let A(x) be the C~-function such that

{h(x)=1 on {x; |x|=1/4},
supp A(-)C {x; |x| =1/2},
where supp %(-) implies the support of the function A(x). Let w,(x, ¢; &)
be the solution of (0.5) with initial data p}/? h(p,(x—x®))h(p}(E—nw™®)/n) at
t=0. Then, we can easily get
(23)  wux 1 E)

= pi? h(py(x—x® —27tE)) h(p}(E—now®)/n) .
For the solution u(x, t) of (0.1) we call W, ,u(x, t)=w, (x, t; D, u(x,?) the
localized solution (in phase space along the solution (x®+2n7te®, ne®)< R2%:

of the canonical equation with initial value (x®, no™) at t=0 for the Hamilton
function 7|£|?) (see Lemma 2.3). We note

(2.6) a([10,+7A, W, ,]) (x, t; &)
= iatwn,h(x) t; g)_i{wn,k) —T|E{2}+7Awn,k
= T(Awn,k) (x’ t; E) ’
where [, -] indicates the commutator of operators and Aw, ,(, t; £)=23 (8%, )

(%, t; £). Equality (2.6) is essential for the proof of Theorem. For any multi-
indices @ and B we set

@7) Wb 5 £) = PO () (OBN) ()| — (e 2rst).
£ = piE—no®)/n
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We note that w;:2(x, £; &)=, i(x, t; £).

Now, we define a series of solutions of (0.1) as in [6] by using x®, o®
and p, determined above. Namely, we define their initial values. We set
hereafter throughout sections 2 and 3

(2.8) n = n(k) = pi*?.

Let yr(x)€S be a function such that J(0)=2 and
(2.9)  supp $(-)C{E; h(E) =1},

and then, we define

(2.10)  Ju(f) = e =P HE—n0®)  (n = pi*?),
that is,

(2.10)  Yry(x) = e F PPy by

Let uy(x, )e&([0, T]; H..) be the solution of (0.1) with initial data yry(x) at
t=0. Then, we can easily get by (2.1) and the definition of yr(x)

(2.11)  lug(+, O =C(T)n’
with a constant Cy(7T)>0 for t<[0, T']. We set
(2.12)  opB(x, t) = Wabuy(x, t),

where W 8=w%8(x, ; D,). We often write v,(x, £)=v§°(x, £). Since supp Jy(*)
C {&; h(pi(E—nw™)[n)=1} is valid from (2.9), (2.10) and p,=1, we get

o4, OIF = llw,4(x, 03 D,)ua(+, O)IF
— [or Hor(x—x ) (s —a) 12,

which follows from y+(0)=2 and (1.4) that for large %

213)  llo, OlIZIAC)I>0.

Now, take a positive integer s such that
(2.14) a[‘+2]>—+2[ +1]+(3+6)(q+1)

and set by the localized solution v,(x, t)

(215) o) =_25 (pilm)l\* P B0RA(-, 1)l
for [0, T, where for real » [r] denotes the largest integer not greater than 7.

We remark that since p,/n=p;®*® is not greater than T for any &, o(¢) has been
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defined on the interval [0, p,/nz]. Then, we obtain
Lemma 2.1. We have

(2.16)  oy(f) S C, ppplz+amz 1+ E+8)

for any tE[0, py/n] (n=pi*®), where C, is a constant independent of k.
Proposition 2.2. For large k we get

217)  olpm)ZC(l+p)*  (n=pi*)

with a positive constant C, independent of k.

Lemma 2.1 will be proved after the proof of Theorem and Proposition
2.2 will be proved in section 3.
Proof of Theorem. Since we have determined constant §>0 so that

(2.3) holds, (2.16) and (2.17) is not compatible for large .. 'Thus, we can prove
Theorem. Q.E.D.

Proof of Lemma 2.1. By Theorem C we get

lloa(+, D)= Cpi”?| h(py(x—x® —271E))h(pF(E—nes®)[m) | 14 [+, D]
éC'PZ'/2+l°,Iuk(°a t)” )

where [,=2[m[2+4-1]. Here, we used 0=pit=<pi/n=p;i*® for t<[0, p,/n].
Consequently, we obtain from (2.11) for &[0, p,/n]

lloa(=, DIISC pp2ho u'

with another constant C independent of k. In the same way we obtain for
t E[O) P/,/n]

(2.18)  ||9g(~, )| C,p p2*+0 1
with constant C, g independent of 2. Hence, we get (2.16) by n—pi*. QE.D.

Lemma 2.3. If t€[0, p/n] (n=pi*?), then we have

(2.19)  supp wif(-, t; +)
c{(x £); |v—(x®+2n1t0®)| <2/ps, [Eln—0®| <1/2pD} -

Proof. If (x, £)esupp wi:f(+, ¢; <), we have from the definition (2.7) of
wif

| x—(x®2728)| < 1/(2p2), |E/n—o® | <1/(20}) .

So, noting that 0=7<1, it follows that
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| x—(x®+2n7t0®) |
= |a—(*®+27e8)| + 207t | Efn—o® |
= 2/ps

for any £&[0, ps/n]. This completes the proof. Q.E.D.

Now, if we use the equality (2.6), we can easily get for the localized solu-
tion vy(x, t)=W, ju(x, 1)
(2.20) Loy, t)

= fi(x, t)
= {[535,(0.,+e(w), Wl +7(8w,,) (5 5 D}y

Then, we obtain

Lemma 2.4. Let t<[0, py/n] (n=pi*?). Then, for any p=1, 2, -+ we get

@21)  1Ifi(-,
< e} 31 Ilot"(, Dll+Com_ 33 (plfn)!* o2, )

Slo+pl<p+1
1,00 A2 1
+C, n*pb(pEfnpH,

where A=m|2-+4[m[2+1] and C, is a positive constant independent of k.

Proof. We can easily see from (2.20)

(2.22) |l fu(-, DI
= 23 11180:p Wa alua(5 OlIH11[e(x), Wi alu(-, t)||+p§m§=zllv?"’(', Ol -

We first consider the term [b;0,,, W, Jui(x, t). If we use the notation
(2.7), we can write

(2.23)  [b6;05;, W, alus(x, t)
= P b;(x)W:!iouk(xs t)_l'[bj: Wn,k]ax,-uk(x1 t) ’

where e; is the multi-index whose j-th component is one and other components
are all zero. Then, for the first term of the right hand side of (2.23) its L?
norm is estimated by the second term of the right hand side of (2.21).

We consider the second term in (2.23). By Theorem A in section 1 we
obtain

@2) o), Wailds)

= {31~ DUb() Glal, 15 BN el 15 6),
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where 7, 4(x, t; ) consists of the sum of
1 ! —iyn
—(p+; | a—oyae oc{fe-m) (x+)

(0F w,4) (%, 25 E+-On)E; dydn
over v such that |y|=p+1. Using

O [ D1 b)) (v-+9) @ w,) (3. 15 £-+0n)E; dydy
= O {er(D18)) (3-+9) (0 w0 (5 15 E+07) (E+0m) dydy
—00,-{[e" D,(D1 ) (x-+3) (B w.) (5, ; E-+67) dydly

and then applying Theorem B, we get the estimates from (2.5) and Lemma
2.3

(2.25)  |rpu(ey t5 )2,
=Gy nptw 23 (i )™ (pifm)"!

L+ Yol =+

< C,,, npi(pi[n)**!

for t€[0, p,/n], where l,=2[m/2+41] and C,,, C,, are positive constants de-
pending only on p. Here, we used pit=pi/n for t[0, p,/n]. Consequently,
applying Theorem C, we get

(2.26) Iy, u(x, 2; DJuy(+, DII=C, 3 n**'pi(pi[n)*

by (2.11).
Next, we consider the first term in (2.24). We remark

(2.27)  (0F wap) (%, £; E)E;

TeEy a:/—,zz' (—27tpy)' " (pk[n) Py (x, t; E)E; .

We can easily see

(2.28)  IW3f Deju(, )l
= pll Wk iPu (e, O HD2 o Waik wil-, DI,

in which the second term is estimated by
K nllWaf w(+, Oll4-Cy a8 n*'pi(pifn)** ,
where K=3 max |h(x)| and C, 44 are constants independent of &, but depend
*eR™

on « and B.
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In fact, if we set

(2.29)  %,4(8) = Kp(§—n®)[3m) ,

we have

1Ds o Waik wy(e, )|

=X, (D) Dy o Wik wi=, Oll4pall(I— X, 1(Dy)) o Wiliio? uy(+, B

FIT—=X,(Dy)) o Wik D, ; u(-, t)ll .
Since supp X,(+)C{&; |E|<3n} is valid, the term ||X, 4(D,)D.;0 Waif wi(-, )l
is estimated by Kn||Wy:f u(-, t)||. Apply Theorems A and B to the symbol
o((I—X,i(D,))e W3 D,)) (%, t; E). Then, if we note from Lemma 2.3 that
supp (1—%,,4(+)) Nsupp wyf(+, t; <)=¢ for t<[0, p,/n], we can easily have

ld‘((l—xl,k(D,))°W::l? Dx,') (" t; ')I(l(:,).lo
= C} a8 npi(pk[n)""!
as in the proof of (2.25) for ¢&[0, p/n] with a constant C} 45 So, we get
(2.30)  NNT—=X0,i(D,))o Wik Dy uy(+, t)]
= Clap v pi(pifn)""
with another constant C},, In the same way we can also estimate pl|/(/J—
X WD) Wi sPuy(+, D).
Hence, noting that pit<pi/n for t<[0, p,/n], we obtain from (2.27)
(2.31)  [I(8% wy4) (x, 25 Do)Ds; wi(+, B
= C’y(mf/n)”'m;ﬁl:y(mlfv‘i“i"’ o Oll+nlloi?(s, O)I1)+Cy,y v pk(pk[n)*™
for constants Cy and C,,, which shows from (2.24) together with (2.26) that

(2.32)  |I[bj(x), W, 410, us(+, B)lI

=Cin_ 23 (pi/m)**PlopP(+, 1)l +C) n""pi(pi/m)**
116+ Bl +1

for constants C; independent of k. Since we can also estimate ||[c(x), W, s]u:
(*, ?)Il in the same way, we can complete the proof. Q.E.D.

3. Proof of Proposition 2.2
We first prove for v4(x, £)=v;"°(, ¢) defined by (2.12)

Lemma 3.1. Let t<[0, p/n] (n=pi*?). Then, for any v=1, 2, -

3. 2 ljoy(-, 1P

1
2
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= {b(x®+2n7t0®; no®)— A(1+Z)}Hle(-, 2|2
Pr

—fl5 DI X wi+5 B)]|—Cs 07 pi(pi )" l|0a( =, B)]

is valid, where \ is the same constant in Lemma 2.4, A is a constant independent
of v and k, and C, are constants independent of k but depend on v. As set in sec-

tion 1, b(x; £) denotes -1‘; Re b;(x)E;.

Proof. From (2.20) we can see that

d 2
(3.2) i [lza(+, DI
= 2Re (8,24(+, 2), v4(+, 1))
= 2Re i((TA—{—Z} b0, 1-c)vi(+, 2), va(+, 1)) —2Re {(fi(+, 1), wi(+, 1))
= —2Re (33 (Re b;)(x)D.;v4(+, t), vi(+, t))
— Ao+, HIP=211 i+, DI X [lva+5 DI
for a constant A4, independent of k. We shall estimate
_(? (Re b;)(%)D:;0(+5 2), va(+, 2)) = (b(x; D,)vy(+, 2), va(, £)) -
We write
(3.3) —(Re b;)(x)D,;
= —(Re b;)(x®+2n7te®)nwl?
+(Re b;)(x®+2n7t0™) (n0{’—D,;)
~+{(Re b;)(x®+2n7t0®)—(Re b,)(x)}D,;
= ,23 I;.

We first estimate I,v,(x, £). Since supp X, ,(+)C{&; |E—nw™®| <3n/(2p,)} holds
for X, (&) defined by (2.29), we see that

(3‘4) ’|Xl,k(Dx)o(nm(ik)—Dxi)vk(' > t)”
< Ay llog(, D)
Pk

for a constant A, independent of k. Hereafter, in this proof, if there is no
confusion, we do not indicate that constants are independent of k. Next,

we write by v(x, £)=W, au(x, t)
(B5)  J=(I—%uD,)e(naP D)o,
= (I_xl,k(Dx))own,k(xv t; Dx) (nw(ik)—D’i)u"



578 W. ICHINOSE

— %m(r—xl,,(D,))ow;ef(x, t; D,)u, .

Apply Theorems A and B in section 1 to the term p(x, ¢; £)=0o((I—X, x(D,))
w, 4(%, t; D,) (noP—D,))) (%, t; £). Then, we can show in the similar way to
the proof of (2.30) that for any »

| £(+5 85 )| §01,=C. s npi(pi[n)’
is valid for &[0, p,/n] and so we get

1= (D))o, 4, £; D,) (aP—D Ju(-, Bl
< 0., n"*p}(pi /)"

for t[0, py/n], where constants C,, and C,, depend only on ». In the same
way we can also estimate py||(I—X, y(D,))owii’(x, t; D, uy(+, t)||. Namely, we
obtain

(3.6) 171l
= C, 3 n" ' p}(pi/n)*,

which shows together with (3.4) that
B.7)  Lod-,
< A" o, DI Con o)
k

for [0, py/n].
Next, we shall estimate Iv,(x, t). If we set

%,(x) = h(py(x—x®—2n710®))9),

supp (1—X,4(+)) N supp wif(+, ¢; -)=¢ holds for t[0, p,/n] from Lemma
2.3. So,

(I—%X2,1(%)) D ;04(x, 1)
— (I=%X,(9)) {na(x, 13 DID. iy pywih’(s, £5 D}
=0.

That is,

(3.8) Ivy(x, 1)
= X4(x) {(Re b;) (¥ +2n1tew®)—(Re b;) (x)} D ;v; ,

which follows that

(39 [svi(+, Dl =(Aufp)lIDsjoil(+, B)|
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for t€[0, ps/n]. Now, as in the proof of the estimate for the second term of
the right hand side of (2.28) we get

1D jo4(, 2|
< As nl|vg(-, OII+Cy s n"“p;’,‘(p [n)",

which follows
(3.10)  [Msu(+, DI
=< Aef; ll0(+, DlI-+Cy 6 12~} m)" .
Using (3.2), (3.3), (3.7) and (3.10), we can complete the proof. Q.E.D.

Proof of Proposition 2.2. We can take a positive integer p such that

(3.11 sup n"Hph(pi/m)P < oo,

noting z=pi*® and fix it. Then, it is easily seen from Lemma 2.4 and Lemma
3.1 that

(12) 5 llCe, DI ZBE; Bl Dl — const. 2 {(pijm) 32 JIef (-, )
>V pu(pk/n) B |vpP(-, 2)||} — const.,
1S|e+B|<p+1

where

(3.13)  B(t; k) = b(x® -+ 2nrte®; nm<k))—A(1+1)

with the same constant 4 in (3.1). Since the inequality p,(pi/n)"" < (pi/n)l0"+D/2
(lv|=1) is valid, we obtain from (3.12)

(3.14) %llvl.(-, ol

= B(t; k)||vy(+ t)||—const. 1 . (phm) PO [0 B )|

R
m

— const..

If we make the same process for v§?(x, {)=Wnfu(x, t) (la+RB|=1) as
for vy(x, t)=W, wu(x, t), corresponding to (3.14) we have

—Hv P(-» DIIZB(Z; R)lloi*(-, 2l

— Ca, p— N (pi /,,)[(|3+E|+1)/2]||v;+5.5+§(., | —Cap
Pr 1=i@+8i<p+1

for constants C, g independent of k.. So, we obtain
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(3_15) gt_ (p,:f/n)[(""fﬂ'+l)/2]]|vg'ﬁ( . t)H
= B(t; k) (pi[n)(*+E1+0/2( |8 ¢)||

n = "
wp— 21 (pifn)l (=@ BRI R BB )| —Clyp -
Pri<i@+Bi<p+1

Here, we used
. ( Pl:: /n)[(|¢+5|+1)/2]+[(|3+'§1+1)/2]
< ( pg /n)[(|a+3+ﬁ+§|+1)lz]

for |a+-B| =1.
Now, we already determined s so that (2.14) holds. Hence, if |a+3|
=s+1, we have by (2.18)

n
2 ety A, )
k
< C;,gﬁ (Pg /n)[(s+2)/2] p;n/z+2[m/2+1] n?
Pr
= C‘{p< o

for any k and for any t€[0, p,/n]. Therefore, for o4() defined by (2.15) we
obtain from (3.14) and (3.15)

(3.16) t—,";na)z(B(t;k)—Ci)ak(t)—oa)

for any & and t<[0, p,/n], where C is a constant independent of k.
The integration of (3.16) gives

(3.17)  au(ps/n)
> (exp Sp"’ "B(9; k)—C ™ do)
o P
Pu/n t
X {o-,,(O)——O(l)S v (exp— S B(0; k)—C 2 a0)dt} .
0 0 P
Here, we note from (3.13) that
B(0; k) = b(x®+2n700® ; no®)—A(14+2).
Pe
Also, from the choice of ¥®, »®, p, we know that
jp" "B P 2006 ; no®) dO
0
— Spkb(x(k)—I—Z‘rom(k); o®) do
0
= M log(1+py)+k
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and for :<[0, p,/n]
S'b(x<k>+2mem<k>; nw®) d6
0

— S " b(x® +-2700P; o P) dO
1)
>0.

Moreover, o(0)=[|vi(+, 0)[|=[lh(+)|| holds for large & by (2.13). Hence, if
k is large enough, we obtain from (3.17)

ai(ps/n) Z Ci(1+-p,)"
for a positive constant C;, which shows Proposition 2.2. Q.E.D.

RemMARK 4. In more detail we can see from the proof of Theorem the
following is necessary in order that there exists a constant 7°>0 such that
for any initial data uy(¥)EH. a unique solution u(x, {)&Y[0, T]; H.) of
(0.1) exists and the inequality (2.1) holds for some g. For any M greater than
m|2+2[m|2+1]+43g there exists a constant N such that the inequality (0.2)
holds.
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