

Title	Some remarks on the Cauchy problem for Schrödinger type equations
Author(s)	Ichinose, Wataru
Citation	Osaka Journal of Mathematics. 1984, 21(3), p. 565-581
Version Type	VoR
URL	https://doi.org/10.18910/8204
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Ichinose, W.
 Osaka J. Math.
 21 (1984), 565-581

SOME REMARKS ON THE CAUCHY PROBLEM FOR SCHRÖDINGER TYPE EQUATIONS

WATARU ICHINOSE

Dedicated to the memory of Professor Hitoshi Kumano-go

(Received March 31, 1983)

0. Introduction

In the present paper we consider the Cauchy problem for the following equation

$$(0.1) \quad Lu \equiv (i\partial_t + \tau\Delta + \sum_{j=1}^m b_j(x)\partial_{x_j} + c(x))u(x, t) = 0$$

with initial data $u_0(x)$ at $t=0$, where τ is a constant such that $0 \leq \tau \leq 1$, and $b_j(x), c(x)$ belong to $\mathcal{B}^\infty(R_x^m)$. $\mathcal{B}^\infty(R_x^m)$ denotes the set of C^∞ -functions whose derivatives of any order are all bounded. If τ is positive, the above equation (0.1) is the typical equation of non-kowalewskian type which is not parabolic. The study of the equation (0.1) is important for the study of equations of general non-kowalewskian type.

For real s let H_s be the Sobolev space with the usual norm $\|\cdot\|_s$ and let $H_\infty \equiv \bigcap_{s \in \mathbb{R}} H_s$ be the Fréchet space with semi-norms $\|\cdot\|_s, s = 0, \pm 1, \pm 2, \dots$. We say that the Cauchy problem for (0.1) is well posed for the future (resp. for the past) in the space H_∞ , if there exists a constant $T > 0$ (resp. $T < 0$) such that for any initial data $u_0(x) \in H_\infty$ a unique solution $u(x, t) \in \mathcal{E}_t^0([0, T]; H_\infty)$ of (0.1), which takes $u_0(x)$ at $t=0$, exists. Here, $f(x, t) \in \mathcal{E}_t^0([0, T]; H_\infty)$ means that the mapping: $[0, T] \ni t \rightarrow f(x, t) \in H_\infty$ is continuous in the topology of H_∞ .

Our purpose is to prove the following theorem corresponding to the so-called Lax-Mizohata theorem for equations of kowalewskian type (Lax [5], Mizohata [6]).

Theorem. *In order that equation (0.1) is well posed for the future or for the past in the space H_∞ , it is necessary that there exist constants M and N such that the inequality*

$$(0.2) \quad \sup_{x \in R^m, \omega \in S^{m-1}} \left| \sum_{j=1}^m \int_0^\rho \operatorname{Re} b_j(x + 2\tau\theta\omega) \omega_j d\theta \right| \leq M \log(1 + \rho) + N$$

holds for any $\rho \geq 0$. S^{m-1} denotes the unit sphere in R^m .

REMARK 1. J. Takeuchi in [8] first studied the Cauchy problem for equations of non-kowalewskian type in the frame of L^2 space.

REMARK 2. S. Mizohata in [7] proves the following. It is necessary for (0.1) to be well posed in the space L^2 that the inequality (0.2) with $M=0$ holds for any $\rho \geq 0$. He proves it by constructing the asymptotic solution based on Birkhoff [1]. In the present paper we use the energy method.

REMARK 3. The author in [3] has given a sufficient condition for (0.1) to be well posed in the space H_∞ . In particular, from [3] and the above theorem we can see that in the case $m=1$ the condition (0.2) is necessary and sufficient for (0.1) to be well posed for the future and for the past in the space H_∞ .

When constant τ equals zero, equation (0.1) is kowalewskian. Then, we remark that our theorem gives the H_∞ version of the Lax-Mizohata theorem.

Now, a solution $u(x, t)$ of the equation

$$(0.3) \quad (i\partial_t + \Delta)u(x, t) = 0$$

with initial data $u_0(x)$ at $t=0$ is written by

$$(0.4) \quad u(x, t) = C_0 \int e^{i|z|^2} u_0(x + 2\sqrt{t}z) dz \\ = (2\pi)^{-m} \int e^{-ix \cdot \xi - it|\xi|^2} \hat{u}_0(\xi) d\xi,$$

where $C_0^{-1} = \int e^{i|z|^2} dz$ and $\hat{u}_0(\xi)$ is the Fourier transform for $u_0(x)$. (0.4) shows that equation (0.3) is not well posed in the space \mathcal{E} , but well posed in the space H_∞ . \mathcal{E} is the space of infinitely differentiable functions with the customary topology. In fact, if (0.3) is well posed in the space \mathcal{E} , for any compact set K in R_x^m and any $T > 0$ there exist a non-negative integer l and a compact set K' in R_x^m such that

$$\sup_{K \times [0, T]} |u(\cdot, \cdot)| \leq C_{K, K', T} \sum_{|\alpha| \leq l} \sup_{K'} |\partial_x^\alpha u_0(\cdot)|$$

for a constant $C_{K, K', T}$. So, if the intersection of the support of $u_0(x)$ and K' is empty, $u(x, T)$ equals zero for a point x belonging to K . Hence, it follows from the first equality of (0.4) that for a point $x_0 \in K$

$$\int e^{i|z|^2} u_0(x_0 + 2\sqrt{T}z) dz = 0$$

is valid for any $u_0(x)$ whose support does not intersect K' . This is not true. On the other hand we have from the second equality of (0.4) $\|u(\cdot, t)\|_s = \|u_0(\cdot)\|_s$ ($s=0, \pm 1, \dots$) for any t , which follows that (0.3) is well posed in the space H_∞ . Therefore, it is natural to consider the Cauchy problem for (0.1) in the frame of the space H_∞ corresponding to the frame of the space \mathcal{E} for the kowalewskian

type.

As is stated in Remark 2, we use the energy method. The technique used in the present paper is based on [6]. But, in particular, localizations in the present paper and [6] are quite different. Roughly speaking, in the present paper we localize the solution of (0.1) in phase space along the classical trajectory for the Hamiltonian $-\tau\Delta$. The symbol $w(x, t; \xi)$ of this localizing (pseudo-differential) operator is defined by the solution of “equation of motion for Hamilton function $-\tau|\xi|^2$ ”

$$(0.5) \quad \partial_t w(x, t; \xi) = \{w(x, t; \xi), -\tau|\xi|^2\},$$

where for C^1 -functions $f(x, \xi)$ and $g(x, \xi)$ $\{f, g\}(x, \xi)$ implies the Poisson bracket $\sum_{j=1}^m (\partial_{x_j} f \partial_{\xi_j} g - \partial_{\xi_j} f \partial_{x_j} g)$.

1. Notations and preliminaries

Let $x=(x_1, \dots, x_m)$ denote a point of R^m and let $\alpha=(\alpha_1, \dots, \alpha_m)$ be a multi-index whose components α_j are non-negative integers. We use the usual notation.

$$\begin{aligned} |\alpha| &= \alpha_1 + \dots + \alpha_m, \quad x^\alpha = x_1^{\alpha_1} \dots x_m^{\alpha_m}, \quad \alpha! = \alpha_1! \dots \alpha_m! \\ \partial_x^\alpha &= \partial_{x_1}^{\alpha_1} \dots \partial_{x_m}^{\alpha_m}, \quad D_x^\alpha = D_{x_1}^{\alpha_1} \dots D_{x_m}^{\alpha_m}, \quad \partial_{x_j} = \frac{\partial}{\partial x_j}, \\ D_{x_j} &= -i \frac{\partial}{\partial x_j}, \quad \langle x \rangle = (1 + |x|^2)^{1/2}. \end{aligned}$$

Let \mathcal{S} on R^m denote the Schwartz space of rapidly decreasing functions. For $u(x) \in \mathcal{S}$ the Fourier transform $\hat{u}(\xi)$ is defined by

$$\hat{u}(\xi) = \int e^{-ix \cdot \xi} u(x) dx, \quad x \cdot \xi = x_1 \xi_1 + \dots + x_m \xi_m.$$

For real s we define the Sobolev space as the completion of \mathcal{S} in the norm $\|u\|_s = \left\{ \int \langle \xi \rangle^{2s} |\hat{u}(\xi)|^2 d\xi \right\}^{1/2}$, $d\xi = (2\pi)^{-m} d\xi$.

We first state the definitions and theorems with respect to pseudo-differential operators without proofs. Let $S_{0,0}^0$ be the set of C^∞ -functions such that for any α, β we have

$$|p_{(\beta)}^{(\alpha)}(x, \xi)| \leq C_{\alpha, \beta},$$

where $p_{(\beta)}^{(\alpha)}(x, \xi) = \partial_\xi^\alpha D_x^\beta p(x, \xi)$ and $C_{\alpha, \beta} > 0$ are constants independent of $(x, \xi) \in R^{2m}$. $S_{0,0}^0$ is a Fréchet space provided with semi-norms $|p|_{l, l'}^{(0)} = \max_{|\alpha| \leq l, |\beta| \leq l'} \sup_{x, \xi} |p_{(\beta)}^{(\alpha)}(x, \xi)|$ ($l, l' = 0, 1, \dots$). The pseudo-differential operator $P = p(x, D_x)$ with symbol $\sigma(P)(x, \xi) = p(x, \xi)$ is defined by

$$P\phi(x) = \int e^{ix \cdot \xi} p(x, \xi) \hat{\phi}(\xi) d\xi$$

for $\phi \in \mathcal{S}$. For $p_j(x, \xi) \in S_{0,0}^0$ ($j=1, 2$) we define $q_\theta(x, \xi)$ ($0 \leq \theta \leq 1$) by

$$\begin{aligned} (1.1) \quad q_\theta(x, \xi) &= O_s - \iint e^{-iy \cdot \eta} p_1(x, \xi + \theta\eta) p_2(x+y, \xi) dy d\eta \\ &\equiv \lim_{\varepsilon \rightarrow 0} \iint e^{-iy \cdot \eta} \chi(\varepsilon y, \varepsilon\eta) p_1(x, \xi + \theta\eta) p_2(x+y, \xi) dy d\eta, \end{aligned}$$

where $\chi(y, \eta)$ belongs to $\mathcal{S}(R^{2m})$ such that $\chi(0, 0) = 1$. Then, it is known that $q_1(x, D_x) = p_1(x, D_x) \circ p_2(x, D_x)$, where “ \circ ” denotes the product of operators (see chap. 2 in [4]). We often write $q_1(x, \xi) = \sigma(P_1 \circ P_2)(x, \xi)$.

Theorem A (Theorem 3.1 of chap. 2 in [4]). *Let define $q_1(x, \xi)$ by (1.1). Then, for any positive integer ν we get*

$$q_1(x, \xi) = \sum_{0 \leq |\gamma| \leq \nu-1} \frac{1}{\gamma!} p_1^{(\gamma)}(x, \xi) p_{2(\gamma)}(x, \xi) + \nu \sum_{|\gamma|=\nu} \int_0^1 \frac{(1-\theta)^{\nu-1}}{\gamma!} q_{\theta, \gamma}(x, \xi) d\theta,$$

where

$$q_{\theta, \gamma} = O_s - \iint e^{-iy \cdot \eta} p_1^{(\gamma)}(x, \xi + \theta\eta) p_{2(\gamma)}(x+y, \xi) dy d\eta.$$

Theorem B (Lemma 2.2 of chap. 7 in [4]). *For $q_\theta(x, \xi)$ defined by (1.1) we get*

$$|q_\theta|_{l, l}^{(0)} \leq C_l |p_1|_{l, l'}^{(0)} |p_2|_{l', l'}^{(0)},$$

where $l' = l + 2[m/2 + 1]$ ($l=0, 1, 2, \dots$) and constants C_l are independent of θ ($0 \leq \theta \leq 1$), but depend on l . For real r [r] denotes the largest integer not greater than r .

Theorem C (Calderón-Vaillancourt theorem, [2] or Theorem 1.6 of chap. 7 in [4]). *Let $p(x, \xi)$ belong to $S_{0,0}^0$. Then, we get*

$$\|p(x, D_x)\phi\| \leq C |p|_{l_0, l_0}^{(0)} \|\phi\|$$

for $\phi \in \mathcal{S}$, where $\|\cdot\| = \|\cdot\|_0$, $l_0 = 2[m/2 + 1]$ and $C > 0$ is a constant independent of $p(x, \xi)$ and ϕ .

Now, we shall prepare two lemmas. At first, we note that when τ is positive,

$$(1.2) \quad \sum_j \int_0^\theta \operatorname{Re} b_j(x + \tau\theta\omega) \omega_j d\theta = \frac{1}{\tau} \sum_j \int_{L_{x, x+\tau\omega}} \operatorname{Re} b_j dx_j$$

holds. Here, integral $\int_{L_{x, x+\tau\omega}} (\dots) dx_j$ means curvilinear integral along the straight

line $L_{x,x+\tau\rho\omega}$ from a point $x \in R^m$ to a point $x + \tau\rho\omega \in R^m$.

Lemma 1.1. *The following (i) and (ii) are equivalent.*

- (i) *The inequality (0.2) with constants M and N holds for any $\rho \geq 0$.*
- (ii) *The inequality*

$$(0.2)' \quad \sup_{x \in R^m, \omega \in S^{m-1}} - \sum_{j=1}^m \int_0^\rho \operatorname{Re} b_j(x + 2\tau\theta\omega) \omega_j d\theta \leq M \log(1 + \rho) + N$$

holds for any $\rho \geq 0$.

Proof. We have only to show that (ii) yields (i). When τ equals zero, the proof is easy. We shall prove in the case $\tau > 0$. By (1.2) and (ii) we have

$$\begin{aligned} & \sum_j \int_0^\rho \operatorname{Re} b_j(x + 2\tau\theta\omega) \omega_j d\theta \\ &= - \sum_j \int_0^\rho \operatorname{Re} b_j(x + 2\tau\rho\omega + 2\tau\theta(-\omega)) (-\omega_j) d\theta \\ &\leq M \log(1 + \rho) + N, \end{aligned}$$

which completes the proof. Q.E.D.

We set

$$(1.3) \quad b(x; \xi) = - \sum_{j=1}^m \operatorname{Re} b_j(x) \xi_j.$$

Then, we get

Lemma 1.2. *Assume that for any large constants M and N the inequality (0.2) does not hold. Then, for any large constant M there exist sequences $x^{(k)} \in R^m$, $\omega^{(k)} \in S^{m-1}$, $\rho_k \geq 0$, $k = 1, 2, \dots$ such that*

$$(1.4) \quad \rho_k \rightarrow \infty \text{ as } k \rightarrow \infty,$$

$$(1.5) \quad \int_0^{\rho_k} b(x^{(k)} + 2\tau\theta\omega^{(k)}; \omega^{(k)}) d\theta \geq M \log(1 + \rho_k) + k$$

and for any $t \in [0, \rho_k]$

$$(1.6) \quad \int_0^t b(x^{(k)} + 2\tau\theta\omega^{(k)}; \omega^{(k)}) d\theta \geq 0.$$

Proof. Noting Lemma 1.1 and the assumption in this lemma, for any large constant M we can find sequences $y^{(k)} \in R^m$, $\sigma^{(k)} \in S^{m-1}$, $\delta_k \geq 0$, $k = 1, 2, \dots$ such that

$$(1.7) \quad \int_0^{\delta_k} b(y^{(k)} + 2\tau\theta\sigma^{(k)}; \sigma^{(k)}) d\theta \geq M \log(1 + \delta_k) + k.$$

Set $F_k(t) = \int_0^t b(y^{(k)} + 2\tau\theta\sigma^{(k)}; \sigma^{(k)}) d\theta$ and let t_k be the point at which $F_k(t)$

has the minimal value on $[0, \delta_k]$. Then, we shall prove that (1.4), (1.5) and (1.6) hold, if we determine $x^{(k)}$, $\omega^{(k)}$ and ρ_k ($k=1, 2, \dots$) by

$$(1.8) \quad x^{(k)} = y^{(k)} + 2\tau t_k \sigma^{(k)}, \quad \omega^{(k)} = \sigma^{(k)}, \quad \rho_k = \delta_k - t_k.$$

We can see that for $t \in [0, \rho_k]$

$$\begin{aligned} (1.9) \quad & \int_0^t b(x^{(k)} + 2\tau \theta \omega^{(k)}; \omega^{(k)}) d\theta \\ &= \int_0^t b(y^{(k)} + 2\tau(t_k + \theta) \sigma^{(k)}; \sigma^{(k)}) d\theta \\ &= \int_{t_k}^{t+t_k} b(y^{(k)} + 2\tau \theta \sigma^{(k)}; \sigma^{(k)}) d\theta \\ &= F_k(t+t_k) - F_k(t_k). \end{aligned}$$

So, the choice of t_k shows that (1.6) holds for $t \in [0, \rho_k]$. By (1.7)–(1.9) and $F_k(t_k) \leq F_k(0) = 0$, we have

$$\begin{aligned} (1.10) \quad & \int_0^{\rho_k} b(x^{(k)} + 2\tau \theta \omega^{(k)}; \omega^{(k)}) d\theta \\ &= F_k(\delta_k) - F_k(t_k) \\ &\geq F_k(\delta_k) \\ &\geq M \log(1 + \delta_k) + k \\ &\geq M \log(1 + \rho_k) + k, \end{aligned}$$

which implies that (1.4) and (1.5) hold. Q.E.D.

2. Localization in phase space and proof of Theorem

We prove our theorem by contradiction. That is, we assume the following:

(A.1) Equation (0.1) is well posed for the future or for the past in the space H_∞ .

(A.2) Inequality (0.2) does not hold for any large constants M and N .

Here, we may assume without loss of generality in place of (A.1)

(A.1)' Equation (0.1) is well posed for the future in the space H_∞ .

Then, by the assumption (A.1)' there exists a $T > 0$ such that for any initial data $u_0(x) \in H_\infty$ a unique solution $u(x, t) \in \mathcal{E}_t^0([0, T]; H_\infty)$ of (0.1) exists. Since the space $\mathcal{E}_t^0([0, T]; H_\infty)$ is a Fréchet space with semi-norms $\max_{0 \leq t \leq T} \|f(\cdot, t)\|_s$, $s = 0, \pm 1, \pm 2, \dots$, we see by the closed graph theorem that the mapping: $H_\infty \ni u_0(x) \rightarrow u(x, t) \in \mathcal{E}_t^0([0, T]; H_\infty)$ is continuous. Consequently, there exist a non-negative integer q and a constant $C(T) > 0$ such that

$$(2.1) \quad \|u(\cdot, t)\| \leq C(T) \|u_0(\cdot)\|_q$$

holds for $t \in [0, T]$.

For the above q we take a constant M such that

$$(2.2) \quad M > \frac{m}{2} + 2 \left[\frac{m}{2} + 1 \right] + 3q$$

and fix it through sections 2 and 3. Then, since Lemma 1.2 holds from the assumption (A.2), for this M we can take the sequences $x^{(k)} \in R^m$, $\omega^{(k)} \in S^{m-1}$, $\rho_k \geq 0$ ($k=1, 2, \dots$) satisfying (1.4), (1.5) and (1.6). Moreover, we take a positive constant δ such that

$$(2.3) \quad M > \frac{m}{2} + 2 \left[\frac{m}{2} + 1 \right] + (3 + \delta)q.$$

We can assume from (1.4) that

$$(2.4) \quad \rho_k \geq 1, \quad \rho_k^{-(2+\delta)} \leq T$$

for any k . We also fix these sequences and δ hereafter.

Let $h(x)$ be the C^∞ -function such that

$$\begin{cases} h(x) = 1 & \text{on } \{x; |x| \leq 1/4\}, \\ \text{supp } h(\cdot) \subset \{x; |x| \leq 1/2\}, \end{cases}$$

where $\text{supp } h(\cdot)$ implies the support of the function $h(x)$. Let $w_{n,k}(x, t; \xi)$ be the solution of (0.5) with initial data $\rho_k^{m/2} h(\rho_k(x - x^{(k)})) h(\rho_k^2(\xi - n\omega^{(k)})/n)$ at $t=0$. Then, we can easily get

$$(2.5) \quad \begin{aligned} w_{n,k}(x, t; \xi) \\ = \rho_k^{m/2} h(\rho_k(x - x^{(k)} - 2\tau t \xi)) h(\rho_k^2(\xi - n\omega^{(k)})/n). \end{aligned}$$

For the solution $u(x, t)$ of (0.1) we call $W_{n,k} u(x, t) = w_{n,k}(x, t; D_x) u(x, t)$ the localized solution (in phase space along the solution $(x^{(k)} + 2n\tau t \omega^{(k)}, n\omega^{(k)}) \in R^{2n}_{x, \xi}$ of the canonical equation with initial value $(x^{(k)}, n\omega^{(k)})$ at $t=0$ for the Hamilton function $\tau|\xi|^2$) (see Lemma 2.3). We note

$$(2.6) \quad \begin{aligned} \sigma([i\partial_t + \tau\Delta, W_{n,k}]) (x, t; \xi) \\ = i\partial_t w_{n,k}(x, t; \xi) - i\{w_{n,k}, -\tau|\xi|^2\} + \tau\Delta w_{n,k} \\ = \tau(\Delta w_{n,k})(x, t; \xi), \end{aligned}$$

where $[\cdot, \cdot]$ indicates the commutator of operators and $\Delta w_{n,k}(x, t; \xi) = \sum_j (\partial_{x_j}^2 w_{n,k})$ ($x, t; \xi$). Equality (2.6) is essential for the proof of Theorem. For any multi-indices α and β we set

$$(2.7) \quad w_{n,k}^{\alpha, \beta}(x, t; \xi) = \rho_k^{m/2} (\partial_x^\alpha h)(x) (\partial_\xi^\beta h)(\xi) \Big|_{\begin{aligned} x &= \rho_k(x - x^{(k)} - 2\tau t \xi), \\ \xi &= \rho_k^2(\xi - n\omega^{(k)})/n \end{aligned}}$$

We note that $w_{n,k}^{0,0}(x, t; \xi) = w_{n,k}(x, t; \xi)$.

Now, we define a series of solutions of (0.1) as in [6] by using $x^{(k)}$, $\omega^{(k)}$ and ρ_k determined above. Namely, we define their initial values. We set hereafter throughout sections 2 and 3

$$(2.8) \quad n = n(k) = \rho_k^{3+\delta}.$$

Let $\psi(x) \in \mathcal{S}$ be a function such that $\psi(0) = 2$ and

$$(2.9) \quad \text{supp } \hat{\psi}(\cdot) \subset \{\xi; h(\xi) = 1\},$$

and then, we define

$$(2.10) \quad \hat{\psi}_k(\xi) = e^{-i x^{(k)} \cdot \xi} \hat{\psi}(\xi - n \omega^{(k)}) \quad (n = \rho_k^{3+\delta}),$$

that is,

$$(2.10)' \quad \psi_k(x) = e^{i(x - x^{(k)}) \cdot n \omega^{(k)}} \psi(x - x^{(k)}).$$

Let $u_k(x, t) \in \mathcal{E}_t^0([0, T]; H_\infty)$ be the solution of (0.1) with initial data $\psi_k(x)$ at $t=0$. Then, we can easily get by (2.1) and the definition of $\psi_k(x)$

$$(2.11) \quad \|u_k(\cdot, t)\| \leq C_1(T) n^q$$

with a constant $C_1(T) > 0$ for $t \in [0, T]$. We set

$$(2.12) \quad v_k^{\alpha, \beta}(x, t) = W_{n,k}^{\alpha, \beta} u_k(x, t),$$

where $W_{n,k}^{\alpha, \beta} = w_{n,k}^{\alpha, \beta}(x, t; D_x)$. We often write $v_k(x, t) = v_k^{0,0}(x, t)$. Since $\text{supp } \hat{\psi}_k(\cdot) \subset \{\xi; h(\rho_k^2(\xi - n \omega^{(k)})/n) = 1\}$ is valid from (2.9), (2.10) and $\rho_k \geq 1$, we get

$$\begin{aligned} \|v_k(\cdot, 0)\|^2 &= \|w_{n,k}(x, 0; D_x) u_k(\cdot, 0)\|^2 \\ &= \int \rho_k^m |h(\rho_k(x - x^{(k)})) \psi(x - x^{(k)})|^2 dx, \end{aligned}$$

which follows from $\psi(0) = 2$ and (1.4) that for large k

$$(2.13) \quad \|v_k(\cdot, 0)\| \geq \|h(\cdot)\| > 0.$$

Now, take a positive integer s such that

$$(2.14) \quad \delta \left[\frac{s+2}{2} \right] \geq \frac{m-2}{2} + 2 \left[\frac{m}{2} + 1 \right] + (3+\delta)(q+1)$$

and set by the localized solution $v_k(x, t)$

$$(2.15) \quad \sigma_k(t) = \sum_{0 \leq |\alpha| + |\beta| \leq s} (\rho_k^3/n)^{[(|\alpha| + |\beta| + 1)/2]} \|v_k^{\alpha, \beta}(\cdot, t)\|$$

for $t \in [0, T]$, where for real r $[r]$ denotes the largest integer not greater than r . We remark that since $\rho_k/n = \rho_k^{-(2+\delta)}$ is not greater than T for any k , $\sigma_k(t)$ has been

defined on the interval $[0, \rho_k/n]$. Then, we obtain

Lemma 2.1. *We have*

$$(2.16) \quad \sigma_k(t) \leq C_0 \rho_k^{m/2+2[m/2+1]+(3+\delta)q}$$

for any $t \in [0, \rho_k/n]$ ($n = \rho_k^{3+\delta}$), where C_0 is a constant independent of k .

Proposition 2.2. *For large k we get*

$$(2.17) \quad \sigma_k(\rho_k/n) \geq C_1(1+\rho_k)^M \quad (n = \rho_k^{3+\delta})$$

with a positive constant C_1 independent of k .

Lemma 2.1 will be proved after the proof of Theorem and Proposition 2.2 will be proved in section 3.

Proof of Theorem. Since we have determined constant $\delta > 0$ so that (2.3) holds, (2.16) and (2.17) is not compatible for large k . Thus, we can prove Theorem. Q.E.D.

Proof of Lemma 2.1. By Theorem C we get

$$\begin{aligned} \|v_k(\cdot, t)\| &\leq C \rho_k^{m/2} |h(\rho_k(x - x^{(k)} - 2\tau t \xi)) h(\rho_k^2(\xi - n\omega^{(k)})/n)|^{l_0} \|u_k(\cdot, t)\| \\ &\leq C' \rho_k^{m/2+l_0} \|u_k(\cdot, t)\|, \end{aligned}$$

where $l_0 = 2[m/2+1]$. Here, we used $0 \leq \rho_k t \leq \rho_k^2/n = \rho_k^{-(1+\delta)}$ for $t \in [0, \rho_k/n]$. Consequently, we obtain from (2.11) for $t \in [0, \rho_k/n]$

$$\|v_k(\cdot, t)\| \leq C \rho_k^{m/2+l_0} n^q$$

with another constant C independent of k . In the same way we obtain for $t \in [0, \rho_k/n]$

$$(2.18) \quad \|v_k^{\alpha, \beta}(\cdot, t)\| \leq C_{\alpha, \beta} \rho_k^{m/2+l_0} n^q$$

with constant $C_{\alpha, \beta}$ independent of k . Hence, we get (2.16) by $n = \rho_k^{3+\delta}$. Q.E.D.

Lemma 2.3. *If $t \in [0, \rho_k/n]$ ($n = \rho_k^{3+\delta}$), then we have*

$$(2.19) \quad \begin{aligned} &\text{supp } w_{n, k}^{\alpha, \beta}(\cdot, t; \cdot) \\ &\subset \{(x, \xi); |x - (x^{(k)} + 2n\tau t \omega^{(k)})| \leq 2/\rho_k, |\xi/n - \omega^{(k)}| \leq 1/(2\rho_k^2)\}. \end{aligned}$$

Proof. If $(x, \xi) \in \text{supp } w_{n, k}^{\alpha, \beta}(\cdot, t; \cdot)$, we have from the definition (2.7) of $w_{n, k}^{\alpha, \beta}$

$$|x - (x^{(k)} + 2\tau t \xi)| \leq 1/(2\rho_k), \quad |\xi/n - \omega^{(k)}| \leq 1/(2\rho_k^2).$$

So, noting that $0 \leq \tau \leq 1$, it follows that

$$\begin{aligned}
& |x - (x^{(k)} + 2\pi t\omega^{(k)})| \\
& \leq |x - (x^{(k)} + 2\pi t\xi)| + 2\pi t |\xi/n - \omega^{(k)}| \\
& \leq 2/\rho_k
\end{aligned}$$

for any $t \in [0, \rho_k/n]$. This completes the proof. Q.E.D.

Now, if we use the equality (2.6), we can easily get for the localized solution $v_k(x, t) = W_{n,k}u_k(x, t)$

$$\begin{aligned}
(2.20) \quad & Lv_k(x, t) \\
& = f_k(x, t) \\
& = \{[\sum_j b_j(x)\partial_{x_j} + c(x), W_{n,k}] + \tau(\Delta w_{n,k})(x, t; D_x)\}u_k.
\end{aligned}$$

Then, we obtain

Lemma 2.4. *Let $t \in [0, \rho_k/n]$ ($n = \rho_k^{3+\delta}$). Then, for any $p = 1, 2, \dots$ we get*

$$\begin{aligned}
(2.21) \quad & \|f_k(\cdot, t)\| \\
& \leq \rho_k^2 \sum_{|\alpha+\beta|=2} \|v_k^{\alpha, \beta}(\cdot, t)\| + C_p n \sum_{1 \leq |\alpha+\beta| \leq p+1} (\rho_k^2/n)^{|\alpha+\beta|} \|v_k^{\alpha, \beta}(\cdot, t)\| \\
& \quad + C_p n^{q+1} \rho_k^\lambda (\rho_k^2/n)^{p+1},
\end{aligned}$$

where $\lambda = m/2 + 4[m/2 + 1]$ and C_p is a positive constant independent of k .

Proof. We can easily see from (2.20)

$$\begin{aligned}
(2.22) \quad & \|f_k(\cdot, t)\| \\
& \leq \sum_j \| [b_j \partial_{x_j}, W_{n,k}] u_k(\cdot, t) \| + \| [c(x), W_{n,k}] u_k(\cdot, t) \| + \rho_k^2 \sum_{|\alpha+\beta|=2} \|v_k^{\alpha, \beta}(\cdot, t)\|.
\end{aligned}$$

We first consider the term $[b_j \partial_{x_j}, W_{n,k}] u_k(x, t)$. If we use the notation (2.7), we can write

$$\begin{aligned}
(2.23) \quad & [b_j \partial_{x_j}, W_{n,k}] u_k(x, t) \\
& = \rho_k b_j(x) W_{n,k}^{e_j 0} u_k(x, t) + [b_j, W_{n,k}] \partial_{x_j} u_k(x, t),
\end{aligned}$$

where e_j is the multi-index whose j -th component is one and other components are all zero. Then, for the first term of the right hand side of (2.23) its L^2 norm is estimated by the second term of the right hand side of (2.21).

We consider the second term in (2.23). By Theorem A in section 1 we obtain

$$\begin{aligned}
(2.24) \quad & \frac{1}{i} \sigma([b_j(x), W_{n,k}] \partial_{x_j}) \\
& = - \{ \sum_{1 \leq |\gamma| \leq p} \frac{1}{\gamma!} D_x^\gamma b_j(x) \partial_x^\gamma w_{n,k}(x, t; \xi) \} \xi_j + r_{p,k}(x, t; \xi),
\end{aligned}$$

where $r_{p,k}(x, t; \xi)$ consists of the sum of

$$-(p+1) \frac{1}{\gamma!} \int_0^1 (1-\theta)^p d\theta \mathcal{O}_s - \iint e^{-iy \cdot \eta} (D_x^\gamma b_j) (x+y) \\ (\partial_\xi^\gamma w_{n,k}) (x, t; \xi + \theta \eta) \xi_j dy d\eta$$

over γ such that $|\gamma| = p+1$. Using

$$\mathcal{O}_s - \iint e^{-iy \cdot \eta} (D_x^\gamma b_j) (x+y) (\partial_\xi^\gamma w_{n,k}) (x, t; \xi + \theta \eta) \xi_j dy d\eta \\ = \mathcal{O}_s - \iint e^{-iy \cdot \eta} (D_x^\gamma b_j) (x+y) (\partial_\xi^\gamma w_{n,k}) (x, t; \xi + \theta \eta) (\xi_j + \theta \eta_j) dy d\eta \\ - \theta \mathcal{O}_s - \iint e^{-iy \cdot \eta} D_{y_j} (D_x^\gamma b_j) (x+y) (\partial_\xi^\gamma w_{n,k}) (x, t; \xi + \theta \eta) dy d\eta$$

and then applying Theorem B, we get the estimates from (2.5) and Lemma 2.3

$$(2.25) \quad |r_{p,k}(\cdot, t; \cdot)| \stackrel{(0)}{\sim} \mathcal{O}_s \\ \leq C_{p,1} n \rho_k^\lambda \sum_{|\gamma_1 + \gamma_2| = p+1} (\rho_k t)^{|\gamma_1|} (\rho_k^2/n)^{|\gamma_2|} \\ \leq C_{p,2} n \rho_k^\lambda (\rho_k^2/n)^{p+1}$$

for $t \in [0, \rho_k/n]$, where $l_0 = 2[m/2+1]$ and $C_{p,1}, C_{p,2}$ are positive constants depending only on p . Here, we used $\rho_k t \leq \rho_k^2/n$ for $t \in [0, \rho_k/n]$. Consequently, applying Theorem C, we get

$$(2.26) \quad ||r_{p,k}(x, t; D_x) u_k(\cdot, t)|| \leq C_{p,3} n^{q+1} \rho_k^\lambda (\rho_k^2/n)^{p+1}$$

by (2.11).

Next, we consider the first term in (2.24). We remark

$$(2.27) \quad (\partial_\xi^\gamma w_{n,k}) (x, t; \xi) \xi_j \\ = \sum_{\alpha+\beta=\gamma} \frac{\gamma!}{\alpha! \beta!} (-2\tau t \rho_k)^{|\alpha|} (\rho_k^2/n)^{|\beta|} w_{n,k}^{\alpha, \beta} (x, t; \xi) \xi_j .$$

We can easily see

$$(2.28) \quad ||W_{n,k}^{\alpha, \beta} D_{x_j} u_k(\cdot, t)|| \\ \leq \rho_k ||W_{n,k}^{\alpha+e_j, \beta} u_k(\cdot, t)|| + ||D_{x_j} \circ W_{n,k}^{\alpha, \beta} u_k(\cdot, t)|| ,$$

in which the second term is estimated by

$$K n ||W_{n,k}^{\alpha, \beta} u_k(\cdot, t)|| + C_{p, \alpha, \beta} n^{q+1} \rho_k^\lambda (\rho_k^2/n)^{p+1} ,$$

where $K = 3 \max_{x \in \mathbb{R}^m} |h(x)|$ and $C_{p, \alpha, \beta}$ are constants independent of k , but depend on α and β .

In fact, if we set

$$(2.29) \quad \chi_{1,k}(\xi) = h(\rho_k(\xi - n\omega^{(k)})/3n),$$

we have

$$\begin{aligned} & \|D_{x_j} \circ W_{n,k}^{\alpha,\beta} u_k(\cdot, t)\| \\ & \leq \|\chi_{1,k}(D_x) D_{x_j} \circ W_{n,k}^{\alpha,\beta} u_k(\cdot, t)\| + \rho_k \|(I - \chi_{1,k}(D_x)) \circ W_{n,k}^{\alpha+e_j,\beta} u_k(\cdot, t)\| \\ & \quad + \|(I - \chi_{1,k}(D_x)) \circ W_{n,k}^{\alpha,\beta} D_{x_j} u_k(\cdot, t)\|. \end{aligned}$$

Since $\text{supp } \chi_{1,k}(\cdot) \subset \{\xi; |\xi| \leq 3n\}$ is valid, the term $\|\chi_{1,k}(D_x) D_{x_j} \circ W_{n,k}^{\alpha,\beta} u_k(\cdot, t)\|$ is estimated by $Kn \|W_{n,k}^{\alpha,\beta} u_k(\cdot, t)\|$. Apply Theorems A and B to the symbol $\sigma((I - \chi_{1,k}(D_x)) \circ W_{n,k}^{\alpha,\beta} D_{x_j}) (x, t; \xi)$. Then, if we note from Lemma 2.3 that $\text{supp } (1 - \chi_{1,k}(\cdot)) \cap \text{supp } w_{n,k}^{\alpha,\beta}(\cdot, t; \cdot) = \emptyset$ for $t \in [0, \rho_k/n]$, we can easily have

$$\begin{aligned} & |\sigma((I - \chi_{1,k}(D_x)) \circ W_{n,k}^{\alpha,\beta} D_{x_j})(\cdot, t; \cdot)|_{I_0^0, I_0}^{(0)} \\ & \leq C'_{p,\alpha,\beta} n \rho_k^\lambda (\rho_k^2/n)^{p+1} \end{aligned}$$

as in the proof of (2.25) for $t \in [0, \rho_k/n]$ with a constant $C'_{p,\alpha,\beta}$. So, we get

$$\begin{aligned} (2.30) \quad & \|(I - \chi_{1,k}(D_x)) \circ W_{n,k}^{\alpha,\beta} D_{x_j} u_k(\cdot, t)\| \\ & \leq C'_{p,\alpha,\beta} n^{q+1} \rho_k^\lambda (\rho_k^2/n)^{p+1} \end{aligned}$$

with another constant $C'_{p,\alpha,\beta}$. In the same way we can also estimate $\rho_k \|(I - \chi_{1,k}(D_x)) \circ W_{n,k}^{\alpha+e_j,\beta} u_k(\cdot, t)\|$.

Hence, noting that $\rho_k t \leq \rho_k^2/n$ for $t \in [0, \rho_k/n]$, we obtain from (2.27)

$$\begin{aligned} (2.31) \quad & \|(\partial_\xi^\gamma w_{n,k})(x, t; D_x) D_{x_j} u_k(\cdot, t)\| \\ & \leq C_\gamma (\rho_k^2/n)^{|\gamma|} \sum_{\alpha+\beta=\gamma} (\rho_k |v_k^{\alpha+e_j,\beta}(\cdot, t)| + n |v_k^{\alpha,\beta}(\cdot, t)|) + C_{p,\gamma} n^{q+1} \rho_k^\lambda (\rho_k^2/n)^{p+1} \end{aligned}$$

for constants C_γ and $C_{p,\gamma}$, which shows from (2.24) together with (2.26) that

$$\begin{aligned} (2.32) \quad & \| [b_j(x), W_{n,k}] \partial_{x_j} u_k(\cdot, t) \| \\ & \leq C'_p n \sum_{1 \leq |\alpha+\beta| \leq p+1} (\rho_k^2/n)^{|\alpha+\beta|} |v_k^{\alpha,\beta}(\cdot, t)| + C'_p n^{q+1} \rho_k^\lambda (\rho_k^2/n)^{p+1} \end{aligned}$$

for constants C'_p independent of k . Since we can also estimate $\|[c(x), W_{n,k}] u_k(\cdot, t)\|$ in the same way, we can complete the proof. Q.E.D.

3. Proof of Proposition 2.2

We first prove for $v_k(x, t) = v_k^{0,0}(x, t)$ defined by (2.12)

Lemma 3.1. *Let $t \in [0, \rho_k/n]$ ($n = \rho_k^{3+\delta}$). Then, for any $v = 1, 2, \dots$*

$$(3.1) \quad \frac{1}{2} \frac{d}{dt} \|v_k(\cdot, t)\|^2$$

$$\begin{aligned} &\geq \{b(x^{(k)}+2n\tau t\omega^{(k)}; n\omega^{(k)}) - A(1+\frac{n}{\rho_k})\} \|v_k(\cdot, t)\|^2 \\ &\quad - \|f_k(\cdot, t)\| \times \|v_k(\cdot, t)\| - \tilde{C}_v n^{q+1} \rho_k^\lambda (\rho_k^2/n)^v \|v_k(\cdot, t)\| \end{aligned}$$

is valid, where λ is the same constant in Lemma 2.4, A is a constant independent of v and k , and \tilde{C}_v are constants independent of k but depend on v . As set in section 1, $b(x; \xi)$ denotes $-\sum_{j=1}^m \operatorname{Re} b_j(x) \xi_j$.

Proof. From (2.20) we can see that

$$\begin{aligned} (3.2) \quad &\frac{d}{dt} \|v_k(\cdot, t)\|^2 \\ &= 2\operatorname{Re} (\partial_t v_k(\cdot, t), v_k(\cdot, t)) \\ &= 2\operatorname{Re} i((\tau\Delta + \sum_j b_j \partial_{x_j} + c)v_k(\cdot, t), v_k(\cdot, t)) - 2\operatorname{Re} i(f_k(\cdot, t), v_k(\cdot, t)) \\ &\geq -2\operatorname{Re} (\sum_j (\operatorname{Re} b_j)(x) D_{x_j} v_k(\cdot, t), v_k(\cdot, t)) \\ &\quad - A_1 \|v_k(\cdot, t)\|^2 - 2\|f_k(\cdot, t)\| \times \|v_k(\cdot, t)\| \end{aligned}$$

for a constant A_1 independent of k . We shall estimate

$$-(\sum_j (\operatorname{Re} b_j)(x) D_{x_j} v_k(\cdot, t), v_k(\cdot, t)) = (b(x; D_x) v_k(\cdot, t), v_k(\cdot, t)).$$

We write

$$\begin{aligned} (3.3) \quad &-(\operatorname{Re} b_j)(x) D_{x_j} \\ &= -(\operatorname{Re} b_j)(x^{(k)} + 2n\tau t\omega^{(k)}) n\omega_j^{(k)} \\ &\quad + (\operatorname{Re} b_j)(x^{(k)} + 2n\tau t\omega^{(k)}) (n\omega_j^{(k)} - D_{x_j}) \\ &\quad + \{(\operatorname{Re} b_j)(x^{(k)} + 2n\tau t\omega^{(k)}) - (\operatorname{Re} b_j)(x)\} D_{x_j} \\ &\equiv \sum_{j=1}^3 I_j. \end{aligned}$$

We first estimate $I_2 v_k(x, t)$. Since $\operatorname{supp} \chi_{1,k}(\cdot) \subset \{\xi; |\xi - n\omega^{(k)}| \leq 3n/(2\rho_k)\}$ holds for $\chi_{1,k}(\xi)$ defined by (2.29), we see that

$$\begin{aligned} (3.4) \quad &\|\chi_{1,k}(D_x) \circ (n\omega_j^{(k)} - D_{x_j}) v_k(\cdot, t)\| \\ &\leq A_2 \frac{n}{\rho_k} \|v_k(\cdot, t)\| \end{aligned}$$

for a constant A_2 independent of k . Hereafter, in this proof, if there is no confusion, we do not indicate that constants are independent of k . Next, we write by $v_k(x, t) = W_{n,k} u_k(x, t)$

$$\begin{aligned} (3.5) \quad &J \equiv (I - \chi_{1,k}(D_x)) \circ (n\omega_j^{(k)} - D_{x_j}) v_k \\ &= (I - \chi_{1,k}(D_x)) \circ w_{n,k}(x, t; D_x) (n\omega_j^{(k)} - D_{x_j}) u_k \end{aligned}$$

$$-\frac{1}{i} \rho_k (I - \chi_{1,k}(D_x)) \circ w_{n,k}^{\epsilon, j, 0}(x, t; D_x) u_k.$$

Apply Theorems A and B in section 1 to the term $p(x, t; \xi) = \sigma((I - \chi_{1,k}(D_x)) \circ w_{n,k}(x, t; D_x) (n\omega_j^{(k)} - D_{x_j})) (x, t; \xi)$. Then, we can show in the similar way to the proof of (2.30) that for any ν

$$|p(\cdot, t; \cdot)|_{I_0, I_0}^{(0)} \leq C_{\nu, 1} n \rho_k^\lambda (\rho_k^2/n)^\nu$$

is valid for $t \in [0, \rho_k/n]$ and so we get

$$\begin{aligned} & \| (I - \chi_{1,k}(D_x)) \circ w_{n,k}(x, t; D_x) (n\omega_j^{(k)} - D_{x_j}) u_k(\cdot, t) \| \\ & \leq C_{\nu, 2} n^{\nu+1} \rho_k^\lambda (\rho_k^2/n)^\nu \end{aligned}$$

for $t \in [0, \rho_k/n]$, where constants $C_{\nu, 1}$ and $C_{\nu, 2}$ depend only on ν . In the same way we can also estimate $\rho_k \| (I - \chi_{1,k}(D_x)) \circ w_{n,k}^{\epsilon, j, 0}(x, t; D_x) u_k(\cdot, t) \|$. Namely, we obtain

$$\begin{aligned} (3.6) \quad & \| J \| \\ & \leq C_{\nu, 3} n^{\nu+1} \rho_k^\lambda (\rho_k^2/n)^\nu, \end{aligned}$$

which shows together with (3.4) that

$$\begin{aligned} (3.7) \quad & \| I_2 v_k(\cdot, t) \| \\ & \leq A_3 \frac{n}{\rho_k} \| v_k(\cdot, t) \| + C_{\nu, 4} n^{\nu+1} \rho_k^\lambda (\rho_k^2/n)^\nu \end{aligned}$$

for $t \in [0, \rho_k/n]$.

Next, we shall estimate $I_3 v_k(x, t)$. If we set

$$\chi_{2,k}(x) = h(\rho_k(x - x^{(k)} - 2n\tau t \omega^{(k)})/9),$$

$\text{supp } (1 - \chi_{2,k}(\cdot)) \cap \text{supp } w_{n,k}^{\alpha, \beta}(\cdot, t; \cdot) = \phi$ holds for $t \in [0, \rho_k/n]$ from Lemma 2.3. So,

$$\begin{aligned} & (I - \chi_{2,k}(x)) D_{x_j} v_k(x, t) \\ & = (I - \chi_{2,k}(x)) \{ w_{n,k}(x, t; D_x) D_{x_j} u_k + \frac{1}{i} \rho_k w_{n,k}^{\epsilon, j, 0}(x, t; D_x) u_k \} \\ & = 0. \end{aligned}$$

That is,

$$\begin{aligned} (3.8) \quad & I_3 v_k(x, t) \\ & = \chi_{2,k}(x) \{ (\text{Re } b_j) (x^{(k)} + 2n\tau t \omega^{(k)}) - (\text{Re } b_j) (x) \} D_{x_j} v_k, \end{aligned}$$

which follows that

$$(3.9) \quad \| I_3 v_k(\cdot, t) \| \leq (A_4 / \rho_k) \| D_{x_j} v_k(\cdot, t) \|$$

for $t \in [0, \rho_k/n]$. Now, as in the proof of the estimate for the second term of the right hand side of (2.28) we get

$$\begin{aligned} & \|D_{x_j} v_k(\cdot, t)\| \\ & \leq A_5 n \|v_k(\cdot, t)\| + C_{\nu, 5} n^{\nu+1} \rho_k^\lambda (\rho_k^2/n)^\nu, \end{aligned}$$

which follows

$$\begin{aligned} (3.10) \quad & \|I_3 v_k(\cdot, t)\| \\ & \leq A_6 \frac{n}{\rho_k} \|v_k(\cdot, t)\| + C_{\nu, 6} n^{\nu+1} \rho_k^{\lambda-1} (\rho_k^2/n)^\nu. \end{aligned}$$

Using (3.2), (3.3), (3.7) and (3.10), we can complete the proof. Q.E.D.

Proof of Proposition 2.2. We can take a positive integer p such that

$$(3.11) \quad \sup_k n^{\nu+1} \rho_k^\lambda (\rho_k^2/n)^{p+1} < \infty,$$

noting $n = \rho_k^{3+\delta}$ and fix it. Then, it is easily seen from Lemma 2.4 and Lemma 3.1 that

$$\begin{aligned} (3.12) \quad & \frac{d}{dt} \|v_k(\cdot, t)\| \geq B(t; k) \|v_k(\cdot, t)\| - \text{const.} \frac{n}{\rho_k} \{ (\rho_k^3/n) \sum_{|\alpha+\beta|=2} \|v_k^{\alpha, \beta}(\cdot, t)\| \\ & + \sum_{1 \leq |\alpha+\beta| \leq p+1} \rho_k (\rho_k^2/n)^{|\alpha+\beta|} \|v_k^{\alpha, \beta}(\cdot, t)\| \} - \text{const.}, \end{aligned}$$

where

$$(3.13) \quad B(t; k) = b(x^{(k)} + 2nrt\omega^{(k)}; n\omega^{(k)}) - A \left(1 + \frac{n}{\rho_k} \right)$$

with the same constant A in (3.1). Since the inequality $\rho_k (\rho_k^2/n)^{|\gamma|} \leq (\rho_k^3/n)^{[(|\gamma|+1)/2]}$ ($|\gamma| \geq 1$) is valid, we obtain from (3.12)

$$\begin{aligned} (3.14) \quad & \frac{d}{dt} \|v_k(\cdot, t)\| \\ & \geq B(t; k) \|v_k(\cdot, t)\| - \text{const.} \frac{n}{\rho_k} \sum_{1 \leq |\alpha+\beta| \leq p+1} (\rho_k^3/n)^{[(|\alpha+\beta|+1)/2]} \|v_k^{\alpha, \beta}(\cdot, t)\| \\ & - \text{const..} \end{aligned}$$

If we make the same process for $v_k^{\alpha, \beta}(x, t) = W_{n, k}^{\alpha, \beta} u(x, t)$ ($(|\alpha+\beta| \geq 1)$ as for $v_k(x, t) = W_{n, k} u(x, t)$, corresponding to (3.14) we have

$$\begin{aligned} & \frac{d}{dt} \|v_k^{\alpha, \beta}(\cdot, t)\| \geq B(t; k) \|v_k^{\alpha, \beta}(\cdot, t)\| \\ & - C_{\alpha, \beta} \frac{n}{\rho_k} \sum_{1 \leq |\tilde{\alpha}+\tilde{\beta}| \leq p+1} (\rho_k^3/n)^{[(|\tilde{\alpha}+\tilde{\beta}|+1)/2]} \|v_k^{\alpha+\tilde{\alpha}, \beta+\tilde{\beta}}(\cdot, t)\| - C_{\alpha, \beta} \end{aligned}$$

for constants $C_{\alpha, \beta}$ independent of k . So, we obtain

$$\begin{aligned}
(3.15) \quad & \frac{d}{dt} \left(\rho_k^3/n \right)^{[(|\alpha+\beta|+1)/2]} \| v_k^{\alpha, \beta}(\cdot, t) \| \\
& \leq B(t; k) \left(\rho_k^3/n \right)^{[(|\alpha+\beta|+1)/2]} \| v_k^{\alpha, \beta}(\cdot, t) \| \\
& - C_{\alpha, \beta} \frac{n}{\rho_k} \sum_{1 \leq |\tilde{\alpha}+\tilde{\beta}| \leq p+1} \left(\rho_k^3/n \right)^{[(|\alpha+\tilde{\alpha}+\beta+\tilde{\beta}|+1)/2]} \| v_k^{\alpha+\tilde{\alpha}, \beta+\tilde{\beta}}(\cdot, t) \| - C_{\alpha, \beta}.
\end{aligned}$$

Here, we used

$$\begin{aligned}
& \left(\rho_k^3/n \right)^{[(|\alpha+\beta|+1)/2] + [(\tilde{\alpha}+\tilde{\beta}|+1)/2]} \\
& \leq \left(\rho_k^3/n \right)^{[(|\alpha+\tilde{\alpha}+\beta+\tilde{\beta}|+1)/2]}
\end{aligned}$$

for $|\tilde{\alpha}+\tilde{\beta}| \geq 1$.

Now, we already determined s so that (2.14) holds. Hence, if $|\alpha+\beta| \geq s+1$, we have by (2.18)

$$\begin{aligned}
& \frac{n}{\rho_k} \left(\rho_k^3/n \right)^{[(|\alpha+\beta|+1)/2]} \| v_k^{\alpha, \beta}(\cdot, t) \| \\
& \leq C'_{\alpha, \beta} \frac{n}{\rho_k} \left(\rho_k^3/n \right)^{[(s+2)/2]} \rho_k^{m/2+2[m/2+1]} n^q \\
& \leq C''_{\alpha, \beta} < \infty
\end{aligned}$$

for any k and for any $t \in [0, \rho_k/n]$. Therefore, for $\sigma_k(t)$ defined by (2.15) we obtain from (3.14) and (3.15)

$$(3.16) \quad \frac{d}{dt} \sigma_k(t) \geq (B(t; k) - C \frac{n}{\rho_k}) \sigma_k(t) - O(1)$$

for any k and $t \in [0, \rho_k/n]$, where C is a constant independent of k .

The integration of (3.16) gives

$$\begin{aligned}
(3.17) \quad & \sigma_k(\rho_k/n) \\
& \geq \left(\exp \int_0^{\rho_k/n} B(\theta; k) - C \frac{n}{\rho_k} d\theta \right) \\
& \times \left\{ \sigma_k(0) - O(1) \int_0^{\rho_k/n} \left(\exp - \int_0^t B(\theta; k) - C \frac{n}{\rho_k} d\theta \right) dt \right\}.
\end{aligned}$$

Here, we note from (3.13) that

$$B(\theta; k) = b(x^{(k)} + 2n\tau\theta\omega^{(k)}; n\omega^{(k)}) - A(1 + \frac{n}{\rho_k}).$$

Also, from the choice of $x^{(k)}$, $\omega^{(k)}$, ρ_k we know that

$$\begin{aligned}
& \int_0^{\rho_k/n} b(x^{(k)} + 2n\tau\theta\omega^{(k)}; n\omega^{(k)}) d\theta \\
& = \int_0^{\rho_k} b(x^{(k)} + 2\tau\theta\omega^{(k)}; \omega^{(k)}) d\theta \\
& \geq M \log(1 + \rho_k) + k
\end{aligned}$$

and for $t \in [0, \rho_k/n]$

$$\begin{aligned} & \int_0^t b(x^{(k)} + 2n\tau\theta\omega^{(k)}; n\omega^{(k)}) d\theta \\ &= \int_0^{nt} b(x^{(k)} + 2\tau\theta\omega^{(k)}; \omega^{(k)}) d\theta \\ &\geq 0. \end{aligned}$$

Moreover, $\sigma_k(0) \geq \|v_k(\cdot, 0)\| \geq \|h(\cdot)\|$ holds for large k by (2.13). Hence, if k is large enough, we obtain from (3.17)

$$\sigma_k(\rho_k/n) \geq C_1(1 + \rho_k)^M$$

for a positive constant C_1 , which shows Proposition 2.2.

Q.E.D.

REMARK 4. In more detail we can see from the proof of Theorem the following is necessary in order that there exists a constant $T > 0$ such that for any initial data $u_0(x) \in H_\infty$ a unique solution $u(x, t) \in \mathcal{E}_t^0([0, T]; H_\infty)$ of (0.1) exists and the inequality (2.1) holds for some q . For any M greater than $m/2 + 2[m/2 + 1] + 3q$ there exists a constant N such that the inequality (0.2) holds.

References

- [1] G.D. Birkhoff: *Quantum mechanics and asymptotic series*, Bull. Amer. Math. Soc. **39** (1939), 681–700.
- [2] A.P. Calderón and R. Vaillancourt: *On the boundedness of pseudo-differential operators*, J. Math. Soc. Japan **23** (1971), 374–378.
- [3] W. Ichinose: *Sufficient condition on H_∞ well posedness for Schrödinger type equations*, Comm. Partial Differential Equations **9** (1984), 33–48.
- [4] H. Kumano-go: *Pseudo-differential operators*, M.I.T. Press, Cambridge, Massachusetts, and London, England, 1982.
- [5] P.D. Lax: *Asymptotic solutions of oscillatory initial value problem*, Duke Math. J. **24** (1957), 627–646.
- [6] S. Mizohata: *Some remarks on the Cauchy problem*, J. Math. Kyoto Univ. **1** (1961), 109–127.
- [7] S. Mizohata: *Sur quelques équations du type Schrödinger*, Journées “Equations aux dérivées partielles”, Saint-Jean de Monts, 1981.
- [8] J. Takeuchi: *On the Cauchy problem for some non-kowalewskian equations with distinct characteristic roots*, J. Math. Kyoto Univ. **20** (1980), 105–124.

Department of Mathematics
Shimane University
Matsue 690
Japan

