

| Title        | On ribbon 2-knots. The 3-manifold bounded by the 2-knots |
|--------------|----------------------------------------------------------|
| Author(s)    | Yanagawa, Takaaki                                        |
| Citation     | Osaka Journal of Mathematics. 1969, 6(2), p. 447-464     |
| Version Type | VoR                                                      |
| URL          | https://doi.org/10.18910/8219                            |
| rights       |                                                          |
| Note         |                                                          |

# The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

# ON RIBBON 2-KNOTS THE 3-MANIFOLD BOUNDED BY THE 2-KNOTS

TAKAAKI YANAGAWA

(Received February 24, 1969) (Revised May 19, 1969)

#### 1. Introduction

It is known that any locally flat, orientable, closed 2-manifold  $M^2$  in a 4-space  $R^4$  bounds an orientable 3-manifold  $W^3$  in  $R^4$ , see [1]. Nevertheless, the question "what type of 3-manifolds can be bounded" seems to be still an open question, for which we will give a partial answer in Theorem (2, 3) in this paper: If the 2-manifold  $M^2$  is a 2-sphere of a special type of 2-knots, which will be called a ribbon 2-knot, see (2, 2), it bounds a 3-manifold  $W^3$  homeomorphic to  $\#(S^1 \times S^2)$   $-\mathring{\Delta}^3$ . Moreover, a little inspection on the 3-manifold  $W^3$  shows that there exists a trivial system of the 2-spheres in  $W^3$ , see (3, 5), and we can easily prove a converse of the above theorem in Theorem (3, 3). In §4, we will define the following concepts;

R(3): A 2-knot  $K^2$  satisfies that  $c(\{K\})=0$ ,

R(4): A 2-knot  $K^2$  bounds a 3-ribbon in  $R^4$ ,

R(5): A 2-knot  $K^2$  bounds a monotone 3-ball in  $H_+^5$ .

Since it is easily seen that the concepts R(4) and R(5) are the natural extensions of the definition and the property of the ribbon (1-) knots, we can explain the reason why we denominate simply knotted 2-knots defined in [2] as ribbon 2-knots in this paper, after we will have accomplished the proof of the equivalence of these three concepts in Theorem (4, 5). In §5, we will introduce a normal-form for ribbon 2-knots and an equivalence relation between 2-knots. The equivalence relation is a cobordism relation between 2-knots with the strong restriction, although ribbon 2-knots are equivalent to a trivial 2-knot under the relation.

In this paper, everything is considered from the combinatorial stand point of view.

<sup>0) #</sup> means the connected sum, and  $\Delta^3$  a 3-simplex and  $\mathring{\Delta}^3$  is its interior.

#### 2. Ribbon 2-knots

An orthogonal projection p of a 4-space  $R^4$ , containing a locally flat 2-sphere  $K^2$  which will be called a 2-knot, onto an hyperplane  $R^3$  is called a regular projection, or simply a projection, if the locally linear map  $p \mid K^2$  of  $K^2$  into  $R^3$  is normal.<sup>1)</sup> The homeomorphism class of  $(K^2, R^4)$  of 2-knots in  $R^4$  will be called the knot-type containing  $K^2$ , and will be denoted by  $\{K\}$ .

DEFINITION (2.1). c(K) is the minimal number of the triple points and the branch-lines<sup>2)</sup> of p(K) in  $R^3$ , where the projection p ranges over the set consisting of all the projections for the 2-knot K.  $c(\{K\})$  is the minimal number of c(K), where K ranges over the knot-type  $\{K\}$ . A pair (p, K) will be called a simple pair for the knot-type  $\{K\}$ , if it realizes the number  $c(\{K\})$ .

DEFINITION (2.2).<sup>3)</sup> A 2-knot  $K^2$  will be called *a ribbon 2-knot*, if and only if  $c(\{K\})=0$ .

**Theorem** (2.3). A ribbon 2-knot  $K^2$  bounds a 3-manifold  $W^3$  which is homeomorphic either to a 3-ball or to  $\#(S^1 \times S^2) - \mathring{\Delta}^3$ .

Proof. According to the result in [2], we can find a 2-knot K' belonging to  $\{K\}$  and satisfying the following (1), (2) and (3):

- (1).  $K' \cap R_0^3 = k$  is a ribbon knot in  $R_0^{3.4}$
- (2).  $K' \cap H_+^4$  and  $K' \cap H_-^4$  are symmetric with respect to the hyperplane  $R_0^3$ , and necessarily each of them is a locally flat 2-ball.
- (3). each saddle point transformation<sup>5)</sup> on  $K' \cap H_+^4$  increases the number of components of the cross-sections of  $K' \cap R_t^3$  as the height t increases; in other words,  $K' \cap H_+^4$  has no minimal point.

In the following three-steps, we illustrate the construction of the 3-manifold  $W^3$ .

First-step. Since k is a ribbon knot, there is an immersion  $\psi$  of a 2-ball  $\tilde{D} = \tilde{D}_0 \cup \tilde{D}_1 \cup \cdots \cup \tilde{D}_n \cup \tilde{B}_1 \cup \cdots \cup \tilde{B}_n$  on a plane into  $R_0^3$  such that

(1)  $\psi(\partial \tilde{D}) = k$ ,  $\psi(\tilde{D})$  is a ribbon,

$$R_1^3 = \{(x_1, x_2, x_3, x_4) \mid | x_4 = t\}$$

$$H_+^4 = \{(x_1, x_2, x_3, x_4) \mid | x_4 \ge 0\}$$

$$H_-^4 = \{(x_1, x_2, x_3, x_4) \mid | x_4 \le 0\}$$

$$H_-^4(J) = \{(x_1, x_2, x_3, x_4) \mid | x_4 \in J\}$$

<sup>1)</sup> See p. 3 of [8].

<sup>2)</sup> An arc whose end-points are branch-points is called a branchline.

<sup>3)</sup> In [2], this type of 2-knots is defined as "simply-knotted 2-sphere".

<sup>4)</sup>  $\mathring{X}$  means the interior, and  $\partial X$  the boundary of a set X.

<sup>5)</sup> See [5], p. 136.

- (2)  $\tilde{B}_i$  spans  $\tilde{D}_0$  and  $\tilde{D}_i$  coherently at the segments on  $\partial \tilde{B}_i \cap \partial \tilde{D}_0$  and  $\partial \tilde{B}_i \cap \partial \tilde{D}_i$   $(i=1, 2, \dots, n)$ ,
- (3)  $\psi$ ;  $\tilde{D}_0 \cup \tilde{D}_1 \cup \cdots \cup \tilde{D}_n \rightarrow D_0 \cup D_1 \cup \cdots \cup D_n$   $\psi$ ;  $\tilde{B}_1 \cup \cdots \cup \tilde{B}_n \rightarrow B_1 \cup \cdots \cup B_n$ are both imbeddings,
- (4)  $D_0, D_1, \dots, D_n$  are on a plane, and moreover we may suppose that the visible face of each  $D_k$  is the image of the visible-face of  $\tilde{D}_k$   $(k=0, 1, 2, \dots, n)$ .
- (5) the intersection of  $B_i$  and  $D_0 \cup D_1 \cup \cdots \cup D_n$ , except two segments on  $\partial B_i$ , consists of at most the ribbon-type segments  $\alpha_{i1}, \alpha_{i2}, \cdots, \alpha_{im_i}$ , where we indexed these segments in the order from  $D_0$  to  $D_i$  on  $B_i$  ( $i=1, 2, \cdots, n$ ).

The segments  $\tilde{\alpha}_{i\lambda} = \psi^{-1}(\alpha_{i\lambda}) \cap \tilde{B}_i$ , and  $\tilde{\beta}_{i\lambda}$ ,  $\beta_{i0}$  go across the band  $\tilde{B}_i$ , and  $\tilde{B}_{i\lambda}$  is the piece of  $\tilde{B}_i$  bounded by  $\tilde{\beta}_{i,\lambda-1}(\lambda=1,2,\cdots,m_i)$  as in Fig. (1).

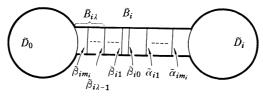
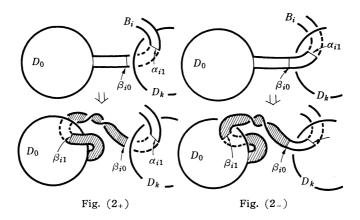


Fig. (1)

If  $B_i$  goes through  $D_k$  from its visible side to the opposite at  $\alpha_{i1}$ , we perform the (—)-twist for k, otherwise the (+)-twist as in Fig. (2±), where the knot-type of k is left fixed.



Now, we have a new immersion  $\psi'$  of  $\tilde{D}$  into  $R_0^3$  such that

$$\psi'| ilde{D}- ilde{B}_{i_1}=\psi| ilde{D}- ilde{B}_{i_1}$$
 ,  $\psi'( ilde{B}_{i_1})\cap D_{\scriptscriptstyle 0}=\psi'( ilde{eta}_{i_1})=eta_{i_1}$  , and

 $\psi'(\tilde{B}_{i_1})$  is the shaded portion in Fig.  $(2\pm)$ ,  $\psi'(\tilde{D})$  is a ribbon and  $\psi'(\partial \tilde{D})$  is the twisted k.

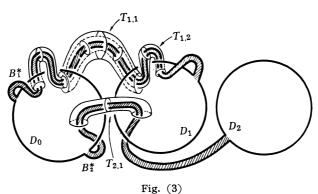
Moreover, if there is  $\alpha_{i2}$ , we perform the twist of the same type as before considering  $\tilde{B}_{i2}$ ,  $\tilde{\beta}_{i2}$ ,  $\beta_{i2}$ ,  $\beta_{i1}$ ,  $\psi'$  as  $\tilde{B}_{i1}$ ,  $\tilde{\beta}_{i1}$ ,  $\beta_{i1}$ ,  $\beta_{i0}$ ,  $\psi$ . Repeat successively these processes for  $\lambda=3, 4, \dots, m_i$ ,  $i=1, 2, \dots, n$ .

Second-step. In the first-step, we have finally a ribbon  $\psi^*(\tilde{D}) = D_0 \cup D_1 \cup \cdots \cup D_n \cup B_1^* \cup \cdots \cup B_n^*$ , where  $B_i^* \cap (D_0 \cup D_1 \cup \cdots \cup D_n) = \beta_{i_1} \cup \cdots \cup \beta_{i_{m_i}} \cup \cdots \cup \alpha_{i_{m_i}}$ . Remove the mutually disjoint 2-balls  $Q_{i\lambda}$  and  $Q'_{i\lambda}$  from  $D_0 \cup D_1 \cup \cdots \cup D_n$  such that

$$\mathring{D}_{k} \supset Q_{i\lambda} \supset \mathring{Q}_{i\lambda} \supset \alpha_{i\lambda}, 
\mathring{D}_{0} \supset Q'_{i\lambda} \supset \mathring{Q}'_{i\lambda} \supset \beta_{i\lambda} \quad (\lambda = 1, 2, \dots, m_{i}, i = 1, 2, \dots, n).$$

Combine  $\partial Q_{i\lambda}$  and  $\partial Q'_{i\lambda}$  with a tube  $T_{i\lambda}$  coherently so that  $T_{i\lambda} \cap T_{j\mu} = \phi$   $(i \neq j \text{ or } \lambda \neq \mu)$ , and that  $T_{i\lambda} \cap (\psi^*(\tilde{D}) - \bigcup_{i,\lambda} (\mathring{Q}_{i\lambda} \cup \mathring{Q}'_{i\lambda}) = \partial T_{i\lambda} = \partial Q_{i\lambda} \cup \partial Q'_{i\lambda}$ . Finally, we have an orientable 2-surface  $F_0$  such that

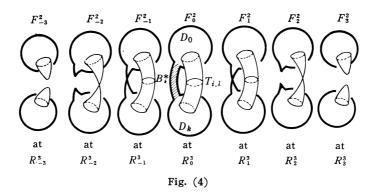
$$F_0^2 = \{(D_0 \cup D_1 \cup \cdots \cup D_n) - \bigcup_{i,\lambda} (Q_{i\lambda} \cup Q'_{i\lambda})\} \cup \{B_1^* \cup \cdots \cup B_n^*\} \cup \{\bigcup_{i,\lambda} T_{i\lambda}\},$$
 see Fig. (3).



Third-step. To construct the 3-manifold  $W^3$  bounded by K', we make use of the method described schematically in Fig. (4), which was already used in the proof of the theorem in [4], p. 267 $\sim$ 269, Fig. 5.

 $W_+ = \bigcup_{0 \le t} F_t^2$  and  $W_- = \bigcup_{t \le 0} F_t^2$  are both homeomorphic to a solid torus perhaps with a large genus, therefore  $W^3$  gained by the natural identification on  $F_0^2 = W_+ \cap R_0^3 = W_- \cap R_0^3$  is homeomorphic either to a 3-ball or to  $\#(S^1 \times S^2) - \mathring{\Delta}^3$ , since K' is symmetric with respect to  $R_0^3$ .

This completes the proof.



#### 3. A fusion of 2-knots<sup>6</sup>

A collection of the mutually disjoint 2-knots  $\{K_1^2, K_2^2, \dots, K_n^2\}$  is called a splitted 2-link, if there exists a collection of the mutually disjoint combinatorial 4-balls  $V_1, V_2, \dots, V_n$  such that  $V_i \supset K_i$  ( $i=1, 2, \dots, n$ ) in  $R^4$ . Especially, a splitted 2-link is called a trivial 2-link, if each component  $K_i$  is unknotted? in  $R^4$  ( $i=1, 2, \dots, n$ ).

DEFINITION (3.1). If there are a collection of the 3-balls  $B_1, B_2, \dots, B_{n-1}$  and a splitted 2-link  $\{K_1^2, K_2^2, \dots, K_n^2\}$  such that, for each  $B_i, B_i \cap K_j = \partial B_i \cap K_j$  is a 2-ball  $E_{i,j}$  for just two 2-knots  $K_j$  of the 2-link  $(i=1, 2, \dots, n-1, 1 \le j \le n)$ , and that the 2-sphere  $K=(\bigcup_j K_j - \bigcup_{i,j} E_{i,j}) \cup (\bigcup_i \partial B_i - \bigcup_{i,j} E_{i,j})$  is a 2-knot in  $R^4$ , then the 2-knot K is called a fusion of the splitted 2-link.

**Lemma (3.2).** If a 2-knot  $K^2$  is a fusion of the splitted 2-link  $\{S_1^2, S_2^2, \dots, S_n^2\}$ , then  $c(\{K\}) \leq \sum_{i=1}^n c(\{S_i\})$ .

Proof. Since the 2-link is splitted, there is an ambient isotopy  $\xi$  of  $R^4$  under which the pair  $(p, \xi(S_j))$  is a simple pair for the knot-type  $\{S_j\}$  by a projection p for all  $\{S_j\}$   $(j=1, 2, \cdots, n)$ , and moreover  $p(\xi(S_j)) \cap p(\xi(S_k)) = \phi$   $(j \neq k)$ . For convenience' sake, we denote  $\xi(S_j)$ ,  $\xi(B_i)$ ,  $\xi(E_{i,j})$  by  $S_j$ ,  $B_i$ ,  $E_{i,j}$ , again, where the 3-balls  $B_i$   $(i=1, 2, \cdots, n-1)$  belong to the collection of the 3-balls in the construction of the fusion K.

Let the 2-balls  $E_{i,j} = B_i \cap S_j$  and  $E_{i,k} = B_i \cap S_k$  be the intersection of  $\partial B_i$  and  $\bigcup_i S_j$  and let  $\alpha_i$  be the arc in  $B_i$  spanning  $E_{i,j}$  and  $E_{i,k}$ , where  $\alpha_i \cap \partial B_i = \alpha_i \cap (E_{i,j} \cup E_{i,k}) = \partial \alpha_i$  and  $\alpha_i$  is unknotted<sup>8)</sup> in  $B_i$  ( $i = 1, 2, \dots, n - 1$ ). We may

<sup>6)</sup> The concept "fusion" is introduced in [6], p. 364 for 1-knots, but now we will consider an analogy of this concept for 2-knots.

<sup>7)</sup>  $K_i$  bounds a combinatorial 3-ball in  $R^4$ .

<sup>8)</sup> A circle  $\alpha_i \cup \alpha$  bounds a 2-ball in  $B_i^3$  for an arc  $\alpha$  on  $\partial B_i$ .

452 T. Yanagawa

suppose in addition that  $p(\alpha_1 \cup \alpha_2 \cup \cdots \cup \alpha_{n-1})$  contains no double points and each  $p(\alpha_i)$  pierces the singular 2-spheres  $p(S_j)$  at most at its non-singular points.

Let  $U_i^3$  be a sufficiently fine tubular neighborhood of  $\alpha_i$  in  $B_i$ , where  $U_i^3 \cap \partial B_i = U_1^3 \cap (E_{i,j} \cup E_{i,k})$  are two 2-balls, see Fig. (5).

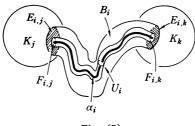


Fig. (5)

According to the properties of the arcs  $\alpha_i$  and the tubes  $U_i^3$ , the 2-sphere  $K' = (\overline{\bigcup_j S_j - \bigcup_{i,j} F_{i,j}}) \cup (\overline{\bigcup_i \partial U_i - \bigcup_{i,j} F_{i,j}})$  is isotopic to  $\xi(K) = (\overline{\bigcup_j S_j - \bigcup_{i,j} E_{i,j}}) \cup (\overline{\bigcup_i \partial B_i - \bigcup_{i,j} E_{i,j}})$ , where  $F_{i,j} = U_i^3 \cap E_{i,j} = U_i^3 \cap \partial B_i$ , and under the projection p,  $c(K') = \sum_{j=1}^n c(S_j)$ . Since the pairs  $(p, S_j)$  are simple pairs for the knot-type  $\{S_i\}$   $(j=1, 2, \dots, n)$  and  $K' \in \{K\}$ , we have

$$c(\{K\}) \le c(K') = \sum_{i=1}^{n} c(S_i) = \sum_{i=1}^{n} c(\{S_i\}).$$

Corollary (3.3). If a 2-knot  $K^2$  is a fusion of a trivial 2-link, then  $c(\{K\})=0$ .

**Lemma (3.4).** Let a 2-knot  $K^2$  bound a 3-manifold  $W^3$  in  $R^4$  such that  $W^3$  is homeomorphic to a 3-ball or to  $\#(S^1 \times S^2) - \mathring{\Delta}^3$ , and that, if  $W^3$  is not a 3-ball,  $W^3$  has a trivial system of 2-spheres<sup>10)</sup> which will be difined as below. Then,  $K^2$  is a fusion of a trivial 2-link in  $R^4$ .

DEFINITION (3.5). A collection of the 2-spheres  $S_1^2$ ,  $S_2^2$ , ...,  $S_{2n}^2$  in a 3-manifold  $W^3$  in  $R^4$  which is homeomorphic to  $\#(S^1 \times S^2) - \mathring{\Delta}^3$ , is called a trivial system of 2-spheres in  $W^3$  if it satisfies the following (1), (2) and (3):

- (1) the collection  $\{S_1^2, S_2^2, \dots, S_{2n}^2\}$  is a trivial 2-link in  $\mathbb{R}^4$ ,
- (2)  $S_i^2 \cup S_{n+i}^2$  bounds a spherical-shell  $N_i^{(1)}$  in  $W^3$  and  $N_i \cap N_j = \phi$  for  $i \neq j$ ,  $i, j = 1, 2, \dots, n$ .

<sup>9)</sup> At the non-multiple points.

<sup>10)</sup> The terminology "a trivial system" is due to R.H. Fox in his paper "Ribbon and Slice" (to appear).

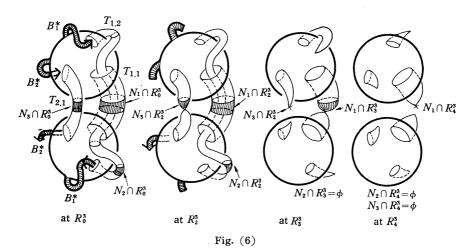
<sup>11)</sup> A combinatorially imbedded  $S^2 \times [0, 1]$ .

(3)  $W^3 - \bigcup_{i=1}^n \mathring{N}_i$  is the closure of a combinatorial 3-sphere removed of the mutually disjoint 2n+1 combinatorial 3-balls.

Proof of (3.4). Let  $\alpha_1, \alpha_2, \cdots, \alpha_{2n}$  be the mutually disjoint arcs in  $Q = W - \bigcup_{i=1}^n \mathring{N}_i$  such that  $\alpha_\lambda$  spans  $S_\lambda$  and  $S_0$  ( $\lambda = 1, 2, \cdots, 2n$ ), where  $S_0$  is a 2-sphere in Q which bounds a combinatorial 3-ball  $B_0^3$  in  $\mathring{Q}$ , and that for sufficiently fine tubular neighborhoods  $U_\lambda$  of  $\alpha_\lambda$  in  $\mathring{Q}$ ,  $\overline{Q - U_1 \cup U_2 \cup \cdots \cup U_{2n} \cup B_0^3}$  is a combinatorial spherical-shell. Then, a boundary 2-sphere K' of  $\overline{Q - U_1 \cup U_2 \cup \cdots \cup U_{2n} \cup B_0^3}$  belongs to the knot-type  $\{K\}$ . Moreover, it is clear that the 2-knot K' is a fusion of a trivial 2-link  $\{S_0^2, S_1^2, \cdots, S_{2n}^2\}$  in  $R^4$ .

**Theorem (3.6).** A 2-knot  $K^2$  bounds a 3-manifold  $W^3$  in  $R^4$  which is homeomorphic to a 3-ball or to  $\#(S^1 \times S^2) - \mathring{\Delta}^3$  and has a trivial system of 2-spheres<sup>12)</sup>, if and only if  $K^2$  is a ribbon 2-knot.

Proof. Remembering the third-step of the construction in the proof of (2, 3), we have easily the imbeddings of the spherical-shell  $N_i$  in  $W^3$ , see Fig. (6). Thus, we have that if K is a ribbon 2-knot, K bounds the desired 3-manifold. The converse follows from (3.4) and (3.3).



### 4. Equivalence of the definitions

We introduce the following properties.

R(3): A 2-knot  $K^2$  satisfies that  $c(\{K\})=0$ .

R(4): A 2-knot  $K^2$  bounds a 3-ribbon in  $R^4$ .

<sup>12)</sup> If  $W^3$  is a 3-ball, we consider that the system is empty.

R(5): A 2-knot  $K^2$  bounds a monotone 3-ball in  $H_+^5$ .

DEFINITION (4.1). An image of a 3-ball  $B^3$  into  $R^4$  by an immersion  $\varphi$  will be called a 3-ribbon bounded by a 2-knot  $K^2$ , if it satisfies the following (1), (2) and (3):

- (1)  $\varphi \mid \partial B$  is an imbedding and  $\varphi(\partial B) = K^2$ ,
- (2) the self-intersection of  $\varphi(B)$  consists of a finite number of the mutually disjoint 2-balls  $D_1, D_2, \dots, D_n$ ,
- (3) for each  $D_i$ , the inverse image  $\varphi^{-1}(D_i)$  consists of a pair of 2-balls  $D'_i$ ,  $D''_i$ , satisfying that

$$D'_i \cap D''_i = \phi$$
,  $D'_i \subset \mathring{B}$ ,  $\partial D''_i = D''_i \cap \partial B$   $(i=1, 2, \dots, n)$ .

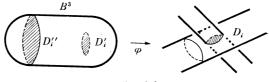


Fig. (7)

DEFINITION (4.2). A 3-ball  $D^3$  will be called a monotone 3-ball bounded by a 2-knot  $K^2$  in  $H_+^5$ , if it satisfies the following (1), (2) and (3):

- (1)  $K^2 = \partial D = D \cap R_0^4$
- (2)  $D^3$  is locally flat and has no minimal point in  $H_+^5$ ,
- (3) in a neighborhood of each (non-maximal) critical point  $p_i(x_1^{(i)}, x_2^{(i)}, x_3^{(i)}, x_4^{(i)}, x_5^{(i)})$ ,  $D^3$  is represented by the equation:

$$\begin{cases} (x_1 - x_1^{(i)})^2 + (x_2 - x_2^{(i)})^2 - (x_4 - x_4^{(i)})^2 = x_5^{(i)} - x_5 \\ x_2 - x_3^{(i)} = 0 \end{cases}$$

For convenience' sake, we will say that

F: A 2-knot  $K^2$  is a fusion of a trivial 2-link.

**Lemma** (4.3). R(4) is equivalent to F.

Proof.  $R(4) \Rightarrow F$ . Let  $V_i^3$  be 3-balls in  $B^3$  such that  $V_i \supset D_i''$ ,  $V_i \cap V_j = \phi$   $(i \neq j)$  and that the annulus  $V_i \cap \partial B$  contains  $\partial D_i''$  in its interior  $(i, j = 1, 2, \dots, n)$ . Let  $P_1^2, P_2^2, \dots, P_{n+1}^2$  be the boundary 2-spheres of  $\overline{B^3 - V_1 \cup \dots \cup V_n}$ , then  $\{\varphi(P_1^2), \varphi(P_2^2), \dots, \varphi(P_{n+1}^2)\}$  is a trivial 2-link in  $R^4$ , and it is clear that  $K^2$  is a fusion of the trivial 2-link.

 $F \Rightarrow R(4)$ . Remembering the technique in the proof of (3.2), we have a 3-ribbon  $J_1^3 \cup \cdots \cup J_n^3 \cup U_1^3 \cup \cdots \cup U_{n-1}^3$  bounded by  $K^2$  in  $R^4$ , where  $J_1^3, \cdots, J_n^3$  are disjoint 3-balls bounded by the 2-knots  $S_1, \cdots, S_n$  respectively and 3-balls

 $U_1^3, \dots, U_{n-1}^3$  are so fine that  $U_1^3 \cap J_j^3$  are small 2-balls in  $J_j^3$   $(1 \le i \le n-1, 1 \le j \le n)$ .

Lemma (4.4). R(5) is equivalent to F.

Proof.  $R(5) \Rightarrow F$ . Let  $D^s$  be a monotone 3-ball bounded by  $K^2$  in  $H_+^5$ . We may suppose that the coordinates of all (non-maximal) critical points of  $D^s$  satisfy that  $x_5^{(i)}=1$   $(i=1, 2, \dots, n-1)$ . Then, by the property (3) in (4.2), it is not so difficult to prove the followings: for a sufficiently small positive number  $\varepsilon$ ,

- (1)  $D^3 \cap R_{1+\epsilon}^4$  is a trivial 2-link  $\{S_1^2, S_2^2, \dots, S_n^2\}$  in  $R_{1+\epsilon}^4$ ,
- (2) the equations

$$\begin{cases} (x_1 - x_1^{(i)})^2 + (x_2 - x_2^{(i)})^2 - (x_4 - x_4^{(i)})^2 \le \varepsilon \\ x_3 - x_3^{(i)} = 0, & x_5 = 1 - \varepsilon \\ |x_4 - x_4^{(i)}| \le \sqrt{\varepsilon} & (i = 1, 2, \dots, n - 1) \end{cases}$$

give the disjoint 3-balls  $B_t^3$  in  $R_{1-\epsilon}^4$ ,

- (3)  $D^3 \cap R^4_{1-\epsilon}$  is a fusion of a trivial 2-link  $\{S'_1, S'_2, \dots, S'_n\}$  by the 3-balls  $B^3_1, \dots, B^3_{n-1}$ , where trivial 2-knots  $S'_i$  are the image of  $S^2_i$  by the orthogonal projection of  $R^5$  onto  $R^4_{1-\epsilon}$ .
- (4)  $D^3 \cap R_{1-s}^4$  and  $K^2$  belong to the same knot-type.

 $F\Rightarrow R(5)$ . By the result (4.3), if  $K^2$  satisfies F,  $K^2$  satisfies R(4); that is,  $K^2$  bounds a 3-ribbon  $\varphi(B)$ . Let  $V^3_i$  be 3-balls such that  $\mathring{B}\supset V^3_i\supset \mathring{V}^3_i\supset D'_i$  and  $V^3_i\cap V^3_j=\varphi$   $(i\pm j,\,i=1,\,2,\,\cdots,\,n)$ . Since  $\varphi$  imbeds  $\overline{B^3-V^3_1\cup\cdots\cup V^3_n}$  into  $R^4_0$  and  $\{\varphi(\partial V^3_1),\,\cdots,\,\varphi(\partial V^3_n)\}$  is a trivial 2-link in  $R^4_0$ , we can suspend these 2-spheres  $\varphi(\partial V^3_1),\,\cdots,\,\varphi(\partial V^3_n)$  from n points of  $R^4_1$ . With a little modification, we have a monotone 3-ball  $D^3$  bounded by  $K^2$  in  $H^5_+$ .

Remembering (3.3) and (3.4), we have that  $\mathbf{R}(3) \Leftrightarrow \mathbf{F}$ , and with (4.3) and (4.4), finally we have the following

**Theorem** (4.5). R(3), R(4) and R(5) are equivalent to F.

We refer to the following results.

All 2-knots are "slice-knot", see [7].

There is a 2-knot which is not "simply-knotted 2-knot", see [2].

Then, we can assert that the concept "ribbon knot" is different from the concept "slice knot" for 2-knots, while we have not yet succeeded to distinguish one from another for 1-knots.

#### 5. An equivalence relation

Let  $K^2$  be a ribbon 2-knot which is knotted in  $R^4$ . Then, by (3.6) and (3.4),  $K^2$  is a fusion of a trivial 2-link  $\{S_0^2, S_1^2, \dots, S_{2n}^2\}$  in  $R^4$ . In the following, we will use the same notations as in the proof of (3.4). We may suppose that

**P**<sub>1</sub>: A 2-sphere  $S_0^2$  and the spherical-shells  $N_1$ ,  $N_2$ , ...,  $N_n$  are splitted in  $R^4$ , where  $\partial N_i = S_i^2 \cup S_{n+i}^2$  (i=1, 2, ..., n).

 $P_2$ :  $S_{\lambda}^2 \cap H^4[-1, 1] = (S_{\lambda}^2 \cap R_0^3) \times [-1, 1] \ (\lambda = 0, 1, \dots, 2n)$ .

 $P_3$ :  $N_1 \cap R_0^3$ , ...,  $N_n \cap R_0^3$  are annuli on a plane in  $R_0^3$ .

The 3-balls  $B_1^3$ , ...,  $B_{2n}^3$  and the arcs  $\alpha_1$ , ...,  $\alpha_{2n}$  which cause the fusion have the following properties  $P_4$ ,  $P_5$  and  $P_6$ :

- $P_4$ : Since the 2-link  $\{S_0^2, S_1^2, \dots, S_{2n}^2\}$  is trivial, the arcs  $\alpha_1, \dots, \alpha_{2n}$  are moved into  $R_0^3$  by an ambient isotopy of  $R^4$ . Since  $\mathring{\alpha}_{\lambda}$  is contained in  $B_{\lambda}^3$  ( $\lambda = 1, 2, \dots, 2n$ ), if we suppose that a finite subcomplex  $B_{\lambda}^3$  of  $R^4$  is in a general position with respect to the hyperplane  $R_0^3$ , there is a sufficiently narrow band  $b_{\lambda}^2$  containing  $\alpha_{\lambda}$  in  $B_{\lambda}^3 \cap R_0^3$  which spans a circle  $c_0 = S_0^2 \cap R_0^3$  and a circle  $c_{\lambda} = S_{\lambda}^2 \cap R_0^3$  ( $\lambda = 1, 2, \dots, 2n$ ).
- **P**<sub>5</sub>: For a sufficiently small positive number  $\varepsilon$ ,  $B_{\lambda}^{3} \cap H^{4}[-\varepsilon, \varepsilon]$  contains a 3-ball  $U_{\lambda}^{3}$  which is level-preserving-isotopic to  $b_{\lambda}^{2} \times [-\varepsilon, \varepsilon]$  leaving the 2-balls  $U_{\lambda}^{3} \cap S_{0}^{2}$  and  $U_{\lambda}^{3} \cap S_{\lambda}^{2}$  fixed  $(\lambda = 1, 2, \dots, 2n)$ .
- **P**<sub>6</sub>: In fusing  $\{S_0^2, S_1^2, \dots, S_{2n}^2\}$  to get a 2-knot  $K^2$ , we make use of the 3-balls  $U_1^3, \dots, U_{2n}^3$  instead of the 3-balls  $B_1^3, \dots, B_{2n}^3$ , and we will denote the new 2-knot belonging to  $\{K^2\}$  by  $\tilde{K}^2$ .

We want to simplify the cross-sections of the 2-knot  $\tilde{K}^2$  as follows.

Let  $\theta$  be an orthogonal projection of  $R_0^3$  onto a plane  $R^2$ , and if  $\theta(b_{\lambda}^2) \cap \theta(b_{\mu}^2)$   $\pm \phi$   $(1 \le \lambda, \mu \le 2n)$ , we may suppose that  $U_{\lambda}^3$  and  $U_{\mu}^3$  are in the position as shown in  $(8_1)$  in Fig. (8). Move  $U_{\lambda}^3$  and  $U_{\mu}^3$  isotopically in  $R^4$  so as to be in the position in  $(8_2)$ . In the next step, lift up the tube in the level  $R_{\epsilon}^3$  as shown in  $(8_3)$ . Replace these in a general position again, and we have the situation in  $(8_4)$ . Thus, we have the following lemma.

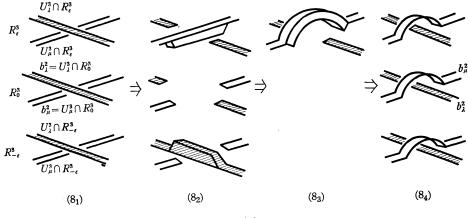
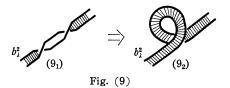


Fig. (8)

**Lemma** (5.1). We can exchange the over-and-under passing relation with respect to  $x_3$ -coordinate between  $b_{\lambda}^2$  and  $b_{\mu}^2$   $(1 \le \lambda, \mu \le 2n)$  preserving the 2-knot type of  $\tilde{K}^2$ .

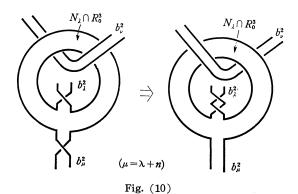
We will consider how to eliminate the twists of the band  $b_{\lambda}^2$  in the following three steps.

(1) If  $b_{\lambda}^2$  contains an even number of twists, we perform a modification as follows:



This modification is an isotopy only in the subspace  $R_0^3$  in  $R^4$ , but in each level  $R_t^3$  ( $-\varepsilon \le t \le \varepsilon$ ), the similar modification can be performed for  $U_{\lambda}^3 \cap R_t^3$ , therefore we can understand this modification as an isotopy of  $R^4$ .

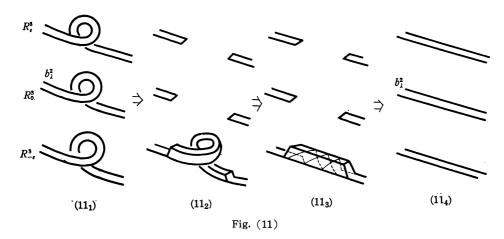
(2) If  $b_{\lambda}^2$  contains only one twist, we consider an orientable 2-surface  $F = \{(B_0^3 \cup N_1 \cup \cdots \cup N_n) \cap R_0^3\} \cup b_1^2 \cup \cdots \cup b_{2n}^2$ . Since the fusion in the present step depends on the 3-manifold  $W^3$ , and since  $F \cup (\tilde{K}^2 \cap H_+^4)$  bounds an orientable 3-manifold  $(B_0^3 \cup N_1 \cup \cdots \cup N_n \cup U_1^3 \cup \cdots \cup U_{2n}^3) \cap H_+^4$  (a solid torus with a large genus), the surface F should be orientable, see Satz I, §64 in [9]. Therefore, there must be another twist on a band  $b_{\mu}^2$  ( $\mu \sim \lambda = n$ ). Hence, we consider the following replacement of F in  $R_0^3$ , see Fig. (10).



After this replacement, the twist on  $b_{\mu}^2$  is transferred on  $b_{\lambda}^2$ . This move can be easily extended to a modification of  $W^3$  in  $R^4$ , and the band  $b_{\nu}^2$  (, more precisely the tube  $U_{\nu}^3$ ) is left fixed through the modification, even if  $b_{\nu}^2$  links with  $N_{\lambda} \cap R_0^3$  (or  $N_{\mu} \cap R_0^3$ ) in  $R_0^3$  as shown in Fig. (10).

(3) After the modifications in (1) and (2), each band  $b_{\lambda}^2$  contains a finite

number of cirri as in  $(9_2)$ . If we exchange the over-and-under passings of  $b_{\lambda}^2$  itself by (5.1), we may suppose that the band  $b_{\lambda}^2$  contains just one cirrus. Here, as in the proof of (5.1), we can pull down  $U_{\lambda}^3$  onto  $R_{-\epsilon}^3$  isotopically in  $R^4$  as shown in (11<sub>1</sub>) and (11<sub>2</sub>) in Fig. (11). In  $R_{-\epsilon}^3$ , we stretch this solid cylinder and pull up again so that each cross-section contains no cirrus as shown in (11<sub>3</sub>) and (11<sub>4</sub>).



Hence, we have

**Lemma** (5.2). We can cancel the twists and the cirri of  $b_{\lambda}^{2}$   $(1 \le \lambda \le 2n)$  preserving the 2-knot type of  $\tilde{K}^{2}$ .

**Theorem** (5.3). Let  $K^2$  be a ribbon-2-knot, then there is a 3-manifold  $W^3$  and  $\tilde{K}^2$  in  $R^4$ , which belongs to  $\{K^2\}$ , satisfying the following (1), (2), (3) and (4):

- (1)  $\partial W^3 = \tilde{K}^2$ , and  $W^3$  is symmetric with respect to  $R_0^3$
- (2)  $W^3 \approx B^3$  or  $W^3 \approx \#(S^1 \times S^2) \mathring{\Delta}^3$ , and moreover, if  $W^3 \approx B^3$ ,
  - (3) W<sup>3</sup> has a trivial system of 2-spheres,
- (4)  $W^3 \cap R_0^3$  is an orientable surface F, which has a basis  $\{\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_n\}$  of  $H_1(F)$  such that both  $\alpha_1 \cup \dots \cup \alpha_n \cup \alpha_1' \cup \dots \cup \alpha_n'$  and  $\beta_1 \cup \dots \cup \beta_n \cup \beta_1' \cup \dots \cup \beta_n'$  are trivial links in  $R_0^3$ , where both  $\alpha_i \cup \alpha_i'$  and  $\beta_i \cup \beta_i'$  bound annuli on  $F(i=1, 2, \dots, n)$ .

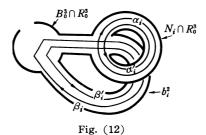
**Corollary** (5.4). Let  $K^2$  be a ribbon 2-knot, there is a ribbon 2-knot  $\tilde{K}^2$  belonging to  $\{K^2\}$  satisfying the following (1) and (2)

(1)  $\tilde{K}^2$  is symmetric with respect to  $R_0^3$ ,

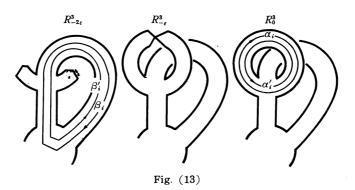
<sup>13) ≈</sup> means to be homemorphic to.

(2) there is a locally flat 2-ball  $\tilde{D}^2$  in  $H^4_-$  such that a 2-knot  $(\tilde{K}^2 \cap H^4_+) \cup \tilde{D}^2$  is an unknotted 2-knot in  $R^4$ .

Proof of (5.3). If  $K^2$  is unknotted in  $R^4$ , the theorem is trivial. Hence we will consider the case that  $K^2$  is knotted in  $R^4$ . Let  $\tilde{K}^2$  be a 2-knot satisfying  $P_1, \dots, P_6$  described in the beginning of this section. Let  $W^3$  be a 3-manifold  $B_0^3 \cup N_1 \cup \dots \cup N_n \cup U_1^3 \cup \dots \cup U_{2n}^3$ . Then,  $W^3 \cap R_0^3 = \{(B_0^3 \cup N_1 \cup \dots \cup N_n) \cap R_0^3\} \cup b_1^2 \cup \dots \cup b_{2n}^2$ . Let  $\alpha_1, \alpha_i', \beta_i$  and  $\beta_i'$  ( $i=1, 2, \dots, n$ ) be the simple closed curves on F described in Fig. (12), then by (5.1) and (5.2) they satisfy the conditions (4) in (5.3).



Proof of (5.4). If  $K^2$  is unknotted in  $R^4$ , it is obvious. If  $K^2$  is knotted in  $R^4$ , we consider the 3-manifold  $W^3$  and  $\tilde{K}^2$  in  $R^4$  in (5.3). Then, the construction of the 2-ball  $\tilde{D}^2$  is described in Fig. (13). Moreover if we apply the method in the proof of Theorem in [4], see Fig. 5, p. 269 in [4], it is not so difficult to construct a 3-ball bounded by  $(\tilde{K}^2 \cap H^4_+) \cup \tilde{D}^2$  in  $R^4$ .



Now, we will define an equivalence relation between 2-knots.

DEFINITION (5.5). Two 2-knots  $K_0^2$  and  $K_1^2$  will be called cobordant and denoted by  $K_0^2 \sim K_1^2$ , if and only if there exists a 3-manifold  $M^3$  satisfying the following (1), (2), (3) and (4):

(1)  $M^3$  is homeomorphic to  $S^2 \times [0, 1]$ ,

- (2)  $M^3$  is locally flat in  $H^5[0, 1],^{14}$
- (3)  $\partial M^3 = K_0^2 \cup (-K_1^2)$ , and  $K_i^2 = M^3 \cap R_i^4$  (i=0, 1), 15)
- (4)  $M^3 \cap R_t^4$  is connected for each  $t \ (0 \le t \le 1)$ .

Clearly we have

**Theorem** (5.6). The cobordant relation "~" is an equivalence relation.

**Lemma** (5.7). If a 2-knot  $K^2$  is a ribbon 2-knot, then  $K^2 \sim 0^2$ , where  $0^2$  is a trivial 2-knot in  $R^4$ .

Proof. Let  $X^3$  be a compact, orientable 3-manifold in  $R^5$ . The ordinary cross-section of  $X^3$  by a hyperplane  $R_t^4$  is a compact, orientable 2-manifold. If  $X^3$  is represented by the next equation (\*) in a neighborhood of a point  $p(\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{x}_4, \alpha)$ :

(\*) 
$$\begin{cases} (x_1 - \bar{x}_1)^2 - (x_2 - \bar{x}_2)^2 + (x_4 - \bar{x}_4)^2 = x_5 - \alpha \\ x_3 - \bar{x}_3 = 0 \end{cases},$$

the transformation from the ordinary cross-section  $X^3 \cap R^4_{\alpha-\epsilon}$  onto the ordinary cross-section  $X^3 \cap R^4_{\alpha-\epsilon}$  (for a small number  $\varepsilon > 0$ ) is a hyperbolic transformation in  $R^5$ .

In the following, we want to construct a 3-manifold  $M^3$  which satisfies not only the conditions (1), (2), (3) and (4) in (5.5) but  $M^3 \cap R_0^4 = K^2$ ,  $M^3 \cap R_1^4 = 0^2$ . If  $K^2$  is unknotted in  $R_0^4$ , the existence of the 3-manifold is clear, therefore we will suppose that  $K^2$  is knotted in  $R_0^4$ . The 3-manifold will be obtained by the following six steps.

- (1) Consider a 2-knot  $\tilde{K}^2$  belonging to  $\{K^2\}$  and bounding the 3-manifold  $W^3$  in (5.3), see (14<sub>1</sub>) in Fig. (14).
- (2) Between  $R_0^4$  and  $R_{1/2}^4$ , we perform the hyperbolic transformations as shown schematically in  $(14_1)$ ,  $(14_2)$  and  $(14_3)$ . In  $(14_2)$ , we show the exceptional cross-section of  $M^3$  by  $R_{1/4}^4$  and the cross-section by  $R_0^3$  in  $R_{1/4}^4$  is similar to that by  $R_{-\epsilon}^3$  in Fig. (13). The cross-section by  $R_0^3$  in  $R_{1/2}^4$  is similar to that by  $R_{-\epsilon}^3$  in Fig. (13), and the cross-section by  $R_0^3$  in  $R_{1/2}^4$  is similar to that by  $R_{-\epsilon}^3$  in Fig. (13). This transformation satisfies the equation (\*) in a sufficiently small neighborhood in  $R_0^4$  of each saddle point at  $R_0^3$  in  $R_{1/4}^4$ .

14) 
$$R_{t}^{4} = \{(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}) | x_{5} = t\}$$

$$H_{+}^{5} = \{(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}) | x_{5} \ge 0\}$$

$$H_{5}^{6}(J) = \{(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}) | x_{5} \in J\}$$

The 3-manifold  $M^3$  is locally flat in  $H^5[0, 1]$  if the pair  $(Lk(p, M^3), Lk(p, H^5[0, 1])$  is a trivial sphere pair for  $p \in M^3$  and a trivial ball pair for  $p \in \partial M^3$ .

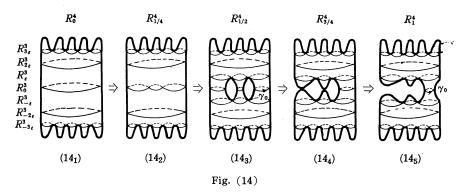
<sup>15)</sup> Identify 2-knot  $(K_i^2, R^4)$  with a 2-knot  $(K_i^2, R_i^4)$ .  $(-K^2)$  is the reversely-oriented 2-knot for  $K^2$ .

- (3) As shown in the proof of (5.3), the cross-section of the 2-surface by  $R_0^3$  in  $R_{1/2}^4$  is a trivial 1-link, say  $\gamma_0 \cup \gamma_1 \cup \cdots \cup \gamma_n$  with n+1 components.
- (4) Between  $R_{1/2}^4$  and  $R_{3/4}^4$ , we will contract n circles  $\gamma_1, \dots, \gamma_n$  to points continuously as shown in  $(14_3)$  and  $(14_4)$  so that in a small neighborhood in  $R^5$  of each pinching point at  $R_0^3$  in  $R_{3/4}^4$ , the transformation is given by the equation (\*\*):

(\*\*) 
$$\begin{cases} (x_1 - \bar{x}_1)^2 + (x_2 - \bar{x}_2)^2 - (x_4 - \bar{x}_4)^2 = \bar{x}_5 - x_5 \\ x_3 - \bar{x}_3 = 0 \\ \bar{x}_5 = 3/4 \end{cases}$$

- (5) We have finally constructed a 2-knot  $\hat{K}^2$  in  $R_1^4$  which satisfies the following three properties:
  - (5<sub>1</sub>)  $\hat{K}^2$  is symmetric with respect to  $R_0^3$  in  $R_1^4$ ,
  - (5<sub>2</sub>)  $\hat{K}^2 \cap R_0^3$  is a trivial 1-knot  $\gamma_0$  in  $R_0^3$  in  $R_1^4$ ,
  - (5<sub>3</sub>) If we remind the proof of (5.4), a 2-knot  $K_1^2$  is unknotted in  $H_+^4$ , where  $K_1^2$  is a union of a 2-ball  $\hat{K}^2 \cap H_+^4$  and a 2-ball  $D^2$  which is bounded by  $\gamma_0$  in  $R_0^3$ .
- (6) Then,  $\hat{K}^2 = K_1^2 * (-K_1^2)^{16}$  is a trivial 2-knot in  $R_1^4$ . By the same method as in the proof of theorem in [4], we can construct the desirable 3-manifold  $M^3$  in  $H^5[0, 1]$  which is bounded by  $\tilde{K}^2$  and the trivial 2-knot  $\hat{K}^2$ .

This completes the proof of (5.7).



**Lemma** (5.8). For an arbitrary 2-knot  $K^2$ ,  $K^2*(-K^2)$  is cobordant to a ribbon 2-knot.

Proof. A 2-knot  $K^2$  in  $R_0^4$  can be placed in a position as follows:

<sup>(16) \*</sup> means the knot-product; that is,  $K^2 = K_1^n * K_2^n$  if there exists a hyperplane  $P^3$  in  $R^4$  such that  $k = K^2 \cap P^3$  is a 1-knot bounding a 2-ball  $D^2$  in  $P^3$  and that a 2-knot  $D^2 \cup (P_+^4 \cap K^2)$  belongs to  $\{K_1^2\}$  and a 2-knot  $D^2 \cup (P_+^4 \cap K^2)$  to  $\{K_2^2\}$ , where  $P_{\pm}^4$  are half 4-spaces bounded by  $P^3$  in  $R^4$ . Cf. the argument in §1 in [10].

- (1)  $K^2 \cap R_{3g}^3$  is a knot k in  $R_{3g}^3$ ,
- (2)  $K^2 \cap H^4[3\varepsilon, \infty)$  has no minimal point,
- (3)  $K^2 \cap H^4[\mathcal{E}, 3\mathcal{E}]$  has no maximal point,
- (4) all minimal points are at the level  $R_{\varepsilon}^3$ .

Place a 2-knot  $(-K^2)$  in the symmetric position to  $K^2$  with respect to  $R_0^3$ , and product them as shown in  $(15_1)$  in Fig. (15). Then, the process from  $(15_1)$  to  $(15_5)$  follows almost the opposite course of the process from  $(14_1)$  to  $(14_5)$  in the proof of (5.7). The cross-section by  $R_0^3$  in  $R_{3/4}^4$  is the same as that by  $R_{2\epsilon}^3$  in  $R_0^4$ . In the final stage  $(15_5)$ , we have a 2-knot  $K_1^2$  in  $R_1^4$  which satisfies the followings:

- (1)  $K_1^2$  is symmetric with respect to  $R_0^3$  in  $R_1^4$ ,
- (2)  $K_1^2 \cap H_+^4$  contains no minimal point.

Then, the 2-knot  $K_1^2$  is a ribbon 2-knot, see [2], [3].

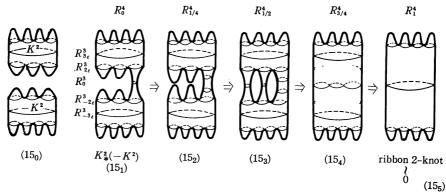


Fig. 15

Concerning the knot-product "\*", we have

$$K_1^2 * K_2^2 = K_2^2 * K_1^2$$
, and  $K_1^2 * (K_2^2 * K_3^2) = (K_1^2 * K_2^2) * K_3^2$ , see Theorem 1 in [10].

**Lemma** (5.9). If  $K_0^2 \sim K_1^2$  and  $L_0^2 \sim L_1^2$  for 2-knots  $K_0^2$ ,  $K_1^2$ ,  $L_0^2$  and  $L_1^2$ , then  $K_0^2 * L_0^2 \sim K_1^2 * L_1^2$ .

Proof. There exist 3-manifolds  $M_1^3$  and  $M_2^3$  which satisfy the following (1), (2), (3) and (4):

- (1)  $M_i^3$  is homeomorphic to  $S^2 \times [0, 1]$  (i=0, 1),
- (2)  $M_i^3$  is locally flat in  $H^5[0, 1]$ ,
- (3)  $\partial M_1^3 = K_0^2 \cup (-K_1^2), \ \partial M_2^3 = L_0^2 \cup (-L_1^2),$

$$K_{i}^{2}=M_{1}^{3}\cap R_{i}^{4}$$
 and  $L_{i}^{2}=M_{2}^{3}\cap R_{i}^{4}$   $(j=0, 1)$ ,

(4)  $M_1^3$  and  $M_2^3$  are splitted by an hyperplane  $Y^4$  in  $R^5$  which is orthogonal to the hyperplane  $R_t^4$  ( $0 \le t \le 1$ ).

Then, it is not difficult to see that  $K_0^2 * L_0^2 \sim \hat{K}_1^2$ , where  $\hat{K}_1^3$  is a fusion of the 2-knots  $K_1^2$  and  $L_1^2$  in  $R_1^4$  by a sufficiently fine tube  $U^3$  for which  $U^3 \cap (Y^4 \cap R_1^4)$  is a 2-ball  $D^2$ . Since  $K_1^2$  and  $L_1^2$  are splitted by a hyperplane  $Y^4 \cap R_1^4$  in  $R_1^4$ , the fusion in the present step is surely the product; that is,  $\hat{K}_1^2 = K_1^2 * L_1^2$ . This completes the proof.

As the consequence of (5.9), the set  $\mathfrak{G}=(\text{all }2-\text{knots})/\sim$  has an abelian semi-group structure, where the group operation is inherited from the knot-product operation \* of 2-knots. Since we can find the inverse element for each element of the semigroup  $\mathfrak G$  by (5.8), we have the final theorem in this paper:

## Theorem (5.10). S is an abelian group.

In comerison with the result by M. A. Kervaire in [7], we must have a question: Does there exist a 2-knot non-cobordant to  $0^2$  in the present sense? Nevertheless, it is true that if a 2-knot  $K^2$  is cobordant to  $0^2$ , then there exists a locally flat 3-ball  $B^3$  in  $H_5^4$  satisfying the following (1) and (2):

- (1)  $B^3 \cap R_0^4 = \partial B^3 = K^2$ ,
- (2)  $B^3$  has only one maximal point but no minimal point.

Therefore, if we conjecture that "the method of the calculation of  $\pi_1(R^4-K^2)$  in p. 133~139 in [5] is available for the calculation of  $\pi_1(H_+^5-B^3)$ ", then we will be able to conclude the following:

(5.11). 
$$\pi_1(H_+^5 - B^3) = \mathbf{Z}.$$

KOBE UNIVERSITY

#### References

- [1] H. Gluck: The embedding two-spheres in the four-sphere, Trans. Amer. Math. Soc. 104 (1962), 308-333.
- [2] T. Yajima: On simply-knotted spheres in R4, Osaka J. Math. 1 (1964), 133-152.
- [3] F. Hosokawa and T. Yanagawa: Correction to "Is every slice knot a ribbon knot?" (to appear).
- [4] H. Terasaka and F. Hosokawa: On the unknotted sphere  $S^2$  in  $E^4$ , Osaka Math. J. 13 (1961), 265–270.
- [5] R.H. Fox: A quick trip through knot theory, Topology of 3-manifolds and Related Topics, edited by M.K. Fort Jr. Prentice Hall, 1963.
- [6] F. Hosokawa: A concept of cobordism between links, Ann. of Math. 86 (1965), 362–373.

- [7] M.A. Kervaire: Les noeds de dimension superioures, Bull. Soc. Math. France 93 (1965), 225-271.
- [8] C.D. Papakyriakopoulos: On Dehn's Lemma and the asphericity of knots, Ann. of Math. 66 (1957), 1-26.
- [9] H. Seifert und W. Threlfall: Lehrbuch der Topologie, Springer Verlag, 1935.
- [10] H. Noguchi: Obstructions to locally flat embeddings of combinatorial manifolds, Topology 5 (1966), 203-213.