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Chapter 1  General Introduction

1.1 Kinetic modelling of biological systems
In physics and chemistry, kinetic models have been used to study system dynamics since the
18" century (Wisniak 2005, Oliveira et al. 2016), but have only begun receiving attention from
biologists since the 20" century (Bailey and Ollis 1986, Grima and Schnell 2008). Thus, many
methodologies, algorithms, and theoretical models used in physics and chemistry have been
applied for establishing kinetic models in biological field (Gruebele and Thirumalai 2013). The
most well-known models in early stage of biological modelling are Michaelis-Menten model
which describes the enzyme-catalyzed reactions (Michaelis and Menten 1913) and Monod
model for the growth of microorganisms (Monod 1949). Modelling biological systems is more
difficult than modelling physical or chemical systems due to the stochastic nature of, intrinsic
multi-scale, and fluctuations within biological processes (Resat et al. 2009). In 1999, McAdams
et al. showed the importance of stochastic biochemical reactions in guarantee of biological
systems’ functions. The multiscale of biological system comes from the interactions of many
elements at different levels from molecular, cellular, tissue, body, to society. The low copy
numbers of biological objects lead to high fluctuations in biological systems. Despite those
difficulties, once a biological system is described by an adequate model, researchers can have
new insights into a particular problem, generate hypotheses, and design new experiments
(Koide et al. 2009, Motta and Pappalardo 2012, Torres and Santos 2015). Simulating kinetic
models on computer (in silico study) are speedy, economical, and able to easily satisfy many
conditions that are impossible to be realized in reality (e.g., in vitro study) (Fig. 1.1).

Kinetic models have been applied to biological systems from subcellular scale, cellular
scale, to tissue or whole organism scale (Martins et al. 2010, Castiglione et al. 2014). On the
subcellular scale, modelers usually model gene regulatory networks or cell signaling pathways,

and ordinary and partial differential equations are commonly selected to describe molecular



dynamics (Rangamani et al. 2013, Selekman et al. 2013, Deshpande and Spector 2017, Heydari
et al. 2017, Yachie-Kinoshita et al. 2018). On the cellular scale, a single cell is usually
considered as a unit black box, and interactions between cells rather than events occurring
inside a cell are focused. In this situation, it is more effective to use discrete stochastic
approaches such as agent-based models since they can describe the heterogeneity and
fluctuations within a cell population (Schluter et al. 2014, Aland et al. 2015, Libby et al. 2019).
Lastly, targets of multicellular scales are usually particular functional changes in an organ,
organ system, or organism. In most cases, full description of system components is almost
impossible, and differential equations are normally sufficient to model functions using physical

or chemical laws (Taya et al. 1989, Hoehme et al. 2010, Jalali et al. 2015).
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Figure 1.1 The relationship between in vitro study and in silico study in biological field. In
vitro study focuses on new finding, while in silico study explores space not reachable by in

vitro study.

1.2 Modelling approach

In general, models can be categorized into two groups: continuum models and agent-based
models (Byrne and Drasdo 2008). Normally, continuum models are developed from ordinary
or partial differential equations that describe the average of the whole cell population rather
than individual cells. This kind of model is suitable for understanding the stability and general

qualitative features of the cell population. Specially, conventional kinetic models in this group
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for modelling cellular growth are classified as non-structured non-segregated model (e.g.
Monod equation for growth of microorganisms), structured non-segregated model, and non-
structured segregated model (Fig. 1.2). It is referred to as structured model when cell
population is considered as multicomponent system instead of one component system (Bapat
etal. 2006, Steuer et al. 2006). If the model describes cell to cell heterogeneity, it is considered
as segregated model (Taya et al. 1989, Fordyce and Rawlings 1996). In real cell population,
the situation is structured and segregated. When it comes to modelling, in most cases non-

structured non-segregated models are used due to its simplicity (Bailley and Ollis, 1986).
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Figure 1.2 Different conventional modeling approaches for cell population kinetics (Bailey
and Ollis,1986).

In contrast, agent-based models, including on-lattice models and off-lattice models,
simulate the multicellular system at the single-cell level, and therefore, are more appropriate
for quantitative analysis and describing the heterogeneity of a cell population (Metzcar et al.
2019, Nava-Sedeno et al. 2020). On-lattice models can be further categorized as lattice-gas
cellular automata, cellular automata (CA), and cellular Potts model when one lattice element
is occupied by more than one cell, exactly one cell, and less than one cell, respectively (Metzcar
etal. 2019) (Fig. 1.3). In off-lattice models, cells can be at any location in the continuous space
instead of being restricted by lattice (Hwang et al. 2009). In CA model, each lattice element
takes one of a finite number of states (Moreira and Deutsch 2002). State of each lattice element

is affected by its neighbors via the transition rules which can be deterministic or probabilistic.



Every lattice element updates its state simultaneously at each time step according to the
transition rules. CA models are usually used in tissue engineering, tumor growth, and wound
healing (Hwang et al. 2009). In these biological areas, some cell behaviors such as division,
migration, and differentiation are commonly modeled. To model cell division, two important
transitions rules relates to division probability (cell cycle time) and position to place daughter
cell (Kino-oka et al. 2000, Yashiki et al. 2001, Cheng et al. 2006, Piotrowska and Angus 2009,
Kagawa and Kino-oka 2016). For cell migration modelling, modelers need to decide the
direction, rate, and probability of migration. Previously, transition rules for migration have
been set by considering mechanical confinements, nutrients supply, and inhibitory ‘toxic’’
metabolites (Mansury and Deisboeck 2003), or concentrations of fibronectin, integrin, and
cadherin (Robertson et al. 2007). In case of differentiation modelling, Checa and Prendergast
(2009) determined whether mesenchymal stem cells would make a transition to fibroblasts,

chondrocytes, or osteoblasts based on the level of mechanical stimulus.
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Figure 1.3 A schematic classification of on-lattice models

1.3 Human induced pluripotent stem cells

For decades, stem cells have been used in regenerative medicine and drug screening due to
their capabilities of self-renewal and differentiation into various cell types. Since mouse
somatic cells were successfully dedifferentiated into pluripotent state with four transcription
factors (Oct4, Sox2, KIf4, and c-Myc) by Takahashi and Yamanaka (2006), induced pluripotent
stem cells (iPSCs) have received even more attention. For application and regenerative
medicine, since iPSCs are developed from a patient’s own somatic cells, it helps to avoid any
immunogenic responses as well as controversial use of embryos (Takahashi et al. 2007,
Yamanaka 2012). Many researches have demonstrated that iPSCs show remarkable similarities

to embryonic stem cells (ESCs) in both cell morphology and functionality including



pluripotency and viable chimera formation (Wernig et al. 2007, Maherali et al. 2007).
Therefore, it was believed that human iPSCs (hiPSCs) can be an infinite cell source for
regenerative medicine.

Bioprocessing of hiPSCs comprises some steps including isolation, derivation, large-
scale expansion, differentiation, purification, storage, and distribution of final products (Wang
et al. 2014). Cells from donors are collected and reprogrammed into hiPSCs by transcription
factors. Then, hiPSCs are expanded and differentiated into desired target cells. Finally, the
produced cells are purified before distributed for different aims. In the expansion step,
maintenance of the undifferentiated state of hiPSCs is important since the homogeneity of cell
pluripotency will ensure the success of differentiation step. Conventionally, to maintain the
pluripotency of hiPSCs, cells are cultured with feeder cells that support hiPSC proliferation
and adhesion via supplementation of growth factors and extracellular matrix (Saxena et al.2008,
Villa-Diaz et al. 2013). Two most popular feeder cell types are mouse embryonic fibroblasts
(MEFs) and SNL which is a mouse fibroblast STO cell line transformed with neomycin
resistance genes and murine leukaemic inhibitory factor (LIF). They are believed to be different
in their potential for maintenance of undifferentiated state. In culture with feeder cells, hiPSCs
grow as monolayer colonies and sustain the undifferentiated state. Maintaining the
undifferentiated state of hiPSCs remains challenging during the expansion step. Previously, the
deviation from the undifferentiated state of hiPSCs in culture with feeder cells has been
reported with changes in cell morphology from a small cobblestone-like shape to a large
flattened shape (Takahashi and Yamanaka 2006, Takahashi et al. 2009, Kim et al. 2014). This
unintentional loss of pluripotency leads to heterogeneous cell population that makes it difficult
for long-term maintenance and direct differentiation. In 2014, Kim et al. reported two different
patterns of deviation from the undifferentiated state in hiPSC colonies in culture with SNL and

MEF feeder cells (Fig. 1.4). The deviation from the undifferentiated state of hiPSCs in culture



with SNL feeder cells occurred spontaneously at the central region of colony and was
dependent on colony size. On the other hand, the deviation from the undifferentiated state of
hiPSCs occurred randomly at the peripheral region of colony and was independent on colony
size in culture with MEF feeder cells. At the central regions of colonies, steady decrease of cell
migration, partial detachment of cells with disruption of integrin mediated cell-substrate
interaction, and morphological changes accompanying cell apoptosis were observed with
increasing population density. At the peripheral regions of colonies, loss of E-cadherin
mediated cell-cell interaction was found. After all, they suggested that the most important
factor for occurrence of hiPSC deviations was cell migration which closely related to cell

interactions and morphology.
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Figure 1.4 Deviation from the undifferentiated state of hiPSCs in culture with SNL and MEF

feeder cells (Kim et al. 2014)

14 Effect of cell-cell interaction, cell-substrate interaction, and cell migration on
hiPSCs
Many researchers have attempted to mimic stem cell niche by designing microenvironments in

order to control stem cell fate (Metallo et al. 2007, Lutolf et al. 2009). For that purpose,



understanding how cells interact with their neighboring cells and substrate is necessary. In case
of pluripotent stem cells, it becomes even more important since cadherin-mediated cell-cell
interaction and integrin-mediated cell-substrate interaction are known to influence cell fate
(Metallo et al. 2007, Li et al. 2010, Xu et al. 2010). They both assemble large intracellular
protein complexes via their cytoplasmic domains which regulate cell behavior through
modulation of signaling networks. For survival and self-renewal of pluripotent stem cells, it
was reported that the interplay between Rapl and E-cadherin along the endocytic recycling
pathway (Li et al. 2010), influencing the Oct3/4 and Nanog genes expression by E-cadherin
(Metallo et al. 2007), and modulation of PI3K-Akt pathway which inhibits cell death (Paling
et al. 2004, Armstrong et al. 2006, Xu et al. 2010) via integrin-mediated cell-substrate
interaction played important roles. Also, the down-regulation of E-cadherin was proved to
stimulates Caspase-3 and suppress Bcl-XL gene that led to increase level of cell death
(Watanabe et al. 2007, Ohgushi et al. 2011). Furthermore, it was found that long-term Wnt
activation promoted cell differentiation through B-catenin-induced upregulation of Slug
(Huang et al. 2014). Besides, regulation of cell migration is also one of promising strategies to
control cell fate. During cell migration, cadherin-mediated cell-cell interaction and integrin-
mediated cell-substrate interaction are continuously broken and reformed. This dynamic of cell
interactions triggers a cascade of cell events that starts with the activation of Rho family
GTPase (Arthur et al. 2002). In 2012, Khatau et al. showed that cell nucleus responds to cell
migration that leads to change in gene regulation and nuclear mechanical properties.
Therefore, the possible mechanisms for controlling cell fate decision by influencing the
balance between cell-cell, cell-substrate interactions via altered cell migration have been
addressed recently (Kim and Kino-oka 2014a, Kim and Kino-oka 2015, Shuzui et al. 2019b).
In culture on dendrimer surface, it was shown that appropriate cell migration leads to formation

of hiPSC colonies. While faster cell migration induced differentiation toward cells of early



mesoderm (Kim and Kino-oka 2014b). In culture with feeder cells, cell migration rate at the
central and peripheral region of colony before the occurrence of deviation was measured. The
analyzed results indicated that there were more slow or fast migrating cells at the central or
peripheral region, respectively, in colonies with deviated cells than in colonies with
undifferentiated cells (Shuzui et al. 2019a). Later, when migration of hiPSCs were accelerated
via alteration of cell-cell interaction, the deviation from the undifferentiated state at the central

region of colonies cultured with SNL feeder cells was avoided (Shuzui et al. 2019b).

1.5  Adhesion energy

The adhesion energy of a hiPSC comes from bonds formed between that cell and it’s adjacent
cells or substrates and are mainly determined by adhesion molecules E-cadherin and integrin,
respectively. Main functions of adhesion energy are controlling the adhesive strength and
morphology of the cell contact (Maitre and Heisenberg 2011). Together with cortical tension,
adhesion energy is a key parameter indicating the interaction between cells and their
surrounding environment. The finding about relation between the force required to separate
contacting cells and the number of E-cadherin molecules in the cells (Chu et al. 2004,
Arboleda-Estudillo et al. 2010) suggested that the number of E-cadherin affected adhesion
energy between cells. Many strategies and techniques have been used to estimate the adhesion
energy such as bioforce probe, atomic force microscopy, and dual pipette assay (Jegou et al.
2008, Moreno-Cencerrado et al. 2017, Daoudi et al. 2004). But it is noteworthy that E-cadherin
does not only bind to other cadherin via the extracellular domain but also bind to the
cytoskeleton via the intracellular domain (Nagafuchi and Takeichi 1988). Therefore, the energy
measured by detaching cells might be different from the adhesion energy which indicates the
binding strength of E-cadherin at the extracellular domain. Similarly, detachment energy is

also usually used to quantify adhesion energy between cell and extracellular matrix. Li et al.



(2003) defined the detachment energy as the work done to break the asp1 bonds and deform
the cell during the detachment process that depended on the number of integrin-fibronectin
complexes formed. In summary, in case of hiPSCs, cell-cell adhesion energy and cell-substrate
adhesion energy are the energies required to detach E-cadherin/E-cadherin bonding between
two cells and integrin/substrate bonding of one cell. These energies are suggested to depend on
the number of E-cadherin and integrin at binding sites. Physically, these energies are

considered as potential energy while kinetic energy is the energy of movement.

1.6  Features of our model

Two main features of our model are the multi-scalability and the modularity. Multiscale
modeling is a type of modelling in which different spatiotemporal scales of a system are
described and linked together. It allow us to express the dynamic exchange of information
across scales of a system (Cilfone et al. 2014). A multiscale model can be built by either
bottom-up or top-down approach (Meier-Schellersheim et al. 2009). In the top-down approach,
the modelers start from the observed features on a highest level of a system, then the
mechanisms on lower levels are inferred. For a biological system, this approach may go from
society to body, organ, tissue, cell, organelle, protein, to gene (Qu et al. 2011). Even though
this type of modeling is relatively simple, it’s variables and parameters are mainly
phenomenological and do not directly connect with actual physiological parameters (Qu et al.
2011). In contrast, in the bottom-up approach, the behaviors of a system on higher levels are
derived from the lower scales after the individual elements and their interactions are described.
The greatest advantage of this modeling approach is that it is suitable for systems with massive
interacting elements (Qu et al. 2011). However, it is usually too complicated and
computationally costly. In this study, our interested phenomenon is the deviation from the

undifferentiated state of hiPSCs in colonies that requires spatiotemporal analysis at many
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scales. Therefore, the multiscale model was developed which described from single cell level
(microscale), colony level (mesoscale), to culture level (macroscale) (Fig. 1.5). On the lowest
level, each cell was expressed by many cell behaviors and could be analyzed separately to
understand the deviation trigger. In this level, the heterogeneity between neighboring cells was
expressed by the model. On the next level, cell colonies which were made up of connected cells
were maintained and expanded by fundamental cell behaviors including cell division, cell
migration, and cell connections. Since the spatial heterogeneity in each colony was realized,
spatiotemporal frequency for occurrence of deviation in colony could be analyzed. Lastly, the
culture level was obtained by the heterogeneity between colonies in the culture vessel. On this

level, the frequency of deviation trigger in whole culture was concerned.

Undifferentiated cell C)

®
Deviated cell 0
Tareet Micro scale Meso scale Macro scale
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4 ; N\
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\_ 1% q y y

Figure 1.5 Multi-scalability of the developed kinetic model for hiPSC culture in this study
The second key feature of our model is the modularity. Modular modeling is a type of
modeling where interchangeable components (modules) are used. According to McClelland
and Rumelhart (1995) and Baldwin and Clark (2000), a module is a unit in a system that
interacts with other modules in the system and accessible via interface. In the biological field,

this modeling method has been mainly applied in system biology (Saez-Rodriguez et al. 2005,
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Marchisio et al. 2013, Avsec et al. 2018, Cheng et al. 2019). In this study, with the idea of
building a modular system for hiPSC culture, each cell behavior as well as culture operation
were modelled separately in different modules (Fig. 1.6). The model was built as “plug-and-
play” form where the main model could be pre-defined by choosing modules from the user
interface. Many modules expressing cell behaviors (e. g. cell division, cell migration, cell
connections), culture operations (e. g. culture seeding), culture environments (e. g. culture
space and time), and outputs (e. g. movement rate calculation) have been built after several
research directions that made up a large module warehouse (Fig. 1.7). Current modules in
warehouse can be modified or new modules can be added according to updated rules or
demands. The modular model helps to express the variety of cell types with different needs.
For a certain culture system, suitable modules can be selected from module warehouse, new
modules can be added if necessary and unused modules can be removed (Fig. 1.8). Therefore,
the model gives access to not only culture of hiPSCs with feeder cells in current study but also
other related systems in future. Advantages of modular biological models including component
reuse and model integration for different use cases have been addressed previously by Petersen
et al. (2014). They believed that modularizations methods would accelerate the pace of

biomedical research.
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1.7  Strategies and objectives of this study

With promising roles in regenerative medicine and drug screening, how to assure hiPSC quality
throughout the cell production process is crucial mission. Focusing on culture of hiPSCs with
feeder cell layers, previous studies have pointed out that anomalous cell migration at the central
and peripheral region of colony is a possible trigger for the loss of hiPSC pluripotency (Shuzui
et al. 2019a). However, many questions have been still remained after all efforts of in vitro
study due to technical limitation that raises the need of kinetic modelling. My strategy was
developing a kinetic model which can help to understand how often deviation occurred in
culture, when cells deviated, and what regions of a colony were subject to deviation. Then, |
firstly used the developed model to understand what caused the heterogeneity of cell migration
where cells at the peripheral region of colony have higher migration rate then cells at the central
region of colony (Chapter 2). From in silico analysis and previous in vitro hypothesis about the
deviation from the undifferentiated state of hiPSCs, | established in silico hypothesis about

deviation from the undifferentiated state of hiPSCs (Chapter 3). The model was validated by
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comparing in silico output and in vitro data. With the validated model, | expected to be able to
deeply understand the trigger for the deviation from the undifferentiated state of hiPSCs

cultured on feeder cells.
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Chapter 2 Understanding the spatial heterogeneity of cell migration in colony

2.1 Introduction
For more efficient stem cell engineering, there is a need to utilize kinetic model instead of only
relying on the empirical knowledge of professionals. It helps to manage processes non-
invasively, control stem cell quality, elucidate the mechanism of the phenomenon of interest,
and predict the outcome. In many cases, kinetic model has been successfully used to predict
stem cell fate as well provide insights into the mechanism underlying some processes
(Viswanathan and Zandstra 2003, MacArthur et al. 2009, Herberg and Roeder 2015).

Heterogeneity of propagated stem cell populations is one of challenges in stem cell
processing that need to be overcome prior to their routine therapeutic application (Chowdhury
et al. 2010, Serra et al. 2012, Chen et al. 2014). Understanding underlying mechanisms of the
heterogeneity is the core issue to keep the cell population homogeneous. Previously, some
reports have shown the heterogeneity of stem cell colonies or aggregation with spatial
heterogeneity in cell state (Bratt-Leau et al. 2009, Kim et al. 2014, Rosowski et al. 2015). Kim
et al. (2014) reported the heterogeneity in cell quality where deviated cells were found at the
central and peripheral region of colony. Concerning this phenomenon, Shuzui et al. (2019a)
analyzed in vitro cell migration rate and showed that cell migration rate was higher at the
peripheral region of colony than at the central region of colony. Furthermore, they suggested
that the anomalous cell migration at those areas are triggers for the deviation from the
undifferentiated state of hiPSCs. This in vitro cell migration rate is resulted from exchange
between neighboring cells and displacement caused by cell division. Due to technical limitation,
it is difficult to understand effect of each of these two factors on the overall in vitro cell
migration rate.

In this chapter, my objective is developing a kinetic model based on cellular automaton

approach to understand the key factor that leads to the heterogeneity of cell migration in hiPSC
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colonies. The contribution of cell exchange and cell division needs to be clearly understood
prior to considering cell migration as triggers for deviation from the undifferentiated state of

hiPSCs in culture with feeder cells.

2.2 Materials and Methods

2.2.1 Culture of hiPSCs

Maintenance of hiPSCs (clone Tic, JCRB1331) were performed in 55-cm? dishes (Corning
Costar, Cambridge, MA) with feeder cells SNL 76/7 (European Collection of Cell Cultures,
Salisbury, UK) or mouse embryonic fibroblasts (MEFs) (ReproCELL Inc., Tokyo, Japan) at
37°C, 5% COa. The surface was coated with 0.1% gelatin and the medium ReproStem
(ReproCELL Inc.) containing 5 ng/mL basic fibroblast growth factor was used. Subculture of
hiPSCs were performed every 5 days. More details about in vitro culture are mentioned in
previous paper (Shuzui et al. 2019a).

A two-dimensional CA which consists an array of cubes having a finite number of states
and can change their states at every time step was used for in silico culture. Depending on the
purpose of each experiment, the simulation was initiated by seeding single or multiple colonies.
In seeding process, we assumed that the adhesion time and lag time are negligible and the
attachment ratio was assumed to be one. Other assumptions were indicated in previous work
(Kagawa and Kino-oka 2016). After that, simulations were executed with four cell behaviors
with time t was increased by a time step At of 0.1 h. LabVIEW (National Instruments Corp.,
Austin, Texas, USA) environment on the commercially available workstation (Precision T7500
workstation, Dell Inc., Round Rock, Texas, USA) was used to execute in silico culture. In this
model, we assumed that the effects of feeder cells on hiPSCs as physical barriers could be
negligible and did not include feeder cells in the model. SNL and MEF feeder cells were

believed to help hiPSCs attach and maintain their undifferentiated state via various growth
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factors and extracellular matrix components. Therefore, the effects of SNL and MEF feeder

cells were realized by different parameter values related to cell growth and cell connections.

2.2.2  Analysis of movement rate of hiPSCs in colony
Movement rates of individual cells in a colony was calculated by the displacement of a cell

divided by the duration of the movement time:

Xe— Xe—ar ) + (Yo = Ye_ge)?
v =\/( t tdt)dt (Y - Year) L (1)

where (X, Y;) and (X;_q4¢, Yi—qt) are coordinates of a cell at culture time t h and (t — dt) h; [,
is the length of the unit cube. t and dt were determined to be 54 h and 6 h, respectively, to
estimate cell migration-related parameters.

The average movement rate against the distance from the center of the colony Vj was
calculated by taking an average of cell movement rate V, of all cells at every 100 pm from the
center of the colony at t =50 h, 90 h, 128 h, and dt = 6 h.

Average cell movement rate, Vy, is the average of cell movement rate V. of all cells at
the central and peripheral regions of the colony, which were determined as the 4 inner- and
outermost cell layers of the colony, respectively. To investigate the relationship between
pushing frequency and average cell movement rate, V. was estimated at t =72 h, 96 h, 120 h,

144 h, and dt = 24 h.

2.2.3 Analysis of cell movement rate toward the outside of colony, V. cos 6

The central and peripheral regions of the colony were determined as the 4 inner- and outermost
cell layers of the colony, respectively, at t = 48 h. The movement rate toward the outside of
colony, V. cos 8, of cells at the central and peripheral regions of the colony were analyzed from

t =48 h to t = 54 h. Angle 8 was determined by 180° — OA_B, where O is the center of the
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colony, A, and B, are positions of cell ¢ at t = 48 h and t = 54 h, respectively. Inward
movement to the center of colony was indicated by negative V. cos 8. In contrast, outward
movement to the outside of colony was indicated by non-negative values. Frequencies of cells

with different value ranges of V. cos 8 were analyzed from three single in silico colonies.

2.2.4 Tracking cell movement in silico

At t =24 h, positions of three cells at the central region and at the edge of colony cultured on
MEF feeder cells were tracked every 30 min for 120 h. Tracked cells at the central region were
marked in yellow and those at the edge of the colony were marked red. Non-tracked cells in

the colony were marked in blue.

2.2.5 Calculation of average frequency of being pushed

Average frequency of being pushed is the average of the frequency that a cell was pushed out
due to the division of other cells. The frequency of one cell being pushed P. (times/h) was
calculated as follows:

__ times being pushed from (t — dt) to ¢
°< dt

(2)

where t =72 h,96 h, 120 h, 144 h, dt =24 h.

2.2.6 Fitting method
The least-squares method was used to find the best fit values of the number of cell layers for
occurrence of contact inhibition (N.), free migration rate (Vi free), ratio of energy for a cell-

cell connection (&), ratio of energy for a cell-substrate connection (&).
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2.2.8 Statistical analysis
To wvalidate simulated results of colony size distribution in the culture vessel against
experimental data at 24 h and 120 h after seeding, Mann—Whitney U test was used at a

significance level of 0.05 (number of colonies: n > 50).

2.3  Results

2.3.1 Model development

Rules of cell connection

Each cell can form cell-cell connections with other cells or cell-substrate connections with the
substrate via cadherin- and integrin- mediated interactions. However, modeling these
interactions at molecular level is a challenging work. Therefore, we came up with an idea of
focusing on the energy that a cell utilizes to form cell-cell and cell-substrate connections. Cell-
cell and cell-substrate connection energies are denoted as E.. and E.g, respectively. The
distance between them should be small enough for a cell to make a connection with another
cell or the substrate cube. Here, | assumed that the unit cube could make a connection with the

target cell when the distance between the center of the cell or substrate unit cube and that of
the target cell cube was not more than /21, (Fig. 2.1). When cell i and cell j made a connection,

the connection energy between them was given by E.. = min(Ec;, E. ;). The connection

energy between cell ¢ and the substrate is given by E s = E¢s ..
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Figure 2.1 Schematic drawing of our model that describes the definition of cell size, cell

connections, and NN cubes surrounding the target cell in case each cell is presented by a cube.
Rules of cell migration

In vitro cell migration is a complex process which involves drastic changes in the cellular
cytoskeleton and the dynamic of cell interactions. Therefore, this process was simplified as
follows: a cell uses energy to break and form cell-cell and cell-substrate connections
immediately, the remaining energy will be used for cell migration. Cells can choose one of
eight distinct directions denoted by the variable dir to migrate to. When cell ¢ migrates to the
direction dir with the rate of V,, ., the variable t, ., a waiting time for the next migration, is
updated as t,, . = [ - V&, where L is the migration distance. The waiting time ¢, . decreases
by At for each time step. If the waiting time is bigger than zero (t,,, . > 0), then cell ¢ does not
actively migrate, but still can be passively exchanged (passive migration) with the NN cells

whose waiting times are less than zero.
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If the waiting time of cell c becomes equal or less than zero (t,, . < 0), the direction
dir and the rate V, . of migration are decided as follows: first, the direction dir is determined
stochastically based on the probability Pry, 45, Which is given by the normalized quantity
Pm.air- 1his normalized quantity is proportional to (i) the term relating to the connection energy
between the target cell cube and the other cell and/or substrate cubes reduced by the migration
(Rm air), (ii) the weight for randomly selecting a space (Q4;,-) (Kino-oka et al. 2000), and (iii)
the possibility of displacement (Hy, 4; = 0 or 1).

A weight for occurrence of migration to the direction dir was defined by the following
equation:

Eg qir
Ep

(3)

Rm,dir =1-

where E, and Ep 4;,- are the total connection energy formed by the target cell before migration
and the total reducing connection energy due to migration to the direction dir, respectively.

E, is defined as follows:

Npn—1

Ep = Z Ec,dir (4)

dir=0

where E. is either E. or E.s, Ny, is the number of NN cubes (N,, = 13 in 2D culture (Fig.

1.5).
Eg q4ir Was defined by equation (3) and must not exceed the maximum migration energy
Emax-
Npn—1
Epaw= ) AE(d;dir) )
dir=0

where AE (d; dir) is the reduced amount of connection energy between the target cell and the

nearest neighbor cubes when the target cell moves in the direction dir.
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Cells cannot migrate to a position where they cannot make any connections with other
cells or the substrate. The migration can occur only when the target cell can make a connection
in new destination with at least one other cell or substrate cube. Cell migration does not occur
once this condition is violated and the possibility of displacement is defined to be zero:
Hp, qir = 0. Otherwise, Hy, 4; = 1 is given.

The probability for selecting dir as the direction of migration p, 4;,- When there is no
other cells neighboring a target cell is given by

_ Rm,dir Qdir Hm,dir
Pm,dir = Npn—1

Zdir'=o(Rm,dir’ -Qdir’ Hm,dir’)

(6)

If the denominator becomes zero, there is no need to calculate the probability because
the target cell cannot migrate in any direction.

The probability for selecting dir as the direction of migration in general is given by

(pm,dir)T(pm,dTr)D
Proair = Non—1 (7)
2dir'=0(Pm,dir')T(Pmaﬁ)D

where (pm qir )T represents the probability that the target cell selects dir as the direction of
migration as if there are no other neighboring cells, and (p,, g7 )p represents the probability
that another cell exists at the destination selects the direction opposite to dir (designated as
dir). If there is no other cell at the destination, then we substitute 1 for (p, gz)p- In this case,
we have Pry, gir = Pmair-

Assumed that cell has a maximum energy that can be used for the migration (E\;,.x)

Emax = Echri,free (8)
where Vi, free represents the migration rate when no connection is broken and m, is the mass
of cell c.

Then, when it migrates in the direction dir, the total reducing connection energy Eg 4;
is subtracted from E . is used for the migration:
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1
EmCVD’ZI,C = Emax — EB 9)

where V,, . is the cell migration rate

Using the two equations above, we obtained the following relationship:

Vine = Vi reev' 1 = EB/Emax = Vinjfreey/1 — i€cc = Jécs (10)
where &.c (ecc = Ece/Emax) aNd €. (ecs = Ecs/Emax) are ratio of energy for cell-cell and cell-
substrate connection in maximum energy, and i and j are the number of broken cell-cell and
cell-substrate connections, respectively.

Rules of cell division

After sufficiently preparing genetic material and mass in each cell cycle, a proliferating cell
divides into two identical daughter cells that continue to grow to their full size. In this model,
only the duplication of one mother cell into two identical daughter cells is described and the
change in cell size is ignored. Proliferating cells divide every generation time t, which is a
stochastic variable given randomly from [0.9%,, 1.1¢,] (uniform distribution) at the beginning
of each cell cycle. The parameter ¢, is the mean generation time which is estimated by
In(2)/u,. u, is a specific growth rate of in vitro cell culture. Each cell has a waiting time for
the next division ¢4 . which equals ¢, at the time of cell birth and is decreased every time step.
When t4 . of a proliferating cell is less than zero, this cell can divide and update t4. as ty . =
tqc + tg. If there are vacant NN cubes, the mother cell puts its daughter cell on one of the
vacant NN cubes stochastically as described previously (Kino-oka et al. 2000). Otherwise, it
first selects one of the closest vacant cubes, then one of the NN cells of the selected vacant
cube is moved to that cube. The procedure is repeated until the mother cell has a vacant NN
cube to place the daughter cell in.

Rules of cell quiescence

We assumed that whenever there is no vacant space in the distance N, from the center of a cell,
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it enters a quiescent state and the waiting time for the next division does not decrease for each
time step. Whenever a vacant space appears at the distance N, from the center of a quiescent

cell, it returns to a proliferating state at the next time step.

2.3.2 Estimation of model parameter values

The length of a side of the unit cube [, was estimated from the averaged cell area A, which
equaled 329 um?and 426 um? in cultures of hiPSCs on SNL and MEF feeder cells, respectively.
[, were 18.1 um and 20.6 um for cells cultured on SNL and MEF feeder cells, respectively.
Mean generation time, E, was calculated by In(2) divided by the specific growth rate of
hiPSCs in culture and equaled 15.8 h and 21.5 h in culture on SNL and MEF feeder cells,
respectively.

The number of cell layers for the occurrence of contact inhibition N, was estimated by
fitting to the experimental growth profile of undifferentiated colonies (Fig. 2.2). Single in silico
colonies were seeded with radius of 9 and 7 cell layers in culture on SNL and MEF feeder cells,
respectively. Initial colony sizes were determined as the average size of in vitro colonies at 24
h from previous paper (Kim et al 2014). The value of N. was changed in the range of [1, 10]
(cell layer) and its best fit values were 7 cell layers (coefficient of determination R? = 0.99)
and 8 cell layers (coefficient of determination R? = 0.99) in culture on SNL and MEF feeder
cells, respectively.

In vitro cell migration rate at the central and peripheral regions of 10 representative
colonies in culture on SNL and MEF feeder cells at 48—54 h were used for fitting free migration
rate Vi, free, Tatio of cell-cell connection &, and ratio of cell-substrate connection &. In silico
colonies were seeded with a radius of 10 cell layers until their sizes reached 0.5 mm?. Then,
the movement rates of cells at the central and peripheral regions were calculated. The value of

Vi free Was changed in the range of [1.0, 15.0] (um/h), .. and &5 were changed in the range
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0f [0.05, 0.35] (-). The combination (Viy, free» Ecc» Ecs) Which gave the closest movement rate to
the experimental data was determined as (4.0 um/h, 0.15, 0.05) and (4.0 um/h, 0.05, 0.15) when
cultured on SNL and MEF feeder cells, respectively. /n silico average movement rate of hiPSCs
at the central and peripheral region were 2.9 £ 1.9 um/h and 5.6 £ 3.3 um/h or 3.6 £ 2.3 um/h
and 5.6 = 3.3 pum/h when cultured on SNL or MEF feeder cells, respectively (Fig. 2.3).
Summarization of parameters values were presented in Table 1.
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Figure 2.2 Estimation of contact inhibition by fitting to time profiles of hiPSC colonies with
undifferentiated cells in cultures on SNL (A) and MEF (B) feeder cells. Closed circle: in vitro
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Figure 2.3 Estimation of Vi, free, €cc, and e by fitting to the average movement rate at the
central and peripheral regions of hiPSC colonies cultured on SNL (A) and MEF (B) feeder
cells. Grey bars: experimental results obtained from 10 colonies. White bars: best fit simulation
results obtained by the least-squares method. Standard deviations were calculated from all cells

in colonies (n > 300)

Table 1 in silico parameters for undifferentiated cells cultured on SNL and MEF feeder cells

Variable Symbol Unit Value

The length of a side of the unit cube l, um 18.1 (SNL), 20.6 (MEF)
Mean generation time tg h 15.8 (SNL), 21.5 (MEF)
The number of cell layers for the occurrence N, cell layer 7 (SNL), 8 (MEF)

of contact inhibition
Free migration rate Vinfree Mm/h 4.0
Ratio of energy for cell-cell connection Ecc - 0.15 (SNL), 0.05 (MEF)

Ratio of energy for cell-substrate connection - 0.05 (SNL), 0.15 (MEF)

2.3.3 Validation of the model

After estimating parameter values, we performed in silico culture of hiPSCs on SNL and MEF
feeder cells for 144 h (Movies S1-2). Position and size of every single colony in in vitro culture
vessels at t = 24 h were estimated and used as initial seeding conditions for in silico culture. In
silico cell density in culture vessels every 24 h and colony size at t = 120 h were calculated and
compared to in vitro data. In silico growth curves were in good agreement with the in vitro data
with high coefficients of determination R? of 0.94 and 0.97 in culture on SNL and MEF feeder
cells, respectively (Fig. 2.4). The boxplots in Fig. 2.5 expressed in vitro and in silico

distributions of colony size in 3 representative culture vessels. These results showed good
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agreement between in vitro and in silico distribution of colony size at t =24 h and t = 120 h.
The Mann—Whitney U test indicated that there was no significant difference in colony size

between in vitro and in silico culture vessels (P > 0.05).
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Figure 2.4 Time profiles of hiPSCs in culture wells with only undifferentiated cells cultured
on SNL (A) and MEF (B) feeder cells. The data represent analytical results obtained from 3

wells. Open square: in vitro data, line: in silico data
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Figure 2.5 Distribution of colony sizes obtained under culture on SNL (A) and MEF (B) feeder

cells at 24 h and 120 h after seeding. Grey box: in vitro data, white box: in silico data. In each
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box plot, the central point represents the median, the box gives the interval between the 25%
and 75% percentiles, and the whisker indicates the range

For validation of the developed model regarding cell migration behavior in colonies,
the cell movement rate toward the outside of colony, V. cos 8, of cells at the central and the
peripheral regions were examined. /n silico cells had similar trends of cell movement direction
to in vitro cells at both regions. Cells moving toward the outside of the colony made up 67%
of the central region and 87% at the peripheral region of in silico colonies cultured on SNL
feeder cells, while those frequencies were 71% and 96%, respectively, for in vitro culture (Fig.
2.6A). The similar trend was observed in colonies cultured on MEF feeder cells (in silico: 65%
at the central region and 86% at the peripheral region; in vitro: 66% at the central region and
98% at the peripheral region) (Fig. 2.6B). Both in viro and in silico cells moved outward more

at the peripheral region of colony than at the central region of colony.
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Figure 2.6 Frequencies of cell against movement rate toward the outside of colony V. cos 8 at
48-54 h at the central region (al, a2, b1, b2) and peripheral region (a3, a4, b3, b4) of the hiPSC
colonies when cultured in silico (al, bl, a3, b3) and in vitro (a2, b2, a4, b4) on SNL (A) and

MEF (B) feeder cells.
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2.3.4 Elucidation of cell movement behavior in colonies

The spatial and temporal dependence of cell movement rate were analyzed to understand the
heterogeneity of cell movement rates in hiPSC colony. The average movement rates Vx of all
cells from single colonies cultured on MEF feeder cells were calculated at every 100 um from
the center of the colony at t = 50 h, 90 h, and 128 h where the colony radiuses equaled 300 um,
500 pm, and 700 pum, respectively (Fig. 2.7). Two distinct parts of cells including quiescent
cells at the central region of the colony and proliferating cells at the peripheral region of the
colony were observed (Fig. 2.7al,b1,c1). As time passed, a contact inhibition region expanded
but the width of proliferating at the peripheral region of colony remained constant. At t =50 h,
Vg increased as the distance from the center of the colony R increased (Fig. 2.7a2). At t =90
h and 128 h, V; were homogeneous in the contact inhibition region but heterogeneous in the
proliferating ring at the edge of the colony. In addition, Vy in the contact inhibition region did
not change as colony grew. In contrast, in proliferating rings, it gradually increased inside out
to the edge of the colony. This result indicated the temporal independence and spatial

dependence of the average cell movement rate in a colony of hiPSCs.
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Figure 2.7 In silico results at 50 h (A), 90 h (B), and 128 h (C): state of cells in a colony (a1,
b1, cl) (pink: quiescent state, green: proliferating state); average movement rate against the

distance from the center of the colony (a2, b2, c2)

The difference in Vj between the contact inhibition region and proliferating region in Fig.
2.7 implied that cell division might be the factor that leads to the spatial heterogeneity of cell
movement in colonies. Therefore, cell division was stopped by setting the value of Q to infinity
and cell migration was stopped by setting the value of Vi, gree to zero to clarify that speculation.
Fig. 2.8 showed the heat map of the cell movement rate V, and Vy at t = 128 h when the colony
radius reached 700 pm. In the contact inhibition region, V; was always homogeneous and
decreased to zero only when cell migration was stopped (Fig. 2.8C). In the proliferating ring
of the colony, Vy decreased but was still heterogeneous when cell migration was stopped (Fig.

2.8C) and became homogeneous only when cell division was stopped (Fig. 2.8B). This result
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suggested that cell division was a key factor that led to the spatial heterogeneity of cell

movement in colonies.
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Figure 2.8 In silico results when hiPSC colonies were cultured on MEF feeder cells under
control conditions (A), when cell division was stopped (B), and when cell migration was
stopped (C): heat map for movement rate of individual cells in one colony at 128 h (a1, b1, c1);
average movement rate against the distance from the center of the colony (a2, b2, c2). Blue
cell: 0 < V. < 1.9, cyan cell: 1.9 <V, < 3.8, green cell: 3.8 <V, < 5.7, orange cell: 5.7 <
V. <7.6,redcell: 7.6 < V..

To understand the effect from cell division, positions of some cells at the central and
peripheral regions of colonies were tracked. The results showed that cells at the central region
of colonies (yellow cells) fluctuated around the center of the colony while cells at the peripheral
region of the colony (red cells) migrated toward the edge of the colony (Fig. 2.9A). The
frequency of cell pushing every 24 h was also calculated to explain the effect of cell pushing
on cell movement. At the central region of the colony, no cell pushing was found during in
silico culture (Fig. 2.9B). In contrast, cells at the peripheral region of the colony were pushed
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by the division of inner cells at the frequency around 0.27 times/h (Fig. 2.9C). At the same
time, the average cell movement rate at the peripheral region of the colony was higher than that
at the central region of the colony. This result indicated a proportional relationship between the

frequency of cell pushing and the cell movement rate in colonies of hiPSCs.
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Figure 2.9 In silico movement trajectory of three representative cells at the central region and
at the peripheral region of the colony from t = 24 h to t = 144 h (A); in silico frequencies of
cell pushing (grey column) and cell movement rate (black line) at the central region (B) and
peripheral region (C) of the colony. Yellow cells: cells at the central region of colony at t = 24
h; red cells: cells at the peripheral region of colony at t = 24 h; blue cells: non-tracked cells at

t = 144 h; white ring: edge of colony att =24 h

2.4 Discussion

Pursuing the idea of controlling hiPSC fate through migration-dependent regulation of the
balance between cell-cell and cell-substrate connections (Kim and Kino-oka 2015), I have
described it in a kinetic model for the first time. The maximum energy E\, .y, Which is specific
for each cell line, is used by cells to make connections and migrations. Connection energy and
energy for migration sound similar to physical potential energy and kinetic energy. Even though
they could not be measured directly from in vitro experiments in this work, what important is
the balance between them. Furthermore, current researches showed quantitative measurement

of cell-cell connection and cell-substrate connection strength by using atomic force microscope
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(Moreno-Cencerrado et al. 2016) that makes this kinetic model accessible in future. Fitting to
experimental results showed that hiPSCs cultured on SNL feeder cells had different state of
balance between cell-cell connection energy and cell-substrate connection energy compared to
hiPSCs cultured on MEF feeder cells. I believe that different feeder cells provided distinct
topology surrounding hiPSCs that led to different cell-substrate connection energies and then
indirectly affected cell-cell connection. Moreno-Cencerrado et al. (2016) also reported that the
strength of the cell-cell connection was highly influenced by the strength of the cell-substrate
connection. The number of cell layers for occurrence of contact inhibition N, was also
estimated by fitting to in vitro data. The result showed a lesser degree of contact inhibition in
hiPSC cultures than in non-stem cell cultures as reported previously (Kino-oka et al. 2000,
Kagawa and Kino-oka 2016) where N, equaled 1.

With the well-validated model, simulations were executed to understand the reason for
the spatial heterogeneity of average cell movement rate in colonies. I first found the difference
in movement behavior between the contact inhibition region and the proliferating region that
implied the role of cell division in cell movement rates in a colony. By stopping cell migration
or cell division, the result showed that both cell migration and cell division affected cell
movement rates in a colony. However, only cell division led to a higher cell movement rate at
the peripheral region of the colony than at the central region of the colony. The cell pushing
mentioned in this chapter came from the division rule where the mother cells push neighboring
cells to make space for their daughter cells when there is no vacant space around the cell that
was also used in some models of cancer cells (Stephanou et al. 2017, Forster et al. 2017).

In this chapter, there is a need to distinguish between two terms: cell migration and cell
movement. Cell migration is the ability of a cell to actively change to a new position that is
described cell behavior in this kinetic model. Meanwhile, cell movement is the overall cell

displacement that may result from cell migration or by being pushed by cell division. In the

34



contact inhibition region, cell movement rate was only affected by cell migration. In contrast,
at the peripheral region of the colony, cell movement rate was affected by both cell migration
and cell division.

Using cellular automata approach, this kinetic model has a disadvantage in simulating
continuous processes such as cell migration. /n silico cells do not continuously change their
positions, but immediately change of their position at a time point then wait in the new position
for a period of time. In addition, it is impossible to realize an increase in cell size during growth,
mechanical constraint of cells in a population, or the multi-directionality of cell migration. On
the other hand, the strength of CA is lower computational cost than off-lattice models. More
importantly, CA helps to realize the heterogeneity of cell population that is impossible when

using a continuous model.

2.5 Summary

I have developed a kinetic model to clarify the origin of the spatial heterogeneity in cell
migration which was difficult to understand by in vitro studies alone. With cellular automaton
approach, I described fundamental cell behaviors including cell division, contact inhibition,
cell migration, cell—cell connections, and cell-substrate connections. All parameter values were
estimated from in vitro data and the appropriateness of the kinetic model was indicated by good
agreement between in silico output and in vitro data. Executed in silico experiments, I found
that the cell division was the main cause of the observed spatial heterogeneity. This result
indicated that there is a need to separate components of in vitro cell migration before

considering the actual trigger for the deviation from the undifferentiated state.
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Chapter 3 Modelling the deviation from the undifferentiated state of hiPSCs

3.1  Introduction

Normally, undifferentiated hiPSCs are expanded as monolayer colonies in culture with feeder
cells. In 2014, the deviation from the undifferentiated state of hiPSCs was reported by Kim et
al., in culture with two types of feeder cells. In culture with SNL feeder cells, the deviation
from the undifferentiated state was observed at the central region of colonies and occurred with
higher probability at the bigger colonies. In culture with MEF feeder cells, however, the
deviation from the undifferentiated state was observed at the peripheral region of colonies and
occurred equally at different colony sizes. The deviated cells not only lost pluripotent
characteristics but also were negative for markers of three germ layer (Kim et al. 2017).

To understand the fundamental mechanisms that trigger deviation from the
undifferentiated state of hiPSCs, Shuzui et al., (2019a) analyzed cell migration rate at the
central and peripheral region of colonies cultured with above feeder cells. The deviated
colonies were exposed to a Racl activator (HMG1) or inhibitor (NSC23766) in order to
activate or inhibit cell migration, respectively. This result was the motivation of their study and
indicated that changes in cell migration could trigger deviation from the undifferentiated state
of hiPSCs. They then obtained colonies with additional occurrence of deviation at the
peripheral and central region in incubation with Racl activator and inhibitor, respectively.
When compared the distribution of cell migration rates, they found more slow or fast migrating
cells in central and peripheral regions, respectively, in deviated colonies, compared to colonies
that maintained their pluripotency (Fig. 3.1). Besides, the cytoskeletal rearrangement and
accumulation of nuclear laminA/C through imbalance between cell-cell and cell-substrate
adhesions was found at the central and peripheral regions of colonies. Consequently,
heterochromatin might be formed during nuclear lamina assembly and led to modulation of

gene transcription (Underwood et al. 2017). After all, Shuzui et al. came up with the hypothesis
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that anomalous cell migration acts as a key trigger for deviation from the undifferentiated state
of hiPSC colonies.

However, sequential cell migration before deviation is difficult to observe in vitro,
suggesting the need for a kinetic model to understand this phenomenon. The study by Shuzui
et al. suggested the existence of anomalous cell migration, but was unable to exactly define
that anomaly. Also, from result of chapter 2, we have known that components of in vitro cell
migration contributed differently on overall cell migration that raised the question about the
actual trigger for the deviation from the undifferentiated state. In this chapter, I analyzed not
only apparent movement, which had similar meaning to in vitro cell migration, but also
constituent movements, including movement caused by active migration, movement caused by
passive migration, and movement caused by cell division, to assess the potential triggers. In
addition to the developed modules explained in chapter 2, I further constructed a deviation
module that describes the generation of deviated cells. Even though there have been many
factors could be related to the deviation of hiPSCs such as cell migration, cell-cell and cell-
substrate interactions, cell morphology, and nuclear lamina (Kim et al. 2014, Shuzui et al. 2019),
the model used cell migration as a key factor. This consideration adopted previous in vitro
hypothesizes about mechanisms for occurrence of hiPSC deviation developed by Kim et al.
(2014) and Shuzui et al. (2019). In this chapter, hiPSC deviation was explained by two factors:
mechanical stimulus, represented by cell movement, and duration of mechanical stimulus. The
simulation was then executed to see if the developed model could recapitulate several

properties of hiPSC deviation.
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Figure 3.1 Schematic drawing of in vitro finding that there are more slow migrating cells at
the central region and fast migrating cells at the peripheral region of undifferentiated colonies

than of deviated colonies (Shuzui et al. 2019a).

3.2  Materials and Methods

3.2.1 Invitro culture of hiPSCs

In vitro culture of hiPSCs was similar to what mentioned in chapter 2. To block E-cadherin
interactions, hiPSCs were cultured with SNL feeder cells for 48 h, and then 50 nM botulinum
hemagglutinin (HA) complex was added. More details of culture methods are described in

previous papers (Shuzui et al. 2019b).

3.2.2 Insilico culture of hiPSCs

In silico culture of hiPSCs was performed using cellular automata approach in which each cell
was represented by one hexagonal prism (Fig. 3.2). Each cell had maximum six neighboring
prisms, and seven underlying substrate prisms. Custom C# code in a Visual Studio environment
(Microsoft, Redmond, Washington, USA) was created to simulate on a commercially available

workstation (Precision T7920 workstation, Dell Inc., Round Rock, Texas, USA). Space of
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culture vessel was sized to simulate a standard 24-well plate (culture area in each vessel: 1.9
cm?; Corning Costar, Cambridge, MA, USA). Initial colony number and colony size in one
culture vessel were estimated from in vitro data. Computational calculations were performed

at every time step (tseep = 0.1 h).

2D culture of hiPSCs

I ! wn-substrate

Cell-cell connection connection
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is in connection to I isinconnectionto7 1 cell connections and j cell-substrate connections. The
maximum 6 surrounding : underlying substrate : remaining energy is used for migration:
cells (yellow) \ prisms (grey) / Ermgration = Emax - (’Ecc +jEcs)

Figure 3.2 Schematic of our model illustrating the definitions of cell connections and cell
migration in case each cell is presented by a hexagonal prism.

In this chapter, the rules for cell migration are similar to those mentioned in a previous
chapter except that a cell can migrate in one of six distinct directions (Ngq = 6) denoted by the
variable dir. The apothem length of the base of a hexagonal prism [, mean generation time g,
the number of cell layers for the occurrence of contact inhibition N, free migration rate Vi, free,
ratio of energy for a cell-cell connection &, and ratio of energy for a cell-substrate connection
&cs were estimated again using methods described in chapter 2 (Table 2, Fig. S1-2).
Additionally, the rule for cell death was also considered because no single cell was observed
in vitro. The rule states that an undifferentiated hiPSC dies if it does not connect with any

neighboring cells.
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Table 2 in silico parameters for undifferentiated cells cultured on SNL and MEF feeder cells

Variable Symbol Unit Value

Apothem length of the base of a hexagonal [, um 19.5 (SNL), 22.2 (MEF)
prism

Mean generation time tg h 15.8 (SNL), 21.5 (MEF)
The number of cell layers for the occurrence N, cell layer 8 (SNL), 11 (MEF)

of contact inhibition

Free migration rate Vinfree um/h 8.0
Ratio of energy for cell-cell connection Ece - 0.07 (SNL), 0.05 (MEF)
Ratio of energy for cell-substrate connection & - 0.21 (SNL), 0.16 (MEF)

3.2.3 Calculation of different types of hiPSC movement rate within a colony

In silico cell movement rates caused by active migration (V,¢(), passive migration (Vas), cell

division (Vgiy), and the apparent movement rate (V,p,) were calculated as follows (Fig. 3.3):

when there is a cell displacement due to active migration at time t, V, is calculated as <,
act

where [, is the most recent displacement due to active cell migration (at time t — t,) and

tact 18 the time interval between consecutive active migrations. If at time ¢, there is a cell

lpas

displacement due to passive migration, ;s is calculated as =——, where 1,5 is the most recent

pas
displacement due to passive cell migration (at time ¢t — t,,s) and ¢y, is the time interval

between consecutive passive migrations. Vg;y is calculated as td’_", where lg;y 1s the most recent

div

cell division displacement (at time t — tg;y) and tg;y 1s the time interval between two divisions

if there is a cell displacement due to cell division at time t. Lastly, V,,, is calculated as :ﬂ,
app
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where l,p,, is the most recent displacement (at time t — t,p,) and t,pp, is the time interval

between those events.
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Figure 3.3 Schematic drawing of method for calculating different types of cell movement rate

3.2.4 Analysis of the trigger for hiPSC deviation within colonies

Culture of fifty in silico colonies were performed on MEF feeder cells for 120 h with an initial
colony size of 300 cells/colony. The average Vact, Vpas, Vaivs and Vapp, at each position of those
colonies were calculated and presented as heat maps. Based on in vifro finding (Kim et al.
2014), types of movement that could possibly initiate deviation at the central and peripheral
regions of colonies were decided by different criteria. A movement type that could trigger
deviation at the central region of a colony must meet two criteria: (1) the area of the region with
the lowest cell movement rate at the central region of a colony must increase as time passes,
(1) cell movement rate at the central region must differ from zero. In contrast, the one that may

trigger deviation at the peripheral regions must show a constant higher movement rate over
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time. Besides, V¢ is believed to have a stronger influence on cell fate than V,,¢ because it

relates to energy consumption.

3.2.5 Fitting method
Least-squares fitting was used to find the best fit values for the critical times for occurrence of

deviation due to low V,p, or high Vet (tge,apps tde,act)-

3.3  Results

3.3.1 Kinetic modeling of the module that describes the generation of deviated cells via
anomaly index

50 in silico colonies were cultured on MEF feeder cells for 120 h with the initial colony size
of 300 cells/colony, and the heat maps of movement rate caused by active migration V.,
movement rate caused by passive migration 1,5, movement rate caused by cell division Vy;y,
and apparent movement rate V,,,, of these colonies were overlapped. From Fig. 3.4, a ring of
cells at the edge of colony showing different movement rate was observed in case of V,.. and
Vpas (Fig. 3.4A,B). On the other hand, both Vg;,, and V,,,, showed the gradual increase from the
central region of colony to the peripheral region of colony, and the region of the lowest
movement rate at the central region of colony expanded as colony grew (Fig. 3.4C,D).
However, the lowest passive movement rate at the central region was zero because of the

contact inhibition where no cell division occurred.
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Figure 3.4 Heat maps of cell movement rate caused by active migration (V,) (A), cell
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movement rate caused by passive migration (V,,5) (B), movement rate caused by cell division
(Vaiv) (C), and apparent cell movement rate (V,,,,) (D) at 0, 36, and 72 h. The graphs show
average V. (closed triangles), average V;,,s (open triangles), average Vg;, (open circles), and

average V,,, (closed circles) plotted against distance from the center of a colony (E).

Based on this in silico analyses, it was suggested that apparent movement rate (V)

and movement rate caused by active migration (V) were related to the deviation at the central
and peripheral region of colony, respectively. Therefore, it was hypothesized that the deviation
is triggered by a continuous low apparent movement rate (V,,,) or a continuous high movement

rate caused by active migration (V). The rules for occurrence of deviation are explained as

follows (Fig. 3.5).
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Figure 3.5 Schematic of our model that describes the rule for initiation of deviation. Green
cells: undifferentiated cells; orange cells: deviated cells.

Each cell has a cumulative duration of a low V.

app> Tacapp(t), at each time ¢t that is

calculated every time step:

Tacapp(t — tstep),  thereis no cell displacement
TaC.app(t) = Tac,app(t - tstep) + tapp» Vapp < Vde,app (11)
0, V;lpp = Vde,app

where Vge,app 18 the lower threshold of V,,,. When T, 5p, €xceeds the threshold tge app, cell
start to deviate from the undifferentiated state.
Each cell has a cumulative duration of a high V¢, Tacact(t), at each time t that is

recalculated every time step:

Tac‘act(t — tstep), there is no cell displacement
Tac,act(t) = Tac,act(t - tstep) + tact' Vact > Vde,act (12)
0’ Vact < Vde,act

where Ve act 18 the upper threshold of V, ... When T, 5t €xceeds the threshold tge o, cell start

to deviate from the undifferentiated state.
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Tycapp @and Ty acr are parameters for real-time detection of the cumulative duration of
alow Vypp or a high V. These two parameters have discrete values because they change only
when cell displacement occurs. Thus, Treacapp @nd Treacact» the retrospective cumulative
duration of a low V,p,, or a high V,, were also used to understand the continuous cumulative
duration. Then, the anomaly index of each cell, I,, is estimated as Treacapp/tdeapp OF

Treacact/tdeact in culture on SNL and MEF feeder cells, respectively.

3.3.2 Estimation of parameter values

Parameters used in deviation rules were estimated as follows: Vge app Was estimated as the 25th
percentile value of the in vifro cell migration rate at the central region of undifferentiated
colonies cultured on SNL feeder cells and equaled 2.1 pm/h (Shuzui et al. 2019a). Ve acc Was
estimated as the 75th percentile value of in silico V¢ (4.9 pm/h) because the corresponding
in vitro data was not available. tqeapp and tgeact Were estimated by fitting to the in vitro
average frequency of deviation in one culture vessel. About 200 in silico colonies were cultured
following in vitro colony size distribution (Fig. S3). The values of tge app and tge,act Were
changed from 1 h to 96 h and to find the value giving the most similar deviation frequency to
in vitro data. As the result, tqe app Was estimated as 48 h where deviation frequency at the
central region of a colony was 15.4 = 2.8% when cultured on SNL feeder cells (Fig. 3.6A) but
negligible when cultured on MEF feeder cells. t4e 4ot Was estimated as 38 h where the deviation
frequency at the peripheral region of a colony was 14.5 = 4.3% when cultured on MEF feeder

cells (Fig. 3.6B), but 0% when cultured on SNL feeder cells.
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Figure 3.6 Estimation of tge occ aNd tqeapp Via fitting deviation frequencies in the central and
peripheral regions of hiPSC colonies cultured on SNL (A) and MEF (B) feeder cells. Grey
bars: in vitro results (14); white bars: best fit in silico results obtained via least-squares fitting.
Standard deviations were calculated from three culture batches (about 200 single

colonies/batch).

3.3.3 Model validation

Firstly, the positions of deviated cells in in silico colonies were compared to that in vitro to
validate the model. The blue cells, which had deviated due to continuous low V,,,, were found
at the central region of the colonies cultured on SNL feeder cells (Fig. 3.7A). The green cells,
which had deviated due to continuous high V., were found at the peripheral region of colonies
cultured on MEF feeder cells (Fig. 3.7C). One hundred colonies with deviated cells from both
culture conditions were analyzed to understand positions within colonies where deviation was
most likely to occur. Deviated cells were mostly at the central region of colonies cultured on
SNL feeder cells and at the peripheral region of colonies cultured on MEF feeder cells (Fig.

3.7B, D). These results were in agreement with in vitro locations of deviated cells.
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Figure 3.7 in silico morphology of colonies with deviated cells cultured on SNL (A) and MEF
(C) feeder cells at t = 120 h. The graph shows the deviation frequency at different positions in
colonies cultured on SNL (B) and MEF (D) feeder cells. White cells: undifferentiated cells;
blue cells: cells that had deviated due to low V,,,; green cells: cells that had deviated due to
high V.

Secondly, in vitro and in silico time profiles for colonies with and without deviated cells
were compared. With about 200 in silico colonies were cultured on SNL or MEF feeder cells,
the experiment was performed three times. Twenty-six and 27 representative undifferentiated
colonies and deviated colonies were selected in cultures on SNL and MEF feeder cells,
respectively. Average size of undifferentiated colonies was calculated every 6 hours since the
beginning of culture, size of each deviated colonies was determined at times of deviation. In
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deviated colonies cultured on SNL feeder cells, the ratio between colonies larger than the
average undifferentiated colony and smaller than the average undifferentiated colony was 16:1
(Fig. 3.8A). In culture on MEF feeder cells, this ratio was 1:3 (Fig. 3.8B). In in vitro culture on
SNL and MEF feeder cells, these ratios were 8:1 and 5:8, respectively. Both ratios 8:1 (in vitro)
and 16:1 (in silico) indicated the colony-size dependent manner of deviated colonies in culture
on SNL feeder cells. On the other hand, both ratios 5:8 (in vitro) and 1:3 (in silico) implied the
colony size-independent manner of deviated colonies in culture on MEF feeder cells. These in

silico results showed similar trend to in vitro results.
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Figure 3.8 Time profiles of hiPSC colonies with and without deviated cells in cultures on SNL
(A) and MEF (B) feeder cells for t = 144 h. Open circles represent in vitro colonies without
deviated cells (14). Closed circles represent in vitro colonies with deviated cells (14). Lines
represent in silico colonies without deviated cells. Triangles represent in silico colonies with
deviated cells. Closed circles and triangles indicate timing of appearance of deviated cells in
hiPSC colonies.

Finally, in silico strength of cell-cell connections was altered at the beginning of culture
on SNL feeder cells. Previously, Shuzui et al. (2019b) showed that the average in vitro cell

migration rate at the central region of a colony increased by 0.5 um/h when cells were cultured

48



in medium supplemented with 50 nM HA. In that culture condition, no deviation was observed.
The ratio of cell-cell connection energy (&..) was decreased by Ae.. (-) =[0.01, 0.06]. About
200 colonies were cultured in each condition and the experiments were performed three times.
The deviation frequency at the central regions of colonies was 0.15 = 0.03 under normal culture
conditions (4e.. = 0) (Fig. 3.9A). This frequency drastically decreased to 0.08 = 0.01 when &
was decreased by 0.01. When ¢.. was decreased by 0.02, 0.03, or 0.04, this frequency of
decreased further to approximately 0.01. Finally, when &.. was very small (4de.. = 0.05, 0.06),
no deviation in the central regions of colonies was detected in culture. With de.. = 0.05, 1
obtained 0.5 um/h higher average V,, at the central regions of colonies no deviation that was
similar to in vitro results. In silico cultures under normal conditions on SNL feeder cells (e, =
0.07) and with addition of HA (g.. = 0.02) were performed in 1000 vessels. Only 20 vessels
contained deviated colonies (2%) under conditions simulating HA addition, while that number

was 983 vessels under normal conditions (98.3%) (Fig. 3.9B).
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Figure 3.9 A. in silico deviation frequency plotted against the decrement of the ratio of cell-

cell connection energy (4e..). Standard deviations were calculated from three culture batches
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(about 200 single colonies/batch). B. in silico deviation frequency in cultures with or without

HA addition calculated from 1000 culture vessels.

3.3.4 Elucidation of deviation using anomaly index

With the well-validated model, further analyses were performed to understand about the trigger
of deviation from the undifferentiated of hiPSCs using anomaly index. In the representative
colony cultured on SNL feeder cells, one cell at the central region of colony deviated after its
I, reached 1 (Fig. 3.10B). One cell at the peripheral region of the representative colony cultured
on MEF feeder cells deviated when its I, hit 1 (Fig. 3.10E). Later, retrospective tracking of 15
deviated cells and their neighbors was performed to understand their relationship to their
microenvironment. For cells cultured on SNL feeder cells, the tracking time t" = t4e 5pp When
I, of the deviated cell was equal to 1. For cells cultured on MEF feeder cells, the tracking time
t' = tgeact When I, of the deviated cell equaled 1. The result showed that when I, of deviated
cells gradually increased since t' = 0 h, the average I, of their neighbors also increased since
t’ = —24 h and become saturated later in cultures on SNL feeder cells (Fig. 3.10C). In cultures
on MEF feeder cells, even though I, of deviated cells gradually increased since t" = 0 h, the
average I, of their neighbors fluctuated and did not show a clear trend during the tracking

period (Fig. 3.10F).

50



c /
/
I/
-+ 0.8} /
S /
© /
= yd
3 o6l /
T /I
£ J
>
E 0.4 ///
2
0.2
< /
/
/
0 W

M
~

o o o
= (-] (-]
N
\\
-

Anomaly index, I, (-)

o
[
~

0 b N
24 12 0 12 24 36 48
Tracking time, t’ (h)

Figure 3.10 Cell type (A, D) and heat map of anomaly indices (I,) (B, E) in culture on SNL
(A, B) and MEF (D, E) feeder cells. Blue cells: cells that deviated due to low V,,,; green cells:
cells that deviated due to high V... Graphs show time profile of anomaly indices (1) in culture
on SNL (C) and MEF (F) feeder cells. Dashed line: I, of a deviated cell. Solid line: I, of the

deviated cell’s neighbors (average from 15 colonies).

Lastly, the maximum value of I, I, a, that each cell displayed during a 96-hour culture
was calculated to understand how rare the deviation trigger is. During culture, cells in vessel
have different values of I, and I, of each cell also changes with time (Fig. 3.11-3.12). This
parameter, I max, helped to understand how close each cell had approached deviation.
Histograms of I, oy for all cells from one representative vessel cultured on SNL and MEF
feeder cells were shown in Fig. 3.13. The frequency decreased as I, nax increased in both

culture conditions. Most of cells (> 96%) were found to have I, 4« (-) values in the range of
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0-0.4. An I, max of 1, which indicated the appearance of deviated cell, occurred with a

frequency of 3.5 X 1075 or 2.8 X 107" in culture on SNL and MEF feeder cells, respectively.
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Figure 3.11 In silico cell type (A) and corresponding anomaly index (B) of a representative
vessel with deviated cells in culture on SNL feeder cells at the time of deviation. White cells:
undifferentiated cells; blue cells: deviated cells due to continuous low apparent cell movement

rate; shades of red: degree of anomaly index. Scale bars: 500 pum.
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Figure 3.12 In silico cell type (A) and corresponding anomaly index (B) of a representative
vessel producing deviated cells when cultured on MEF feeder cells at the time of deviation.
White cells: undifferentiated cells; green cells: deviated cells due to continuous high movement

rate caused by active migration. Shades of red: degree of anomaly index. Scale bars: 500 pm.
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Figure 3.13 Frequency of maximum anomaly index (I, max) Of all cells from one vessel in

culture on SNL (A) or MEF (B) feeder cells.

3.4  Discussion

Although anomalous in vitro cell migration was reported to be the trigger for deviation from
the undifferentiated state of hiPSCs cultured with feeder cells (Shuzui et al. 2019a), result in
chapter 2 has showed the different influences of migration and division on movement rate that
raised the necessity to investigate the actual triggers. Active cell migration occurs when a cell
actively changes position that relates to E-cadherin and integrin turnover and energy
consumption. When a target cell actively migrates to the position of its neighboring cell, the
neighboring cell undergoes passive migration at the same time. From in vitro observation, it is
difficult to distinguish these two type of migration. In this kinetic model, I assume that passive
migration requires only the disruption of cell-cell and cell-substrate connections without
utilizing energy for migration. Movement caused by cell division primarily presents the
breaking of cell-substrate connections, does not utilize energy, and maintains most of
connections to its neighboring cells. Finally, apparent movement, the only movement type that

can be estimated from in vitro, is similar to in vitro cell migration. In this chapter, apparent
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movement and movement caused by active migration are suggested to trigger deviation in
colony size-dependent and -independent manners, respectively. Extension of low apparent
movement rates partly indicate compression in the central regions of colonies, where contact
inhibition occurs with the disappearance of cell division as the colonies expand. In the
peripheral region of colony, active migration is suggested to trigger deviation at the peripheral
region. On the other words, high degree of cell freedom at the peripheral region of colony might
result in deviation that is partly supported by the discontinued expression of E-cadherin (Kim
etal. 2014).

Previously, the hypothesis that anomalous cell migration triggers hiPSC deviation has
been proposed (Shuzui et al. 2019a). In that study, even though sequential cell migration could
not be observed, they found the accumulation of lamin A/C at the nuclear envelope due to
cytoskeletal rearrangements arising from an imbalance between cell-cell and cell-substrate
adhesions. In this chapter, based on the evidence about mechano-transduction, I defined
anomalous migration in terms of mechanical stimulus, presented by movement rate, and
duration of the mechanical stimulus. The thresholds for mechanical stimulus were estimated
from the 25th percentile value of in vitro cell migration, which is similar to in silico apparent
cell movement rate, at the central region of undifferentiated colonies (Shuzui et al. 2019a), and
the 75th percentile value of in silico movement rate caused by active migration at the peripheral
region of undifferentiated colonies. The reason came from in vitro observation that there were
significant differences (P < 0.01) in ratios below the 25th percentile and above the 75th
percentile between undifferentiated colonies and deviated colonies (Shuzui et al. 2019a). The
duration of mechanical stimulus is the original point that distinguished deviated cells from
undifferentiated cells.

The colony size-dependent and colony size-independent deviation in colonies cultured on

SNL and MEF feeder cells, respectively, was reported (Kim et al. 2014). This chapter partly
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explained this phenomenon by the relationship between deviated cells and their
microenvironment (neighboring cells) using anomaly index I,. I, of deviated cells at the
central region increased as that of their neighbors increased with time that suggests deviated
cells had been affected by their microenvironment. Thus, cells had higher probabilities of
deviating as colonies became bigger. In contrast, I, of deviated cells at the peripheral region
had increased when their neighbors’ I, values fluctuated with time. Therefore I, values are
colony size-independent in the peripheral region of colonies.

While positive I, values were distributed throughout the central and middle regions of
colonies cultured on SNL feeder cells, only cells near the colony edges displayed positive I,
values in culture on MEF feeder cells. Therefore, the difference in frequencies of I, nax values
in the range of 0-0.2 and 0.2—0.4 in cultures on MEF feeder cells was more than that in cultures
on SNL feeder cells. I considered the trigger for deviation to be ultra-rare following the
definition of ultra-rare disease (i.e. a disease that affects fewer than 20 patients in a population
of 1 million (2 X 107%)) (Harari et al. 2019). Caused by ultra-rare trigger, deviation only
becomes an inevitable phenomenon when the cell population is large enough. It means that the
deviation is unpredictable for each colony but inevitable in a culture vessel. It is interesting that
the ultra-rare trigger leads to major events in the culture of hiPSCs on feeder cells, and this
major events is prohibited by altering cell-cell connection strength (Shuzui et al. 2019b). To
the best of my knowledge, this is the first kinetic model expressing ultra-rare trigger in a
biological system. In other studies, kinetic model has mostly been used to predict functions and
the inheritability of ultra-rare genetic variants (Turkowski et al. 2017, Magri et al. 2018,
Hernandez et al. 2019, Halvorsen et al. 2020).

There have been a number of models describing differentiation or loss of stem cell
pluripotency considering mechano-transduction (Spector et al. 2017). Mousavi et al. (2015)

proposed a model to clarify how substrate stiffness affects mesenchymal stem cells (MSCs)
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differentiation during cell migration. Their models also proposed a time-dependent manner of
differentiation where MSC differentiation depended on maturation time. In my model,
deviation from the undifferentiated state of hiPSCs depended on the time period of slow or fast
migration. While their maturation time mechanism is irreversible and makes differentiation
inevitable, accumulation time of mechanical stimulus in my model is reversible that makes
deviation anomalous. In 2017, a mechano-transduction model concerning how mechanical
memory affected MSC differentiation was also introduced by Peng et al. In that model, they
also show the importance of mechanical stimuli (substrate stiffness) and duration of mechanical
stimuli (duration of the first seeding) on cell fate decisions. However, their model was not
suitable for modeling our target anomalous phenomenon which required spatiotemporal

analysis (Ji et al. 2017).

3.5  Summary

The apparent cell movement and cell movement caused by active migration were triggers for
the deviation at the central and peripheral region of hiPSC colonies. The anomalous cell
migration-driven hiPSC deviation can be explained by two factors: a mechanical stimulus,
represented by cell migration, and duration of the mechanical stimulus. The factor “duration of
mechanical stimulus” is the originality of this work, and helps to realize the ultra-rare trigger

(approximately 10~5) of deviation from the undifferentiated state in hiPSC culture.
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Chapter 4  General Conclusions and Perspectives

4.1  General conclusion

Kinetic models have been used for predicting stem cell fate and providing insights into the
underlying mechanism of some bioprocesses. To the best of my knowledge, the first model of
stem cells described the proliferation of hematopoietic stem cells in spleen colonies (Till et al.
1963). Among models for stem cells, most of them focus on cell self-renewal, cell-fate decision,
and hiPSCs derivation (Viswanathan and Zandstra 2003, MacArthur et al. 2009, Herberg and
Roeder 2015).

Recently, the heterogeneity of stem cell population has received more and more
attention because it directly affects the efficiency of stem cell process for application in
regenerative medicine (Bratt-Leau et al. 2009, Rosowski et al. 2015). In 2019, a research by
Shuzui et al. suggested that anomalous cell migration triggered the deviation from the
undifferentiated state of hiPSCs in colonies cultured with feeder cells which was reported
previously (Kim et al. 2014). In culture with SNL feeder cells where the deviation occurred at
the central region of colony, they found more slow migrating cells at this region in deviated
colonies than in undifferentiated colonies. In case of culture with MEF feeder cells where the
deviation occurred at the peripheral region of colonies, they found more fast migrating cells at
the peripheral region in deviated colonies than in undifferentiated colonies. However, that
study could not specify the definition of anomalous cell migration due to in vitro technical
limitations.

In this study, I used cellular automata approach to clarify the mentioned anomalous cell
migration which was suggested to be the trigger for the deviation from the undifferentiated of
hiPSCs. Firstly, | developed a kinetic model with fundamental behaviors of cells including cell
division, cell-cell connection, cell-substrate connection, and cell migration to understand the

reason for the heterogeneity of in vitro cell migration in colony. There is a need to distinguish
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between in vitro cell migration and in silico cell migration. In vitro cell migration is described
by the rate of cell displacement per time interval. In silico cell migration describes the ability
of a cell to actively change its position by utilizing energy for breaking several cell-cell and
cell-substrate connections and migration. From this point, in vitro cell migration is also affected
by cell division. In chapter 2, | have found that cell division is the key factor that led to the

spatial heterogeneity of in vitro cell migration in colony (Fig. 4.1).

Contact N 7 4
inhibition region 4 =7, E A
- -— ~ P
All cells migrate randomly
/

Proliferate ring

Cells in proliferating ring are pushed outward due to division of inner cells

. Quiescent cell Ny
-— — ” -—
|:| Proliferating cell 7 { <

Cells at the periphery of colony have higher migration rate

Figure 4.1 Schematic of in silico finding in Chapter 2 where cell division is suggested to be
the key factor that leads to the spatial heterogeneity of cell migration in colonies of hiPSCs.
From result in chapter 2, | suggested the need of analyzation for the actual component
of in vitro cell migration that could trigger deviation from the undifferentiated state. | divided
into movement caused by active migration, movement caused by passive migration, movement
caused by cell division, and apparent movement which has similar meaning to in vitro
migration. From heat map of each type of movement and the colony-size
independent/dependent manner of deviated colony in each culture condition with feeder cells,
| suggested that apparent movement and movement caused by active migration were triggers

for deviation. I hypothesized that deviation from the undifferentiated state at the central region
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of colonies is triggered by the continuous low apparent movement of cells. In contrast,
continuous high movement caused by active migration triggers the deviation at the peripheral
region of colonies. This hypothesis was well validated by the position of deviated region in
colony, profiles of deviated colonies, and the inhibition of deviation in culture on SNL feeder
cells after accelerate cell migration. With the validated model, | found that deviation from the
undifferentiated state was caused by the ultra-rare trigger (~10°) (Fig. 4.2). Until now, this is
the first kinetic model that describe the ultra-rare trigger that causes anomalous phenomenon

in biological field.

SNL feeder cells

Undifferentiated state

Deviation from the @
undifferentiated state

Undifferentiated cell

Undifferentiated cell
(low Vapp)

Appear a cell that continuously keeps low V,,

during a time interval t,, .,;; (ultra-rare trigger) V)

Undifferentiated cell
MEF feeder cells (high V)

Deviation from the

Undifferentiated state undifferentiatedstate |
(o) %% A Cell deviated from
@% — — 692(’- the undifferentiated
S0 state
-
Y

Appear a cell that continuously keeps high V,
during a time interval t4, .; (ultra-rare trigger)

Figure 4.2 Schematic of validated in silico hypothesis in Chapter 3 where deviation from the
undifferentiated state of hiPSCs in colonies cultured on feeder cells is explained by the
continuity of low apparent movement or high movement caused by active migration which is

considered as ultra-rare trigger.
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4.2 Future perspectives

The developed kinetic model is suggested to be a promising tool to study different cultures of

stem cells in general and hiPSCs in particular. The future perspectives are discussed as follows.
i.  Optimal culture conditions for hiPSC differentiation

In previous chapters, a kinetic model was successfully developed to express the
deviation from the undifferentiated state of hiPSCs in the peripheral regions of colonies
cultured on MEF feeder cells. To facilitate the differentiation of hiPSCs, a culture with deviated
cells as a majority of population is desired. Using the developed kinetic model, the optimized
culture conditions for this goal can be found by considering effect of botulinum hemagglutinin
(HA) and initial seeding size. In culture of hiPSCs on SNL feeder cells, the deviation in the
central region of colony was inhibited both in vitro and in silico by addition of HA which
blocks E-cadherin interactions thus loosen cell-cell connection and promote cell migration.
With this effect, HA is believed to facilitate the deviation in the peripheral regions of colonies
cultured on MEF feeder cells. Besides, the size of colony also affects the inward expansion of
deviated region since only cells in the peripheral region of colony have possibility to deviate
from the undifferentiated state. Once cells deviated from the undifferentiated state at the
peripheral region of colony, they tend to detach from the colonies and thus leave more vacant
space and facilitate the active migration of inner cells. Thus, the smaller colony is, the deeper
deviated region can inwardly extend to the central region of colony that increases deviation
frequency in the end of culture.

A preliminary experiment was performed to check the possibility of this idea. Deviation
frequency and the number of doubling times, nq, were used to compare the outcome of
different culture conditions. The deviation frequency was calculated by the ratio between the
number of deviated cells and the number of total cells in vessel at the end of culture. The

number of doubling times was calculated as follows.
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where N,, and N;,, are the total cell number at ¢t = 24h and t = 120h, respectively.

Firstly, keeping the initial seeding distribution as in vitro (i = 133 cells/colony, o = 126
cells/colony), cultures with and without the addition of HA were compared. The deviation
frequency was 0.1% and 27%, and the nq was 3.5 and 3.8 in culture without and with HA,
respectively (Fig. 4.3). Since culture with HA gave higher deviation frequency and n4, more
cultures with HA were performed with different initial colony seeding size by changing the
average M and standard deviation o of input distribution. Keeping o at 126 cells/colony, when
the average of colony size distribution p was decreased to 66 cells/colony and 33 cells/colony,
the deviation frequency were 28% and 31%, and the nq were 3.8 and 3.9, respectively (Fig.
4.4). Therefore, p at 33 cells/colony was chosen and ¢ was changed. When ¢ was decreased to
63 cells/colony, 32 cells/colony, and 0 cells/colony, the deviation frequency were 40%, 46%,
and 73%, and the nq were 3.9, 3.8, and 3.4, respectively (Fig. 4.5). In addition of HA, culture
with the distribution of initial colony size at g = 33 cells/colony, ¢ = 0 cells/colony gave the
highest deviation frequency among cultures and similar ng4 to control culture without HA (Fig.

4.6). This result indicated that this research direction would be promising in future.
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Figure 4.3 Deviation frequency in culture on MEF feeder cells under control condition (black
dot) and with addition of HA (grey dot). The distribution (U, o) of initial colony seeding size

was referred from in vitro data where p = 133 cells/colony, o = 126 cells/colony.
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Figure 4.4 Deviation frequency in culture on MEF feeder cells with addition of HA with
different distribution (U, o) of initial colony seeding size. . 1 = 133 cells/colony, ¢ =
126 cells/colony; blue dot: u = 66 cells/colony, ¢ = 126 cells/colony; T p =33

cells/colony, o = 126 cells/colony.
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Figure 4.5 Deviation frequency in culture on MEF feeder cells with addition of HA with
different distribution (U, ) of initial colony seeding size. : u =33 cells/colony, ¢ =
126 cells/colony; green dot: p = 33 cells/colony, ¢ = 63 cells/colony; purple dot: p = 33

cells/colony, o = 32 cells/colony; red dot: p = 33 cells/colony, o = 0 cells/colony.

Figure 4.6 Cell type of hiPSC culture on MEF feeder cells without addition of HA (A) and
with addition of HA at optimized initial colony seeding size (1 = 33 cells/colony, ¢ = 0
cells/colony) (B). White cells: undifferentiated cells, green cells: deviated cells due to

continuous high cell movement rate caused by active migration. Scale bars show 1 mm.
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Ii.  Understanding the mechanism of HA action
In chapter 3, the culture with addition of HA was simulated after estimation of e... In
those experiments, we assumed that €. of all cells is constant during culture even in culture
with addition of HA. In reality, cells can recover E-cadherin after action of HA, thus strength
of cell-cell connection might also change during culture. However, the lack of quantitative data
of HA makes it difficult to model exact mechanism of HA action. In future, if there are more
quantitative data related to HA action in hiPSC culture, it would be interesting to model the
mechanism of HA action. In 2017, Kim et al. has proposed a hypothesis to explain the
mechanisms underlying HA-mediated selective elimination of deviated cells cultured with SNL
feeder cells. HA complexes can pass through cells (transcellular route) or between cells
(paracellular route), bind to E-cadherin and disrupt E-cadherin-mediated cell-cell adhesion
(Lee et al. 2014, Sugawara et al. 2014). The reason for selective removal of deviated cells is
the higher ability of undifferentiated cells to recover cell-cell adhesion after HA-induced E-
cadherin disruption (Kim et al. 2017).
The kinetic model might include some following parameters:
- Rate of decay of E-cadherin by HA, k, (cell-mol™*-h'), where k; is positive in culture
with addition of HA, but be negligible in normal culture.
- Rate of digestion of HA via endocytosis, k, (cell*-mol-h™).
- Rate of recover of E-cadherin of undifferentiated cells and deviated cells, k5 (h™),
where k4 of undifferentiated cells is higher than that of deviated cells.
Then, the dynamic of .. can be described as follows (Fig. 4.7).

dece
dt

== —kchA/X + k3

where Cya (mol/L) and X (cells/L) are concentration of HA and cell, respectively.
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Figure 4.7 Schematic drawing describing the kinetics of cell-cell connection via action of

botulinum hemagglutinin (HA) on hiPSCs.

Through two above proposals, it was expected that the developed model could be an
effective tool to optimize culture conditions for maintenance of stem cell pluripotency as well
as stem cell differentiation (Fig. 4.8). In culture with SNL feeder cells, it was suggested that
HA helped to selective remove deviated cells at the central regions of colonies (Kim et al.
2017). However, over treatment with HA might induce the deviation at the peripheral regions
of colonies since cell migration is accelerated. This additional occurrence of deviation at the
peripheral regions of colonies cultured with SNL feeder cells was observed under exposure to
Racl activator (HMG1) (Shuzui et al. 2019a). Therefore, there is a need to optimize the
quantity of HA for each culture vessel to maintain the undifferentiated state of hiPSCs. On the
other hand, deviated cells as major population could be obtained by appropriate colony size
under addition of HA in order to facilitate hiPSC differentiation in culture with MEF feeder

cells. With kinetic model of HA complexes, the optimized culture conditions for this purpose
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can be predicted with higher accuracy. In summary, kinetic modelling of HA is necessary to

optimize culture of hiPSCs in future.
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Figure 4.8 Schematic drawing describing the future perspectives of this study
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Appendix
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Figure S1 Estimation of N, using curve-fitting time profiles of hiPSC colonies without
deviated cells in cultures on SNL (A) and MEF (B) feeder cells. Closed circles: in vitro data;

lines: best fit in silico data.
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Figure S2 Estimation of V, gree, £cc, aNd g5 by fitting the average cell movement rates at the
central and peripheral regions of hiPSC colonies cultured on SNL (A) and MEF (B) feeder
cells. Shaded bars: experimental results. Open bars: best fit simulation results obtained via
least-squares fitting. Standard deviations were calculated based on all cells in a colony (n >

300)
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Figure S3 Distribution of in silico initial colony sizes. Black bar: culture on SNL feeder cells.
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