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Chapter 1 General Introduction 

1.1 Kinetic modelling of biological systems 

In physics and chemistry, kinetic models have been used to study system dynamics since the 

18th century (Wisniak 2005, Oliveira et al. 2016), but have only begun receiving attention from 

biologists since the 20th century (Bailey and Ollis 1986, Grima and Schnell 2008). Thus, many 

methodologies, algorithms, and theoretical models used in physics and chemistry have been 

applied for establishing kinetic models in biological field (Gruebele and Thirumalai 2013). The 

most well-known models in early stage of biological modelling are Michaelis-Menten model 

which describes the enzyme-catalyzed reactions (Michaelis and Menten 1913) and Monod 

model for the growth of microorganisms (Monod 1949). Modelling biological systems is more 

difficult than modelling physical or chemical systems due to the stochastic nature of, intrinsic 

multi-scale, and fluctuations within biological processes (Resat et al. 2009). In 1999, McAdams 

et al. showed the importance of stochastic biochemical reactions in guarantee of biological 

systems’ functions. The multiscale of biological system comes from the interactions of many 

elements at different levels from molecular, cellular, tissue, body, to society. The low copy 

numbers of biological objects lead to high fluctuations in biological systems. Despite those 

difficulties, once a biological system is described by an adequate model, researchers can have 

new insights into a particular problem, generate hypotheses, and design new experiments 

(Koide et al. 2009, Motta and Pappalardo 2012, Torres and Santos 2015). Simulating kinetic 

models on computer (in silico study) are speedy, economical, and able to easily satisfy many 

conditions that are impossible to be realized in reality (e.g., in vitro study) (Fig. 1.1). 

Kinetic models have been applied to biological systems from subcellular scale, cellular 

scale, to tissue or whole organism scale (Martins et al. 2010, Castiglione et al. 2014). On the 

subcellular scale, modelers usually model gene regulatory networks or cell signaling pathways, 

and ordinary and partial differential equations are commonly selected to describe molecular 



2 

 

dynamics (Rangamani et al. 2013, Selekman et al. 2013, Deshpande and Spector 2017, Heydari 

et al. 2017, Yachie-Kinoshita et al. 2018). On the cellular scale, a single cell is usually 

considered as a unit black box, and interactions between cells rather than events occurring 

inside a cell are focused. In this situation, it is more effective to use discrete stochastic 

approaches such as agent-based models since they can describe the heterogeneity and 

fluctuations within a cell population (Schluter et al. 2014, Aland et al. 2015, Libby et al. 2019). 

Lastly, targets of multicellular scales are usually particular functional changes in an organ, 

organ system, or organism. In most cases, full description of system components is almost 

impossible, and differential equations are normally sufficient to model functions using physical 

or chemical laws (Taya et al. 1989, Hoehme et al. 2010, Jalali et al. 2015). 

 

Figure 1.1 The relationship between in vitro study and in silico study in biological field. In 

vitro study focuses on new finding, while in silico study explores space not reachable by in 

vitro study. 

 

1.2 Modelling approach 

In general, models can be categorized into two groups: continuum models and agent-based 

models (Byrne and Drasdo 2008). Normally, continuum models are developed from ordinary 

or partial differential equations that describe the average of the whole cell population rather 

than individual cells. This kind of model is suitable for understanding the stability and general 

qualitative features of the cell population. Specially, conventional kinetic models in this group 
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for modelling cellular growth are classified as non-structured non-segregated model (e.g. 

Monod equation for growth of microorganisms), structured non-segregated model, and non-

structured segregated model (Fig. 1.2). It is referred to as structured model when cell 

population is considered as multicomponent system instead of one component system (Bapat 

et al. 2006, Steuer et al. 2006). If the model describes cell to cell heterogeneity, it is considered 

as segregated model (Taya et al. 1989, Fordyce and Rawlings 1996). In real cell population, 

the situation is structured and segregated. When it comes to modelling, in most cases non-

structured non-segregated models are used due to its simplicity (Bailley and Ollis, 1986). 

 

Figure 1.2 Different conventional modeling approaches for cell population kinetics (Bailey 

and Ollis,1986). 

In contrast, agent-based models, including on-lattice models and off-lattice models, 

simulate the multicellular system at the single-cell level, and therefore, are more appropriate 

for quantitative analysis and describing the heterogeneity of a cell population (Metzcar et al. 

2019, Nava-Sedeno et al. 2020). On-lattice models can be further categorized as lattice-gas 

cellular automata, cellular automata (CA), and cellular Potts model when one lattice element 

is occupied by more than one cell, exactly one cell, and less than one cell, respectively (Metzcar 

et al. 2019) (Fig. 1.3). In off-lattice models, cells can be at any location in the continuous space 

instead of being restricted by lattice (Hwang et al. 2009). In CA model, each lattice element 

takes one of a finite number of states (Moreira and Deutsch 2002). State of each lattice element 

is affected by its neighbors via the transition rules which can be deterministic or probabilistic. 
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Every lattice element updates its state simultaneously at each time step according to the 

transition rules. CA models are usually used in tissue engineering, tumor growth, and wound 

healing (Hwang et al. 2009). In these biological areas, some cell behaviors such as division, 

migration, and differentiation are commonly modeled. To model cell division, two important 

transitions rules relates to division probability (cell cycle time) and position to place daughter 

cell (Kino-oka et al. 2000, Yashiki et al. 2001, Cheng et al. 2006, Piotrowska and Angus 2009, 

Kagawa and Kino-oka 2016). For cell migration modelling, modelers need to decide the 

direction, rate, and probability of migration. Previously, transition rules for migration have 

been set by considering mechanical confinements, nutrients supply, and inhibitory ‘‘toxic’’ 

metabolites (Mansury and Deisboeck 2003), or concentrations of fibronectin, integrin, and 

cadherin (Robertson et al. 2007). In case of differentiation modelling, Checa and Prendergast 

(2009) determined whether mesenchymal stem cells would make a transition to fibroblasts, 

chondrocytes, or osteoblasts based on the level of mechanical stimulus. 
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Figure 1.3 A schematic classification of on-lattice models 

 

1.3 Human induced pluripotent stem cells 

For decades, stem cells have been used in regenerative medicine and drug screening due to 

their capabilities of self-renewal and differentiation into various cell types. Since mouse 

somatic cells were successfully dedifferentiated into pluripotent state with four transcription 

factors (Oct4, Sox2, Klf4, and c-Myc) by Takahashi and Yamanaka (2006), induced pluripotent 

stem cells (iPSCs) have received even more attention. For application and regenerative 

medicine, since iPSCs are developed from a patient’s own somatic cells, it helps to avoid any 

immunogenic responses as well as controversial use of embryos (Takahashi et al. 2007, 

Yamanaka 2012). Many researches have demonstrated that iPSCs show remarkable similarities 

to embryonic stem cells (ESCs) in both cell morphology and functionality including 
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pluripotency and viable chimera formation (Wernig et al. 2007, Maherali et al. 2007). 

Therefore, it was believed that human iPSCs (hiPSCs) can be an infinite cell source for 

regenerative medicine. 

 Bioprocessing of hiPSCs comprises some steps including isolation, derivation, large-

scale expansion, differentiation, purification, storage, and distribution of final products (Wang 

et al. 2014). Cells from donors are collected and reprogrammed into hiPSCs by transcription 

factors. Then, hiPSCs are expanded and differentiated into desired target cells. Finally, the 

produced cells are purified before distributed for different aims. In the expansion step, 

maintenance of the undifferentiated state of hiPSCs is important since the homogeneity of cell 

pluripotency will ensure the success of differentiation step. Conventionally, to maintain the 

pluripotency of hiPSCs, cells are cultured with feeder cells that support hiPSC proliferation 

and adhesion via supplementation of growth factors and extracellular matrix (Saxena et al.2008, 

Villa-Diaz et al. 2013). Two most popular feeder cell types are mouse embryonic fibroblasts 

(MEFs) and SNL which is a mouse fibroblast STO cell line transformed with neomycin 

resistance genes and murine leukaemic inhibitory factor (LIF). They are believed to be different 

in their potential for maintenance of undifferentiated state. In culture with feeder cells, hiPSCs 

grow as monolayer colonies and sustain the undifferentiated state. Maintaining the 

undifferentiated state of hiPSCs remains challenging during the expansion step. Previously, the 

deviation from the undifferentiated state of hiPSCs in culture with feeder cells has been 

reported with changes in cell morphology from a small cobblestone-like shape to a large 

flattened shape (Takahashi and Yamanaka 2006, Takahashi et al. 2009, Kim et al. 2014). This 

unintentional loss of pluripotency leads to heterogeneous cell population that makes it difficult 

for long-term maintenance and direct differentiation. In 2014, Kim et al. reported two different 

patterns of deviation from the undifferentiated state in hiPSC colonies in culture with SNL and 

MEF feeder cells (Fig. 1.4). The deviation from the undifferentiated state of hiPSCs in culture 
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with SNL feeder cells occurred spontaneously at the central region of colony and was 

dependent on colony size. On the other hand, the deviation from the undifferentiated state of 

hiPSCs occurred randomly at the peripheral region of colony and was independent on colony 

size in culture with MEF feeder cells. At the central regions of colonies, steady decrease of cell 

migration, partial detachment of cells with disruption of integrin mediated cell-substrate 

interaction, and morphological changes accompanying cell apoptosis were observed with 

increasing population density. At the peripheral regions of colonies, loss of E-cadherin 

mediated cell-cell interaction was found. After all, they suggested that the most important 

factor for occurrence of hiPSC deviations was cell migration which closely related to cell 

interactions and morphology.  

 

Figure 1.4 Deviation from the undifferentiated state of hiPSCs in culture with SNL and MEF 

feeder cells (Kim et al. 2014) 

 

1.4 Effect of cell-cell interaction, cell-substrate interaction, and cell migration on 

hiPSCs 

Many researchers have attempted to mimic stem cell niche by designing microenvironments in 

order to control stem cell fate (Metallo et al. 2007, Lutolf et al. 2009). For that purpose, 



8 

 

understanding how cells interact with their neighboring cells and substrate is necessary. In case 

of pluripotent stem cells, it becomes even more important since cadherin-mediated cell-cell 

interaction and integrin-mediated cell-substrate interaction are known to influence cell fate 

(Metallo et al. 2007, Li et al. 2010, Xu et al. 2010). They both assemble large intracellular 

protein complexes via their cytoplasmic domains which regulate cell behavior through 

modulation of signaling networks. For survival and self-renewal of pluripotent stem cells, it 

was reported that the interplay between Rap1 and E-cadherin along the endocytic recycling 

pathway (Li et al. 2010), influencing the Oct3/4 and Nanog genes expression by E-cadherin 

(Metallo et al. 2007), and modulation of PI3K-Akt pathway which inhibits cell death (Paling 

et al. 2004, Armstrong et al. 2006, Xu et al. 2010) via integrin-mediated cell-substrate 

interaction played important roles. Also, the down-regulation of E-cadherin was proved to 

stimulates Caspase-3 and suppress Bcl-XL gene that led to increase level of cell death 

(Watanabe et al. 2007, Ohgushi et al. 2011). Furthermore, it was found that long-term Wnt 

activation promoted cell differentiation through β-catenin-induced upregulation of Slug 

(Huang et al. 2014). Besides, regulation of cell migration is also one of promising strategies to 

control cell fate. During cell migration, cadherin-mediated cell-cell interaction and integrin-

mediated cell-substrate interaction are continuously broken and reformed. This dynamic of cell 

interactions triggers a cascade of cell events that starts with the activation of Rho family 

GTPase (Arthur et al. 2002). In 2012, Khatau et al. showed that cell nucleus responds to cell 

migration that leads to change in gene regulation and nuclear mechanical properties. 

Therefore, the possible mechanisms for controlling cell fate decision by influencing the 

balance between cell-cell, cell-substrate interactions via altered cell migration have been 

addressed recently (Kim and Kino-oka 2014a, Kim and Kino-oka 2015, Shuzui et al. 2019b). 

In culture on dendrimer surface, it was shown that appropriate cell migration leads to formation 

of hiPSC colonies. While faster cell migration induced differentiation toward cells of early 
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mesoderm (Kim and Kino-oka 2014b). In culture with feeder cells, cell migration rate at the 

central and peripheral region of colony before the occurrence of deviation was measured. The 

analyzed results indicated that there were more slow or fast migrating cells at the central or 

peripheral region, respectively, in colonies with deviated cells than in colonies with 

undifferentiated cells (Shuzui et al. 2019a). Later, when migration of hiPSCs were accelerated 

via alteration of cell-cell interaction, the deviation from the undifferentiated state at the central 

region of colonies cultured with SNL feeder cells was avoided (Shuzui et al. 2019b). 

 

1.5 Adhesion energy 

The adhesion energy of a hiPSC comes from bonds formed between that cell and it’s adjacent 

cells or substrates and are mainly determined by adhesion molecules E-cadherin and integrin, 

respectively. Main functions of adhesion energy are controlling the adhesive strength and 

morphology of the cell contact (Maitre and Heisenberg 2011). Together with cortical tension, 

adhesion energy is a key parameter indicating the interaction between cells and their 

surrounding environment. The finding about relation between the force required to separate 

contacting cells and the number of E-cadherin molecules in the cells (Chu et al. 2004, 

Arboleda-Estudillo et al. 2010) suggested that the number of E-cadherin affected adhesion 

energy between cells. Many strategies and techniques have been used to estimate the adhesion 

energy such as bioforce probe, atomic force microscopy, and dual pipette assay (Jegou et al. 

2008, Moreno-Cencerrado et al. 2017, Daoudi et al. 2004). But it is noteworthy that E-cadherin 

does not only bind to other cadherin via the extracellular domain but also bind to the 

cytoskeleton via the intracellular domain (Nagafuchi and Takeichi 1988). Therefore, the energy 

measured by detaching cells might be different from the adhesion energy which indicates the 

binding strength of E-cadherin at the extracellular domain. Similarly, detachment energy is 

also usually used to quantify adhesion energy between cell and extracellular matrix. Li et al. 
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(2003) defined the detachment energy as the work done to break the α5β1 bonds and deform 

the cell during the detachment process that depended on the number of integrin-fibronectin 

complexes formed. In summary, in case of hiPSCs, cell-cell adhesion energy and cell-substrate 

adhesion energy are the energies required to detach E-cadherin/E-cadherin bonding between 

two cells and integrin/substrate bonding of one cell. These energies are suggested to depend on 

the number of E-cadherin and integrin at binding sites. Physically, these energies are 

considered as potential energy while kinetic energy is the energy of movement.  

 

1.6 Features of our model 

Two main features of our model are the multi-scalability and the modularity. Multiscale 

modeling is a type of modelling in which different spatiotemporal scales of a system are 

described and linked together. It allow us to express the dynamic exchange of information 

across scales of a system (Cilfone et al. 2014). A multiscale model can be built by either 

bottom-up or top-down approach (Meier-Schellersheim et al. 2009). In the top-down approach, 

the modelers start from the observed features on a highest level of a system, then the 

mechanisms on lower levels are inferred. For a biological system, this approach may go from 

society to body, organ, tissue, cell, organelle, protein, to gene (Qu et al. 2011). Even though 

this type of modeling is relatively simple, it’s variables and parameters are mainly 

phenomenological and do not directly connect with actual physiological parameters (Qu et al. 

2011). In contrast, in the bottom-up approach, the behaviors of a system on higher levels are 

derived from the lower scales after the individual elements and their interactions are described. 

The greatest advantage of this modeling approach is that it is suitable for systems with massive 

interacting elements (Qu et al. 2011). However, it is usually too complicated and 

computationally costly. In this study, our interested phenomenon is the deviation from the 

undifferentiated state of hiPSCs in colonies that requires spatiotemporal analysis at many 
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scales. Therefore, the multiscale model was developed which described from single cell level 

(microscale), colony level (mesoscale), to culture level (macroscale) (Fig. 1.5). On the lowest 

level, each cell was expressed by many cell behaviors and could be analyzed separately to 

understand the deviation trigger. In this level, the heterogeneity between neighboring cells was 

expressed by the model. On the next level, cell colonies which were made up of connected cells 

were maintained and expanded by fundamental cell behaviors including cell division, cell 

migration, and cell connections. Since the spatial heterogeneity in each colony was realized, 

spatiotemporal frequency for occurrence of deviation in colony could be analyzed. Lastly, the 

culture level was obtained by the heterogeneity between colonies in the culture vessel. On this 

level, the frequency of deviation trigger in whole culture was concerned. 

 

Figure 1.5 Multi-scalability of the developed kinetic model for hiPSC culture in this study 

 The second key feature of our model is the modularity. Modular modeling is a type of 

modeling where interchangeable components (modules) are used. According to McClelland 

and Rumelhart (1995) and Baldwin and Clark (2000), a module is a unit in a system that 

interacts with other modules in the system and accessible via interface. In the biological field, 

this modeling method has been mainly applied in system biology (Saez-Rodriguez et al. 2005, 
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Marchisio et al. 2013, Avsec et al. 2018, Cheng et al. 2019). In this study, with the idea of 

building a modular system for hiPSC culture, each cell behavior as well as culture operation 

were modelled separately in different modules (Fig. 1.6). The model was built as “plug-and-

play” form where the main model could be pre-defined by choosing modules from the user 

interface. Many modules expressing cell behaviors (e. g. cell division, cell migration, cell 

connections), culture operations (e. g. culture seeding), culture environments (e. g. culture 

space and time), and outputs (e. g. movement rate calculation) have been built after several 

research directions that made up a large module warehouse (Fig. 1.7). Current modules in 

warehouse can be modified or new modules can be added according to updated rules or 

demands. The modular model helps to express the variety of cell types with different needs. 

For a certain culture system, suitable modules can be selected from module warehouse, new 

modules can be added if necessary and unused modules can be removed (Fig. 1.8). Therefore, 

the model gives access to not only culture of hiPSCs with feeder cells in current study but also 

other related systems in future. Advantages of modular biological models including component 

reuse and model integration for different use cases have been addressed previously by Petersen 

et al. (2014). They believed that modularizations methods would accelerate the pace of 

biomedical research. 
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Figure 1.6 Schematic drawing of idea of modular system for modelling 

 

Figure 1.7 Schematic drawing of examples of modules in module warehouse 
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Figure 1.8 Schematic drawing of process for model pre-defining for a certain culture system 

 

1.7 Strategies and objectives of this study 

With promising roles in regenerative medicine and drug screening, how to assure hiPSC quality 

throughout the cell production process is crucial mission. Focusing on culture of hiPSCs with 

feeder cell layers, previous studies have pointed out that anomalous cell migration at the central 

and peripheral region of colony is a possible trigger for the loss of hiPSC pluripotency (Shuzui 

et al. 2019a). However, many questions have been still remained after all efforts of in vitro 

study due to technical limitation that raises the need of kinetic modelling. My strategy was 

developing a kinetic model which can help to understand how often deviation occurred in 

culture, when cells deviated, and what regions of a colony were subject to deviation. Then, I 

firstly used the developed model to understand what caused the heterogeneity of cell migration 

where cells at the peripheral region of colony have higher migration rate then cells at the central 

region of colony (Chapter 2). From in silico analysis and previous in vitro hypothesis about the 

deviation from the undifferentiated state of hiPSCs, I established in silico hypothesis about 

deviation from the undifferentiated state of hiPSCs (Chapter 3). The model was validated by 
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comparing in silico output and in vitro data. With the validated model, I expected to be able to 

deeply understand the trigger for the deviation from the undifferentiated state of hiPSCs 

cultured on feeder cells.  
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Chapter 2 Understanding the spatial heterogeneity of cell migration in colony 

2.1 Introduction 

For more efficient stem cell engineering, there is a need to utilize kinetic model instead of only 

relying on the empirical knowledge of professionals. It helps to manage processes non-

invasively, control stem cell quality, elucidate the mechanism of the phenomenon of interest, 

and predict the outcome. In many cases, kinetic model has been successfully used to predict 

stem cell fate as well provide insights into the mechanism underlying some processes 

(Viswanathan and Zandstra 2003, MacArthur et al. 2009, Herberg and Roeder 2015). 

Heterogeneity of propagated stem cell populations is one of challenges in stem cell 

processing that need to be overcome prior to their routine therapeutic application (Chowdhury 

et al. 2010, Serra et al. 2012, Chen et al. 2014). Understanding underlying mechanisms of the 

heterogeneity is the core issue to keep the cell population homogeneous. Previously, some 

reports have shown the heterogeneity of stem cell colonies or aggregation with spatial 

heterogeneity in cell state (Bratt-Leau et al. 2009, Kim et al. 2014, Rosowski et al. 2015). Kim 

et al. (2014) reported the heterogeneity in cell quality where deviated cells were found at the 

central and peripheral region of colony. Concerning this phenomenon, Shuzui et al. (2019a) 

analyzed in vitro cell migration rate and showed that cell migration rate was higher at the 

peripheral region of colony than at the central region of colony. Furthermore, they suggested 

that the anomalous cell migration at those areas are triggers for the deviation from the 

undifferentiated state of hiPSCs. This in vitro cell migration rate is resulted from exchange 

between neighboring cells and displacement caused by cell division. Due to technical limitation, 

it is difficult to understand effect of each of these two factors on the overall in vitro cell 

migration rate. 

In this chapter, my objective is developing a kinetic model based on cellular automaton 

approach to understand the key factor that leads to the heterogeneity of cell migration in hiPSC 
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colonies. The contribution of cell exchange and cell division needs to be clearly understood 

prior to considering cell migration as triggers for deviation from the undifferentiated state of 

hiPSCs in culture with feeder cells. 

 

2.2 Materials and Methods 

2.2.1 Culture of hiPSCs 

Maintenance of hiPSCs (clone Tic, JCRB1331) were performed in 55-cm2 dishes (Corning 

Costar, Cambridge, MA) with feeder cells SNL 76/7 (European Collection of Cell Cultures, 

Salisbury, UK) or mouse embryonic fibroblasts (MEFs) (ReproCELL Inc., Tokyo, Japan) at 

37°C, 5% CO2. The surface was coated with 0.1% gelatin and the medium ReproStem 

(ReproCELL Inc.) containing 5 ng/mL basic fibroblast growth factor was used. Subculture of 

hiPSCs were performed every 5 days. More details about in vitro culture are mentioned in 

previous paper (Shuzui et al. 2019a).  

A two-dimensional CA which consists an array of cubes having a finite number of states 

and can change their states at every time step was used for in silico culture. Depending on the 

purpose of each experiment, the simulation was initiated by seeding single or multiple colonies. 

In seeding process, we assumed that the adhesion time and lag time are negligible and the 

attachment ratio was assumed to be one. Other assumptions were indicated in previous work 

(Kagawa and Kino-oka 2016). After that, simulations were executed with four cell behaviors 

with time 𝑡 was increased by a time step Δ𝑡 of 0.1 h. LabVIEW (National Instruments Corp., 

Austin, Texas, USA) environment on the commercially available workstation (Precision T7500 

workstation, Dell Inc., Round Rock, Texas, USA) was used to execute in silico culture. In this 

model, we assumed that the effects of feeder cells on hiPSCs as physical barriers could be 

negligible and did not include feeder cells in the model. SNL and MEF feeder cells were 

believed to help hiPSCs attach and maintain their undifferentiated state via various growth 
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factors and extracellular matrix components. Therefore, the effects of SNL and MEF feeder 

cells were realized by different parameter values related to cell growth and cell connections. 

 

2.2.2  Analysis of movement rate of hiPSCs in colony 

Movement rates of individual cells in a colony was calculated by the displacement of a cell 

divided by the duration of the movement time: 

𝑉𝑐  =
√(𝑋𝑡 – 𝑋𝑡−𝑑𝑡 )2  +  (𝑌𝑡 – 𝑌𝑡−𝑑𝑡)2

𝑑𝑡
𝑙𝑐                                         (1) 

where (𝑋𝑡, 𝑌𝑡) and (𝑋𝑡−𝑑𝑡, 𝑌𝑡−𝑑𝑡) are coordinates of a cell at culture time 𝑡 h and (𝑡 − 𝑑𝑡) h; 𝑙c 

is the length of the unit cube. 𝑡 and 𝑑𝑡 were determined to be 54 h and 6 h, respectively, to 

estimate cell migration-related parameters. 

The average movement rate against the distance from the center of the colony 𝑉𝑅
̅̅ ̅ was 

calculated by taking an average of cell movement rate 𝑉𝑐 of all cells at every 100 μm from the 

center of the colony at 𝑡 = 50 h, 90 h, 128 h, and 𝑑𝑡 = 6 h. 

Average cell movement rate, 𝑉M, is the average of cell movement rate 𝑉𝑐 of all cells at 

the central and peripheral regions of the colony, which were determined as the 4 inner- and 

outermost cell layers of the colony, respectively. To investigate the relationship between 

pushing frequency and average cell movement rate, 𝑉𝑐 was estimated at 𝑡 = 72 h, 96 h, 120 h, 

144 h, and 𝑑𝑡 = 24 h. 

 

2.2.3 Analysis of cell movement rate toward the outside of colony, 𝑽𝒄 𝐜𝐨𝐬 𝜽 

The central and peripheral regions of the colony were determined as the 4 inner- and outermost 

cell layers of the colony, respectively, at 𝑡 = 48 h. The movement rate toward the outside of 

colony, 𝑉𝑐 cos 𝜃, of cells at the central and peripheral regions of the colony were analyzed from 

𝑡 = 48 h to 𝑡 = 54 h. Angle 𝜃 was determined by 180° − OA𝑐B𝑐
̂  where O is the center of the 
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colony, A𝑐  and B𝑐  are positions of cell 𝑐  at 𝑡  = 48 h and 𝑡  = 54 h, respectively. Inward 

movement to the center of colony was indicated by negative 𝑉𝑐 cos 𝜃 . In contrast, outward 

movement to the outside of colony was indicated by non-negative values. Frequencies of cells 

with different value ranges of 𝑉𝑐 cos 𝜃 were analyzed from three single in silico colonies. 

 

2.2.4 Tracking cell movement in silico 

At 𝑡 = 24 h, positions of three cells at the central region and at the edge of colony cultured on 

MEF feeder cells were tracked every 30 min for 120 h. Tracked cells at the central region were 

marked in yellow and those at the edge of the colony were marked red. Non-tracked cells in 

the colony were marked in blue. 

 

2.2.5 Calculation of average frequency of being pushed 

Average frequency of being pushed is the average of the frequency that a cell was pushed out 

due to the division of other cells. The frequency of one cell being pushed 𝑃𝑐 (times/h) was 

calculated as follows: 

𝑃𝑐 =
times being pushed from (𝑡 − 𝑑𝑡) to 𝑡

𝑑𝑡
                                       (2) 

where 𝑡 = 72 h, 96 h, 120 h, 144 h, 𝑑𝑡 = 24 h. 

 

2.2.6 Fitting method 

The least-squares method was used to find the best fit values of the number of cell layers for 

occurrence of contact inhibition (𝑁c), free migration rate (𝑉m,free), ratio of energy for a cell-

cell connection (𝜀cc), ratio of energy for a cell-substrate connection (𝜀cs). 
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2.2.8 Statistical analysis 

To validate simulated results of colony size distribution in the culture vessel against 

experimental data at 24 h and 120 h after seeding, Mann–Whitney U test was used at a 

significance level of 0.05 (number of colonies: n > 50). 

 

2.3 Results  

2.3.1 Model development 

Rules of cell connection 

Each cell can form cell-cell connections with other cells or cell-substrate connections with the 

substrate via cadherin- and integrin- mediated interactions. However, modeling these 

interactions at molecular level is a challenging work. Therefore, we came up with an idea of 

focusing on the energy that a cell utilizes to form cell-cell and cell-substrate connections. Cell-

cell and cell-substrate connection energies are denoted as 𝐸cc  and 𝐸cs , respectively. The 

distance between them should be small enough for a cell to make a connection with another 

cell or the substrate cube. Here, I assumed that the unit cube could make a connection with the 

target cell when the distance between the center of the cell or substrate unit cube and that of 

the target cell cube was not more than √2𝑙𝑐 (Fig. 2.1). When cell 𝑖 and cell 𝑗 made a connection, 

the connection energy between them was given by 𝐸cc = min(𝐸cc,𝑖 , 𝐸cc,𝑗). The connection 

energy between cell 𝑐 and the substrate is given by 𝐸cs = 𝐸cs,𝑐. 
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Figure 2.1 Schematic drawing of our model that describes the definition of cell size, cell 

connections, and NN cubes surrounding the target cell in case each cell is presented by a cube. 

Rules of cell migration 

In vitro cell migration is a complex process which involves drastic changes in the cellular 

cytoskeleton and the dynamic of cell interactions. Therefore, this process was simplified as 

follows: a cell uses energy to break and form cell-cell and cell-substrate connections 

immediately, the remaining energy will be used for cell migration. Cells can choose one of 

eight distinct directions denoted by the variable 𝑑𝑖𝑟 to migrate to. When cell 𝑐 migrates to the 

direction 𝑑𝑖𝑟 with the rate of 𝑉m,𝑐, the variable 𝑡m,𝑐, a waiting time for the next migration, is 

updated as 𝑡m,𝑐 = 𝑙 ∙ 𝑉m,𝑐
−1, where 𝑙 is the migration distance. The waiting time 𝑡m,𝑐 decreases 

by Δ𝑡 for each time step. If the waiting time is bigger than zero (𝑡m,𝑐 > 0), then cell 𝑐 does not 

actively migrate, but still can be passively exchanged (passive migration) with the NN cells 

whose waiting times are less than zero. 
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If the waiting time of cell 𝑐 becomes equal or less than zero (𝑡m,𝑐 ≤ 0), the direction 

𝑑𝑖𝑟 and the rate 𝑉m,𝑐 of migration are decided as follows: first, the direction 𝑑𝑖𝑟 is determined 

stochastically based on the probability 𝑃𝑟m,𝑑𝑖𝑟  which is given by the normalized quantity 

𝑝m,𝑑𝑖𝑟. This normalized quantity is proportional to (i) the term relating to the connection energy 

between the target cell cube and the other cell and/or substrate cubes reduced by the migration 

(𝑅m,𝑑𝑖𝑟), (ii) the weight for randomly selecting a space (Ω𝑑𝑖𝑟) (Kino-oka et al. 2000), and (iii) 

the possibility of displacement (𝐻m,𝑑𝑖𝑟 = 0 or 1). 

A weight for occurrence of migration to the direction 𝑑𝑖𝑟 was defined by the following 

equation: 

𝑅m,𝑑𝑖𝑟 = 1 − 
𝐸B,𝑑𝑖𝑟

𝐸A
                                                             (3) 

where 𝐸A and 𝐸B,𝑑𝑖𝑟 are the total connection energy formed by the target cell before migration 

and the total reducing connection energy due to migration to the direction 𝑑𝑖𝑟, respectively.  

𝐸A is defined as follows: 

𝐸A =  ∑ 𝐸𝑐,𝑑𝑖𝑟

𝑁nn−1

𝑑𝑖𝑟=0

                                                               (4) 

where 𝐸𝑐 is either 𝐸cc or 𝐸cs, 𝑁nn is the number of NN cubes (𝑁nn = 13 in 2D culture (Fig. 

1.5). 

𝐸B,𝑑𝑖𝑟 was defined by equation (3) and must not exceed the maximum migration energy 

𝐸max. 

𝐸B,𝑑𝑖𝑟 =  ∑ Δ𝐸(𝑑; 𝑑𝑖𝑟)

𝑁nn−1

𝑑𝑖𝑟=0

                                                       (5) 

where Δ𝐸(𝑑; 𝑑𝑖𝑟) is the reduced amount of connection energy between the target cell and the 

nearest neighbor cubes when the target cell moves in the direction 𝑑𝑖𝑟. 
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Cells cannot migrate to a position where they cannot make any connections with other 

cells or the substrate. The migration can occur only when the target cell can make a connection 

in new destination with at least one other cell or substrate cube. Cell migration does not occur 

once this condition is violated and the possibility of displacement is defined to be zero: 

𝐻m,𝑑𝑖𝑟 = 0. Otherwise, 𝐻m,𝑑𝑖𝑟 = 1 is given. 

The probability for selecting 𝑑𝑖𝑟 as the direction of migration 𝑝m,𝑑𝑖𝑟 when there is no 

other cells neighboring a target cell is given by  

𝑝m,𝑑𝑖𝑟 =
𝑅m,𝑑𝑖𝑟 Ω𝑑𝑖𝑟  𝐻m,𝑑𝑖𝑟

∑ (𝑅m,𝑑𝑖𝑟′  Ω𝑑𝑖𝑟′  𝐻m,𝑑𝑖𝑟′)
𝑁nn−1

𝑑𝑖𝑟′=0

.                                            (6) 

If the denominator becomes zero, there is no need to calculate the probability because 

the target cell cannot migrate in any direction.  

The probability for selecting 𝑑𝑖𝑟 as the direction of migration in general is given by  

𝑃𝑟m,𝑑𝑖𝑟 =
(𝑝m,𝑑𝑖𝑟)T(𝑝m,𝑑𝑖𝑟̃)D

∑ (𝑝m,𝑑𝑖𝑟′)T(𝑝m,𝑑𝑖𝑟′̃)D
𝑁nn−1

𝑑𝑖𝑟′=0

                                              (7) 

where (𝑝m,𝑑𝑖𝑟)T represents the probability that the target cell selects 𝑑𝑖𝑟 as the direction of 

migration as if there are no other neighboring cells, and (𝑝m,𝑑𝑖𝑟̃)D represents the probability 

that another cell exists at the destination selects the direction opposite to 𝑑𝑖𝑟 (designated as 

𝑑𝑖𝑟̃). If there is no other cell at the destination, then we substitute 1 for (𝑝m,𝑑𝑖𝑟̃)D. In this case, 

we have 𝑃𝑟m,𝑑𝑖𝑟 = 𝑝m,𝑑𝑖𝑟. 

Assumed that cell has a maximum energy that can be used for the migration (𝐸max) 

𝐸max =
1

2
𝑚𝑐𝑉m,free

2                                                               (8) 

where 𝑉m,free represents the migration rate when no connection is broken and 𝑚𝑐 is the mass 

of cell 𝑐. 

 Then, when it migrates in the direction 𝑑𝑖𝑟, the total reducing connection energy 𝐸B,𝑑𝑖𝑟 

is subtracted from 𝐸max is used for the migration: 
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1

2
𝑚𝑐𝑉m,𝑐

2 = 𝐸max − 𝐸B                                                            (9) 

where 𝑉m,𝑐 is the cell migration rate  

Using the two equations above, we obtained the following relationship:  

𝑉m,𝑐 = 𝑉m,free√1 − 𝐸B/𝐸max = 𝑉m,free√1 − 𝑖𝜀cc −  𝑗𝜀cs                              (10) 

where 𝜀cc (𝜀cc = 𝐸cc 𝐸max⁄ ) and 𝜀cs (𝜀cs = 𝐸cs 𝐸max⁄ ) are ratio of energy for cell-cell and cell-

substrate connection in maximum energy, and 𝑖 and 𝑗 are the number of broken cell-cell and 

cell-substrate connections, respectively. 

Rules of cell division 

After sufficiently preparing genetic material and mass in each cell cycle, a proliferating cell 

divides into two identical daughter cells that continue to grow to their full size. In this model, 

only the duplication of one mother cell into two identical daughter cells is described and the 

change in cell size is ignored. Proliferating cells divide every generation time 𝑡g which is a 

stochastic variable given randomly from [0.9𝑡g̅, 1.1𝑡g̅] (uniform distribution) at the beginning 

of each cell cycle. The parameter 𝑡g̅  is the mean generation time which is estimated by 

ln(2) 𝜇p⁄ . 𝜇p is a specific growth rate of in vitro cell culture. Each cell has a waiting time for 

the next division 𝑡d,𝑐 which equals 𝑡g at the time of cell birth and is decreased every time step. 

When 𝑡d,𝑐 of a proliferating cell is less than zero, this cell can divide and update 𝑡d,𝑐 as 𝑡d,𝑐 =

𝑡d,𝑐 + 𝑡g. If there are vacant NN cubes, the mother cell puts its daughter cell on one of the 

vacant NN cubes stochastically as described previously (Kino-oka et al. 2000). Otherwise, it 

first selects one of the closest vacant cubes, then one of the NN cells of the selected vacant 

cube is moved to that cube. The procedure is repeated until the mother cell has a vacant NN 

cube to place the daughter cell in. 

Rules of cell quiescence 

We assumed that whenever there is no vacant space in the distance 𝑁c from the center of a cell, 
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it enters a quiescent state and the waiting time for the next division does not decrease for each 

time step. Whenever a vacant space appears at the distance 𝑁c from the center of a quiescent 

cell, it returns to a proliferating state at the next time step. 

 

2.3.2 Estimation of model parameter values 

The length of a side of the unit cube 𝑙𝑐 was estimated from the averaged cell area 𝐴𝑐 which 

equaled 329 μm2 and 426 μm2 in cultures of hiPSCs on SNL and MEF feeder cells, respectively. 

𝑙𝑐 were 18.1 μm and 20.6 μm for cells cultured on SNL and MEF feeder cells, respectively. 

Mean generation time, 𝑡g , was calculated by ln(2)  divided by the specific growth rate of 

hiPSCs in culture and equaled 15.8 h and 21.5 h in culture on SNL and MEF feeder cells, 

respectively. 

The number of cell layers for the occurrence of contact inhibition 𝑁c was estimated by 

fitting to the experimental growth profile of undifferentiated colonies (Fig. 2.2). Single in silico 

colonies were seeded with radius of 9 and 7 cell layers in culture on SNL and MEF feeder cells, 

respectively. Initial colony sizes were determined as the average size of in vitro colonies at 24 

h from previous paper (Kim et al 2014). The value of 𝑁c was changed in the range of [1, 10] 

(cell layer) and its best fit values were 7 cell layers (coefficient of determination 𝑅2 = 0.99) 

and 8 cell layers (coefficient of determination 𝑅2 = 0.99) in culture on SNL and MEF feeder 

cells, respectively. 

In vitro cell migration rate at the central and peripheral regions of 10 representative 

colonies in culture on SNL and MEF feeder cells at 48–54 h were used for fitting free migration 

rate 𝑉m,free, ratio of cell-cell connection 𝜀cc, and ratio of cell-substrate connection 𝜀cs. In silico 

colonies were seeded with a radius of 10 cell layers until their sizes reached 0.5 mm2. Then, 

the movement rates of cells at the central and peripheral regions were calculated. The value of 

𝑉m,free was changed in the range of [1.0, 15.0] (μm/h), 𝜀cc and 𝜀cs were changed in the range 
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of [0.05, 0.35] (-). The combination (𝑉m,free, 𝜀cc, 𝜀cs) which gave the closest movement rate to 

the experimental data was determined as (4.0 μm/h, 0.15, 0.05) and (4.0 μm/h, 0.05, 0.15) when 

cultured on SNL and MEF feeder cells, respectively. In silico average movement rate of hiPSCs 

at the central and peripheral region were 2.9 ± 1.9 μm/h and 5.6 ± 3.3 μm/h or 3.6 ± 2.3 μm/h 

and 5.6 ± 3.3 μm/h when cultured on SNL or MEF feeder cells, respectively (Fig. 2.3). 

Summarization of parameters values were presented in Table 1. 

 

Figure 2.2 Estimation of contact inhibition by fitting to time profiles of hiPSC colonies with 

undifferentiated cells in cultures on SNL (A) and MEF (B) feeder cells. Closed circle: in vitro 

data; Line: best fit in silico data 
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Figure 2.3 Estimation of 𝑉m,free, 𝜀cc, and 𝜀cs by fitting to the average movement rate at the 

central and peripheral regions of hiPSC colonies cultured on SNL (A) and MEF (B) feeder 

cells. Grey bars: experimental results obtained from 10 colonies. White bars: best fit simulation 

results obtained by the least-squares method. Standard deviations were calculated from all cells 

in colonies (n ≥ 300) 

 

Table 1 in silico parameters for undifferentiated cells cultured on SNL and MEF feeder cells 

Variable Symbol Unit Value 

The length of a side of the unit cube 𝑙𝑐 µm 18.1 (SNL), 20.6 (MEF) 

Mean generation time 𝑡g̅ h 15.8 (SNL), 21.5 (MEF) 

The number of cell layers for the occurrence 

of contact inhibition 

𝑁c cell layer 7 (SNL), 8 (MEF) 

Free migration rate 𝑉m,free µm/h 4.0 

Ratio of energy for cell-cell connection  𝜀cc - 0.15 (SNL), 0.05 (MEF) 

Ratio of energy for cell-substrate connection 𝜀cs - 0.05 (SNL), 0.15 (MEF) 

 

2.3.3 Validation of the model 

After estimating parameter values, we performed in silico culture of hiPSCs on SNL and MEF 

feeder cells for 144 h (Movies S1-2). Position and size of every single colony in in vitro culture 

vessels at 𝑡 = 24 h were estimated and used as initial seeding conditions for in silico culture. In 

silico cell density in culture vessels every 24 h and colony size at 𝑡 = 120 h were calculated and  

compared to in vitro data. In silico growth curves were in good agreement with the in vitro data 

with high coefficients of determination 𝑅2 of 0.94 and 0.97 in culture on SNL and MEF feeder 

cells, respectively (Fig. 2.4). The boxplots in Fig. 2.5 expressed in vitro and in silico 

distributions of colony size in 3 representative culture vessels. These results showed good 
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agreement between in vitro and in silico distribution of colony size at 𝑡 = 24 h and 𝑡 = 120 h. 

The Mann–Whitney U test indicated that there was no significant difference in colony size 

between in vitro and in silico culture vessels (P > 0.05). 

 

Figure 2.4 Time profiles of hiPSCs in culture wells with only undifferentiated cells cultured 

on SNL (A) and MEF (B) feeder cells. The data represent analytical results obtained from 3 

wells. Open square: in vitro data, line: in silico data 

 

Figure 2.5 Distribution of colony sizes obtained under culture on SNL (A) and MEF (B) feeder 

cells at 24 h and 120 h after seeding. Grey box: in vitro data, white box: in silico data. In each 
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box plot, the central point represents the median, the box gives the interval between the 25% 

and 75% percentiles, and the whisker indicates the range 

For validation of the developed model regarding cell migration behavior in colonies, 

the cell movement rate toward the outside of colony, 𝑉𝑐 cos 𝜃, of cells at the central and the 

peripheral regions were examined. In silico cells had similar trends of cell movement direction 

to in vitro cells at both regions. Cells moving toward the outside of the colony made up 67% 

of the central region and 87% at the peripheral region of in silico colonies cultured on SNL 

feeder cells, while those frequencies were 71% and 96%, respectively, for in vitro culture (Fig. 

2.6A). The similar trend was observed in colonies cultured on MEF feeder cells (in silico: 65% 

at the central region and 86% at the peripheral region; in vitro: 66% at the central region and 

98% at the peripheral region) (Fig. 2.6B). Both in viro and in silico cells moved outward more 

at the peripheral region of colony than at the central region of colony. 

 

Figure 2.6 Frequencies of cell against movement rate toward the outside of colony 𝑉𝑐 cos 𝜃 at 

48-54 h at the central region (a1, a2, b1, b2) and peripheral region (a3, a4, b3, b4) of the hiPSC 

colonies when cultured in silico (a1, b1, a3, b3) and in vitro (a2, b2, a4, b4) on SNL (A) and 

MEF (B) feeder cells. 
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2.3.4 Elucidation of cell movement behavior in colonies 

The spatial and temporal dependence of cell movement rate were analyzed to understand the 

heterogeneity of cell movement rates in hiPSC colony. The average movement rates 𝑉𝑅
̅̅ ̅ of all 

cells from single colonies cultured on MEF feeder cells were calculated at every 100 μm from 

the center of the colony at 𝑡 = 50 h, 90 h, and 128 h where the colony radiuses equaled 300 μm, 

500 μm, and 700 μm, respectively (Fig. 2.7). Two distinct parts of cells including quiescent 

cells at the central region of the colony and proliferating cells at the peripheral region of the 

colony were observed (Fig. 2.7a1,b1,c1). As time passed, a contact inhibition region expanded 

but the width of proliferating at the peripheral region of colony remained constant. At 𝑡 = 50 h, 

𝑉𝑅
̅̅ ̅ increased as the distance from the center of the colony 𝑅 increased (Fig. 2.7a2). At 𝑡 = 90 

h and 128 h, 𝑉𝑅
̅̅ ̅ were homogeneous in the contact inhibition region but heterogeneous in the 

proliferating ring at the edge of the colony. In addition, 𝑉𝑅
̅̅ ̅ in the contact inhibition region did 

not change as colony grew. In contrast, in proliferating rings, it gradually increased inside out 

to the edge of the colony. This result indicated the temporal independence and spatial 

dependence of the average cell movement rate in a colony of hiPSCs. 
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Figure 2.7 In silico results at 50 h (A), 90 h (B), and 128 h (C): state of cells in a colony (a1, 

b1, c1) (pink: quiescent state, green: proliferating state); average movement rate against the 

distance from the center of the colony (a2, b2, c2) 

The difference in 𝑉𝑅
̅̅ ̅ between the contact inhibition region and proliferating region in Fig. 

2.7 implied that cell division might be the factor that leads to the spatial heterogeneity of cell 

movement in colonies. Therefore, cell division was stopped by setting the value of 𝑡g to infinity 

and cell migration was stopped by setting the value of 𝑉m,free to zero to clarify that speculation. 

Fig. 2.8 showed the heat map of the cell movement rate 𝑉𝑐 and 𝑉𝑅
̅̅ ̅ at 𝑡 = 128 h when the colony 

radius reached 700 μm. In the contact inhibition region, 𝑉𝑅
̅̅ ̅  was always homogeneous and 

decreased to zero only when cell migration was stopped (Fig. 2.8C). In the proliferating ring 

of the colony, 𝑉𝑅
̅̅ ̅ decreased but was still heterogeneous when cell migration was stopped (Fig. 

2.8C) and became homogeneous only when cell division was stopped (Fig. 2.8B). This result 
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suggested that cell division was a key factor that led to the spatial heterogeneity of cell 

movement in colonies. 

 

Figure 2.8 In silico results when hiPSC colonies were cultured on MEF feeder cells under 

control conditions (A), when cell division was stopped (B), and when cell migration was 

stopped (C): heat map for movement rate of individual cells in one colony at 128 h (a1, b1, c1); 

average movement rate against the distance from the center of the colony (a2, b2, c2). Blue 

cell: 0 ≤ 𝑉c < 1.9, cyan cell: 1.9 ≤ 𝑉c < 3.8, green cell: 3.8 ≤ 𝑉c < 5.7, orange cell: 5.7 ≤

𝑉c < 7.6, red cell: 7.6 ≤ 𝑉c. 

To understand the effect from cell division, positions of some cells at the central and 

peripheral regions of colonies were tracked. The results showed that cells at the central region 

of colonies (yellow cells) fluctuated around the center of the colony while cells at the peripheral 

region of the colony (red cells) migrated toward the edge of the colony (Fig. 2.9A). The 

frequency of cell pushing every 24 h was also calculated to explain the effect of cell pushing 

on cell movement. At the central region of the colony, no cell pushing was found during in 

silico culture (Fig. 2.9B). In contrast, cells at the peripheral region of the colony were pushed 
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by the division of inner cells at the frequency around 0.27 times/h (Fig. 2.9C). At the same 

time, the average cell movement rate at the peripheral region of the colony was higher than that 

at the central region of the colony. This result indicated a proportional relationship between the 

frequency of cell pushing and the cell movement rate in colonies of hiPSCs. 

 

Figure 2.9 In silico movement trajectory of three representative cells at the central region and 

at the peripheral region of the colony from t = 24 h to t = 144 h (A); in silico frequencies of 

cell pushing (grey column) and cell movement rate (black line) at the central region (B) and 

peripheral region (C) of the colony. Yellow cells: cells at the central region of colony at t = 24 

h; red cells: cells at the peripheral region of colony at t = 24 h; blue cells: non-tracked cells at 

t = 144 h; white ring: edge of colony at t = 24 h 

 

2.4 Discussion  

Pursuing the idea of controlling hiPSC fate through migration-dependent regulation of the 

balance between cell-cell and cell-substrate connections (Kim and Kino-oka 2015), I have 

described it in a kinetic model for the first time. The maximum energy 𝐸max, which is specific 

for each cell line, is used by cells to make connections and migrations. Connection energy and 

energy for migration sound similar to physical potential energy and kinetic energy. Even though 

they could not be measured directly from in vitro experiments in this work, what important is 

the balance between them. Furthermore, current researches showed quantitative measurement 

of cell-cell connection and cell-substrate connection strength by using atomic force microscope 
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(Moreno-Cencerrado et al. 2016) that makes this kinetic model accessible in future. Fitting to 

experimental results showed that hiPSCs cultured on SNL feeder cells had different state of 

balance between cell-cell connection energy and cell-substrate connection energy compared to 

hiPSCs cultured on MEF feeder cells. I believe that different feeder cells provided distinct 

topology surrounding hiPSCs that led to different cell-substrate connection energies and then 

indirectly affected cell-cell connection. Moreno-Cencerrado et al. (2016) also reported that the 

strength of the cell-cell connection was highly influenced by the strength of the cell-substrate 

connection. The number of cell layers for occurrence of contact inhibition 𝑁c  was also 

estimated by fitting to in vitro data. The result showed a lesser degree of contact inhibition in 

hiPSC cultures than in non-stem cell cultures as reported previously (Kino-oka et al. 2000, 

Kagawa and Kino-oka 2016) where 𝑁c equaled 1. 

With the well-validated model, simulations were executed to understand the reason for 

the spatial heterogeneity of average cell movement rate in colonies. I first found the difference 

in movement behavior between the contact inhibition region and the proliferating region that 

implied the role of cell division in cell movement rates in a colony. By stopping cell migration 

or cell division, the result showed that both cell migration and cell division affected cell 

movement rates in a colony. However, only cell division led to a higher cell movement rate at 

the peripheral region of the colony than at the central region of the colony. The cell pushing 

mentioned in this chapter came from the division rule where the mother cells push neighboring 

cells to make space for their daughter cells when there is no vacant space around the cell that 

was also used in some models of cancer cells (Stephanou et al. 2017, Forster et al. 2017). 

In this chapter, there is a need to distinguish between two terms: cell migration and cell 

movement. Cell migration is the ability of a cell to actively change to a new position that is 

described cell behavior in this kinetic model. Meanwhile, cell movement is the overall cell 

displacement that may result from cell migration or by being pushed by cell division. In the 
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contact inhibition region, cell movement rate was only affected by cell migration. In contrast, 

at the peripheral region of the colony, cell movement rate was affected by both cell migration 

and cell division. 

Using cellular automata approach, this kinetic model has a disadvantage in simulating 

continuous processes such as cell migration. In silico cells do not continuously change their 

positions, but immediately change of their position at a time point then wait in the new position 

for a period of time. In addition, it is impossible to realize an increase in cell size during growth, 

mechanical constraint of cells in a population, or the multi-directionality of cell migration. On 

the other hand, the strength of CA is lower computational cost than off-lattice models. More 

importantly, CA helps to realize the heterogeneity of cell population that is impossible when 

using a continuous model. 

 

2.5 Summary 

I have developed a kinetic model to clarify the origin of the spatial heterogeneity in cell 

migration which was difficult to understand by in vitro studies alone. With cellular automaton 

approach, I described fundamental cell behaviors including cell division, contact inhibition, 

cell migration, cell–cell connections, and cell–substrate connections. All parameter values were 

estimated from in vitro data and the appropriateness of the kinetic model was indicated by good 

agreement between in silico output and in vitro data. Executed in silico experiments, I found 

that the cell division was the main cause of the observed spatial heterogeneity. This result 

indicated that there is a need to separate components of in vitro cell migration before 

considering the actual trigger for the deviation from the undifferentiated state. 
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Chapter 3 Modelling the deviation from the undifferentiated state of hiPSCs 

3.1 Introduction 

Normally, undifferentiated hiPSCs are expanded as monolayer colonies in culture with feeder 

cells. In 2014, the deviation from the undifferentiated state of hiPSCs was reported by Kim et 

al., in culture with two types of feeder cells. In culture with SNL feeder cells, the deviation 

from the undifferentiated state was observed at the central region of colonies and occurred with 

higher probability at the bigger colonies. In culture with MEF feeder cells, however, the 

deviation from the undifferentiated state was observed at the peripheral region of colonies and 

occurred equally at different colony sizes. The deviated cells not only lost pluripotent 

characteristics but also were negative for markers of three germ layer (Kim et al. 2017). 

To understand the fundamental mechanisms that trigger deviation from the 

undifferentiated state of hiPSCs, Shuzui et al., (2019a) analyzed cell migration rate at the 

central and peripheral region of colonies cultured with above feeder cells. The deviated 

colonies were exposed to a Rac1 activator (HMG1) or inhibitor (NSC23766) in order to 

activate or inhibit cell migration, respectively. This result was the motivation of their study and 

indicated that changes in cell migration could trigger deviation from the undifferentiated state 

of hiPSCs. They then obtained colonies with additional occurrence of deviation at the 

peripheral and central region in incubation with Rac1 activator and inhibitor, respectively. 

When compared the distribution of cell migration rates, they found more slow or fast migrating 

cells in central and peripheral regions, respectively, in deviated colonies, compared to colonies 

that maintained their pluripotency (Fig. 3.1). Besides, the cytoskeletal rearrangement and 

accumulation of nuclear laminA/C through imbalance between cell-cell and cell-substrate 

adhesions was found at the central and peripheral regions of colonies. Consequently, 

heterochromatin might be formed during nuclear lamina assembly and led to modulation of 

gene transcription (Underwood et al. 2017). After all, Shuzui et al. came up with the hypothesis 
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that anomalous cell migration acts as a key trigger for deviation from the undifferentiated state 

of hiPSC colonies. 

However, sequential cell migration before deviation is difficult to observe in vitro, 

suggesting the need for a kinetic model to understand this phenomenon. The study by Shuzui 

et al. suggested the existence of anomalous cell migration, but was unable to exactly define 

that anomaly. Also, from result of chapter 2, we have known that components of in vitro cell 

migration contributed differently on overall cell migration that raised the question about the 

actual trigger for the deviation from the undifferentiated state. In this chapter, I analyzed not 

only apparent movement, which had similar meaning to in vitro cell migration, but also 

constituent movements, including movement caused by active migration, movement caused by 

passive migration, and movement caused by cell division, to assess the potential triggers. In 

addition to the developed modules explained in chapter 2, I further constructed a deviation 

module that describes the generation of deviated cells. Even though there have been many 

factors could be related to the deviation of hiPSCs such as cell migration, cell-cell and cell-

substrate interactions, cell morphology, and nuclear lamina (Kim et al. 2014, Shuzui et al. 2019), 

the model used cell migration as a key factor. This consideration adopted previous in vitro 

hypothesizes about mechanisms for occurrence of hiPSC deviation developed by Kim et al. 

(2014) and Shuzui et al. (2019). In this chapter, hiPSC deviation was explained by two factors: 

mechanical stimulus, represented by cell movement, and duration of mechanical stimulus. The 

simulation was then executed to see if the developed model could recapitulate several 

properties of hiPSC deviation. 
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Figure 3.1 Schematic drawing of in vitro finding that there are more slow migrating cells at 

the central region and fast migrating cells at the peripheral region of undifferentiated colonies 

than of deviated colonies (Shuzui et al. 2019a).  

 

3.2 Materials and Methods 

3.2.1 In vitro culture of hiPSCs 

In vitro culture of hiPSCs was similar to what mentioned in chapter 2. To block E-cadherin 

interactions, hiPSCs were cultured with SNL feeder cells for 48 h, and then 50 nM botulinum 

hemagglutinin (HA) complex was added. More details of culture methods are described in 

previous papers (Shuzui et al. 2019b). 

 

3.2.2  In silico culture of hiPSCs 

In silico culture of hiPSCs was performed using cellular automata approach in which each cell 

was represented by one hexagonal prism (Fig. 3.2). Each cell had maximum six neighboring 

prisms, and seven underlying substrate prisms. Custom C# code in a Visual Studio environment 

(Microsoft, Redmond, Washington, USA) was created to simulate on a commercially available 

workstation (Precision T7920 workstation, Dell Inc., Round Rock, Texas, USA). Space of 
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culture vessel was sized to simulate a standard 24-well plate (culture area in each vessel: 1.9 

cm2; Corning Costar, Cambridge, MA, USA). Initial colony number and colony size in one 

culture vessel were estimated from in vitro data. Computational calculations were performed 

at every time step (𝑡step = 0.1 h). 

 

Figure 3.2 Schematic of our model illustrating the definitions of cell connections and cell 

migration in case each cell is presented by a hexagonal prism. 

In this chapter, the rules for cell migration are similar to those mentioned in a previous 

chapter except that a cell can migrate in one of six distinct directions (𝑁d = 6) denoted by the 

variable 𝑑𝑖𝑟. The apothem length of the base of a hexagonal prism 𝑙c, mean generation time 𝑡g̅, 

the number of cell layers for the occurrence of contact inhibition 𝑁c, free migration rate 𝑉m,free, 

ratio of energy for a cell-cell connection 𝜀cc, and ratio of energy for a cell-substrate connection 

𝜀cs  were estimated again using methods described in chapter 2 (Table 2, Fig. S1–2). 

Additionally, the rule for cell death was also considered because no single cell was observed 

in vitro. The rule states that an undifferentiated hiPSC dies if it does not connect with any 

neighboring cells. 
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Table 2 in silico parameters for undifferentiated cells cultured on SNL and MEF feeder cells 

Variable Symbol Unit Value 

Apothem length of the base of a hexagonal 

prism 

𝑙𝑐 µm 19.5 (SNL), 22.2 (MEF) 

Mean generation time 𝑡g̅ h 15.8 (SNL), 21.5 (MEF) 

The number of cell layers for the occurrence 

of contact inhibition 

𝑁c cell layer 8 (SNL), 11 (MEF) 

Free migration rate 𝑉m,free µm/h 8.0 

Ratio of energy for cell-cell connection  𝜀cc - 0.07 (SNL), 0.05 (MEF) 

Ratio of energy for cell-substrate connection 𝜀cs - 0.21 (SNL), 0.16 (MEF) 

 

3.2.3 Calculation of different types of hiPSC movement rate within a colony 

In silico cell movement rates caused by active migration (𝑉act), passive migration (𝑉pas), cell 

division (𝑉div), and the apparent movement rate (𝑉app) were calculated as follows (Fig. 3.3): 

when there is a cell displacement due to active migration at time 𝑡, 𝑉act is calculated as 
𝑙act

𝑡act
, 

where 𝑙act is the most recent displacement due to active cell migration (at time 𝑡 − 𝑡act) and 

𝑡act  is the time interval between consecutive active migrations. If at time 𝑡 , there is a cell 

displacement due to passive migration, 𝑉pas is calculated as 
𝑙pas

𝑡pas
, where 𝑙pas is the most recent 

displacement due to passive cell migration (at time 𝑡 − 𝑡pas ) and 𝑡pas  is the time interval 

between consecutive passive migrations. 𝑉div is calculated as 
𝑙div

𝑡div
, where 𝑙div is the most recent 

cell division displacement (at time 𝑡 − 𝑡div) and 𝑡div is the time interval between two divisions 

if there is a cell displacement due to cell division at time 𝑡. Lastly, 𝑉app is calculated as 
𝑙app

𝑡app
, 
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where 𝑙app  is the most recent displacement (at time 𝑡 − 𝑡app ) and 𝑡app  is the time interval 

between those events. 

 

Figure 3.3 Schematic drawing of method for calculating different types of cell movement rate 

 

3.2.4 Analysis of the trigger for hiPSC deviation within colonies 

Culture of fifty in silico colonies were performed on MEF feeder cells for 120 h with an initial 

colony size of 300 cells/colony. The average 𝑉act, 𝑉pas, 𝑉div, and 𝑉app at each position of those 

colonies were calculated and presented as heat maps. Based on in vitro finding (Kim et al. 

2014), types of movement that could possibly initiate deviation at the central and peripheral 

regions of colonies were decided by different criteria. A movement type that could trigger 

deviation at the central region of a colony must meet two criteria: (i) the area of the region with 

the lowest cell movement rate at the central region of a colony must increase as time passes, 

(ii) cell movement rate at the central region must differ from zero. In contrast, the one that may 

trigger deviation at the peripheral regions must show a constant higher movement rate over 
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time. Besides, 𝑉act is believed to have a stronger influence on cell fate than 𝑉pas because it 

relates to energy consumption. 

 

3.2.5 Fitting method 

Least-squares fitting was used to find the best fit values for the critical times for occurrence of 

deviation due to low 𝑉app or high 𝑉act (𝑡de,app, 𝑡de,act). 

 

3.3 Results  

3.3.1 Kinetic modeling of the module that describes the generation of deviated cells via 

anomaly index 

50 in silico colonies were cultured on MEF feeder cells for 120 h with the initial colony size 

of 300 cells/colony, and the heat maps of movement rate caused by active migration 𝑉act, 

movement rate caused by passive migration 𝑉pas, movement rate caused by cell division 𝑉div, 

and apparent movement rate 𝑉app of these colonies were overlapped. From Fig. 3.4, a ring of 

cells at the edge of colony showing different movement rate was observed in case of 𝑉act and 

𝑉pas (Fig. 3.4A,B). On the other hand, both 𝑉div and 𝑉app showed the gradual increase from the 

central region of colony to the peripheral region of colony, and the region of the lowest 

movement rate at the central region of colony expanded as colony grew (Fig. 3.4C,D). 

However, the lowest passive movement rate at the central region was zero because of the 

contact inhibition where no cell division occurred. 
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Figure 3.4 Heat maps of cell movement rate caused by active migration (𝑉act ) (A), cell 

movement rate caused by passive migration (𝑉pas) (B), movement rate caused by cell division 

(𝑉div) (C), and apparent cell movement rate (𝑉app) (D) at 0, 36, and 72 h. The graphs show 

average 𝑉act (closed triangles), average 𝑉pas (open triangles), average 𝑉div (open circles), and 

average 𝑉app (closed circles) plotted against distance from the center of a colony (E). 

 

Based on this in silico analyses, it was suggested that apparent movement rate (𝑉app) 

and movement rate caused by active migration (𝑉act) were related to the deviation at the central 

and peripheral region of colony, respectively. Therefore, it was hypothesized that the deviation 

is triggered by a continuous low apparent movement rate (𝑉app) or a continuous high movement 

rate caused by active migration (𝑉act). The rules for occurrence of deviation are explained as 

follows (Fig. 3.5). 



44 

 

 

Figure 3.5 Schematic of our model that describes the rule for initiation of deviation. Green 

cells: undifferentiated cells; orange cells: deviated cells. 

Each cell has a cumulative duration of a low 𝑉app , 𝑇ac,app(𝑡) , at each time 𝑡  that is 

calculated every time step: 

𝑇ac,app(𝑡) = {

𝑇ac,app(𝑡 − 𝑡step), there is no cell displacement 

𝑇ac,app(𝑡 − 𝑡step) + 𝑡app, 𝑉app < 𝑉de,app

0, 𝑉app ≥ 𝑉de,app

      (11) 

where 𝑉de,app is the lower threshold of 𝑉app. When 𝑇ac,app exceeds the threshold 𝑡de,app, cell 

start to deviate from the undifferentiated state. 

Each cell has a cumulative duration of a high 𝑉act , 𝑇ac,act(𝑡) , at each time 𝑡  that is 

recalculated every time step: 

𝑇ac,act(𝑡) = {

𝑇ac,act(𝑡 − 𝑡step), there is no cell displacement 

𝑇ac,act(𝑡 − 𝑡step) + 𝑡act, 𝑉act > 𝑉de,act

0, 𝑉act ≤ 𝑉de,act

         (12) 

where 𝑉de,act is the upper threshold of 𝑉act. When 𝑇ac,act exceeds the threshold 𝑡de,act, cell start 

to deviate from the undifferentiated state. 
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 𝑇ac,app and 𝑇ac,act are parameters for real-time detection of the cumulative duration of 

a low 𝑉app or a high 𝑉act. These two parameters have discrete values because they change only 

when cell displacement occurs. Thus, 𝑇re,ac,app  and 𝑇re,ac,act , the retrospective cumulative 

duration of a low 𝑉app or a high 𝑉act, were also used to understand the continuous cumulative 

duration. Then, the anomaly index of each cell, 𝐼a , is estimated as 𝑇re,ac,app 𝑡de,app⁄   or 

𝑇re,ac,act 𝑡de,act⁄  in culture on SNL and MEF feeder cells, respectively. 

 

3.3.2 Estimation of parameter values 

Parameters used in deviation rules were estimated as follows: 𝑉de,app was estimated as the 25th 

percentile value of the in vitro cell migration rate at the central region of undifferentiated 

colonies cultured on SNL feeder cells and equaled 2.1 µm/h (Shuzui et al. 2019a). 𝑉de,act was 

estimated as the 75th percentile value of in silico 𝑉act (4.9 µm/h)  because the corresponding 

in vitro data was not available. 𝑡de,app  and 𝑡de,act  were estimated by fitting to the in vitro 

average frequency of deviation in one culture vessel. About 200 in silico colonies were cultured 

following in vitro colony size distribution (Fig. S3). The values of 𝑡de,app and 𝑡de,act were  

changed from 1 h to 96 h and to find the value giving the most similar deviation frequency to 

in vitro data. As the result, 𝑡de,app  was estimated as 48 h where deviation frequency at the 

central region of a colony was 15.4 ± 2.8% when cultured on SNL feeder cells (Fig. 3.6A) but 

negligible when cultured on MEF feeder cells. 𝑡de,act was estimated as 38 h where the deviation 

frequency at the peripheral region of a colony was 14.5 ± 4.3% when cultured on MEF feeder 

cells (Fig. 3.6B), but 0% when cultured on SNL feeder cells. 
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Figure 3.6 Estimation of 𝑡de,act and 𝑡de,app via fitting deviation frequencies in the central and 

peripheral regions of hiPSC colonies cultured on SNL (A) and MEF (B) feeder cells. Grey 

bars: in vitro results (14); white bars: best fit in silico results obtained via least-squares fitting. 

Standard deviations were calculated from three culture batches (about 200 single 

colonies/batch). 

 

3.3.3 Model validation 

Firstly, the positions of deviated cells in in silico colonies were compared to that in vitro to 

validate the model. The blue cells, which had deviated due to continuous low 𝑉app, were found 

at the central region of the colonies cultured on SNL feeder cells (Fig. 3.7A). The green cells, 

which had deviated due to continuous high 𝑉act, were found at the peripheral region of colonies 

cultured on MEF feeder cells (Fig. 3.7C). One hundred colonies with deviated cells from both 

culture conditions were analyzed to understand positions within colonies where deviation was 

most likely to occur. Deviated cells were mostly at the central region of colonies cultured on 

SNL feeder cells and at the peripheral region of colonies cultured on MEF feeder cells (Fig. 

3.7B, D). These results were in agreement with in vitro locations of deviated cells. 



47 

 

 

Figure 3.7 in silico morphology of colonies with deviated cells cultured on SNL (A) and MEF 

(C) feeder cells at t = 120 h. The graph shows the deviation frequency at different positions in 

colonies cultured on SNL (B) and MEF (D) feeder cells. White cells: undifferentiated cells; 

blue cells: cells that had deviated due to low 𝑉app; green cells: cells that had deviated due to 

high 𝑉act. 

 Secondly, in vitro and in silico time profiles for colonies with and without deviated cells 

were compared. With about 200 in silico colonies were cultured on SNL or MEF feeder cells, 

the experiment was performed three times. Twenty-six and 27 representative undifferentiated 

colonies and deviated colonies were selected in cultures on SNL and MEF feeder cells, 

respectively. Average size of undifferentiated colonies was calculated every 6 hours since the 

beginning of culture, size of each deviated colonies was determined at times of deviation. In 
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deviated colonies cultured on SNL feeder cells, the ratio between colonies larger than the 

average undifferentiated colony and smaller than the average undifferentiated colony was 16:1 

(Fig. 3.8A). In culture on MEF feeder cells, this ratio was 1:3 (Fig. 3.8B). In in vitro culture on 

SNL and MEF feeder cells, these ratios were 8:1 and 5:8, respectively. Both ratios 8:1 (in vitro) 

and 16:1 (in silico) indicated the colony-size dependent manner of deviated colonies in culture 

on SNL feeder cells. On the other hand, both ratios 5:8 (in vitro) and 1:3 (in silico) implied the 

colony size-independent manner of deviated colonies in culture on MEF feeder cells. These in 

silico results showed similar trend to in vitro results. 

 

Figure 3.8 Time profiles of hiPSC colonies with and without deviated cells in cultures on SNL 

(A) and MEF (B) feeder cells for t = 144 h. Open circles represent in vitro colonies without 

deviated cells (14). Closed circles represent in vitro colonies with deviated cells (14). Lines 

represent in silico colonies without deviated cells. Triangles represent in silico colonies with 

deviated cells. Closed circles and triangles indicate timing of appearance of deviated cells in 

hiPSC colonies. 

Finally, in silico strength of cell-cell connections was altered at the beginning of culture 

on SNL feeder cells. Previously, Shuzui et al. (2019b) showed that the average in vitro cell 

migration rate at the central region of a colony increased by 0.5 µm/h when cells were cultured 
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in medium supplemented with 50 nM HA. In that culture condition, no deviation was observed. 

The ratio of cell-cell connection energy (𝜀cc) was decreased by 𝛥𝜀cc (-) = [0.01, 0.06]. About 

200 colonies were cultured in each condition and the experiments were performed three times. 

The deviation frequency at the central regions of colonies was 0.15 ± 0.03 under normal culture 

conditions (𝛥𝜀cc = 0) (Fig. 3.9A). This frequency drastically decreased to 0.08 ± 0.01 when 𝜀cc 

was decreased by 0.01. When 𝜀cc  was decreased by 0.02, 0.03, or 0.04, this frequency of 

decreased further to approximately 0.01. Finally, when 𝜀cc was very small (𝛥𝜀cc = 0.05, 0.06), 

no deviation in the central regions of colonies was detected in culture. With 𝛥𝜀cc = 0.05, I 

obtained 0.5 µm/h higher average 𝑉app at the central regions of colonies no deviation that was 

similar to in vitro results. In silico cultures under normal conditions on SNL feeder cells (𝜀cc =

0.07) and with addition of HA (𝜀cc = 0.02) were performed in 1000 vessels. Only 20 vessels 

contained deviated colonies (2%) under conditions simulating HA addition, while that number 

was 983 vessels under normal conditions (98.3%) (Fig. 3.9B). 

 

Figure 3.9 A. in silico deviation frequency plotted against the decrement of the ratio of cell-

cell connection energy (𝛥𝜀cc.). Standard deviations were calculated from three culture batches 



50 

 

(about 200 single colonies/batch). B. in silico deviation frequency in cultures with or without 

HA addition calculated from 1000 culture vessels. 

 

3.3.4 Elucidation of deviation using anomaly index 

With the well-validated model, further analyses were performed to understand about the trigger 

of deviation from the undifferentiated of hiPSCs using anomaly index. In the representative 

colony cultured on SNL feeder cells, one cell at the central region of colony deviated after its 

𝐼a reached 1 (Fig. 3.10B). One cell at the peripheral region of the representative colony cultured 

on MEF feeder cells deviated when its 𝐼a hit 1 (Fig. 3.10E). Later, retrospective tracking of 15 

deviated cells and their neighbors was performed to understand their relationship to their 

microenvironment. For cells cultured on SNL feeder cells, the tracking time 𝑡′ = 𝑡de,app when 

𝐼a of the deviated cell was equal to 1. For cells cultured on MEF feeder cells, the tracking time 

𝑡′ = 𝑡de,act when 𝐼a of the deviated cell equaled 1. The result showed that when 𝐼a of deviated 

cells gradually increased since 𝑡′ = 0 h, the average 𝐼a of their neighbors also increased since 

𝑡′ = −24 h and become saturated later in cultures on SNL feeder cells (Fig. 3.10C). In cultures 

on MEF feeder cells, even though 𝐼a of deviated cells gradually increased since 𝑡′ = 0 h, the 

average 𝐼a  of their neighbors fluctuated and did not show a clear trend during the tracking 

period (Fig. 3.10F). 
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Figure 3.10 Cell type (A, D) and heat map of anomaly indices (𝐼a) (B, E) in culture on SNL 

(A, B) and MEF (D, E) feeder cells. Blue cells: cells that deviated due to low 𝑉app; green cells: 

cells that deviated due to high 𝑉act. Graphs show time profile of anomaly indices (𝐼a) in culture 

on SNL (C) and MEF (F) feeder cells. Dashed line: 𝐼a of a deviated cell. Solid line: 𝐼a of the 

deviated cell’s neighbors (average from 15 colonies). 

 

Lastly, the maximum value of 𝐼a, 𝐼a,max, that each cell displayed during a 96-hour culture 

was calculated to understand how rare the deviation trigger is. During culture, cells in vessel 

have different values of 𝐼a and 𝐼a of each cell also changes with time (Fig. 3.11-3.12). This 

parameter, 𝐼a,max , helped to understand how close each cell had approached deviation. 

Histograms of 𝐼a,max for all cells from one representative vessel cultured on SNL and MEF 

feeder cells were shown in Fig. 3.13. The frequency decreased as 𝐼a,max  increased in both 

culture conditions. Most of cells (> 96%) were found to have 𝐼a,max (-) values in the range of 
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0–0.4. An 𝐼a,max  of 1, which indicated the appearance of deviated cell, occurred with a 

frequency of 3.5 × 10−5 or 2.8 × 10−5 in culture on SNL and MEF feeder cells, respectively. 

 

 

Figure 3.11 In silico cell type (A) and corresponding anomaly index (B) of a representative 

vessel with deviated cells in culture on SNL feeder cells at the time of deviation. White cells: 

undifferentiated cells; blue cells: deviated cells due to continuous low apparent cell movement 

rate; shades of red: degree of anomaly index. Scale bars: 500 µm. 
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Figure 3.12 In silico cell type (A) and corresponding anomaly index (B) of a representative 

vessel producing deviated cells when cultured on MEF feeder cells at the time of deviation. 

White cells: undifferentiated cells; green cells: deviated cells due to continuous high movement 

rate caused by active migration. Shades of red: degree of anomaly index. Scale bars: 500 µm. 
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Figure 3.13 Frequency of maximum anomaly index (𝐼a,max) of all cells from one vessel in 

culture on SNL (A) or MEF (B) feeder cells. 

 

3.4 Discussion 

Although anomalous in vitro cell migration was reported to be the trigger for deviation from 

the undifferentiated state of hiPSCs cultured with feeder cells (Shuzui et al. 2019a), result in 

chapter 2 has showed the different influences of migration and division on movement rate that 

raised the necessity to investigate the actual triggers. Active cell migration occurs when a cell 

actively changes position that relates to E-cadherin and integrin turnover and energy 

consumption. When a target cell actively migrates to the position of its neighboring cell, the 

neighboring cell undergoes passive migration at the same time. From in vitro observation, it is 

difficult to distinguish these two type of migration. In this kinetic model, I assume that passive 

migration requires only the disruption of cell-cell and cell-substrate connections without 

utilizing energy for migration. Movement caused by cell division primarily presents the 

breaking of cell-substrate connections, does not utilize energy, and maintains most of 

connections to its neighboring cells. Finally, apparent movement, the only movement type that 

can be estimated from in vitro, is similar to in vitro cell migration. In this chapter, apparent 
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movement and movement caused by active migration are suggested to trigger deviation in 

colony size-dependent and -independent manners, respectively. Extension of low apparent 

movement rates partly indicate compression in the central regions of colonies, where contact 

inhibition occurs with the disappearance of cell division as the colonies expand. In the 

peripheral region of colony, active migration is suggested to trigger deviation at the peripheral 

region. On the other words, high degree of cell freedom at the peripheral region of colony might 

result in deviation that is partly supported by the discontinued expression of E-cadherin (Kim 

et al. 2014). 

Previously, the hypothesis that anomalous cell migration triggers hiPSC deviation has 

been proposed (Shuzui et al. 2019a). In that study, even though sequential cell migration could 

not be observed, they found the accumulation of lamin A/C at the nuclear envelope due to 

cytoskeletal rearrangements arising from an imbalance between cell-cell and cell-substrate 

adhesions. In this chapter, based on the evidence about mechano-transduction, I defined 

anomalous migration in terms of mechanical stimulus, presented by movement rate, and 

duration of the mechanical stimulus. The thresholds for mechanical stimulus were estimated 

from the 25th percentile value of in vitro cell migration, which is similar to in silico apparent 

cell movement rate, at the central region of undifferentiated colonies (Shuzui et al. 2019a), and 

the 75th percentile value of in silico movement rate caused by active migration at the peripheral 

region of undifferentiated colonies. The reason came from in vitro observation that there were 

significant differences (P < 0.01) in ratios below the 25th percentile and above the 75th 

percentile between undifferentiated colonies and deviated colonies (Shuzui et al. 2019a). The 

duration of mechanical stimulus is the original point that distinguished deviated cells from 

undifferentiated cells. 

The colony size-dependent and colony size-independent deviation in colonies cultured on 

SNL and MEF feeder cells, respectively, was reported (Kim et al. 2014). This chapter partly 
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explained this phenomenon by the relationship between deviated cells and their 

microenvironment (neighboring cells) using anomaly index 𝐼a . 𝐼a  of deviated cells at the 

central region increased as that of their neighbors increased with time that suggests deviated 

cells had been affected by their microenvironment. Thus, cells had higher probabilities of 

deviating as colonies became bigger. In contrast, 𝐼a of deviated cells at the peripheral region 

had increased when their neighbors’ 𝐼a  values fluctuated with time. Therefore 𝐼a  values are 

colony size-independent in the peripheral region of colonies. 

While positive 𝐼a values were distributed throughout the central and middle regions of 

colonies cultured on SNL feeder cells, only cells near the colony edges displayed positive 𝐼a 

values in culture on MEF feeder cells. Therefore, the difference in frequencies of 𝐼a,max values 

in the range of 0–0.2 and 0.2–0.4 in cultures on MEF feeder cells was more than that in cultures 

on SNL feeder cells. I considered the trigger for deviation to be ultra-rare following the 

definition of ultra-rare disease (i.e. a disease that affects fewer than 20 patients in a population 

of 1 million (2 × 10−5 )) (Harari et al. 2019). Caused by ultra-rare trigger, deviation only 

becomes an inevitable phenomenon when the cell population is large enough. It means that the 

deviation is unpredictable for each colony but inevitable in a culture vessel. It is interesting that 

the ultra-rare trigger leads to major events in the culture of hiPSCs on feeder cells, and this 

major events is prohibited by altering cell-cell connection strength (Shuzui et al. 2019b). To 

the best of my knowledge, this is the first kinetic model expressing ultra-rare trigger in a 

biological system. In other studies, kinetic model has mostly been used to predict functions and 

the inheritability of ultra-rare genetic variants (Turkowski et al. 2017, Magri et al. 2018, 

Hernandez et al. 2019, Halvorsen et al. 2020). 

There have been a number of models describing differentiation or loss of stem cell 

pluripotency considering mechano-transduction (Spector et al. 2017). Mousavi et al. (2015) 

proposed a model to clarify how substrate stiffness affects mesenchymal stem cells (MSCs) 



57 

 

differentiation during cell migration. Their models also proposed a time-dependent manner of 

differentiation where MSC differentiation depended on maturation time. In my model, 

deviation from the undifferentiated state of hiPSCs depended on the time period of slow or fast 

migration. While their maturation time mechanism is irreversible and makes differentiation 

inevitable, accumulation time of mechanical stimulus in my model is reversible that makes 

deviation anomalous. In 2017, a mechano-transduction model concerning how mechanical 

memory affected MSC differentiation was also introduced by Peng et al. In that model, they 

also show the importance of mechanical stimuli (substrate stiffness) and duration of mechanical 

stimuli (duration of the first seeding) on cell fate decisions. However, their model was not 

suitable for modeling our target anomalous phenomenon which required spatiotemporal 

analysis (Ji et al. 2017). 

 

3.5 Summary 

The apparent cell movement and cell movement caused by active migration were triggers for 

the deviation at the central and peripheral region of hiPSC colonies. The anomalous cell 

migration-driven hiPSC deviation can be explained by two factors: a mechanical stimulus, 

represented by cell migration, and duration of the mechanical stimulus. The factor “duration of 

mechanical stimulus” is the originality of this work, and helps to realize the ultra-rare trigger 

(approximately 10−5) of deviation from the undifferentiated state in hiPSC culture.  
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Chapter 4 General Conclusions and Perspectives 

4.1 General conclusion 

Kinetic models have been used for predicting stem cell fate and providing insights into the 

underlying mechanism of some bioprocesses. To the best of my knowledge, the first model of 

stem cells described the proliferation of hematopoietic stem cells in spleen colonies (Till et al. 

1963). Among models for stem cells, most of them focus on cell self-renewal, cell-fate decision, 

and hiPSCs derivation (Viswanathan and Zandstra 2003, MacArthur et al. 2009, Herberg and 

Roeder 2015). 

Recently, the heterogeneity of stem cell population has received more and more 

attention because it directly affects the efficiency of stem cell process for application in 

regenerative medicine (Bratt-Leau et al. 2009, Rosowski et al. 2015). In 2019, a research by 

Shuzui et al. suggested that anomalous cell migration triggered the deviation from the 

undifferentiated state of hiPSCs in colonies cultured with feeder cells which was reported 

previously (Kim et al. 2014). In culture with SNL feeder cells where the deviation occurred at 

the central region of colony, they found more slow migrating cells at this region in deviated 

colonies than in undifferentiated colonies. In case of culture with MEF feeder cells where the 

deviation occurred at the peripheral region of colonies, they found more fast migrating cells at 

the peripheral region in deviated colonies than in undifferentiated colonies. However, that 

study could not specify the definition of anomalous cell migration due to in vitro technical 

limitations.  

In this study, I used cellular automata approach to clarify the mentioned anomalous cell 

migration which was suggested to be the trigger for the deviation from the undifferentiated of 

hiPSCs. Firstly, I developed a kinetic model with fundamental behaviors of cells including cell 

division, cell-cell connection, cell-substrate connection, and cell migration to understand the 

reason for the heterogeneity of in vitro cell migration in colony. There is a need to distinguish 
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between in vitro cell migration and in silico cell migration. In vitro cell migration is described 

by the rate of cell displacement per time interval. In silico cell migration describes the ability 

of a cell to actively change its position by utilizing energy for breaking several cell-cell and 

cell-substrate connections and migration. From this point, in vitro cell migration is also affected 

by cell division. In chapter 2, I have found that cell division is the key factor that led to the 

spatial heterogeneity of in vitro cell migration in colony (Fig. 4.1). 

 

Figure 4.1 Schematic of in silico finding in Chapter 2 where cell division is suggested to be 

the key factor that leads to the spatial heterogeneity of cell migration in colonies of hiPSCs. 

From result in chapter 2, I suggested the need of analyzation for the actual component 

of in vitro cell migration that could trigger deviation from the undifferentiated state. I divided 

into movement caused by active migration, movement caused by passive migration, movement 

caused by cell division, and apparent movement which has similar meaning to in vitro 

migration. From heat map of each type of movement and the colony-size 

independent/dependent manner of deviated colony in each culture condition with feeder cells, 

I suggested that apparent movement and movement caused by active migration were triggers 

for deviation. I hypothesized that deviation from the undifferentiated state at the central region 



60 

 

of colonies is triggered by the continuous low apparent movement of cells. In contrast, 

continuous high movement caused by active migration triggers the deviation at the peripheral 

region of colonies. This hypothesis was well validated by the position of deviated region in 

colony, profiles of deviated colonies, and the inhibition of deviation in culture on SNL feeder 

cells after accelerate cell migration. With the validated model, I found that deviation from the 

undifferentiated state was caused by the ultra-rare trigger (~10-5) (Fig. 4.2). Until now, this is 

the first kinetic model that describe the ultra-rare trigger that causes anomalous phenomenon 

in biological field. 

 

Figure 4.2 Schematic of validated in silico hypothesis in Chapter 3 where deviation from the 

undifferentiated state of hiPSCs in colonies cultured on feeder cells is explained by the 

continuity of low apparent movement or high movement caused by active migration which is 

considered as ultra-rare trigger. 
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4.2 Future perspectives 

The developed kinetic model is suggested to be a promising tool to study different cultures of 

stem cells in general and hiPSCs in particular. The future perspectives are discussed as follows. 

i. Optimal culture conditions for hiPSC differentiation 

In previous chapters, a kinetic model was successfully developed to express the 

deviation from the undifferentiated state of hiPSCs in the peripheral regions of colonies 

cultured on MEF feeder cells. To facilitate the differentiation of hiPSCs, a culture with deviated 

cells as a majority of population is desired. Using the developed kinetic model, the optimized 

culture conditions for this goal can be found by considering effect of botulinum hemagglutinin 

(HA) and initial seeding size. In culture of hiPSCs on SNL feeder cells, the deviation in the 

central region of colony was inhibited both in vitro and in silico by addition of HA which 

blocks E-cadherin interactions thus loosen cell-cell connection and promote cell migration. 

With this effect, HA is believed to facilitate the deviation in the peripheral regions of colonies 

cultured on MEF feeder cells. Besides, the size of colony also affects the inward expansion of 

deviated region since only cells in the peripheral region of colony have possibility to deviate 

from the undifferentiated state. Once cells deviated from the undifferentiated state at the 

peripheral region of colony, they tend to detach from the colonies and thus leave more vacant 

space and facilitate the active migration of inner cells. Thus, the smaller colony is, the deeper 

deviated region can inwardly extend to the central region of colony that increases deviation 

frequency in the end of culture. 

A preliminary experiment was performed to check the possibility of this idea. Deviation 

frequency and the number of doubling times, 𝑛d , were used to compare the outcome of 

different culture conditions. The deviation frequency was calculated by the ratio between the 

number of deviated cells and the number of total cells in vessel at the end of culture. The 

number of doubling times was calculated as follows. 
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𝑛d = log2

𝑁120

𝑁24
 

where 𝑁24 and 𝑁120 are the total cell number at 𝑡 = 24h and 𝑡 = 120h, respectively. 

 Firstly, keeping the initial seeding distribution as in vitro (µ = 133 cells/colony, σ = 126 

cells/colony), cultures with and without the addition of HA were compared. The deviation 

frequency was 0.1% and 27%, and the 𝑛d was 3.5 and 3.8 in culture without and with HA, 

respectively (Fig. 4.3). Since culture with HA gave higher deviation frequency and 𝑛d, more 

cultures with HA were performed with different initial colony seeding size by changing the 

average µ and standard deviation σ of input distribution. Keeping σ at 126 cells/colony, when 

the average of colony size distribution µ was decreased to 66 cells/colony and 33 cells/colony, 

the deviation frequency were 28% and 31%, and the 𝑛d were 3.8 and 3.9, respectively (Fig. 

4.4). Therefore, µ at 33 cells/colony was chosen and σ was changed. When σ was decreased to 

63 cells/colony, 32 cells/colony, and 0 cells/colony, the deviation frequency were 40%, 46%, 

and 73%, and the 𝑛d were 3.9, 3.8, and 3.4, respectively (Fig. 4.5). In addition of HA, culture 

with the distribution of initial colony size at µ = 33 cells/colony, σ = 0 cells/colony gave the 

highest deviation frequency among cultures and similar 𝑛d to control culture without HA (Fig. 

4.6). This result indicated that this research direction would be promising in future. 
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Figure 4.3 Deviation frequency in culture on MEF feeder cells under control condition (black 

dot) and with addition of HA (grey dot). The distribution (µ, σ) of initial colony seeding size 

was referred from in vitro data where µ = 133 cells/colony, σ = 126 cells/colony. 

 

Figure 4.4 Deviation frequency in culture on MEF feeder cells with addition of HA with 

different distribution (µ, σ) of initial colony seeding size. Grey dot: µ = 133 cells/colony, σ = 

126 cells/colony; blue dot: µ = 66 cells/colony, σ = 126 cells/colony; orange dot: µ = 33 

cells/colony, σ = 126 cells/colony. 
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Figure 4.5 Deviation frequency in culture on MEF feeder cells with addition of HA with 

different distribution (µ, σ) of initial colony seeding size. Orange dot: µ = 33 cells/colony, σ = 

126 cells/colony; green dot: µ = 33 cells/colony, σ = 63 cells/colony; purple dot: µ = 33 

cells/colony, σ = 32 cells/colony; red dot: µ = 33 cells/colony, σ = 0 cells/colony. 

 

 

Figure 4.6 Cell type of hiPSC culture on MEF feeder cells without addition of HA (A) and 

with addition of HA at optimized initial colony seeding size (µ = 33 cells/colony, σ = 0 

cells/colony) (B). White cells: undifferentiated cells, green cells: deviated cells due to 

continuous high cell movement rate caused by active migration. Scale bars show 1 mm. 
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ii. Understanding the mechanism of HA action 

In chapter 3, the culture with addition of HA was simulated after estimation of 𝜀cc. In 

those experiments, we assumed that 𝜀cc of all cells is constant during culture even in culture 

with addition of HA. In reality, cells can recover E-cadherin after action of HA, thus strength 

of cell-cell connection might also change during culture. However, the lack of quantitative data 

of HA makes it difficult to model exact mechanism of HA action. In future, if there are more 

quantitative data related to HA action in hiPSC culture, it would be interesting to model the 

mechanism of HA action. In 2017, Kim et al. has proposed a hypothesis to explain the 

mechanisms underlying HA-mediated selective elimination of deviated cells cultured with SNL 

feeder cells. HA complexes can pass through cells (transcellular route) or between cells 

(paracellular route), bind to E-cadherin and disrupt E-cadherin-mediated cell-cell adhesion 

(Lee et al. 2014, Sugawara et al. 2014). The reason for selective removal of deviated cells is 

the higher ability of undifferentiated cells to recover cell-cell adhesion after HA-induced E-

cadherin disruption (Kim et al. 2017). 

The kinetic model might include some following parameters: 

- Rate of decay of E-cadherin by HA, 𝑘1 (cell·mol-1·h-1), where 𝑘1 is positive in culture 

with addition of HA, but be negligible in normal culture. 

- Rate of digestion of HA via endocytosis, 𝑘2 (cell-1·mol·h-1). 

- Rate of recover of E-cadherin of undifferentiated cells and deviated cells, 𝑘3  (h-1), 

where 𝑘3 of undifferentiated cells is higher than that of deviated cells. 

Then, the dynamic of 𝜀cc can be described as follows (Fig. 4.7). 

𝑑𝜀cc

𝑑𝑡
= −𝑘1𝐶HA/𝑋 + 𝑘3 

𝑑𝐶HA

𝑑𝑡
= −𝑘2𝑋 

where 𝐶HA (mol/L) and 𝑋 (cells/L) are concentration of HA and cell, respectively. 
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Figure 4.7 Schematic drawing describing the kinetics of cell-cell connection via action of 

botulinum hemagglutinin (HA) on hiPSCs. 

 

Through two above proposals, it was expected that the developed model could be an 

effective tool to optimize culture conditions for maintenance of stem cell pluripotency as well 

as stem cell differentiation (Fig. 4.8). In culture with SNL feeder cells, it was suggested that 

HA helped to selective remove deviated cells at the central regions of colonies (Kim et al. 

2017). However, over treatment with HA might induce the deviation at the peripheral regions 

of colonies since cell migration is accelerated. This additional occurrence of deviation at the 

peripheral regions of colonies cultured with SNL feeder cells was observed under exposure to 

Rac1 activator (HMG1) (Shuzui et al. 2019a). Therefore, there is a need to optimize the 

quantity of HA for each culture vessel to maintain the undifferentiated state of hiPSCs. On the 

other hand, deviated cells as major population could be obtained by appropriate colony size 

under addition of HA in order to facilitate hiPSC differentiation in culture with MEF feeder 

cells. With kinetic model of HA complexes, the optimized culture conditions for this purpose 
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can be predicted with higher accuracy. In summary, kinetic modelling of HA is necessary to 

optimize culture of hiPSCs in future. 

 

 

Figure 4.8 Schematic drawing describing the future perspectives of this study  
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Appendix 

 
Figure S1 Estimation of 𝑁c  using curve-fitting time profiles of hiPSC colonies without 

deviated cells in cultures on SNL (A) and MEF (B) feeder cells. Closed circles: in vitro data; 

lines: best fit in silico data. 

 

Figure S2 Estimation of 𝑉m,free, 𝜀cc, and 𝜀cs by fitting the average cell movement rates at the 

central and peripheral regions of hiPSC colonies cultured on SNL (A) and MEF (B) feeder 

cells. Shaded bars: experimental results. Open bars: best fit simulation results obtained via 

least-squares fitting. Standard deviations were calculated based on all cells in a colony (n ≥ 

300) 
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Figure S3 Distribution of in silico initial colony sizes. Black bar: culture on SNL feeder cells. 

Grey bar: culture on MEF feeder cells. 
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