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Abstract

The electric field control of magnetism and magnetic properties has been achieved across
several different materials systems in the fields of information storage and processing. For
example, applying an electric field to ferromagnetic metals changes the Fermi level position
at the interface that governs the magnetocrystalline anisotropy of the metal systems. In
two-dimensional (2D) materials, voltage-controlled switching between antiferromagnetic
and ferromagnetic states has been reported as a promising feature for potential applications.

This thesis presents the first-principles study based on the density functional theory in
the effect of the electric field in such materials, discusses our current understanding of the
mechanisms. Firstly, the magnetocrystalline anisotropy of Co-based 3d transition-metal thin
films is systematically investigated. The computational results predict that large perpendicu-
lar magnetocrystalline anisotropy can be achieved by tuning the atomic-layer alignments in
Ni-Co thin film. I discovered that not only the on-site spin-orbit coupling of 3d elements de-
termines the magnetocrystalline anisotropy energy but also the strong hybridization between
these elements plays a constructive role to enhance the perpendicular magnetocrystalline
anisotropy. The effect of the external electric field in the magnetocrystalline anisotropy
is small in this Co-based thin film due to large screening effect in metallic system. Thus,
playing with an insulating material to reduce the charge screening effect can promote the
application of electric field.

Following by the above study, I focus on the electric field effect on magnetic properties
of 2D VI3 bilayer. My first-principles analysis highlights the role of trigonal crystal-field
effects in comparison with the CrI3 prototypical case, where the effects are absent. In VI3

bilayers, the empty a1g state - consistent with the observed trigonal distortion - is found to
play a crucial role in both stabilizing the insulating state and in determining the inter-layer
magnetic interaction in two different VI3 stackings (labelled AB and AB’). Upon application
of electric fields perpendicular to the slab, I find that the magnetic ground-state in the AB’
stacking can be switched from antiferromagnetic to ferromagnetic, suggesting VI3 bilayer as
an appealing candidate for electric-field-driven miniaturized spintronic devices.
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Chapter 1

Introduction

The idea of using electric fields to control magnetism dates back to the 1960s has received
much attention recently on spintronics applications [1, 2]. Using applied-voltage to control
magnetism is increasingly used to realize magnetic random access memories and standby-
power-free integrated circuits that rely on non-volatile information encoded in the direction
of magnetization [3, 4]. The electric-field manipulation of magnetism is of interest not only
because of its technological importance but also because it allows us to uncover properties
of magnetic materials that are otherwise inaccessible. This thesis focuses on the current
state of the electric-field manipulation of magnetism in different magnetic materials. The
effect of the electric field, such as applying an electric field to a thin film to control the
magnetization direction through the magnetic anisotropy, and control the magnetic stability
of the 2D magnetic bilayer system, are covered elsewhere. This thesis is organized as follows.

Chapter 2 introduces the theoretical backgrounds for this thesis. A density functional
theory is widely used in condensed matter physics to calculate the band structure of solids and
electronic properties. In calculating the electronic structure of strongly correlated electron
systems, considering the relativistic effect is also important, especially to treat with the
spin-orbit coupling. A strongly correlated electron system with a classical spin model and
the Hubbard model is introduced.

In Chapter 3, the magnetocrystalline anisotropy of Co-based 3d transition-metal thin films
is systematically investigated. The computational results predict that large perpendicular
magnetocrystalline anisotropy can be achieved by tuning the atomic-layer alignments in
Ni-Co thin film. I discovered that not only the on-site SOC of 3d elements determines the
magnetocrystalline anisotropy energy but also the strong hybridization between these ele-
ments plays a constructive role to enhance the perpendicular magnetocrystalline anisotropy.
An external electric field is applied as sawtooth-like potentials, which have the right pe-
riodicity but which represent unrealistic, discontinuous electric fields. The effect of the
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electric field, however, does not give any manipulation to the magnetocrystalline anisotropy
in Co-based thin film.

In Chapter 4, the magnetic properties and the effect of electric fields in two-dimensional
magnetic bilayer materials, CrI3 and VI3, were investigated. The crystal-field in the iodine
octahedra splits 3d orbital states into two-fold eg and three-fold t2g states; the latter level
is further split into a singlet a1g and a doublet e′g by trigonal distortion. In VI3, Jahn-Teller
distortion makes the empty a1g state play an important role to open the band gap and
determine the inter-layer magnetic interaction. Moreover, calculations were performed for
two different stacking of bilayer VI3 in which the electric fields were applied perpendicular
to the slab. The results predict that the magnetic stability of the bilayer VI3 can be tuned by
the external electric fields, which is comparable with the case of bilayer CrI3. The magnetic
phase transition can be explained by the virtual hopping mechanism.

Finally, I summarize this thesis in Chapter 5.



Chapter 2

Theoretical background

2.1 Density functional theory

2.1.1 Introduction

Density functional theory (DFT) has become the primary tool for the calculation of elec-
tronic structure in condensed matter and is increasingly important for quantitative studies
of molecules and other finite systems. This is a theory of correlated many-body systems,
and because the particles are so light, quantum mechanics is needed: a quantum many-body
problem. Thus our standing point is the Hamiltonian for the system of electrons and nuclei,

H =− ℏ2

2me
∑

i
∇

2
i −

ℏ2

2 ∑
i

∇2
I

MI
−∑

i,I

ZIe2

|ri −RI|
+

1
2 ∑

i ̸= j

e2

|ri − r j|
+ ∑

I ̸=J

ZIZJe2

|RI −RJ|
(2.1)

The mass of the nucleus at RI is MI , the electrons at ri have mass me. The first term in
Eq. 2.1 is the kinetic energy for the electrons, the second term is for the nuclei. The last three
terms describe the Coulomb interaction between electrons and nuclei, between electrons and
other electrons, and between nuclei and other nuclei. It is out of the question to solve this
problem exactly.

First-principles electronic structure calculations are based on DFT using the fundamental
constants of physics as input to provide detailed insight into the origin of electronic structure,
magnetic properties, mechanical and optical properties of materials. Starting from first-
principles, equations are derived under some approximations and solved for a realistic
system. The methods do not require any experimental parameters and knowledge and also
do not depend on material systems. From first-principles, one may predict properties to be
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compared with experiments, understand the underlying microscopic mechanism, and design
new materials with desired properties.

2.1.2 The Hohenberg-Kohn theorem

The nuclei are much heavier and therefore much slower than the electrons. Since the nuclei
do not move anymore, their kinetic energy is zero and the second term disappears. The
last term reduces to a constant. We are left with the kinetic energy of the electron gas, and
the potential energy due to electron-electron interactions, and the potential energy of the
electrons in the potential of nuclei. Hence, Hohenberg and Kohn [5] established the DFT
in which the many body system can be expressed in terms of single-particle equation. The
formulation applies to any systems of interacting particles with an external potential Vext(r),
where the Hamiltonian be written as

H = T +U +V =− ℏ2

2me
∑

i
∇

2
i +

1
2 ∑

i ̸= j

e2

|ri − r j|
+∑

i
Vext(ri),

The first term is the kinetic energy, the second term is the interaction with the external
potential and the third term is the electron-electron Coulomb repulsion. The quantum many
body problem obtained after the first level approximation is much simpler than the original
one, but still far too difficult to solve. DFT, one of the most modern and powerful methods,
is based upon two theorems due to Hohenberg and Kohn.
The first theorem is: The external potential Vext(r) is determined uniquely by the ground
state particle density n0(r).

E[n] = F [n]+
∫

Vextn(r)dr, (2.2)

F [n] = ⟨ψ |T +U |ψ⟩

This theorem states that if the electron density n0(r) is given, all properties of the system
are completely determined.

The second theorem is: For any given Vext(r), the correct ground state energy of the
system is the global minimum value of the energy functional.

The Hohenberg-Kohn arguments are very general for properties of interacting particle
systems, yet the special emphasis is on the ground state. Nevertheless, it is difficult to fulfill
all the properties guaranteed by the Hohenberg-Kohn because no one has found a way to
extract directly from the density any general set of properties, e.g whether the material is
a metal or insulator. The key point is that the density is an allowed density of quantum
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mechanical systems, it is this fact that builds in the quantum effects. The difficulty can be
illustrated by considering a case where the exact solution can be found – N non-interacting
electrons in an external potential. This is the central problem in the Kohn-Sham approach to
the DFT.

2.1.3 The Kohn-Sham equation

The equations of Kohn and Sham, published in 1965, turn DFT into a practical tool [6].
The problem of finding the ground state is reduced to solving one-partical equations. Since
there is no unique prescription for choosing the simpler auxiliary system, they can assume
that the ground state density of the original interacting system is equal to that of some
chosen non-interacting system. This leads to independent-particle equations for the non-
interacting system that can be considered exactly soluble with all the difficult many-body
terms incorporated into an exchange-correlation functional of the density. The corresponding
Hamiltonian – called the Kohn-Sham Hamiltonian as

HKS =− ℏ2

2m ∑
i

∇
2 −Vext(r)+ e2

∫ n(r′)
|r− r′|

dr′+Vxc(n(r)), (2.3)

The theorem of Kohn and Sham can now be formulated as follows: The exact ground-state
density n(r) of an N-electron system is

n(r) = ∑
j
|ψ j(r)|2, (2.4)

and the exchange-correlation potential defined as

Vxc =
δExc[n(r)]

δn(r)
, (2.5)

The last two terms in Eq. 2.3 are the classical Hartree term and the exchange-correlation
term. These two terms depend on the electron density n(r), which in turn depends on
the ψ j(r) (which are being searched). This means we are dealing with a self-consistency
problem: the solution of ψ j(r) determine the original equation, and the equation cannot be
written down and solved before its solution is known.
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2.1.4 Generalized gradient approximation

In order to solve the Kohn-Sham equation in practice, I introduce the generalized gradient
approximation (GGA)

Exc[n] =
∫

εxc (n(r),∇n(r)) dr, (2.6)

where εxc(n(r),∇n(r)) is the exchange-correlation energy as a functional of density n(r) and
density gradient ∇n(r). So that, the exchange-correlation potential given as follows

Vxc(r) =
[

εxc +n
δExc

δnσ
−∇

(
n

δExc

δ∇nσ

)]
r,σ

, (2.7)

Useful estimates of numerous form is illustrated by three widely used forms of Becke (B88)
[7] , Perdew and Wang (PW91) [8], and Perdew, Burke, and Enzerhof (PBE) [9]. Among
them, the PBE form is the most useful as the simplest GGA functional.

2.2 Relativistic effects

2.2.1 Dirac equation

Let’s start with the idea to create a relativistic wave equation for free particle related to the
Schrödinger equation by Klein and Gordon (1926) as [10, 11],

−ℏ2 ∂ 2Ψ

∂ 2t
=−ℏ2c2

∇
2
Ψ+m2c4

Ψ, (2.8)

by promoting the energy operator E and momentum operator p into the relativistic en-
ergy–momentum relation

E2 = p2c2 +m2c4, (2.9)

The Dirac equation is introduced, following the original work of Dirac (1928) [12], as a
factorization of Eq. 2.8. The Dirac equation in its Hamiltonian form is given as,

iℏ
∂

∂ t
Ψ = HΨ (2.10)

with
H = cα ·p+βmc2 (2.11)

where Ψ is a time-dependent four-component single particle wave function and H is the
single-particle Hamiltonian. The quantity α is a vector operator whose components can be
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written as,

α =

(
0 σk

σk 0

)
, (2.12)

σk is the Pauli spin matrices, where in the standard representation,

σ1 =

(
0 1
1 0

)
,σ2 =

(
0 −i
i 0

)
,σ3 =

(
1 0
0 −1

)
are the x, y and z Pauli spin matrices. The quality p is the momentum operator, p =−ih∇

and the matrix β is given by,

β =

(
1 0
0 −1

)
, (2.13)

with

1 =

(
1 0
0 1

)
(2.14)

In presence of an electromagnetic field, by substituting the Gauge-invariant

iℏ
∂

∂ t
→ iℏ

∂

∂ t
− eΦ(r, t) (2.15)

− iℏ∇ →−iℏ∇− eA(r, t) (2.16)

into Eq. 2.11 we obtain

iℏ
∂

∂ t
Ψ =

(
α · (cp− eA)+βmc2 + eΦ

)
Ψ (2.17)

where A is the vector potential and Φ is the scalar potential.

2.2.2 The fine structure Hamiltonian

Now I focus on the fine structure case of the hydrogen atom model without external mag-
netic field. The target is to find a kind of the relativistic correction to the non-relativistic
Schrödinger equation. From Eq. 2.17, the fine structure Hamiltonian can be obtained via a
direct approach and perturbation theory, is described as

H =
p2

2m
+V − p4

8m3c2 −
ℏ2

4m2c2
dV
dr

∂

∂ r
+

1
2m2c2r

dV
dr

S ·L (2.18)
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where V = eΦ is the central potential, L = r×p is the angular momentum and S = ℏ
2 σ is

electron spin.
The first two terms in Eq. 2.18 come from the Schrödinger equation and the rest of the

terms are the corrections. The third term is the natural relativistic correction of the energy
linked to the approximation of the relativistic energy. The fourth term is Darwin term and it
can be interpreted as an effective smearing out of the potential due to the lack of localization
of the electron. The last term in Eq. 2.18 takes into account the coupling between the spin
and the orbital angular momentum, it is the spin-orbit coupling (SOC). This term is generally
known as,

HSOC = ξ S ·L (2.19)

where ξ is called the spin-orbit parameter.

2.2.3 Magnetocrystalline anisotropy

The spin-orbit coupling describes the coupling between the spin and the orbital angular
momentum. The SOC is much smaller than the exchange interaction, however, it plays a
crucial role in the magnetic system. One of the important features of the SOC is the origin of
the magnetocrystalline anisotropy, which is a key parameter in spintronics devices.

Now let us simplify Eq. 2.18 into the simply two-component Pauli equation as,

(Hscalar +HSOC)Ψ
k
n(r) = ε

k
n (r)Ψ

k
n(r)(r), (2.20)

where the Hamiltonian has been split into a spin-polarized scalar-relativistic part Hscalar,
including the mass-velocity and Darwin terms and will be treated fully self-consistently,
and the spin-orbit interaction, which will be added in the last iteration of the self-consistent
field procedure. To calculate the magnetocrystalline anisotropy, I start from a self-consistent
spin-polarized scalar-relativistic calculation, then adding HSOC to Hscalar and solving the
corresponding Kohn-Sham Eq. 2.20 non-self-consistently(see A, B). Assuming that the
self-consistent calculation with Hscalar is so close to self-consistency, the change in the total
energy with a chosen magnetization direction is given by the change in the single-particle
eigenvalue sum:

∆E =
occ

∑
i,k

εi(n,k)−
occ

∑
i,k

εi(k) (2.21)

where n is an arbitrarily chosen magnetization direction and εi(n,k) is the energy eigenvalues
over k-space. This relation has been called the force theorem, which is firstly proposed by
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Weinert et al. (1985) [13]. The magnetocrystalline anisotropy energy (MAE) is obtained
from the energy eigenvalue difference for the magnetization oriented along the hard-axis and
easy-axis, can be written as

MAE ≡ ∆E(n1,n2)

= ∆E(n1)−∆E(n2)

=
occ

∑
i,k

εi(n1,k)−
occ

∑
i,k

εi(n2,k). (2.22)

2.3 External electric field

2.3.1 Inclusion of a static external field

To perform first-principles calculations in an electric field it would seem that I only need to
add a term of the form as ∫

Vext(r)n(r)dr, (2.23)

to the energy functional, where Vext is the potential associated with the field. An external field
and its corresponding potential can be related to a charge distribution ρext(r) via Poisson’s
equation

∇
2Vext(r) =−4πρext(r). (2.24)

The density and potential can be describe the in a two-dimensional Fourier expansion as,

V (r) = ∑
G∥

V (G∥,z)e
iG∥·r∥. (2.25)

In this representation, the Poisson equation is separated into[
∂ 2

∂ z2 −G2
∥

]
V (G∥,z) =−4πρ(G∥,z). (2.26)

For the uniform field (G∥), two boundary conditions are required to specify the solution
of Eq. 2.26. Integrating this equation, using mixed boundary conditions at z = z0(z < z0),
gives the potential in terms of the density as
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V (z) =V (z0)− (z0 − z)
(

∂

∂ z
V (z)|z=z0

)
−4π

∫
ρ(z′)(z′− z)dz′. (2.27)

Because of the linearity of Poisson’s equation, one might be free to pick these boundary
conditions in any convenient manner. The problem is that in our framework the Hamiltonian
needs to have the same periodicity as the system. Hence, saw-like potentials are used to deal
with the periodic systems (see figure 2.1). The dipole correction will be introduced to solve
the periodic boundary problem in the vacuum region.

Distance

Po
te

nt
ia

l

Slab

Fig. 2.1 Electric field is applied by the saw-like potential in slab structure because of the
periodic boundary condition.

2.3.2 Dipole correction

The periodic boundary conditions imposed on the electrostatic potential then give rise to an
artificial electric field across the slab. To cancel the artificial field, one needs to introduce a
dipole correction in the vacuum region of the supercell [14, 15].

For more convenient discussion, let’s separate Eq. 2.27 into two parts as follows:

V ′(z) =V (z0)− (z0 − z)
(

∂

∂ z
V (z)|z=z0

)
, (2.28)

and
Vavg(z) =−4π

∫
ρ(z′)(z′− z)dz′. (2.29)

Now assuming that the slab is put in a box of height zm with periodic boundary conditions
also in the z direction. Because V ′(r) decays exponentially away from the surface, the error
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made when imposing periodic boundary conditions on V ′ should be small. On the other hand,
Vavg has emerged in the laterally averaged part of the potential:

Vavg,per(z) =Vavg(z)−4πm
(

z
zm

− 1
2

)
, (2.30)

where

m =
∫

ρ(z′)(z′− z)dz′. (2.31)

in order to satisfy Vavg,per(0) =Vavg,per(zm). An approximation for the Hartree potential
of the isolated slab is thus

V (r)≈Vper(r)+Vdip(z), (2.32)

where

Vdip(z) = 4πm
(

z
zm

− 1
2

)
,0 < z < zm. (2.33)

is the dipole correction with the associated energy

Edip =
1
2

∫
ρ(r)Vdip(z)d3r. (2.34)

The potential term Vdip corresponds to an electric field Ez =−4πm/zm. The energy associated
with the dipole correction field differs from the energy shift caused by an external applied
electric field by a a factor of 1/2, which is explained by the fact that the dipole correction
field has an internal origin.

2.4 Strongly correlated electron systems

2.4.1 Classical spin models

The spin Hamiltonian depends on the spin contributions and spin properties of the system
and enumerates the orbital momentum contributions required to define the system. The total
Hamiltonian for a magnetic system is the sum of all these magnetic interactions:

H = Hexc +Hani +Hdip +HDMI +Hext, (2.35)

where the Hamiltonian includes the isotropic exchange interaction, the magnetic anisotropy,
the dipolar interactions, the Dzyaloshinskii-Moriya interactions and the Zeeman interaction.
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The classical Heisenberg Hamiltonian with the nearest-neighbor exchange interaction reads

Hexc = ∑
⟨i, j⟩

Ji jSi ·S j, (2.36)

where Ji j is an isotropic exchange interaction between the spin vectors when each pair of
spins (Si, S j) has been counted only once. Since I consider the relative orientation of both
the spins, the interaction can be considered as isotropic.

The second term in Eq.2.35 represents the magnetocrystalline anisotropy (MA) with the
dominant contribution from the uniaxial anisotropy as,

Hani = Ku ∑
i
(Si ·u)2, (2.37)

with Ku as the anisotropy constant in eV and easy axis along the unitary u direction.
The third term in Eq.2.35 is the dipole-dipole interaction defined as

Hdip =−µ0µ2
s

4π
∑
i< j

3(Si · ri j)(S j · ri j)−Si ·S j

r3
i j

, (2.38)

with ri j is the spatial vector pointing from the ith to the jth lattice site. The dipole-dipole
interaction is long range and can be neglected in studies of short wave length excitations.
The Dzyaloshinskii-Moriya interaction (HDMI) in Eq.2.35 is an antisymmetric, anisotropic
exchange coupling between two neighboring magnetic spins Si and S j

HDMI = ∑
⟨i, j⟩

Di j · [Si ×S j], (2.39)

And the last term in Eq.2.35 is the Zeeman energy describing the interaction of the magnetic
system with an external magnetic field. The Zeeman energy is,

Hext =−Bext ∑
i

Si, (2.40)

2.4.2 Hubbard model

Strong correlations between electrons (e.g., the interaction of conduction electrons with
almost localized magnetic moments) can cause various outstanding features such as super-
conductivity or insulating ground state with ferromagnetic. Hubbard model was proposed in
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1963 to describe strongly correlated electrons in 3d transition metals [16]. In these elements,
the radial wave function of the 3d-electrons has a very small spatial extent. Thus, when the
3d shell is occupied by several electrons, these are forced to be close to one another on the
average so that the electrostatic energy is large. The energy of a given transition metal ion,
therefore, varies strongly with the number of electrons it contains. The model thus can be
written as

H =−t ∑
⟨i, j⟩,σ

c†
iσ c jσ +U ∑

i
ni↑ni↓, (2.41)

The first term of Eq. 2.41 is the hopping of electrons from site to site, where c†
iσ , ciσ are

creation and annihilation operators of electrons at site i with spin σ , and t is the hopping
matrix elements. The second term of Eq. 2.41 is the on-site Coulomb repulsion of two
electrons at site i. This interaction contains the electron densities at each site i, niσ = c†

iσ ciσ

with opposite spin and the energy of Coulomb repulsion of two electrons at site i, U . Fig. 2.2
illustrates the Coulomb energy U and the hopping t in the Hubbard model. There are three
possible hopping processes can be considered in this model: hopping of electron from the
occupied to the neighbouring empty site, virtual hopping of electron from the occupied to
the neighbouring site and back, and the three-process hopping. In Fig. 2.3, I introduce the
virtual hopping, which will be used for the main discussion in Chapter 4. Considering the
Hubbard model as Eq. 2.41 with one electron per site (n = 1) and strong correlation U ≫ t,
there are two situations;

1. If the spins are anti-parallel, electron hopping (first term in Eq. 2.41) is allowed to
move an electron from one site to a neighboring site. And in principle, second-order
process is possible to move that electron back. The energy gain is this process is
−2t2/U .

2. If the spins are parallel, the above process is forbidden by the Pauli exclusion principle,
no energy gain.

2.5 Wannier functions

2.5.1 Bloch functions and Wannier functions

Periodic boundary conditions are widely used in electronic structure calculation using the set
of extended Bloch states

ψnk(r) = unk(r)eik·r, (2.42)
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Hubbard model

t : hopping matrix element
U : on-site Coulomb repulsion
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Fig. 2.2 Hubbard model with U is the Coulomb repulsion energy of electrons in one site and
t is the hopping of electrons between two sites.Hubbard model

t : hopping matrix element
U : on-site Coulomb repulsion

ℋ = −𝑡 %
!,# $

𝑐!$
% 𝑐#$ + 𝑈%

!

𝑛!↑ 𝑛!↓

Hubbard, 1963

U

t

standard model in the investigation of strong 
electron correlation effects in metals

Coulomb repulsionHopping

site i site j

1

2 U

Anti-parallel spins

Δ𝐸 = −2
𝑡!

𝑈

site i site j

Parallel spins

Δ𝐸 = 0

Forbidden by Pauli 
exclusion principle

Virtual hopping

Fig. 2.3 Virtual hopping in the case of parallel and anti-parallel spins when I consider the
Hubbard model with one electron per site.
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where n is the band index and the lattice-periodic parts un,k(r) is periodic in real space with
respect to the unit cell of the crystal. Thus, Bloch functions are oscillating and delocalized in
real space. However, orbitals that are localized in real space offer a microscopic understanding
of the physical processes. To deal with this matter, Wannier (1937) [17] proposed an
alternative representation, in which the Bloch states is expressed in terms of a Fourier series
as

ψnk(r) = ∑
R

eik·RWnR(r), (2.43)

where R is a real-space lattice vector. The inverse of this series leads to so-called Wannier
functions (WFs) that are Fourier transformations of the original Bloch states:

WnR(r) =
1
N ∑

k
e−ik·R

ψn,k(r). (2.44)

The transformations of Eq. 2.43 and Eq. 2.44 create a unitary transformation between Bloch
states and Wannier states. This means that any Bloch functions on the k space can be built
up by superposing the WFs linearly. Even they are not eigenstates of the single-particle
Hamiltonian, the WFs are practically useful in studying intrinsic properties of materials.

2.5.2 Gauge freedom

The phases of the Bloch functions in are not unique and can be twisted by a gauge change as

|ũnk⟩= e−iβ (k)|unk (2.45)

where β (k) is some real function of k. Each gauge transformation is invariant under a
translation by G as periodic condition

β (k+G) = β (k)+G ·R (2.46)

Since the transformation preserves the periodic property, the center of charge of WFs are
gauge-invariant and simply shifted by a lattice vector. This means that all choice of gauge
lead to the same Wannier center and the same energy-band coefficients. However, it is not
true that all WFs are created equal with different choice of gauge. In the Fourier transforms,
the smooth gauge we chose in the reciprocal space leads to the more localized function in the
real space. Hence, different choices of smooth gauge correspond to different sets of WFs
(shapes and spreads, in general).
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2.5.3 Multiband Wannier functions

Before discussing how to constructing a smooth gauge, let assume that ψnk is smooth and
periodic over the k space. Since it is hard to treat the condition that n band be a single isolated
band, one need to consider a manifold of M band that are glued together by degeneracies.
This band manifold are invariant under any unitary transformation of the form

|ψ̃nk⟩=
M

∑
m=1

Umn(k)|ψmk (2.47)

where |ψ̃nk⟩ is Bloch-like functions that are smooth functions everywhere in the k space.
Umn is a manifold of M×M unitary matrices whose is periodic in k. Noting that the |ψnk⟩
and |unk⟩ transform in the same way, one may rewrite Eq. 2.47 as

|ũnk⟩=
M

∑
m=1

Umn(k)|umk (2.48)

2.5.4 Wannier functions via projection

A simple and effective approach for constructing a smooth gauge in k for a corresponding
set of well-localized WFs is by projection. Starting from a set of chosen trial orbitals gn(r)
which correspond to some rough guess for the WFs, one may project these gn(r) orbitals
onto the Bloch manifold at the wave vector k to obtain [18]

|φnk⟩=
M

∑
m=1

|ψmk⟩⟨ψmk|gn⟩, (2.49)

where M is the number of trial orbitals. The overlap matrix over one cell is defined as

(Sk)mn = ⟨φmk|φnk⟩, (2.50)

Then, one can construct the Bloch-like states as

|ψ̃nk⟩=
M

∑
m=1

|φmk⟩(S
−1/2
k )nm. (2.51)

where |ψ̃nk⟩ are uniquely defined by the trial orbitals gn(r) and related to the original |ψnk⟩
by a "gause transformation" as

|ψ̃nk⟩=
M

∑
m=1

U (k)
nm |ψmk⟩ (2.52)
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where U (k)
nm is a unitary matrix and has a periodicity in k. After the electronic-structure

calculations has been self-consistently converged and a set of ground-state Bloch orbitals has
been chosen, the unitary matrix is refined.

2.5.5 Maximally localized Wannier functions

A very general approach for constructing a well-defined localized Wannier functions was
developed by Marzari and Vanderbilt (1997) [18], namely Maximally localized Wannier
functions (MLWFs). The well-localzied functions are obtained by minimizing the localization
functional concerning the U (k)

nm appearing. The localization functional is described as

Ω = ∑
n

[
⟨0n|r2|0n⟩−⟨0n|r|0n⟩2

]
(2.53)

measuring the sum of spreads of the M WFs around their centers. Now let consider a finite
chanin cut form the infinite system to define Wannier-like localized functions. Suppose that
the segment consisting of L unit cells having M occupied bands. Then N = ML is the number
of occupied states. Now we can construct the N ×N matrix from the N eigenstates |ϕi⟩

Vi j = ⟨ϕi|x|ϕ j⟩ (2.54)

and obtain its eigenvalues x. The total spreads of these functions can be expressed as

Ωspread =
N

∑
i=1

[
⟨ϕi|x2|ϕi⟩−⟨ϕi|x|ϕi⟩2

]
(2.55)

The first term in Eq. 2.55 is a trace over the occupied subspace of the x2 operator and is
invariant to the choice of unitary rotation. Therefore, it can be dropped. So we can minimize
the spread by minimizing the sum of squares ∑i ⟨ϕi|x|ϕi⟩2 = ∑iVii

2 of the orbital centers.
In this work, the MLWFs are used in constructing localized molecular orbitals and

estimating hopping integral for strongly correlated systems.

2.5.6 Wannier functions as a basis for strongly correlated systems

For many strongly correlated electron problems, the essential physics of the system can be
explained by considering WFs. One can express the Hubbard model (Eq. 2.41) in term of a
complete tight-binding basis as
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H =−ti j ∑
⟨i, j⟩,σ

c†
iσ c jσ +U ∑

i
ni↑ni↓, (2.56)

where i, j labels the correlated site. The single-particle hopping parameters t of the model
Hamiltonian are easily obtained from the matrix elements of the DFT Hamiltonian repre-
sented based on MLWFs as

ti j = ⟨Wi|H|Wj⟩ (2.57)

According to Anderson (1959) [19], the exchange interaction processing based on hop-
ping parameter can be expressed as

Jkin
i j =

2t2
i j

U
. (2.58)



Chapter 3

Electric field effect on magnetic
anisotropy in transition metal thin films

3.1 Introduction

Magnetic random access memory (MRAM) has been seriously considered to replace other
traditional random access memory devices in the next generation owing to the fast, long-
service-life, low-power-consuming, and non-volatile properties [20–22]. For the practical
application, magnetic atomic layers that exhibit strong perpendicular magnetocrystalline
anisotropy (PMA) are desired to enhance the potential of high-density MRAM as they have
high thermal stability and low critical current for current-induced magnetization switching
[23]. To this end, transition-metal thin films such as (Co, Fe)/(Pd, Pt) [24–26] multilayers
and (Fe, CoFeB)/MgO [27, 28] thin films have been proposed to exhibit PMA. While
enhancement of the PMA in transition-metal films is crucially required, its realization is
not straightforward. It has been known that the MA microscopically results from on-site
SOC. Perturbation theory of SOC with the crystal-field 3d states deduces the fact that MAE
is proportional to the SOC-induced orbital magnetic moment as proposed by Bruno [29].
The so-called “Bruno’s theory" has been confirmed in several magnetic multilayers [30–32].
However, in the materials where hybridization between different elements is strong enough,
the MAE is not simply the summation of the on-site SOC energy, but a cross term between
the SOC matrix elements and the hybridization plays a more important role. Indeed, the
MAE is determined not only by the choice of atomic elements but also on the detail of the
atomic layer alignment in multilayers composed of several types of atoms [33, 34]. Moreover,
a modification in the MAE, with the application of an external electric field was observed
in several thin film systems [35–38]. The effect of electric field on the MAE may give an
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potential application in spintronics field. Motivated by these findings, I theoretically design a
rather simple system based on Co-based artificial multilayers with Ni, Fe, and Mn, evaluate
the MAE, and discuss which ingredient may enhance the MAE and the electric field effect
by using the first-principles approach.

In this chapter, I show the results of MAE calculation in Co-based 3d transition-metal
thin films. The calculations were done for five- and seven-layer slab of films for hexagonal
close-packed (hcp) and face-centered cubic (fcc) stacking. The results of pure Co thin films
are shown to consider the MAE and the stability between hcp and fcc stacking. In the
next session, the MAE calculations of five atomic-layer Co-based 3d elements (Ni, Fe, Mn)
films are shown. In the final session, the MAE calculations of seven atomic-layer Co-based
3d elements films are shown. The DOS and band structure are presented to discuss the
mechanism of MA for all systems. The electric field effect on the MAE is also provided in
the last part of this chapter.

3.2 Computational methods

I performed first-principles DFT calculations by using the highly precise full-potential
linearized augmented plane-wave (FLAPW) method [39, 40] based on the generalized
gradient approximation (GGA) [9] to DFT implemented in the HiLAPW code [41]. SOC
is taken into account for the valence and core states by the second-variation method [42].
The energy cutoffs of 20 and 160 Ry were used for wave function expansions and potential
representations. Muffin-tin sphere radii of 1.9 a.u for Co, Fe, Ni, Mn are used and the
Soler-Williams type augmentation method [43] was adopted. Calculations were performed
in a three-step flow. First, structure optimizations were performed for the atomic coordinates
until the force become lower than 1 meV/Å for determining the most stable interfacial
geometries. A 22×22×1 k-mesh in the two-dimensional Brillouin zone was used for the
structure optimization. In the second step, the Kohn-Sham equations are solved without
SOC taken into account to determine the charge distribution of the ground state. Finally,
the SOC is introduced by the second-variation method. The MAE is evaluated by the force
theorem [13, 44, 45] as defined as the eigenvalue-sum difference between the in-plane and
perpendicular magnetic directions: EMA = Ein −Eperp in the cell. It was checked that the use
of 5184 special k points was sufficient to suppress numerical fluctuations in the calculated
MAE values. Electric field is applied perpendicular to the surface by saw-like potential with
dipole correction [14, 15].
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3.3 Model of Calculations

Calculations were carried out for five- and seven-layered slabs of Co-based transition-
metal thin films whose both sides are terminated by Co layers as being consistent with the
experimental setting [24], in which Co layers on Pt fcc lattice are synthesized and grow up in
either hcp (0001) or fcc (111) stacking as depending on the film thickness and the location. In
our calculations, both hcp-like (ABAB) and fcc-like (ABCABC) stacking are considered and
the total-energy difference between them is evaluated as the structural stability. Iconsidered
three (i-iii) and six (I-VI) possible atomic-layer alignments for five- and seven-layered slabs,
respectively, with Co and other 3d elements, i.e. Ni, Fe, and Mn (see Fig. 3.1). The in-plane
lattice constant a = 2.7918Å is assumed to match the experimental value of Pt (111) and the
vacuum layer is assumed to be ∼8.5Å which is large enough for transition-metal thin-film
calculations.

(a) Five-layer hcp-like (b) Five-layer fcc-like

(c) Seven-layer hcp-like (d) Seven-layer fcc-like

Type Type

i ii         iii

I      II      III        IV       V       VI I      II      III        IV       V       VI

i ii         iii

Fig. 3.1 Model of calculation. Possible atomic-layer alignments (a,b) in type i, ii, and iii
structures for the five-layer and (c, d) in type I-VI structures for the seven-layer Co-based
transition-metal thin films, for hcp-like and fcc-like stacking respectively. Where solid atoms
are Co and open-circles represent other 3d elements (Ni, Fe, and Mn).
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3.4 Bulk Co and pure Co thin films

3.4.1 MAE calculation

The MAE value is defined as the eigenvalue-sum difference between [1010] and [0001]
magnetization direction, EMA = E[1010]−E[0001]. Positive value of MAE means that the
favor magnetization direction is out-of-plane. Inversely, negative value of MAE means that
in-plane magnetization direction is preferred. The total energy difference between hcp-like
and fcc-like stacking ∆E = Ehcp

tot −Efcc
tot is estimated for the stacking stability. I performed

a k-point convergence test for MAE for bulk Co and Co5-hcp thin film (see Fig. 3.2). To
suppress numerical fluctuations, the need of 18816 (28×28×22) number of k-points for
bulk Co and 5184 (72×72×1) for Co-based slab calculation were confirmed. The MAE
converges to 0.04 meV/Co for bulk and 1.03 meV/unit-area for Co5 hcp film.

Firstly, I carried out calculations of the magnetic properties of bulk hcp Co for comparison
with those of Co thin film. DFT calculation was performed with the c/a lattice-constant ratio
1.63 [44]. The local spin magnetic moment and MAE of bulk Co are calculated as 1.75 µB

and 0.04 meV/Co, respectively. The MAE value shows fair agreement with the experimental
value, 0.07 meV/Co [46]. A theoretical work [44] has reported the value of 0.03 meV/Co
(for lz = 2) and -0.02 meV/Co ( for lz = 3) by means of the linear muffin-tin orbital method.

Table 3.1 shows the calculated MAE and total energy difference of pure Co films. The
calculated MAE are 1.03 and 2.55 meV/unit-area (-0.07 and -0.68 meV/unit-area) for five-
and seven-slabs, respectively, with hcp-like (fcc-like) stacking, manifesting that the easy
magnetization direction is out-of-plane (in-plane). The positive, i.e. perpendicular, MAE
values in the hcp stacking are remarkably larger than the MAE at bulk Co, which is calculated
as 0.04 meV/Co. By comparing the total energy between the hcp and fcc stacking, fcc
stacking is more stable by 0.19 eV/Co in the five-layer and hcp stacking is more stable
by 0.01 eV/Co in the seven-layered film. This indicates that the thinner Co film favours
fcc stacking with in-plane magnetization and the thicker film prefers hcp stacking with
perpendicular magnetization, as the latter is consistent with the experimental measurement
in bulk Co. When one fabricates thin films as varying their thickness, it may be possible to
tune the magnetic direction by invoking a hcp-fcc phase transition [47, 48].

The spin magnetic moments of the constituent atoms in Co films are independent of the
magnetization direction. The calculated results of spin magnetic moments for each kind of
atom in Co films are presented in Table 3.2. Co1 is presented as the center layer atom, Co3
and Co4 are presented as surface layer atoms for five- and seven-layer slabs cases respectively.
It is well recognized that the magnetic moment enhancement at the surface comes from the
reduced number of nearest neighbors and hence weaker inter-atomic hybridization [49].
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Fig. 3.2 k-dependence of MAE calculated in (a) bulk Co and (b) Co5 hcp stacking thin film.

Table 3.1 Calculated MAE values (meV/unit area) and total energy differences (eV/f.u) of
pure Co five- and seven-layer films for hcp and fcc stacking

Stacking
Five-layer slab Seven-layer slab

EMA ∆E EMA ∆E

Hcp(0001) 1.03 0.19 2.55 −0.01
Fcc(111) -0.07 0 −0.68 0
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Table 3.2 The spin contribution to the magnetic moment (in µB) for hcp and fcc in five- and
seven-layer pure Co films.

Atomic layer
Five-layer slab Seven-layer slab

hcp fcc hcp fcc

Co1 1.76 1.83 2.78 1.87
Co2 1.81 1.91 1.77 1.84
Co3 1.86 1.90 1.82 1.90
Co4 - - 1.87 1.90

Table 3.3 Orbital magnetic moments (in µB) depend on the magnetization direction and the
anisotropy of the orbital magnetic moments for hcp and fcc in five- and seven-layer Co films.

Five-layer slab Seven-layer slab

hcp fcc hcp fcc

m[0001]
orb 0.54 0.45 0.80 0.62

m[1010]
orb 0.46 0.44 0.62 0.62

∆morb 0.09 0.01 0.18 0.00

On the other hand, the orbital magnetic moments of Co films show a characteristic
dependence on the magnetization direction. The anisotropy of the orbital magnetic moment
defined by ∆morb = m[1010]

orb −m[0001]
orb take the large positive value for hcp stacking, whereas

it is nearly zero for fcc stacking.

3.4.2 Density of states

The magnetocrystalline anisotropy is determined by the characteristic of the band structure
near the Fermi level in the systems concerned. Therefore, it would be interesting to examine
the density of state (DOS) and energy bands of the systems in the vicinity of the Fermi
level. Fig. 3.3 show the total DOS of five-layer slabs Co thin films for hcp and fcc stacking,
and bulk Co respectively. In five-layer slab, the majority spin sate is almost fully occupied
and is located from 1.0 to 5.0 eV below Fermi level. On the other hand, the minority spin
states are partially occupied, resulting in a large DOS at the Fermi level. In these thin films,
sharp peaks of the DOS can be found near the Fermi level in the minority spin state. The
complicated peak structure around the Fermi energy is not present in a bulk Co (see Fig.
3.3) and originating from Co ions located near the surfaces in the slab. This lead to an
enhancement of the MAE in slab structure compared from tiny MAE in bulk Co.
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3.5 Co-based thin films

3.5.1 Dependence of magnetocrystalline energy on layer stacking

Next, let us look at the calculated MAE at the Co-based transition-metal thin films with
five-layered slabs summarized in Fig. 3.4(a). Interestingly, the Ni-Co system shows the per-
pendicular MAE for both hcp- and fcc-stacking with all the three stacking patters considered
here. The largest positive values of MAE, EMA = 1.52 and 1.39 meV/unit-area, are observed
at type iii of Ni-Co thin film, Co-Ni3-Co, for fcc and hcp stacking, respectively. It is even
remarkable that the MAE values exceed that of pure cobalt slab while the other slabs show
lower and/or negative MAE values. The characteristic of this slab is that Ni atoms are located
at the inner three layers of the slab and Co atom is placed at the outmost surfaces. This
same goes for the seven-layered slabs: in the Ni-Co slab that contains many Ni atoms at
inner layers (such as type III, V, and VI) show large perpendicular MAE although they don’t
exceed MAE of the pure cobalt. Fe-Co and Mn-Co systems mostly show negative (in-plane)
MAE. It should be noted that the perpendicular MAE in Ni-Co system has been proposed
by Daalderop et al.; their computational and experimental work indicates that tuning of
thickness of Co/Ni multilayer leads to a perpendicular orientation of the magnetization
while their simulation was based on a different model from the present work [50]. In the
following subsection, I will discuss the mechanism of how the Ni-Co stacking enhances the
perpendicular MAE.

3.5.2 Microscopic mechanism of magnetocrystalline anisotropy

In order to understand the microscopic mechanism of MAE, I evaluated the EMA contribution
on the k space, according to the following equation,

Ek
MA = ∑

m

(
ε

101̄0
mk − ε

101̄0
F

)
−∑

n

(
ε

0001
nk − ε

0001
F

)
+∆EF,

∆EF = Ne

(
ε

101̄0
F − ε

0001
F

)
, (3.1)

where ε101̄0
mk and ε0001

mk represent the energy of band m when the magnetization is set parallel
to the [101̄0] axis and the [0001] axis, respectively. It should be noted that the Fermi energy
changes slightly when the magnetization is directed from the in-plane to the perpendicular
direction. If one simply subtracts the band energy with the perpendicular axis from that with
the in-plane axis, the excessive difference appears due to the difference in the number of
bands. To fix this problem, I added a term of ∆EF (change of Fermi energy) into the equation.
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Fig. 3.4 Top: Schematic stacking patterns of TM-Co slabs. Open and closed circles indicate
Co and TM atoms, respectively. Bottom: Calculated MAE for Ni-Co, Fe-Co, Mn-Co
multilayers for each stacking pattern in (a) five-layered slabs and (b) seven-layered slabs.
Blue bar is for hcp-like and red bar is for fcc-like structure. Positive values correspond to
perpendicular-favored anisotropy. Horizontal dashed lines with blue and red colors indicate
MAE for pure Co films with hcp and fcc stacking structures for reference.
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Fig. 3.5 shows the d-orbital projected bandstructure with the MAE contribution in the
k space for Co5 hcp thin film. It shows negative MAE around the K point, while there is
no pair of unoccupied and occupied bands that can contribute to MAE. At the Γ point, both
the unoccupied and occupied bands near the Fermi energy consist of 3z2 − r2 orbital state at
Co1-3 sites, such m=0 orbital states being not supposed to contribute to MAE.
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Fig. 3.5 Minority-spin band structure (a)-(c) for Co5 thin films with hcp-like stacking The
color highlighting the bands represent d-orbital components as follows; orange: 3z2 − r2,
green: xz, cyan: yz, purple: x2 − y2, and blue: xy for each kind of atoms. (d) present the
calculated MAE contribution in k space.

Fig. 3.6 shows the calculated MAE contribution in the k space, Ek
MA, for Co-Ni3-Co

(type iii) slabs with hcp-like structures. By comparing Fig. 3.6 (c) and (d), one can observe
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Fig. 3.6 (a)-(c) Minority-spin band structure for Co-Ni3-Co (type iii) in five-layered thin films
with hcp-like stacking. Due to the mirror symmetry, in the five-layered slab, the surface layer
is denoted as Co3, sub-layer is Ni2 and center layer is Ni1. The color highlighting the bands
represent d-orbital components as follows; orange: 3z2 − r2, green: xz, cyan: yz, purple:
x2 − y2, and blue: xy for each kind of atoms. (d) The calculated MAE contribution in k space.
Vertical dashed lines point the locations where the MAE changed the value significantly and
the link with the corresponding band crossing the Fermi energy.
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that Ek
MA changes its value significantly when one of the bands crosses the Fermi energy. For

instance, a band with a large weight of Ni2:3z2 − r2 character is responsible for a change of
MAE at the KΓ line and one with Ni1:xy character is responsible for a change at the MK line.
This behavior can be understood by considering the SOC effect as a perturbation to the band
structure.

According to the second-order perturbation theory of SOC proposed by Bruno [29], there
is a strong connection between MAE and the orbital moment. The change in the total energy
by SOC comes from the interaction between occupied and unoccupied states. This gives

ESOC = −∑
o,u

∣∣∣⟨o|∑i H(i)
SOC|u⟩

∣∣∣2
εu − εo

= −∑
o,u

∣∣∣⟨o|∑i ξ (i)L(i) ·S(i)|u⟩
∣∣∣2

εu − εo
, (3.2)

where H(i)
SOC, ξ (i), L(i), S(i) represent the on-site SOC term, the coupling constant of the

spin-orbit interaction, orbital and spin momentum operator at atom i, respectively; o (u)
and εo (εu) represent occupied (unoccupied) eigenstates and those eigenvalues. MAE is the
difference between the SOC energies for two magnetization directions (e.g. x and z),

EMA = ESOC(x)−ESOC(z). (3.3)

Here I consider that the majority (↑) spin state is fully occupied and not responsible for the
MAE while the minority (↓) spin states is partially occupied and considered to determine
MAE for late transition-metal elements. When the effect of the majority spin states and
the interaction between majority and minority spin states are neglected, only the SOC
interaction between minority-spin states (↓↓) have to be considered. Since the matrix element〈
o↓|L ·S|u↓〉 is equal to

〈
o↓|1

2Lζ |u↓
〉
, where Lζ is the expectation value of the L component

parallel to the spin quantization direction, I obtain

E↓↓
MA =

1
4 ∑

o,u

|⟨o|∑i ξ (i)L(i)
z |u⟩|2 −|⟨o|∑i ξ (i)L(i)

x |u⟩|2

εu − εo
. (3.4)

It leads to the fact that the SOC between occupied and unoccupied states with the same
and non-zero (different by one) m magnetic quantum number makes a positive (negative)
contribution to the MAE through Lz (Lx) operator. This can indeed explain the MAE in a
free-standing Fe monolayer [29, 51].
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However, Bruno’s theory fails to explain the k-dependency of MAE in the Co-Ni3-Co
case. Although Ek

MA shows the maximum value around the K point, both the unoccupied
and occupied bands near the Fermi energy mainly consist of Ni2:3z2 − r2 orbital state (see
Fig. 3.6 (a)-(c)), such m=0 orbital states being not supposed to contribute to MAE through
Eq. 3.2. Around the Γ point, Ifind that the unoccupied and occupied bands consist of Co3:xy
(m=±2) orbital states near the Fermi energy. The SOC is expected for positive contribution
to MAE but the calculated Ek

MA is negative there.
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Fig. 3.7 The partial density of state of minority spin state in small range energy around EF
for each atomic layer in Co5 hcp film. The color represent d orbital state as follows; orange:
m=0, green: m=±1, blue: m=±2.

The partial DOS of each atomic layer is shown in Fig. 3.7 for Co5 hcp films which
specify different d orbital state for each atomic layer. As being different from Co-Ni3-Co
(type iii) case, small density of state around Fermi energy leads to a negative single-layer
contributions in Co5, while the positive inter-layer contributions originate from the strong
hybridization between different Co layers through the peak of m=±2 orbital state located
near the Fermi energy. The density of state at the surface Co (Co3) layer is also different
between Co-Ni3-Co and Co5 cases, resulting in those different contributions to MAE.
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Table 3.4 Orbital magnetic moments (µB) with out-of-plane [0001] and in-plane [1010]
magnetization directions, intra-layer contributed MAE (meV/unit-area)for each atomic layer
in Co-Ni3-Co and Co5 films with hcp stacking.

Co-Ni3-Co Ni1 Ni2 Co3

m[0001]
orb 0.07 0.07 0.13

m[1010]
orb 0.04 0.06 0.12

EMA 0.93 0.20 0.45
Co5 Co1 Co2 Co3

m[0001]
orb 0.11 0.10 0.12

m[1010]
orb 0.08 0.07 0.12

EMA 0.04 -0.46 -0.06

Table 3.4 shows the orbital moments and MAE contribution for each atomic layer in
Co-Ni3-Co and Co5 films. Orbital moment of in-plane magnetization direction [1010] is
smaller than out-of-plane direction [0001] in each atomic layer of both films, while the
calculated MAE contribution shows positive values for Ni1, Ni2, and Co3 in Co-Ni3-Co
film and negative values for Co2 and Co3 in Co5 film. The same behavior was checked
for other materials in this study; i.e., no connection between MAE and the orbital moment
was found. Here, I evaluated the single-atomic-layer contribution to MAE by taking the
difference between fully-SOC calculated MAE (as switching on SOC at all the atoms) and
the SOC-off MAE (as switching off SOC at one atomic layer). Note that it is considered as
single-atomic-layer contribution instead of a single-atom contribution since the atoms are
periodically aligned in the xy plane and the inter-site terms between the same-layer atoms are
contained in the contribution. It turns out that Ni1 atomic layer dominantly contributes to
positive MAE in Co-Ni3-Co layer. Although such a positive contribution from Ni1 is not
detected in the band structure in Fig. 3.6 (a) and (d), the partial density of state (shown in
Fig. 3.8) gives a clue to explain it. At Ni1 layer, m =±2 state, which is likely spreading over
general k-points, shows large weight at Fermi energy. Its contribution to MAE is expected to
be positive by Bruno’s theory.

Fig. 3.9 shows the contribution from each atomic layer in Co-Ni3-Co and Co5 films with
hcp-like stacking. It is seen that the summation of the atomic-layer contribution (1, 2, 3) does
not match the fully-SOC calculated MAE (F). This is because the full MAE is not composed
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only of the summation of single atomic-layer contributions but also of other contributions:

EMA = ESOC(x)−ESOC(z)+E′
SOC(x)−E′

SOC(z), (3.5)

E ′
SOC = −∑

i ̸= j
∑
o,u

〈
o|H(i)

SOC|u
〉〈

u|H( j)
SOC|o

〉
εu − εo

, (3.6)

where ESOC is same as Eq. 3.2 and E ′
SOC is a newly introduced inter-layer term[52]. When

3d orbital states between two neighboring layer atoms (i and j) are strongly hybridizing
and forming both occupied and unoccupied states (|o⟩ and |u⟩), the inter-layer term i j can
effectively contribute to the MAE. Since the |o⟩ and |u⟩ states are described as mixed orbital
states with complex coefficients, the second term is difficult to be further simplified unlike
the first term. Ihere computationally evaluated the inter-layer contribution by taking the
difference between the MAE as switching off SOC at two atomic layer and the summation of
two individual single-atomic layer contributions.

In Co-Ni3-Co film (see Fig. 3.9(a)), the positive MAE is mainly contributed from the
single atomic-layer SOC at Ni1, while the inter-layer terms, such as Ni1-Ni2 and Ni1-Co3,
negatively contribute to the total MAE. In Co5 film (see Fig. 3.9(b)), surprisingly, the inter-
layer terms, Co1-Co2 and Co2-Co3 contribute to MAE dominantly with the positive sign
while the single-layer terms at Co2 contributes less with the negative sign. The enhancement
of the inter-layer terms originates from the stronger hybridization between Co and Co atoms
than that between Co and Ni atoms. In both cases, a summation of all the single-atomic layer
contributions and all the nearest inter-layer contributions shows a successful agreement with
the full SOC calculated MAE (compare T and F in Fig. 3.9). The impact of inter-site SOC
term on MAE makes a striking contrast to previous works on FePt, Au/Co/Au, and CrNb3S6,
where the on-site term and inter-atomic term with 3d-5d or 3d-4d hybridization collaborate
to enhance the net MAE [52–54]. As I come back to the band structure of Co-Ni3-Co shown
in Fig. 3.6, Ek

MA shows large positive value around the K point, where the occupied and
unoccupied bands near the Fermi energy consist of Ni2:3z2 − r2 orbital states. As discussed
above, the on-site SOC term doesn’t contribute to MAE with such m = 0 state, while the
inter-layer term between Ni2 and Ni2’ atoms may positively contribute to MAE as being
consistent with the positive contribution of 22’ shown in Fig. 3.9(a). Similarly, the negative
MAE around the Γ point can be explained by Ni1-Co3 inter-layer term. This result manifests
the importance of cross coupling between the inter-layer hybridization and the SOC in 3d
transition-metal thin films.
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3.6 Electric field effect on magnetocrystalline anisotropy

Finally, I discuss the effect of electric field on the MAE in Co-based thin film. The modi-
fication of magnetic moments and MAE in ultrathin cobalt films by external electric field
has been experimentally reported by Kawabe et al. [38]. In monolayer Co, I investigate the
MAE as a function of the external electric field with different k-mesh, as shown in Fig. 3.10.
The electric field, however, does not give any effect on the MAE with the fine k-mesh (80 ×
80 × 1). Ref. [55] has shown that external electric field only can modify the MAE a Fe(001)
monolayer but not in Co(001) monolayer.

Electric fields were applied perpendicular to the film slab. Fig. 3.11 and 3.12 show the
saw-like potential with the distance of model with applied electric field is zero and 0.2 V/Å in
Co5 thin film, respectively. The dipole correction is also added into the calculation including
the external electric field, which is the correction in the vacuum area shown in Fig. 3.12. In
metallic systems like Co-based thin film, the electric field has a large screening effect. Due
to this effect, we can expect a small effect of the electric field in the MAE.

Fig. 3.13 shows the calculated MAE as a function of the electric field of Co5 and Co-
Ni3-Co in hcp stacking. In pure Co film, as I predict for monolayer, the electric field does
not have any effect on the MAE. On the other hand, the MAE of Co-Ni3-Co is modified
by 0.1 meV/ unit-area with applied electric field 0.8 V/Å. The MAE in Ni-Co film can be
controlled by the electric field through a change of the charge around the Fermi level. The
DOS of Co-Ni3-Co film with and without external electric field are given in Fig. 3.14. In
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Fig. 3.11 Saw-like potential in Co5 film in zero external field.
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Fig. 3.12 Saw-like potential with dipole correction at the vacuum in Co5 film in the applied
external field 0.2 V/Å.
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(red curve) Co-Ni3-Co with hcp stacking.
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Fig. 3.14 d-orbitals projected DOS in the muffin-tin spheres of Co-Ni3-Co with hcp stacking
in an external electric field of (a) zero and (b) 1.0 V/Å for each atomic layers. A vertical
dashed line denotes the Fermi energy.
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minority spin, at the energy range -1.0 eV < EF < 1.0 eV, the modification of the occupied
and unoccupied states around the Fermi level lead to the modification of the MAE. In the
inner three Ni-layers, the DOS peak remains at the Fermi level. The modification by electric
field can be found at two surface Co-layers, where DOS peaks below and above Fermi has
changed the amplitude. The charge at surfaces compensated by surface dipole plays a role
when introducing external electric fields.





Chapter 4

Electric field effect on magnetic stability
in 2D magnetic materials

4.1 Introduction

Two-dimensional (2D) van der Waals (vdW) materials with the intrinsic magnetism have re-
ceived extensive interest from the experiment achievement in atomic-layers CrI3, Cr2Ge2Te6

and Fe3GeTe2 [56–58]. Interestingly, the thickness of one or a few atomic layers enable the
control of 2D magnetism by means of external electric field [59–61], electron-hole doping
[58, 62] appealing to their potentials for future spintronics applications.

Two-dimensional honeycomb structure ferromagnet CrI3, which belongs to a family
of transition-metal trihalides MX3 with X = Cl, B, and I [56, 59–68] is considered as a
promising candidate material for future spintronics applications. Very recently, VI3 has
emerged as a newly discovered 2D material that belongs to the transition-metal trihalides
[69–75]. It has been known for more than 30 years that in the bulk form, VI3 becomes
ferromagnetic (FM) below the Curie temperature, Tc=55K as against Tc=68K for CrI3 [76].
Recent experimental studies have reported that VI3 exhibits a structural phase transition that
changes its symmetry at 79K [69, 70], while the crystal structure in either phase has not been
uniquely resolved yet. The high-temperature (HT) crystal structure was proposed as trigonal
P31c [69], rhombohedral R3 [75], and monoclinic C2/m structure [70]. The low-temperature
(LT) crystal structure was proposed as C2/c [69] and R3̄ structure [70].

Optical and electrical transport measurements have showed bulk VI3 to be an insulator
with an optical band gap of 0.67 eV [69]. However, from the theoretical point of view, the
understanding and modeling of the electronic properties are the center of current studies.
Some theoretical studies have in fact reported that bulk VI3 is a Mott-insulator with a band
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gap of about 1.0 eV [69, 70], whereas other studies have claimed that bulk VI3 shows
half-metallic state [74, 75].

In the thin film limit, to the best of our knowledge, no experimental studies have been
reported for the atomic layer of VI3. On the other hand, DFT studies are rather controversial
about the ground state of V-3d2 state in bilayer VI3. Ref. [71] has proposed the Mott-insulator
ground state which has a lower total energy (∼0.3 eV/f.u) than the half-metallic state. Ref.
[72] has proposed orbital-ordered phases that accompany the lattice distortion. Ref. [73]
has proposed a fully orbital-moment polarized state which is stabilized by combination of
spin-orbit coupling and Hubbard U .

In bilayer VI3, the inter-layer magnetic stability has been theoretically studied. Ref.
[71] has reported that inter-layer magnetic stability is sensitive to the layer stacking, as
being consistent with previous works on bilayer CrI3 [64–66]. Ref. [77] has claimed that
bilayer VI3 shows stacking-independent FM ground state while they have considered the
half-metallic state instead of Mott insulating state.

In this study, I study the electronic structures and magnetic properties of VI3 in compari-
son with CrI3 by DFT approach and give a focus to the role of the partially filled t2

2g orbital
state in VI3. The electric field control of magnetic stability in bilayer VI3 will be investigated.
The microscopic understanding of electric-field induced magnetic stability will be studied
via the virtual hopping mechanism.

4.2 Computational methods

Density-functional theory (DFT) calculations were performed using the VASP code [78]
within the generalized gradient approximation (GGA) [9]. The vdW interactions were
included for bilayer structure calculations. The rotationally invariant GGA + U method
was employed to account for correlation effects [79]. On-site Coulomb interaction for V-3d
orbital was considered with an effective U value of 2.0 eV [60]. Brillouin zone integrations
were performed using a k-point grid of 6 × 6× 1 to relax the structures. Band structures
and DOS, including electric field, were plotted by using 12 × 12 × 1 k-point mesh. The
electric field is applied perpendicular to the surface by saw-tooth-like potential with dipole
correction [14]. In order to perform the MLWFs, I use Wannier90 tool [80] together with the
VASP code.

4.3 Model of Calculations
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Fig. 4.1 (a, b) Top views and (c, d) side views of atomic structure in bilayer VI3 in AB and
AB′ stacking. The red and orange hexagons represent the honeycomb structure of V atoms in
the top and bottom layers, and gray balls represent I atoms. The black arrow indicates the
vector which connects equivalent atoms located in two layers and shows how the top layer is
sliding with respect to the bottom layer. Inter-layer exchange coupling Ji j in bilayer VI3 for
(e) AB and (f) AB′ stacking.
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I consider that bilayer VI3 has a similar atomic structure to its bulk counterpart. In this
study, I assumed two structures corresponding to R3̄ and C2/c phases in bulk VI3 [70]. The
difference between these two structures can be viewed as the different stacking orders of two
single layers VI3. As shown in Fig. 4.1 (a) and (c), the stacking order is similar to AB-stacked
bilayer graphene, in which the top layer is displaced so that one V atom sits above a hexagon
center of the bottom layer. By comparing the equivalent atoms between two layers, the
top layer is horizontally shifted from the bottom layers by (2a+b)/3 (shown by a black
arrow), where a and b are the lattice vectors. This structure has R3̄ symmetry. As shown in
Fig. 4.1 (b) and (d), the shift of top layer is −(a+b)/2 in AB′ stacking. The structure has
C2/m space-group symmetry. I employed the experimental values for the in-plane lattice
constants in bulk VI3: a = b = 6.84 Å [70]. The same initial structure models are prepared
for bilayer CrI3 with in-plane lattice constants a = b = 6.866 Å [63]. The 20 Å-thick vacuum
is contained in the supercell for 2D slab calculation.

4.4 Results for monolayer VI3

4.4.1 Crystal-field splitting

First I focus on the difference of crystal field effects in CrI3 and VI3 monolayers. In particular,
both CrI3 and VI3 show the magnetic atom oordinated to six I atoms, forming edge-sharing
octahedra and resulting in octahedral crystalline electric field (CEF) splitting of the d orbitals
into the two-fold eg and three-fold t2g states. Nevertheless, the I-Cr-I bond angle in CrI3

is almost 90◦ (i.e. a cubic octahedron), while the I-V-I angle in VI3 approaches 89◦. As
such, it exhibits a trigonal distortion - elongation along the z axis - still preserving spatial
inversion symmetry [see Fig. 4.2 (a) and (b)]. This Jahn-Teller (JT) distortion leads to a
further splitting of t2g levels into a doublet e′g and a singlet a1g [73, 81]. Fig. 4.2 (c) and
(d) show the difference in CEF splitting for CrI3 and VI3 respectively: as schematically
represented, the JT-induced splitting allows for the band gap opening in VI3 by half-filling
the majority e′g channel and leaving the a1g empty in the case of V d2. On the other hand,
CrI3 is unaffected both because of the Cr d3 valence and the almost cubic CEF.
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Fig. 4.2 Distortion of the crystal structure in (a) CrI3 and (b) VI3. The distortion does
not change the bond length but alters the bond angle, leads to trigonal elongation along
the z-direction. (c) and (d) show the crystal field splitting of d level in Cr 3d3 and V 3d2,
respectively. Five 3d Wannier functions reflect the cubic CEF states in monolayer CrI3 (e)
and trigonal CEF states in monolayer VI3 (f). The isosurface levels of the Wannier functions
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0 (blue), where a0 is the Bohr radius.
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Within the global Cartesian {xyz} coordinate system, Fig. 4.2(f), the a1g and e′g states are
written in the form [82] ∣∣a1g

〉
= 3z2 − r2∣∣e′g1

〉
=

1√
3

(√
2
(
x2 − y2)− zx

)
∣∣e′g2
〉

=
1√
3

(√
2xy+ yz

)
(4.1)

where the z axis is parallel to the out-of-layer direction (i.e. perpendicular to the slab).

4.4.2 Wannier interpolation

According to the different local crystal field effects, I projected the Bloch functions onto the
local MI6 octahedral coordinate system {x′y′z′} for CrI3 (with basis axes directed along the
Cr-I bonds), and onto the Cartesian {xyz} system for VI3.

I constructed the Wannier functions by projecting the specified set of Bloch states onto
a set of 56 localized orbitals (i.e. 4× 5 d orbitals and 12× 3 p orbitals). These atomic
orbital functions are carefully chosen so that the resulted MLWF represent the CEF orbitals.
Projection for TM d orbitals for Oh CEF orbitals are set as

c = 0.0000, 0.0000, -3.2891: !TM site
dz2; dx2-y2; dxy; dxz; dyz: !all d orbitals
z = 0.81, 0.00, 0.58: !are rotated in
x = -0.41, 0.70, 0.58 !bond direction

in seedname.win file for Wannier90 code.
The d states were projected onto the cubic CEF orbital states of which the local z′ and x′

axes are set parallel to the TM-I bond axes (see Fig. 4.2(c)). I-p states are projected onto
px, py, pz states with the global Cartesian coordinate since the orbital shape of I-p WFs are
automatically determined by the unitary transformation after the TM-d WF projection is set
and the initial projection choice of p states doesn’t change the result.

The d-orbital projection for D3d CEF orbitals are set as

c = 0.0000, 0.0000, -3.3337:!TM site
dz2; dx2-y2:!eg orbitals
z = 0.81, 0.00, 0.58: !are rotated in
x = -0.41, 0.70, 0.58 !bond direction
c = 0.0000, 0.0000, -3.3337:
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dz2 !a1g orbital along z axis
c = 0.0000, 0.0000,-3.3337:
dyz;dxz !e’g orbitals, initial projection

The initial projection for eg states (d3z2−r2 and dx2−y2) in VI3 are set using the local
coordinate z′ and x′ as in CrI3. The projection for a1g state is set as d3z2−r2 orbital using
the global xyz Cartesian coordinate. Since it is not easy to set the linear combination of
orbital states for e′g state (see. Eq.4.1), the initial projection for e′g states were set as dxz and
dyz orbital states by way of trial. The tight-binding band structures of VI3 performed with
Wannier projections on V-d and I-p orbitals are shown in Fig. 4.3. Our projections were well
chosen to represent the orbital states in this work. The unitary transformation and maximally
localization process successfully generated the e′g-like orbital states that show the clear CEF
splitting in the projected DOS shown in Fig. 4.4 (b).
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Fig. 4.3 Tight-binding band structures with MLWFs projected to V-d and I−p orbitals for
(a) up- and (b) down-spin states. The black curves represent DFT-calculated bands; cyan
curves represent tight-binding bands.

After the maximally localization process, the Wannier functions converged to localized
orbitals as shown in Fig. 4.2 (e) and (f): orbitals shapes are in accordance with the eg-t2g

states induced by the cubic CEF in CrI3, and the eg-(a1g,e′g) states splitting induced by the
trigonal CEF in VI3. In particular, for the latter, it is possible to recognize the

∣∣3z2 − r2〉



48 Electric field effect on magnetic stability in 2D magnetic materials

D
O

S 
(s

ta
te

s/
 e

V
/ a

to
m

)

(d) V3+ (D3d)

30

30

0

(a) Cr3+ (Oh)

30

30

30

0

Energy (eV)

(c) Cr3+ (D3d)

(b) V3+ (Oh)

eg 

e’g 

a1g 

eg 

t2g 

eg 

e’g 

a1g 

eg 

t2g 

-4 -2 0 2 4 -4 -2 0 2 4

-4 -2 0 2 4 -4 -2 0 2 4

Fig. 4.4 The partial DOS projected onto (a-b) Cr-3d and (c-d) V-3d with Oh and D3d CEF
states, respectively, via Wannier function. Blue (red) color represents for majority spin
(minority spin). Fermi level is set at energy origin.
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orbital shape for the a1g state, which occupies the empty space at the center of the I3 triangle
and points along the z-direction, and mixed shapes from the (

∣∣x2 − y2〉 , |zx⟩) and (|xy⟩ , |yz⟩)
orbitals for the e′g1 and e′g2 states respectively, according to Eq. 4.1.

It is noted that the Cr d3 partial DOS, projected on the trigonal D3d basic set (Fig. 4.4
(c)), so as to allow a direct comparison with the V d2 case, shows an overlap in the energy
range of the a1g and e′g, reflecting the absence of splitting induced by the trigonal CEF, in line
with the Oh local octahedral symmetry of CrI3. The partial DOS resolved for each MLWF
state for monolayer CrI3 and VI3 are shown in Fig. 4.4 (a) and (d), clearly showing the Oh

and D3d CEF splitting for CrI3 and VI3 respectively, therefore validating our basis functions
choice for the Wannier projection. In particular, Cr-d orbital states are split into occupied t2g

and empty eg with a gap of about 0.9 eV in the majority spin channel (up-spin states); the
minority spin channel (down-spin states), unoccupied for both orbital types, does not display
any relevant splitting. Such a different behavior between the majority and minority spin
channels can be ascribed to the pd hybridization : the up-spin d-states strongly hybridize
with I-p states located at the top of the valence band, causing the large CEF splitting; the
down-spin d-states are higher in energy, i.e. away from I-p levels, thus not showing any
significant CEF splitting. In VI3, the spin-up channel of the V d states are clearly split into
eg, a1g, e′g trigonal CEF states. In particular, the e′g is the lowest energy state with a broad
distribution due to the pd hybridization below the Fermi level, similar to CrI3. On the other
hand, the CEF splitting shows a different behaviour of the empty d states: the a1g states
become the lowest energy states, while the e′g state still lies in the same energy region as
minority Cr-t2g state. This is related to the fact that e′g state has more bonding character with
surrounding I p state than a1g state (compare the orbital shapes in Fig. 4.2(f)); therefore, the
pd hybridization shifts unoccupied e′g level up and shifts occupied I-p level down.

4.4.3 Electronic properties of monolayer VI3

Our DFT calculations converged into two different electronic states, corresponding to half-
metallic state [72] and Mott-insulator state [71, 73] as reported in the literature. Two electrons
occupy t2g states as a1

1ge′1g and e′2g a0
1g, respectively. Each state can be stabilized according

to the initial electronic state that one can set through the density matrix in GGA+U scheme
[83]. I confirmed that the insulating state shows the band gap of 0.39 eV/f.u (the value
strongly depends on U value) and total energy lower than the half-metallic state by 1.8
eV/f.u.. Hereinafter, I focus on the Mott insulator state as the ground state. Fig. 4.5 show
the calculated band structure and total DOS of monolayer VI3. The conduction band bottom
consists of V 3d state, located in an energy range from 0.4 eV < E −EF < 3.2 eV above the
Fermi level. The valence band top consists of I-5p state, strongly hybridize with the occupied
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V-3d orbitals. In VI3 monolayer, the energy difference between intra-layer antiferromagnetic
(AFM) and ferromagnetic (FM) were calculated as ∆E = EAFM −EFM = 12.8 meV/f.u.
manifesting that the FM state is robust. The local magnetic moment was calculated as
S = 2.16µB.
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Fig. 4.5 (a) Band structure of monolayer VI3: blue curve for majority spin and red curve for
minority spin. (b) Partial density projected into V-d (black curve) and I-p (grey solid) states.
The Fermi energy EF is set at origin of energy.

4.5 Results for bilayer VI3

4.5.1 Electronic structure of bilayer VI3

Since the electronic structure doesn’t significantly depend on the layer stacking, hereinafter
I focus on electronic properties in AB stacking. The calculated band structure and DOS
for bilayer VI3 AB stacking in FM order are shown in Fig. 4.6. The conduction band
bottom consists of V-3d state, while the valence band top consists of I-5p state, by which
I classify the system as charge-transfer insulator. The occupied V-3d states located in an
energy range of −4 eV < E −EF < 0 strongly hybridize with the I-5p orbitals. The energy
gap is caluclated as 0.34 eV with the U value of 2 eV.
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Fig. 4.6 (a) Band structure of bilayer VI3 in AB stacking pattern: blue curve for majority
spin and red curve for minority spin. (b) Partial density projected into V-d (black curve) and
I-p (grey solid) states. The Fermi energy EF is set at origin of energy.
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In Fig. 4.7, I plot the total energy of AB stacking against the interlayer separation with
PBE and PBE-D2 approaches. The binding energy is defined as the difference between
the minimum value of the total energy in the bilayer and the doubled total energy in the
monolayer. The interlayer separation, d, is defined as the out-of-layer-projected distance
between inter-layer V neighbors. In the case of using PBE functional, the binding energy is
negligible (≈−0.01 eV/f.u.), manifesting the absence of the explicit dispersion interaction in
DFT. Indeed, the use of vdW correction is needed for evaluating the accurate binding energy
of layered system such as graphite. The binding energy found at the minimum of the curve
with PBE-D2 functional is -0.69 eV/f.u (-0.64 eV/f.u) at the equilibrium separation of 6.665
Å (6.662 Å) in AB (AB’) stacking Vi3 bilayer.
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Fig. 4.7 Binding energy calculated as a function of inter-layer distance for bilayer VI3 AB
stacking with PBE (orange curve) and PBE-D2 (green curve) functional.

Although Yang et.al proposed that the insulating ground state is stabilized by the spin-
orbit coupling (SOC) splitting instead of Mott-Hubbard splitting in monolayer VI3 [73], here
I take it granted that the CEF splitting is more dominant than the SOC splitting as normally
seen in 3d transition-metal oxides. Nevertheless, I have tested the effect of SOC; in fact,
SOC affects the band width and band energy for I-p states but it does not significantly change
the V 3d band structure and does not change our conclusion in this study. With SOC, the gap
is close, because I-p bands are split and become wider but V-d keeps their shapes, as shown
in Fig. 4.8 (b). It leads to the shift-down of the conduction band. If I tune U value to U=3.5
eV (Fig. 4.8 (c)) I get the same band structure as what I got in U = 2 eV without SOC (Fig.
4.8 (a)).
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Fig. 4.8 Projected band structures of bilayer VI3 in AB stacking with U = 2.0eV (a) without
SOC, (b) with SOC and (c) U = 3.5eV with SOC. The dark-violet (green) bands stand for
the V-d (I-p) bands.
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Table 4.1 Relative total energy (meV/f.u) for inter-layer FM and AFM spin configurations in
bilayer CrI3 and VI3 in AB and AB′ stacking. Lower energy is highlighted.

AB AB′

CrI3 FM 0 34.8
AFM 14.7 36.6

VI3 FM 0 2.44
AFM 0.69 2.40

4.5.2 Inter-layer magnetic stability

I calculated the total energy between inter-layer FM and AFM orders for the two stacking in
bilayer VI3 and compared the results with those obtained in CrI3. In bilayer VI3, inter-layer
FM and AFM spins ordering are very close in energy; nevertheless, the FM order is favored
in the AB-stacking, while the AFM order is favored in AB′ stacking, as reported in Table
4.1. Differently, in bilayer CrI3, FM order is favored in both AB and AB’ stacking pattern.
Noteworthy, the inter-layer FM order in AB′ stacking is only slightly more stable than the
AFM order, the energy differences being rather sensitive to used on-site Coulomb U values,
therefore not allowing a direct comparison with previous works on bilayer CrI3. In any case,
according to the energy differences reported in Table 4.1, the magnetic stability in bilayers
VI3 and in CrI3 AB′-stacking result to be weak. This may lead to an easy control of the
magnetism by external electric field or electrostatic doping.

To understand the magnetic stability, the magnetic exchange interactions between V
atoms are evaluated by fitting the Heisenberg Hamiltonian to our total energy calculated in
AB and AB′ stacking. Here I assume the Heisenberg Hamiltonian,

H = ∑
⟨i, j⟩

Ji jsi · s j, (4.2)

where Ji j are the isotropic Heisenberg coupling constant between spins site i and j (parallel
spin configuration is favored when J < 0 and anti-parallel spin is favored when J > 0) and si

is the unit vector pointing to the direction of the spin at site i.
In addition to the intra-layer (in-plane) first nearest-neighbor coupling (J∥), I thus con-

sidered inter-layer couplings (J1 and J2 in AB stacking; J′1, J′2, J′3 and J′4 in AB′ stacking) as
schematically illustrated in Fig. 4.1 (e) and (f); associated atomic pairs distances are reported
in Table 4.2. In particular, I performed calculations to estimate J′2, J′3 and J′4 in a 2×1×1
supercell via the four-state energy mapping method [84–88]. This method allows to consider
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Table 4.2 Number of equivalent bonds per unit cell N, bond distance between transion-metal
sites d, and calculated exchange coupling constants Ji j in AB and AB′ stacking for bilayer
CrI3 and VI3.

AB stacking AB′ stacking
J∥ J1 J2 J′∥ J′1 J′2 J′3 J′4

CrI3 N 6 1 9 6 2 2 2 2
d (Å) 3.95 6.57 7.68 3.95 7.00 7.02 8.03 8.92

Ji j (meV) -7.03 -0.82 -0.69 -8.11 -0.18 -0.23 -0.29 0.25
VI3 N 6 1 9 6 2 2 2 2

d (Å) 3.95 6.66 7.74 3.95 7.04 7.05 8.07 8.95
Ji j (meV) -3.2 0.81 -0.24 -4.46 0.10 0.21 0.04 -0.04

one specific pair of spins and remove the background interactions, therefore allowing the
calculation of the inter-layer magnetic exchange coupling constants of interest.

In Table 4.2 I report the estimated exchange coupling constants for bilayer VI3 and CrI3.
For CrI3, the intra-layer and inter-layer exchange coupling overall favor parallel spin states
in both AB stacking and AB′ stacking. For VI3, the intra-layer exchange coupling favors
parallel spin state, while the inter-layer coupling eventually favors parallel spin state in
AB-stacking and anti-parallel spin states in AB’-stacking, (cfr Table 4.1). In closer detail, in
AB stacking, J1 favours anti-parallel coupling (0.81 meV), while J2 favours parallel coupling
(−0.24 meV). Since there is one J1 bond and nine J2 bonds per unit cell, the ferromagnetic
configuration is more stable. In AB′ stacking, both J′1 and J′2 favour anti-parallel coupling
(0.1 meV and 0.21 meV), thus dominantly contributing to the inter-layer AFM coupling
stability.

4.5.3 Virtual hopping mechanism

To understand the microscopic mechanism of the stacking-dependent magnetic couplings,
I recall "virtual hopping" idea based on the Hubbard model [82]. In the weak hopping
limit, the inter-site hopping can be treated as a perturbation to the ground state in which
magnetic ordering does not affect the energy. When the hopping process is allowed between
occupied and unoccupied states, it in turn contributes to the ground state energy through
the second-order contribution as the effective exchange energy Jeff = 2t2/U with hopping
integral t and Coulomb repulsion U , as the process is called virtual hopping. If I consider
the direct hopping between occupied and unoccupied 3d states at the transition metal sites,
parallel-spin configuration is favored if the hopping (t↑↑) is strong between majority- and
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majority-spin states whereas anti-parallel-spin configuration is favored if the hopping (t↑↓) is
strong between majority- and minority-spin states. Fig. 4.9 shows the schematic picture of
the virtual hopping which describes parallel-spin (t↑↑) and anti-parallel-spin (t↑↓) hopping in
bilayer CrI3 and VI3 via CEF splitting.

In order to discuss the virtual hopping process, I extracted the hopping parameters by
using MLWF basis set as illustrated in Fig. 4.2 (e) and (f). Note that the WFs are centered at V
and Cr sites and spreading the tail to iodine site, so that our virtual hopping process implicitly
includes the pd hybridization process. The same concept can be found in Anderson’s original
work on super-exchange interaction [19].

Table 4.3 Hopping integrals calculated by MLWF basis set between occupied and unoccupied
d orbital states in parallel- (t↑↑) or anti-parallel (t↑↓) spin configurations. Three types of
hopping integrals, t1, t2, and t ′1, corresponding with inter-layer exchange couplings J1, J2,
and J′1 are listed. E↑↑ (E↑↓) (eV) is difference between two eigenenergy for the MLWFs
in parallel (anti-parallel) spin configuration. The dominant hopping values relevant to the
exchange couplings and those illustrated in Fig. 4.10 (a) and (b) are highlighted by black and
red colors, respectively.

CrI3 Hopping t↑↑ Hopping t↑↓
e0

g-e0
g t3

2g-e0
g t3

2g-t3
2g e0

g-e0
g t3

2g-e0
g t3

2g-t0
2g

E↑↑ (E↑↓)(eV) 0 1.5 0 2.7 4.3 4.6
t1 (meV) 0.9 0.6 0.7 1.3 -1.1 1.7
t2 (meV) 0.6 1.5 0.8 0.6 2.7 -1.3
t ′1 (meV) 2.1 1.3 1.4 3.0 -3.1 4.6

VI3 Hopping t↑↑ Hopping t↑↓
a1g

0-a1g
0 eg

0-eg
0 e′g

2-a1g
0 e′g

2-eg
0 a1g

0-a1g
0 eg

0-eg
0 e′g

2-a1g
0 e′g

2-eg
0 e′g

2-e′g
0

E↑↑ (E↑↓)(eV) 0 0 1.4 1.5 1.4 2.1 2.9 3.4 3.5
t1 (meV) -3.6 2.1 0.0 -0.7 -4.6 2.7 0.0 1.0 0.6
t2 (meV) -0.7 1.1 0.3 -1.6 -0.5 -0.9 -0.6 2.6 -1.0
t ′1 (meV) 3.6 1.0 -1.1 1.6 4.9 1.1 -3.1 3.1 -3.3

Fig. 4.10 shows the inter-layer hopping paths with the corresponding MLWFs which are
responsible for the exchange energy in bilayer CrI3 and VI3. Here I pick up three typical
types of inter-layer exchange couplings: First neighbor and second neighbor (J1 and J2)
interactions in AB stacking; first neighbor (J′1) interaction in AB’ stacking. The calculated
hopping integrals are shown in Table 4.3. In AB-stacking bilayer CrI3, the negative (parallel-
spin-favored) J1 can be explained by a sizable hopping between occupied dzx ↑ state and
unoccupied dx2−y2 ↑ state (t = 0.6meV). That is basically consistent with the previous works
discussing the eg-t2g hopping [64, 89]. As shown in a figure, the diagonally elongated lobes
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Fig. 4.9 The schematic picture of the virtual hopping in (a) bilayer CrI3 and (b) bilayer VI3.
Hopping t↑↑ refers FM state and hopping t↑↓ refers AFM state. E↑↑ is the splitting energy
from the valence band maximum to the conduction band minimum of the up-spin states. E↑↓
is the splitting energy from the valence band maximum of the up-spin states to the conduction
band minimum of the down-spin states.
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Fig. 4.10 MLWFs relevant to inter-layer exchange coupling in (a-c) bilayer CrI3 and (d-f)
VI3. ↑ and ↓ denote the majority and minority spin state, respectively. The arrows show the
electron hopping from an occupied orbital state to an unoccupied orbital state; the dashed
and solid lines denote the parallel-spin and anti-parallel-spin configurations, respectively.
Values of the hopping integrals (meV) are also shown nearby the arrows. Isosurface level
was set 0.3 for (a-c) and 0.45 for (d-f).
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of dzx and dx2−y2 orbitals makes a path through Cr-I-I-Cr sites with dzx-p(π)—p-dx2−y2(σ )
hybridization.

In AB-stacking bilayer VI3, in contrast, the trigonal CEF levels and the two-electron
occupation make J1 positive (anti-parallel-spin-favored). The hopping between e′g2 ↑ and
a1g ↑ states are calculated to be negligible (t = 0.0 meV) so that it does not contribute
to the magnetic interaction. On the other hand, hopping between e′g2 ↑ and eg ↓ states is
sizable (t=1.0 meV) which may be responsible for the anti-parallel-spin-favored exchange
interaction.

The second neighbor interaction J2 is negative both for CrI3 and VI3. This can be
explained by large hopping integral between dxy ↑ and dz2 ↑ and that between e′g2 ↑ and eg1 ↑
states. In a figure, one can recognize dxy—p-dz2(σ ) hybridization. Same goes for VI3 case
where dxy orbital is just replaced by e′g2 orbital.

AB’-stacking bilayer CrI3 shows similar result to the AB-stacking case; dyz-p(π)—p-
dx2−y2(σ ) hybridization makes J′1 negative. As making a keen contrast, AB’-stacking bilayer
VI3 shows an interesting aspect of the orbital hybridization. Since a vanadium atom at the
lower layer is located right under an iodine atom at the upper layer, V-a1g orbital strongly
overlaps I-pz orbital. This makes the e′g2 ↑-p(σ )—a1g ↓ hopping very strong (t =−3.1meV)
and makes J′1 positive. In AB’ stacking bilayers, the inter-layer exchange interactions are
weaker than those in AB stacking bilayers since several possible hoppings between multiple
orbital states tends to cancel each other due to the geometry.

4.6 Electric field control of magnetic stability

Finally, I discuss the effect of electric field on the magnetic stability in bilayer VI3. In
Fig. 4.11 the sawtooth-like potential for the application of the external electric field 0.2V/Å
is plotted along the z direction, i.e., perpendicular to the slab. The slope of the dashed line
relating the four minima at the bottom corresponds to an electric field affecting the slab,
which is small compared to the slope in the vacuum region.

The energy difference between inter-layer AFM and FM states in AB and AB’ stacking
with applied electric fields is shown in Fig. 4.12. In both stacking cases, the electric fields
application promotes the FM ordering. Remarkably, in AB′ stacking, it switches the ground
state from AFM to FM ordering with the electric fields around 0.1V/Å.

The microscopic mechanism of the tunable magnetic stability can be explained by
invoking again the virtual hopping idea. The DOS projected onto V-d orbital state of top
and bottom layer in AB′ stacking bilayer VI3 is shown in Fig. 4.13. Without electric field,
DOS of top and bottom layer lie in the same energy range. As discussed above, there is a
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Fig. 4.11 Electrostatic potential plotted along the out-of-plane direction of VI3 slab with
electric field 0.2 V/Å. The in-plane components are averaged. Fermi energy is set as origin
of energy. The I atoms are located at four bottoms of valleys, showing the potential slope
caused by applied electric field (see the dotted line) The dipole correction is visible as a
potential jump in the middle of the vacuum region.
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competition between parallel-spin hopping and anti-parallel-spin hopping to determine the
first-neighbor exchange coupling J′1. Since the energy difference between e′2g ↑ and a1g ↓
state (E↑↓=2.9 eV) is much larger than the energy difference between e′g ↑ and a1g ↑ state
(E↑↑=1.4 eV), one may think that it stabilizes parallel-spin configuration. However, J′1 is
found to be slightly AFM-favored because the anti-parallel spin hopping (t↑↓ =−3.1 meV) is
stronger than the parallel-spin hopping (t↑↑ =−1.1 meV). With electric fields, the a1g orbital
state of top layer is shifted up and bottom layer is shifted down as shown in Fig. 4.13. The
band gap becomes narrower due to the shift of DOS and in turn decreases the difference
of orbital energy levels, i.e. a denominator of the effective exchange energy Jeff = 2t2

↑↑/E↑↑
while the hopping integral is not significantly affected by the electric field. This increases the
tendency toward FM stability and switch the magnetic ordering from AFM to FM.





Chapter 5

Summary

First, I systematically investigated the MAE of the Co-based transition-metal thin films by
means of first-principles DFT calculations. The results show that the large perpendicular
MAE can be achieved by tuning atomic-layer stacking in Ni-Co thin film both in the hcp-
like and fcc-like stackings as making a stark contrast to the pure Co thin film that shows
perpendicular magnetocrystalline anisotropy only with the hcp stacking. The MAE is
decomposed into single-layer contributions and inter-layer contributions to reveal the fact
that not only the on-site SOC of 3d elements but also the strong hybridization between these
elements play an important role to determine the MAE. The small effect of electric fields
on the magnetocrystalline anisotropy also has been found in Ni-Co thin film. According to
our finding, Ni-Co thin film has the potential for future spintronics applications that may be
confirmed by subsequent experimental studies.

Second, first-principles calculations were performed to investigate the magnetic stability
in bilayer VI3 making a comparison with CrI3. In the trigonal crystal field, the t2g orbital
state are split into a1g and e′g states. The a1g orbital state has the typical lobe shape pointing
to the out-of-plane direction and plays an important role in inter-layer magnetic exchange
interaction. The exchange interaction was analyzed by evaluating the hopping integrals
between MLWFs projected onto V-d orbital states. In AB’ stacking bilayer VI3, the first
neighbor inter-layer exchange interaction is determined by the strong hopping between
a1g and e′g states. Since the hopping that favors parallel-spin configuration and that favors
anti-parallel-spin configuration are competing, the application of electric field enables to
switch the magnetic ordering from inter-layer AFM to FM. This finding may pave the way to
the spintronics application of the vdW 2D magnets.
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Appendix A

Technique for relativistic spin-polarized
calculation

A technique for relativistic spin-polarized calculations was described by Koelling and Harmon
(1977) [42]. The technique for reduction of the Dirac equation, which initially neglects the
spin-orbit interaction to keep spin as a good quantum number, and retains all other relativistic
kinematic effects such as mass-velocity, Darwin term, and higher order terms is included. The
spin-orbit coupling, furthermore, can be included as a perturbation after the scalar relativistic
spin-polarized wave functions have been obtained.

Although more general potentials can be easily adopted, here we assume that the rela-
tivistic interaction only inside the muffin-tin spheres, the solution of the Dirac equation with
the central-force potential is of the form

Ψκζ =

[
gκ χκζ

−i fκσrχκζ

]
(A.1)

where the radial functions gκ and fκ satisfy the following radial equation:

g′κ =−(κ +1)
r

gκ +2Mc fκ (A.2)

f ′κ =
1
c
(V −E)gκ +

(
κ −1

r

)
fκ (A.3)

with the relativistic mass

M ≡ m+
1

2c2 (E −V ) (A.4)
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In which, Eqs. A.2 and A.3 show the differentiation with respect to the radius r of
gκ and fκ ; κ is the usual relativistic quantum number giving both l and j; anf χκζ is the
two-component spinor which is the relativistic equivalent of the spherical harmonics. The
energy E is defined with the rest mass as E = mc2. By solving the Eq. A.2 for fκ and
substitute it into Eq. A.3 we obtain

−1
2M

[
g′′κ +

2
r

g′κ −
l(l +1)

r2 gκ

]
− V ′g′κ

4M2c2 +V gκ −
κ +1

r
V ′gκ

4M2c2 = Egκ . (A.5)

In the above equation, only last term depends on the sign of κ , which is called the
spin-orbit term. It gives us a difficulty in solving the Eq. A.5 since spin is no more a good
quantum number. To solve Eq. A.5, the spin-orbit interaction is dropped and the a weighted
sum of the orbital at the muffin-tin radius is used to obtain logarithmic derivatives. For more
suitable approach, let’s define a new function φκ by

φκ ≡ 1
2Mc

g′κ (A.6)

which is related by Eq. A.2 to fκ

fκ = φκ +
1

Mcr
(κ +1)gκ (A.7)

Combining Eq. A.6 together with Eq. A.7, dropping the last term, we get

φ
′
l =−2

r
φl +

[
l(l +1)
2Mcr2 +

1
c
(V −E)

]
gl (A.8)

where the κ index has been replaced by l since there is no longer any j dependence. Now,
Eq. A.6 and A.8 are a coupled set of liner equations and can be solved as,

φκζ ≃

[
glχκζ

−i
[
φl +

(κ+1)
2Mcr gl

]
σrχκζ

]
(A.9)

Now we can combine functions κ = l and κ =−(l +1) with the appropriate Clebsch-
Gordan coefficients to bring a function back to the familiar non-relativistic quantum numbers
(lms) as,

φlms =

[
glYlmχs

i
2Mcσt

(
−g′l +

1
r glσ ·L

)
Ylmχs

]
(A.10)
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where χs is the usual up (down) spinor. We see that still there are some mixture of spin in
the small component. A simple solution is to neglect the small component since gl contains
the desired relativistic corrections. After we obtain Eq. A.10, the spin-orbit interaction term
can be included to the full Hamiltonian by second variational method.





Appendix B

Second variation procedure

As we discuss in section 2.2.3 that the full relativistic Hamiltonian can be simplified to

(Hscalar +HSOC)Ψ
k
n(r) = ε

k
n (r)Ψ

k
n(r)(r), (B.1)

After solving the scalar relativistic equation in A, now we treat the spin-orbit term by
introducing a perturbed wave function expanded by the non-perturbed wavefunctions,

Ψ
k
n(r) = ∑

i,σ
ck

niσ Ψ
k
0iσ (r) (B.2)

where n are perturbed band index, i are non-perturbed index and σ are spin index.
After solving the secular equation:

⟨ψk,σ
i |HSO|ψ ′k,σ ′

i ⟩= ε
k
i ψ

k,σ
i , (B.3)

eigenenergy εk
n and eigenfunction cniσ are obtained. It should be noted that this procedure

break the degeneracy of the spin-degenerate bands and the new wavefunction Ψk
n(r) will be

described as a mixed state of both up-spin and down-spin states. The spin density functional
which can be expressed as

nσ (r) = ∑
n,k

(
∑

i
ck

inσ Ψ
k
0iσ (r)

)2

(B.4)

must be calculated separately.
Including HSOC term in the relativistic calculation, the variational treatment is more

precise than a one-time perturbation calculation. In the first order of perturbation, the energy
shift is almost zero since the SOC term vanishes for unperturbed states. In the second-order of
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perturbation, however, the energy difference induced by the SOC comes from the interaction
between the occupied and unoccupied states is presented as

ESOC = ∑
o,u

|⟨o|HSOC|u⟩|2

εu − εo

= ξ ∑
o,u

|⟨o|S ·L|u⟩|2

εu − εo
. (B.5)
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