
Title
Large Eddy Simulation (LES) for Airfoils Static
and Dynamic Stall using One-equation SGS Model
based on Dynamic Procedure

Author(s) Mohamad, Firdaus Bin

Citation 大阪大学, 2021, 博士論文

Version Type VoR

URL https://doi.org/10.18910/82226

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



 

Large-Eddy Simulation (LES) for Airfoils Static and 
Dynamic Stall using One-equation SGS Model based 

on Dynamic Procedure 

MOHAMAD FIRDAUS BIN 

January 2021 

Graduate School of Engineering 

OSAKA UNIVERSITY 



i 
 

Abstract 

The objective of this study is to develop a practical method of the large-eddy simulation 

(LES), especially for the analysis of flow around an airfoil in unsteady motion. LES is the 

computational method for turbulent flows, and it has been widely applied in the industry. In 

LES, the unsteady motion of the scale larger than the computational grid is directly solved, 

while the smaller scale motion is given by the theoretical model, that is, the subgrid scale (SGS) 

model. It is still difficult to predict laminar-turbulent transition and flow separation even by 

sophisticated SGS models. In addition, the universal law of the wall has not been established, 

and, as a result, resolving the turbulent boundary layer becomes costly. The flow around an 

airfoil is a typical example of these difficulties, namely laminar separation in a static condition 

and massive separation that causes a dynamic stall in a pitching motion.  

In this study, the one-equation dynamic (OD) model was introduced to simulate the flows 

around an airfoil in a static condition and pitching motion. The SGS eddy viscosity was 

parameterized using SGS kinetic energy, which was estimated by the transport equation. The 

OD model determined the production term in the transport equation using the dynamic 

Smagorinsky model through the Germano procedure. Owing to these formulations, it could deal 

with nonequilibrium feature of spatially developing flow and two-way energy transfer between 

resolved and SGS portions. By implementing the OD model into a practically arranged grid on 

general curvilinear coordinates, static and dynamic stalls of airfoils were reproduced. In a flow 

around an ‘A-profile’ airfoil at rest, it was proven that the SGS eddy viscosity turned to zero in 

the laminar region and the observed transition point was in good agreement with the 

experimental data. Then the procedure of laminar separation, reattachment, and transition to 

turbulence was successfully reproduced with relatively lower computational cost in comparison 

with the previous methods considered in the LESFOIL project. Furthermore, the OD model was 

applied for the flow around a NACA0012 airfoil in sinusoidally pitching motion. As a result, 

the essential characteristics including the laminar separation bubble (LSB), reattachment, 

leading-edge vortex (LEV), trailing-edge vortex (TEV), and dynamic stall vortex (DSV) were 

observed. The angles of LSB and LEV onsets were in good agreement with the experimental 

observation.  
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The result of this study revealed that the OD model was able to predict a wide variety of flow 

physics involved in static and dynamic stalls without any additional transition model and with 

practical computational capacity. 
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CHAPTER 1  

Introduction 

1.1 Background  
Prediction of complex flow fields involving both static and dynamic stall is important in a broad 

range of industrial applications such as turbomachinery, wind turbine aerodynamics, helicopter 

blade rotors, and maneuverable wings. Variations of flow phenomena such as laminar, transition, 

flow separation, and development of vortex around the airfoil have been studied numerically by 

many researchers to understand the flow physics for each phenomenon. These complex flow 

fields are different from the static and dynamic stall points of view. In a static or steady pitch 

airfoil, the complex flow fields near the stall angle consist of laminar separation, flow 

reattachment, and flow separation near the trailing edge. Hence, capturing all the flow 

phenomena is essential to obtain a good and accurate aerodynamics load such as drag, lift, and 

moment coefficient. While for the dynamic stall, the development of various vortex such as 

leading-edge vortex (LEV), dynamic stall vortex (DSV), and trailing edge vortex (TEV) are 

vital for dynamic stall process. Besides, vortex shedding is also part of an important flow 

mechanism in dynamic stall regions. 

1.2 Static Stall Simulation 
One of the case studies that focus on the complex flow around an airfoil near stall angle is the 

A-profile airfoil (Figure 1). The flow around A-profile airfoil (A-airfoil) at an angle of attack 

13.3° and Reynolds number based on chord length and freestream velocity Rec=2.1 × 106   has 

been used as a case study in this thesis. Established experimental results from an ONERA wind 

tunnel revealed a complex flow configuration that involved the laminar-transition region, 

reattachment, and trailing edge separation. These flow configurations have been studied 

extensively via large-eddy simulations (LES) by a group of researchers in a LESFOIL project 
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[1]. Their study focused on different types of grid arrangements, numerical approach, and the 

effect of SGS models. 

 
Figure 1-1 A-profile Airfoil. 

Complex flow phenomena over the A-airfoil have offered different complexities to resolve 

all the important flow structures in large-eddy simulations (LES). Both grid arrangement and 

SGS models play important roles in capturing the flow structures. Mary and Sagaut [1] revealed 

in their LESFOIL report the importance of fine grid resolution for the better solution accuracy 

of pressure coefficient compared to that obtained from the subgrid scale (SGS) models. On the 

other hand, they also concluded that the explicit SGS model managed to capture the important 

flow structures if the grid was sufficiently fine [1]. Even though the work from Mary and Sagaut 

was remarked as the most successful result in a LESFOIL project, their grid arrangement 

method on the region of flow interest may not be a universal method. In 2018, Asada and Kawai 

revisited the LESFOIL project and their results, with more than 1200 million nodes, displayed 

a perfect agreement with the experimental data [2]. 

As far as engineering applications are concerned, billions of grid numbers over the flow of 

interest are not practical approaches despite the great success of Asada and Kawai [2]. Their 

method also needs prior information about the flow configuration, such as transition and 

separation point, which is not a universal approach if that information is not on hand. Dahlstrom 

and Davidson [3] applied a numerical treatment for the laminar and transition region where a 

bounded second-order upwind scheme was used to remove the unphysical oscillations around 

the leading edge. Treatment of SGS model was also implemented upstream of the transition 

region where the SGS turbulent kinetic energy kSGS was set to zero. Despite all these treatments, 

the transition point results were still far downstream and upstream of the exact transition point 
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[3]. Later, they improved the grid resolution in a streamwise direction, and as a result, there was 

SGS dissipation in the laminar region even though a similar treatment was applied [4].   

For a complex flow around an airfoil, the laminar-transitional flow region is an important 

phenomenon that requires a fair and accurate prediction. The laminar separation bubble (LSB) 

initiated from the separated shear layer is also visible in this region. In the laminar region, no 

turbulent kinetic energy should have appeared. Therefore, the turbulence model's selection that 

can sense the laminar region should be employed in the simulation. Previous work by Mary and 

Sagaut [1] refined the grid resolution in the laminar-transition region. On top of that, they also 

set the eddy viscosity, 𝜈𝜈𝑡𝑡 to zero upstream of the transition points. Dahlstrom and Davidson [4] 

performed a similar method, whereas the production term in one-equation kSGS was set to zero 

in the range of 15% from the leading edge. However, their approach is less significant, where 

they have discovered that the total turbulent kinetic energy has also appeared in the laminar 

region. 

Based on the eddy viscosity model of Smagorinsky, the rate of strain tensor and filter width 

are always non-zero. Therefore, it is almost impossible to obtain zero eddy viscosity in the non-

turbulent region. However, the Smagorinsky constant can become zero if it is calculated locally 

and instantaneously varying in space and time. The dynamic procedure is known as an effective 

method to determine the coefficient locally for LES. This procedure was first proposed by 

Germano et al. [5] and later improved by Lilly [6] to solve the drawbacks of the constant eddy 

viscosity coefficient in the Smagorinsky Model (SM). Later, the dynamic procedure was also 

incorporated to determine the coefficient in the transport equation of kSGS. Ghosal et. al [7] 

stressed the importance of tracing the energy in subgrid scale which allowed for the transfer of 

energy from subgrid scale to resolve scale or energy backscatter. They allowed for the negative 

sign of coefficient calculated through the transport equation of subgrid scale kinetic energy and 

made the eddy viscosity depended on the subgrid scale kinetic energy kSGS. 

The purpose of this investigation is to evaluate the capability of the OD model to reproduce 

the flow physics around the laminar region with a smaller number of grid points. The feature of 

the OD model is to remove the artificial treatments in the laminar-transition region. The author 

believes that the effect of turbulent kinetic energy transfer from GS to SGS is best defined 

through the production term of kSGS transport equation. This model is different from others in 
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terms of defining the production term. Further explanation of this model is described in Chapter 

2. 

1.3 Dynamic Stall Simulation 
Dynamic stall is defined as the phenomenon of exceeding the normal static stall angle. This 

phenomenon is associated with various complex fluid flows such as separations, reattachments, 

and vortex developments, which contribute to the unusual aerodynamic characteristics. In terms 

of turbulence interactions, the dynamic stall produces strong nonequilibrium turbulence in 

which the turbulence kinetic energy production is imbalanced with the dissipation [8]. Therefore, 

common SGS turbulence models are thought to be insufficient to correctly capture the drastic 

changes of aerodynamic loads at high angles of attack and moderately high Reynolds numbers.  

Experimental works are required to understand and visualize the phenomena of oscillating 

airfoils. McCroskey et al. [9] conducted an experiment based on oscillating NACA0012 airfoil 

by using a 7 × 10 ft wind tunnel to investigate the boundary layer separation and vortex shedding 

mechanism. They concluded that the unsteady separation of the turbulent boundary layer was 

the primary cause of the vortex shedding mechanism. In addition, Lee and Gerontakos [10] 

executed several experiments to understand the overall flow phenomena of dynamics stall 

around an oscillating airfoil. They revealed a clear mechanism of the dynamic stall at different 

stages, such as light-stall oscillating and attached-flow oscillating cases.   

Additionally, computational simulations are crucial for any fluid flows analysis. For the 

dynamic stall simulations, the unsteadiness of boundary layer interaction induced by oscillation 

can be captured and visualized by means of numerical simulations. Since boundary layer 

interaction is involved, very fine grid density is required to capture all the vortices for the entire 

dynamic stall process which includes unsteady boundary layer separation, transition, shear layer 

instabilities, laminar separation bubble (LSB) bursting, and vortex surface interactions [11], 

[12]. Thereby, Direct Numerical Simulation (DNS) is a more suitable solution if the 

computational resources are not a problematical issue. However, as the Re number increases 

especially for industrial engineering applications such as helicopter blade rotors, wind turbine 

blades, and maneuverable wings [11], [13], the DNS demands huge computational capability 

and memory space. Hence the Reynolds-averaged Navier-Stokes (RANS) also can be 

considered as an option. However, some researchers claim that RANS has to be accompanied 

by transitional models to correct some deficiencies [11], [14].  
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Large-eddy simulation (LES) has gained more attention in studying the complexity of 

dynamic stall phenomena. A series of comprehensive dynamic stall simulations using LES can 

be reviewed in Visbal and Garmann [15], Benton and Visbal [16], Visbal and Benton [11], and 

Visbal [17]. However, none of these studies focused on the effect of nonequilibrium of 

turbulence models. Dindart and Kaynak [18] revealed the importance of a nonequilibrium SGS 

model to determine the separation and vortex shedding mechanism of the dynamic stall 

compared to an equilibrium SGS model. A study by Mukai et al. showed that the LES of the 

Smagorinsky model (SM) with coarse grid spacing in the spanwise direction successfully 

captured some aspects of the unsteady phenomenon [19], [20]. Gulillaud et al. [21] also used 

SM to study the effect of the leading edge vortex (LEV) on the lift coefficient unsteadiness on 

a pitching NACA0012 at a Reynolds number of 20000.  

Meanwhile, a Mixed-Time-Scale (MTS) SGS model was used by Almutairi et al. [22] to 

observe the laminar separation bubbles (LSB) near stall of NACA0012 at a Reynolds number 

of 5×104. They reported that an increase of the spanwise domain contributed to intermittent 

bursting of the laminar separation bubble. Wang et al. [23] used four equations model where 

the k-ɛ model was coupled with the shear stress transport (SST) model in order to capture the 

LSB. They revealed that the angle onset for the LSB was in good agreement with the 

experimental observation. In addition, Kim and Xie [24] also investigated the dynamic stall of 

NACA0012 using the MTS model to have a better understanding of several factors such as 

spanwise extension and the effect of freestream turbulence.  

For the second objective, the author aims to understand the large-scale unsteady motions of 

an airfoil in deep dynamic stall events. The focus is to investigate further the OD model's 

capability to predict leading-edge transitional flow in unsteady pitching mode. As stated in the 

literature, most of the simulations, such as Unsteady Reynolds Average Navier-Stokes 

(URANS), require an additional transitional model to correct the leading-edge transitional 

region's flow behavior. For the unsteady pitching airfoil, the leading-edge transitional flow 

promotes a significant role in the development of downstream flow such as separation, dynamic 

stall vortex, and trailing edge vortex. 

1.4 Concluding Remarks 

In this chapter, the current status of the method to predict the laminar-transition region was 

reviewed, and a special treatment to switch between the laminar and turbulent region was 
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discovered to solve the issue. This special treatment required the physical characteristic such as 

the transition point in hand, and the SGS eddy viscosity and kSGS were set to zero in that region. 

For sinusoidal pitching airfoil, the leading-edge transitional region such as the LSB was the 

essential phenomenon to be captured in the simulations. The transition model, such as the SST 

model coupled with the k-ɛ model, predicted the LSB with the correct onset angle. For the LES, 

a full 3D simulation with a one-equation kSGS model is still uncovered for the dynamic stall 

simulation. 
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CHAPTER 2  

Governing Equations 

2.1 Basic Equation for LES  
This simulations were based on the filtered Navier-Stokes equations for incompressible flow 

where all the variables were non-dimensionalized by the chord length C, and the freestream 

velocity U∞. Low pass filtering based on the spatial filter was used to differentiate between 

resolvable scale (large) and unresolvable scale (small). The filtering operation is represented as  

 𝑓𝑓̅(𝑥𝑥) = � 𝐺𝐺(𝑦𝑦)𝑓𝑓(𝑥𝑥− 𝑦𝑦)𝑑𝑑𝑑𝑑,
∞

−∞
 2-1 

where 𝐺𝐺 is the “grid filter” function having the representative length corresponding to the width 

of the computational grid. The filtered continuity and momentum equations are 

 
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

= 0, 2-2 

 
𝜕𝜕𝑢𝑢� 𝑖𝑖
𝜕𝜕𝜕𝜕 +

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝑢𝑢𝚤𝚤𝑢𝑢𝚥𝚥������= −
1
𝜌𝜌
𝜕𝜕𝑝̅𝑝
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�2𝜈𝜈𝐷𝐷�𝑖𝑖𝑖𝑖�. 
2-3 

Equation 2-3 contains a nonlinear term �𝑢𝑢𝚤𝚤𝑢𝑢𝚥𝚥������ which cannot be resolved by the grid scale (GS) 

variables. Hence, rewriting the equation 2-3 

 
𝜕𝜕𝑢𝑢� 𝑖𝑖
𝜕𝜕𝜕𝜕 +

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝑢𝑢� 𝑖𝑖𝑢𝑢�𝑗𝑗�= −
𝜕𝜕𝑃𝑃�
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�2𝜈𝜈𝐷𝐷�𝑖𝑖𝑖𝑖 − 𝜏𝜏𝑖𝑖𝑖𝑖�, 
2-4 

where 𝐷𝐷�𝑖𝑖𝑖𝑖is the grid-scale rate-of-strain tensor 

 𝐷𝐷�𝑖𝑖𝑖𝑖 =
1
2
�
𝜕𝜕𝑢𝑢� 𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑢𝑢�𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

�. 2-5 

Equation 2-4 consists of 𝑢𝑢�𝑖𝑖 which is denoted as the GS component of velocity, 𝑃𝑃� = 𝑝̅𝑝/𝜌𝜌 is 

the GS component of pressure, 𝜌𝜌 is the fluid density, and 𝜈𝜈 is the kinematic viscosity of fluid. 

Term 𝜏𝜏𝑖𝑖𝑖𝑖 is known as the residual stress or subgrid scale (SGS) stress. This term consists of 

unresolved stress, which needs to be modeled. 
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 𝜏𝜏𝑖𝑖𝑖𝑖 = 𝑢𝑢𝚤𝚤𝑢𝑢𝚥𝚥����� − 𝑢𝑢� 𝑖𝑖𝑢𝑢�𝑗𝑗 
2-6 

2.2 Subgrid Scale (SGS) Models 

In order to solve the equation of motion in Eq. 2-4, the 𝜏𝜏𝑖𝑖𝑖𝑖  needed to be modeled. The 

approximation of 𝜏𝜏𝑖𝑖𝑖𝑖 was based on the Boussinesq approximation where the unresolved scales 

in the turbulent flow was solved by means of the eddy viscosity model, 𝜈𝜈𝑡𝑡 and can be defined 

as 

 𝜏𝜏𝑖𝑖𝑖𝑖 = −2𝜈𝜈𝑡𝑡𝐷𝐷�𝑖𝑖𝑖𝑖 +
1
3 𝜏𝜏𝑘𝑘𝑘𝑘𝛿𝛿𝑖𝑖𝑖𝑖. 

2-7 

The first SGS model is known as the Smagorinsky model. This model was proposed by 

Smagorinsky in 1973. The main idea for this model is based on the local equilibrium assumption 

made between production and dissipation. In other words, the energy produced from resolved 

scales is equal to the energy dissipation on unresolved scales. The Smagorinsky Model (SM) is 

described as 

 𝜈𝜈𝑡𝑡 = (𝐶𝐶𝑆𝑆△� )2|𝐷𝐷�| 2-8 

where  𝐶𝐶𝑆𝑆  is known as the Smagorinsky constant. The grid filter width, △�  can be calculated 

based on the cell volume 

 ∆�= �∆1∆2∆33  . 2-9 

and |𝐷𝐷�| is defined as the norm of strain rate tensor for resolved scales 

 |𝐷𝐷�| = �2𝐷𝐷�𝑖𝑖𝑖𝑖𝐷𝐷�𝑖𝑖𝑖𝑖 . 
2-10 

A constant global value is set for the 𝐶𝐶𝑆𝑆 in Eq. 2-8. The constant can be modified, such as  

0.1 for channel flow, 0.12 – 0.14 for mixing-layer flow, and 0.23 in decaying turbulence [25]. 

Therefore, one of the shortcomings of the SM is related to the non-universal value of the 

constant. Besides, the SM also needs a damping function of Van Driest’s type to correct the 

behavior near the wall. On top of that, the SM is unable to remove the SGS eddy viscosity in 

the laminar region. Despite all the shortcomings, the SM is known as one of the LES’s most 

popular models due to its robustness and simplicity. 

The shortcoming of defining the 𝐶𝐶𝑆𝑆 in SM was solved by Germano in 1991. Based on his 

idea, the constant in SM is calculated dynamically, varying in space and time. The method is 
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known as a dynamic approach, and the model is called Dynamic Smagorinsky Model (DSM). 

In order to execute the dynamic procedure, another filter is introduced, which is known as a test 

filter (denoted throughout this work by . ̃), and  △�  is defined as a test filter width. The function 

of the test filter is to filter the smallest scale left in the resolved scales. Normally, the test filter 

width is set greater than the grid filter width, and the ratio between these two filters is denoted 

as 𝛼𝛼. The Germano identity reads 

 𝐿𝐿𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑖𝑖𝑖𝑖 − 𝜏̃𝜏𝑖𝑖𝑖𝑖 = �𝑢𝑢𝚤𝚤𝑢𝑢𝚥𝚥������ −𝑢𝑢�� 𝑖𝑖𝑢𝑢��𝑗𝑗�− �𝑢𝑢𝚤𝚤𝑢𝑢𝚥𝚥������ −  𝑢𝑢� 𝚤𝚤𝑢𝑢�𝚥𝚥��=  𝑢𝑢� 𝚤𝚤𝑢𝑢�𝚥𝚥�−𝑢𝑢��𝑖𝑖𝑢𝑢��𝑗𝑗  
2-11 

where 𝑇𝑇𝑖𝑖𝑖𝑖 is the SGS stress on the test filter level. Another parameter associated with the 

dynamic procedure is 

 𝑀𝑀𝑖𝑖𝑖𝑖 = 𝛼𝛼2�𝐷𝐷���𝐷𝐷��𝑖𝑖𝑖𝑖 − |𝐷𝐷�|𝐷𝐷�𝚤𝚤𝚤𝚤� .   2-12 

 Based on these two tensors, the Smagorinsky constant 𝐶𝐶𝑆𝑆, can be computed as  

 𝑐𝑐 = −
1

2𝛥̅𝛥2
𝐿𝐿𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖

𝑀𝑀𝑘𝑘𝑘𝑘𝑀𝑀𝑘𝑘𝑘𝑘
. 2-13 

 

The SM is developed based on the local equilibrium principal between production and 

dissipation. However, the flow associated with high Reynolds number flows or separated flows 

is far from the equilibrium assumption. Based on this argument, another type of SGS model is 

developed based on the SGS turbulent kinetic energy, 𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆 = 1
2

(𝑢𝑢𝑘𝑘𝑢𝑢𝑘𝑘�������− 𝑢𝑢�𝑘𝑘𝑢𝑢�𝑘𝑘), and this model 

is known as the One-equation model. The first one-equation model was theoretically derived by 

Yoshizawa and Horiuti [26] in 1985. The transport equation of 𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆 is derived as 

 𝜕𝜕𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠
𝜕𝜕𝜕𝜕 +

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝑢𝑢𝚥𝚥� 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠�= 𝑃𝑃𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐶𝐶𝜀𝜀
𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠
3
2

𝛥̅𝛥 +
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�
𝜈𝜈𝑡𝑡
𝜎𝜎𝑘𝑘

𝜕𝜕𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠
𝜕𝜕𝑥𝑥𝑗𝑗

� 
2-14 

where the production, dissipation, and diffusion appear on the right-hand side of the transport 

equation. The production term is defined as  𝑃𝑃𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 = −𝜏𝜏𝑖𝑖𝑖𝑖𝐷𝐷�𝑖𝑖𝑖𝑖 where the SGS stress is calculated 

based on 

 𝜏𝜏𝑖𝑖𝑖𝑖 −
2
3
𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆𝛿𝛿𝑖𝑖𝑖𝑖 = −2𝜈𝜈𝑡𝑡𝐷𝐷�𝑖𝑖𝑖𝑖.  

2-15 

The eddy viscosity that accounted for the dissipation of SGS is calculated as 𝜈𝜈𝑡𝑡 = 𝐶𝐶𝑘𝑘𝛥̅𝛥�𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠. 

A similar eddy viscosity equation is utilized for the production term.  
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2.3 One-Equation Dynamic Model (OD) 
In 1999, a modified version of the one-equation transport equation was proposed by Okamoto 

and Shima [27]. This version was fundamentally similar to Eq. 2-14; however, an additional 

dissipation term was added to consider near-wall turbulence solution [28]. Meanwhile, the 

diffusion term also includes the 𝜈𝜈 rather than only 𝜈𝜈𝑡𝑡. The 𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆 transport equation is now 

 𝜕𝜕𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆
𝜕𝜕𝜕𝜕 +

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝑢𝑢𝚥𝚥� 𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆�== −𝜏𝜏𝑖𝑖𝑖𝑖𝐷𝐷�𝑖𝑖𝑖𝑖 − 𝐶𝐶𝜀𝜀
𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆
3
2

𝛥̅𝛥 − 𝜀𝜀𝜔𝜔 +
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

��𝜈𝜈+ 𝐶𝐶𝑑𝑑𝛥𝛥𝑣𝑣�𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆 �
𝜕𝜕𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆
𝜕𝜕𝑥𝑥𝑗𝑗

� , 
2-16 

 

where the additional term, 𝜀𝜀𝜔𝜔 is calculated as  

 𝜀𝜀𝜔𝜔 = 2𝜈𝜈
𝜕𝜕�𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕�𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆
𝜕𝜕𝑥𝑥𝑗𝑗

 . 2-17 

The SGS eddy viscosity is expressed differently from the previous version 

 𝜈𝜈𝑡𝑡 = 𝐶𝐶𝑣𝑣𝛥𝛥𝑣𝑣�𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆 
2-18 

where  𝐶𝐶𝑣𝑣 is set equal to 0.05. Here, the coefficient 𝐶𝐶𝑣𝑣  is different from 𝐶𝐶𝑘𝑘 in previous SGS 

eddy viscosity. The characteristic length, 𝛥𝛥𝑣𝑣 is given as [27] 

 𝛥𝛥𝑣𝑣 =
∆�

1 + 𝐶𝐶𝑘𝑘𝛥̅𝛥2𝐷𝐷�2
𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆

 2-19 

where 𝐶𝐶𝑘𝑘 = 0.08.  

Various studies [7], [29]–[31] have utilized similar eddy viscosity that is used in the equation 

of motion to define the SGS stress, 𝜏𝜏𝑖𝑖𝑖𝑖 in the production term (first term on right hand side of 

Eq. 2-16). Inagaki and Abe [32] stressed the difficulty of predicting the physical flow 

phenomena if  �𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆 and the grid filter width were utilized in the production term. This is 

evident when most of the flows involved in engineering applications are normally accompanied 

by the laminar and turbulent region. A previous study by Dahlstrom and Davidson [4], for 

instance, showed that the 𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆 appeared in the laminar region.  

In this work, the production term was defined differently from the other previous versions of 

one-equation 𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆. The SGS stress in production term was calculated using the DSM. By 

implementing the DSM, this model used two different SGS eddy viscosity whereby Eq. 2-18 

was used in the equation of motion, while Eq. 2-8 was utilized for the production term. The 

coefficient in the DSM was determined dynamically that allowed a clearer representation of 

flow phenomena. Based on the DSM explained in the previous section, the coefficient was 
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calculated by using Eq. 2-13 in which the calculation was mainly based on the results of the 

filtering process from the GS. Several dynamic procedures have been introduced by Ghosal et 

al. [7] and Davidson [33] to determine the coefficient in one-equation 𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆. However, their 

dynamic version is used to calculate the coefficient in dissipation term 𝐶𝐶𝜀𝜀 and 𝐶𝐶𝑘𝑘 in SGS eddy 

viscosity equation. 

Kajishima and Nomachi [34] named this approach as the One-equation dynamic model (OD). 

Their approach defined the production term as 

 𝑃𝑃𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆 = −𝜏𝜏𝑖𝑖𝑖𝑖𝐷𝐷�𝑖𝑖𝑖𝑖 = 2(𝑐𝑐𝛥̅𝛥2|𝐷𝐷�|)𝐷𝐷�𝑖𝑖𝑖𝑖𝐷𝐷�𝑖𝑖𝑖𝑖 = 𝑐𝑐𝛥̅𝛥2|𝐷𝐷�|3 . 2-20 

The dynamic procedure of DSM was used to obtain the coefficient, 𝑐𝑐. In this work, any 

smoothing or averaging was not necessary, and thus a negative value of 𝑐𝑐 by Eq. 2-13 was 

allowed. The negative value indicated the reverse transfer of energy or from SGS to GS portion, 

which was important for inhomogeneous cases. It is important to note that the negative value of 

the production term would only decrease the kSGS. The backscatter of energy was not represented 

in the filtered equation of motion because the eddy viscosity νt was always positive. Furthermore, 

the advantage of removing the averaging and smoothing would also make the OD model more 

flexible for engineering interest in the absence of homogeneous directions. For the energy losses 

or dissipation, Eq. 2-18 was adopted. The effect of SGS diffusion was accounted for in the last 

term of Eq. 2-16. The constant-coefficient for the dissipation term was set as 0.835, as 

recommended by Okamoto and Shima [27]. 

2.4 Concluding Remarks 
This chapter intends to provide a general outline of how the OD model was derived. The one-

equation kSGS model was shown, and each term in the transport equation was explained. The 

idea of calculating the production term based on the DSM was emphasized. Owing to these 

formulations, it could deal with the nonequilibrium feature of spatially developing flow and 

two-way energy transfer between resolved and SGS portions.
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CHAPTER 3  

Application of the OD Model in Static Stall Simulation  

3.1 Generalized Coordinate System 
In chapter 2, the Navier-Stokes equations were defined in terms of the Cartesian coordinate 

system. The transformation from the Cartesian coordinate system to the general curvilinear 

coordinate system is shown here. Eq. 2-2 and 2-4 are rewritten as  

 
1
𝐽𝐽
𝜕𝜕(𝐽𝐽𝑈𝑈�𝑘𝑘)
𝜕𝜕𝜉𝜉𝑘𝑘 = 0, 3-1 

 

 
𝜕𝜕𝑢𝑢� 𝑖𝑖
𝜕𝜕𝜕𝜕 +

1
𝐽𝐽
𝜕𝜕(𝐽𝐽𝑈𝑈�𝑘𝑘𝑢𝑢� 𝑖𝑖)
𝜕𝜕𝜉𝜉𝑘𝑘 +

1
𝐽𝐽
𝜕𝜕
𝜕𝜕𝜉𝜉𝑘𝑘

�𝐽𝐽
𝜕𝜕𝜉𝜉𝑘𝑘

𝜕𝜕𝑥𝑥𝑖𝑖
(𝑃𝑃� +

2
3𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆)�=

1
𝐽𝐽
𝜕𝜕
𝜕𝜕𝜉𝜉𝑘𝑘

�𝐽𝐽
𝜕𝜕𝜉𝜉𝑘𝑘

𝜕𝜕𝑥𝑥𝑖𝑖
(𝜎𝜎𝑖𝑖𝑖𝑖)�, 3-2 

where  

 𝜎𝜎𝑖𝑖𝑖𝑖 = 2(𝜈𝜈+ 𝜈𝜈𝑡𝑡) �𝐷𝐷�𝑖𝑖𝑖𝑖 −
1
3
𝐷𝐷�𝑘𝑘𝑘𝑘�. 3-3 

Then, the transformation of Grid-scale rate-of-strain tensor in eq. 2-5 is  

 𝐷𝐷�𝑖𝑖𝑖𝑖 =
1
2
�
𝜕𝜕𝜉𝜉𝑙𝑙

𝜕𝜕𝑥𝑥𝑖𝑖
𝜕𝜕𝑢𝑢� 𝑖𝑖
𝜕𝜕𝜉𝜉𝑙𝑙 +

𝜕𝜕𝜉𝜉𝑙𝑙

𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝑢𝑢�𝑗𝑗
𝜕𝜕𝜉𝜉𝑙𝑙

� . 3-4 

The Jacobian, J of the coordinate transformation is defined as 

 𝐽𝐽 = �
𝑥𝑥𝜉𝜉   𝑥𝑥𝜂𝜂   𝑥𝑥𝜁𝜁
𝑦𝑦𝜉𝜉   𝑦𝑦𝜂𝜂   𝑦𝑦𝜁𝜁
𝑧𝑧𝜉𝜉   𝑧𝑧𝜂𝜂   𝑧𝑧𝜁𝜁

�  ,    
1
𝐽𝐽 = �

𝜉𝜉𝑥𝑥   𝜉𝜉𝑦𝑦  𝜉𝜉𝑧𝑧
𝜂𝜂𝑥𝑥   𝜂𝜂𝑦𝑦   𝜂𝜂𝑧𝑧
𝜁𝜁𝑥𝑥   𝜁𝜁𝑦𝑦  𝜁𝜁𝑧𝑧

�. 3-5 

The transformation between the velocity components can be expressed as  

 𝑈𝑈�𝑘𝑘 =
𝜕𝜕𝜉𝜉𝑘𝑘

𝜕𝜕𝑥𝑥𝑖𝑖
𝑢𝑢� 𝑖𝑖 , �

𝑈𝑈
𝑉𝑉
𝑊𝑊
�= �

𝜉𝜉𝑥𝑥𝑢𝑢+  𝜉𝜉𝑦𝑦𝑣𝑣+ 𝜉𝜉𝑧𝑧𝑤𝑤
𝜂𝜂𝑥𝑥𝑢𝑢 + 𝜂𝜂𝑦𝑦𝑣𝑣 + 𝜂𝜂𝑧𝑧𝑤𝑤
𝜁𝜁𝑥𝑥𝑢𝑢 + 𝜁𝜁𝑦𝑦𝑣𝑣 + 𝜁𝜁 𝑧𝑧𝑤𝑤

�. 3-6 

The transport equation of kSGS is also transformed into a curvilinear coordinate system where 

Eq. 2-16 is transformed as   
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 𝜕𝜕𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠
𝜕𝜕𝜕𝜕 +

1
𝐽𝐽
𝜕𝜕
𝜕𝜕𝜉𝜉𝑘𝑘

�𝐽𝐽𝑈𝑈�𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠�= 𝑃𝑃𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐶𝐶𝜀𝜀
𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠
3
2

𝛥̅𝛥 − 𝜀𝜀𝜔𝜔 +
1
𝐽𝐽
𝜕𝜕
𝜕𝜕𝜉𝜉𝑘𝑘

��𝜈𝜈 + 𝐶𝐶𝑑𝑑𝛥𝛥𝑣𝑣�𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠  �𝛾𝛾𝑘𝑘𝑘𝑘
𝜕𝜕𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠
𝜕𝜕𝜉𝜉𝑙𝑙

� , 
3-7 

where 𝛾𝛾𝑘𝑘𝑘𝑘 is known as a symmetric tensor. 

 𝛾𝛾𝑘𝑘𝑘𝑘 = 𝐽𝐽
𝜕𝜕𝜉𝜉𝑘𝑘

𝜕𝜕𝑥𝑥𝑚𝑚
𝜕𝜕𝜉𝜉𝑙𝑙

𝜕𝜕𝑥𝑥𝑚𝑚
. 3-8 

The additional dissipation term, 𝜀𝜀𝜔𝜔 is also transformed into  

 𝜀𝜀𝜔𝜔 = 2𝜈𝜈 �
𝜕𝜕𝜉𝜉𝑘𝑘

𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕�𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠
𝜕𝜕𝜉𝜉𝑘𝑘

��
𝜕𝜕𝜉𝜉𝑙𝑙

𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕�𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠
𝜕𝜕𝜉𝜉𝑙𝑙

�. 
3-9 

3.2 Numerical Method and Computational Setup 
In the present simulation, spatially filtered incompressible Navier-Stokes equations (NSE) were 

discretized based on the finite difference method by using the in-house code. The diffusion 

terms in NSE were discretized by the 2nd order central finite difference, while the quadratic 

upstream interpolation for convective kinematics (QUICK) method was applied to the 

convective terms. The QUICK method has an advantage in numerical stability for the simulation 

of high Re number flows and has been proven in [35]. For the transport equation of kSGS, the 

nonlinear term was solved based on the donor-cell method procedure. 

The time marching to solve the viscous and convective terms was based on the explicit 

Adams-Bashforth method of the 2nd order accuracy. Besides, this method was also used to solve 

the time marching in the transport equation of kSGS. The pressure Poisson equation was solved 

using Successive Over-Relaxation (SOR). The computational time step was set as 3.0×10-5c /𝑈𝑈∞, 

giving the maximum CFL number of around 0.2. 

Computational conditions used in this simulation corresponded to those experiments 

conducted at the ONERA F1 wind tunnel where the angle of attack was 13.3°, the Reynolds 

number based on the chord length C and freestream velocity U∞ , and Rec (= 𝐶𝐶𝑈𝑈∞
𝜈𝜈

)= 2.1×106 . In 

order to observe the effects of the OD model, a similar computational setup performed by 

Dahlstrom and Davidson [3], in terms of grid number, was used. The essential difference 

between our computational setup and Dahlstrom and Davidson [3] was the method of handling 

the eddy viscosity in the laminar region, where they used an artificial approach by setting the 

eddy viscosity to zero in the laminar region. Apart from that, the mesh used in their simulation 

was refined in the transition region to capture the laminar-transition phenomena. In our method, 
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no artificial approaches were performed, which allowed the checking of the OD model's 

capability.  

In the x-y plane, the so-called C-grid was generated where ξ coordinate went around the 

airfoil and η was in the outward direction from the solid wall and cut-line after the trailing edge. 

Meanwhile, ζ was in the spanwise direction. The domain was extended up to 20C (20 times of 

the chord length) in both the X-direction and Y-direction, as shown in Figure 3-1. Table 3-1 

lists the detail of the grid, which includes the mesh resolution in wall units. The resolution is 

calculated as △𝑦𝑦
+= △𝑦𝑦𝑢𝑢𝜏𝜏

𝜈𝜈
 . The averaged local friction velocity, 𝑢𝑢𝜏𝜏 is defined based on the 𝑢𝑢𝜏𝜏 =

�
𝜏𝜏𝑤𝑤
𝜌𝜌

 . 

 
Table 3-1 Detail of grid. 

  

ξ × η × ζ 720 × 65 × 33 

# nodes along the wake (ξ-direction) 151 

# nodes on pressure side (ξ-direction) 211 

# nodes on suction side (ξ-direction) 211 

Cell sizes at leading edge (height)  5 × 10-5C 

Cell sizes at trailing edge (height)  5 × 10-5C 

∆𝑥𝑥+ ,∆𝑦𝑦+ ,∆𝑧𝑧+ (wall units) 90~700, 2~14,100~900 

Computational domain 20C × 20C × 0.4C 
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Figure 3-1 Computational domain for C-type grid. 

3.2.1 Boundary Conditions 

The cylindrical surface of the upstream side of the computational domain was set as an inlet 

boundary condition where the freestream velocities U∞  without turbulence was used. At the top 

and bottom boundaries, the normal components of the gradients of variables were set to zero. 

Convective boundary conditions 𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝜕𝜕

+𝑈𝑈∞
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝜕𝜕

= 0 were applied as outlet boundary conditions. 

In addition, the no-slip boundary condition was enforced around the airfoil. In the spanwise 

direction, a periodic boundary condition was employed. For the pressure boundary conditions , 

a Neumann boundary condition 𝜕𝜕𝑝𝑝̅
𝜕𝜕𝜕𝜕

= 0  was implemented for inflow, outflow, top, and bottom 

boundaries. 

3.3 Results and Discussion 

3.3.1 Laminar transition 

In this simulation, no ad-hoc method was used as a treatment for the laminar-transition region. 

The subgrid scale kinetic energy kSGS was set to zero at the wall, and a clipping procedure was 
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implemented for the negative kSGS. This clipping procedure is required to ensure the eddy 

viscosity νt in the equation of motion is always positive. Based on previous experience, the OD 

model's stability has been proven despite no averaging in a homogeneous direction to calculate 

the coefficient. The initial data was taken from a fully developed stage of DSM simulation, 

where at the first step, the kSGS was calculated via equation (2-8). The statistical data was 

collected for 9.3-time units (C/U∞).  
Figure 3-2 displays the time and spanwise averaged velocity vectors and instantaneous kSGS 

contour plot. The instantaneous kSGS is plotted as a background to visualize the location of the 

kSGS development. The velocity vector in Figure 3-2 displays a thin laminar boundary layer 

developed around the leading edge. On the other hand, the subgrid scale kinetic energy kSGS 

starts to develop after x/C = 0.11. The ONERA wind tunnel results revealed that the thin laminar 

boundary layer was also developed around the leading edge, a laminar separation bubble was 

formed, and the flow reattached around x/C =0.12 [3]. 

 

 
Figure 3-2 Averaged velocity vectors around leading edge at slice z/C = 0.2. 

Figure 3-3 shows the normal components of Reynolds stress around the suction side of the 

airfoil. The figure axis R11 and R22 denote the normal component of Reynolds stress 

corresponds to the direction parallel and normal to the airfoil wall, respectively. While R33 
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corresponds to the spanwise component. Two graphs are plotted around y/C = 0.0003 and y/C 

= 0.001. The results, that is, without turbulence stress, indicate that the laminar region is 

successfully captured. The results also show that the OD model reduces the dependency of fine 

grid resolution to capture a very thin laminar boundary layer. 
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Figure 3-3 Normal components of Reynolds stress at y/C = 0.0003 and y/C = 0.001.(Black, R11 Blue, R22 Red, 
R33) 

3.3.2 Pressure coefficient and skin friction coefficient 

The profiles of the mean pressure coefficient 𝐶𝐶𝑃𝑃 = 2(𝑝𝑝 − 𝑝𝑝∞)/𝜌𝜌𝑈𝑈∞2  and skin friction 

coefficient 𝐶𝐶𝑓𝑓 = 2𝜏𝜏𝜔𝜔/𝜌𝜌𝑈𝑈∞2  (𝜏𝜏𝜔𝜔represents the wall shear stress) are plotted in Figure 3-4. In the 

LESFOIL project, the plots of Cp and Cf are very important to justify the existence of the laminar 

separation bubble around the leading edge and the separation around the trailing edge [2], [3], 

[36]. For the simulation, this phenomenon is commonly described by looking at the plateau of 

the Cp plot and the negative value of skin friction coefficient Cf. Unfortunately, this phenomenon 

cannot be captured by the OD model where no plateau is observed around the leading edge, and 

the Cf  plot also displays a positive value around this region.  

For the skin-friction coefficient Cf, the wall shear stress is defined as 𝜏𝜏𝜔𝜔 = 𝜇𝜇 �𝜕𝜕𝑢𝑢𝑏𝑏
𝜕𝜕𝜕𝜕
�
𝑛𝑛=0

 where 

𝑢𝑢𝑏𝑏  is the velocity component along the airfoil surface. The result of the OD model is not 

identical to the experimental data. Insufficient resolution for streamwise and spanwise direction 

is found to be one of the reasons for the underprediction of the skin-friction coefficient. To date, 

previous results from LESFOIL documents have revealed that the resolution  △𝑥𝑥
+= 60 − 100,

△𝑦𝑦
+= 2  △𝑧𝑧

+= 25 − 40  [1], [4], [37]  is required to match the Cf with experimental data. A 
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recent update from Asada and Kawai [2] has revealed that △𝑥𝑥
+= 25, △𝑦𝑦

+= 0.8  △𝑧𝑧
+= 13 agrees 

well with the experimental data. In this simulation, the resolution does not reach the required 

mesh resolution and as a consequence, the development of turbulent structures is not accurately 

represented [1]. In addition, the one-equation SGS model alone is insufficient to represent an 

accurate result for the skin friction. For the current simulation, the fine mesh resolution was 

found to outweigh the effect of the SGS models. 
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Figure 3-4 Averaged pressure coefficient Cp and friction coefficient Cf. 

 

3.3.3 Total Turbulent Kinetic Energy 

Total turbulent kinetic energy is defined as a summation of subgrid scale turbulent kinetic 

energy kSGS and grid scale turbulent kinetic energy,  𝑘𝑘𝐺𝐺𝐺𝐺 = 𝑢𝑢,2+𝑣𝑣,2+𝑤𝑤,2

2
. In the OD model, the 

production term −𝜏𝜏𝑖𝑖𝑖𝑖𝐷𝐷�𝑖𝑖𝑖𝑖 is described differently from other dynamic versions of the one-

equation model. Figure 3-5 shows the k t and kSGS plotted at the location of y/C =0.0003 and y/C 

= 0.001. From these plots, the dynamic procedure implemented in the production term manages 

to identify the non-turbulent region around the leading edge, in contrast to the conventional 

eddy viscosity model where SGS eddy viscosity νt exists due to the velocity gradient even in 

the laminar region. Furthermore, at y/C = 0.0003, the first peaks for k t and kSGS are identical to 

each other at approximately x/C = 0.13. These peaks are possibly associated with the location 

of flow reattachment phenomena. These peaks are also identical to the normal component of 

Reynolds stress (Figure 3-3), where the flow from the laminar region (no resolved stresses) 

reaches the peak as the flow reattaches. This also indicates the beginning of the development of 
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the turbulent boundary layer. A similar trend is observed for both locations except for the peak 

of kinetic energy. Therefore, the OD model resolved the issue of removing the turbulent kinetic 

energy and eddy viscosity in the laminar region without any artificial methods and grid 

refinement.   
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Figure 3-5 Averaged total turbulent kinetic energy (kt)-red line and SGS kinetic energy (kSGS)-black line around 
suction side of the airfoil.  

 

The dynamic procedure implemented for the OD model revealed that the total kinetic energy 

remained zero in the laminar region and switched to some finite value in the transition to the 

turbulent region. In the OD model, the dynamic procedure was applied to determine the 

coefficient in the production term of turbulent kinetic energy equation kSGS. As described in 

section 2.3, the dynamic procedure to evaluate the coefficient in production term could become 

negative, and as a consequence, would lead to a decrease in kSGS. The advantage of applying the 

eddy viscosity model of Smagorinsky type in production term was proven in this study where 

there was no self-reproduction of kSGS in the laminar region as highlighted by Inagaki and Abe 

[32] and Davidson [33]. The clipping of kSGS also led other terms in the transport equation of 

kSGS to become zero in the laminar region. On the other hand, the terms in kSGS transport equation 

should be balance in the turbulent region, especially in the vicinity of the wall. 

 



23 
 

 
Figure 3-6 Budget of SGS kinetic energy at x/C = 0.12. 

In order to ensure the balance of terms in kSGS equation, the averaged of production, 

convection, diffusion, and dissipation terms in the transport equations of kSGS or the budget of 

SGS kinetic energy were plotted in Figure 3-6. This figure is plotted at the location of x/C = 

0.12, which indicates the laminar-transition region. It is evident that the terms in the energy 

budget are relatively important in the vicinity of the wall. The transport equation for kSGS based 

on the OD model reveals that the production term is balanced with the summation of dissipation 

and convection terms. On the other hand, the diffusion and dissipation from molecular viscosity 

and additional dissipation terms (see Eq. 2-17) are almost balanced on the wall. In the OD model, 

the dissipation term is defined as a summation of the SGS dissipation term and the additional 

dissipation term (terms 2 and 3 in Eq. 2-16). Hence, the additional dissipation term of Eq. 2-17 

is important for the OD model in the vicinity of the wall. 

3.4 Concluding Remarks  
This chapter deals with the application of the OD model for flows over A-profile airfoil near to 

the stall condition. The OD model was used to predict the laminar-transition region, where the 
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coefficient in the production term was calculated dynamically. In contrast to what is commonly 

used to predict the laminar-transition region, the OD model revealed that no unique procedure 

was required to vanish the eddy viscosity in the laminar region. This chapter also presents 

several contributions. Firstly, the plots of kSGS revealed that no SGS kinetic energy was 

reproduced in the laminar region. The finite value of kSGS indicated the reattachment point, and 

this point was observed in agreement with the experimental data. Secondly, the plots of 

Reynolds stress also discovered that no turbulent stress was observed in the laminar region. 

Thirdly, the balance of terms in kSGS was confirmed.  Findings from this chapter revealed that 

the OD model was able to predict the laminar-transition region without any special treatment. 
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CHAPTER 4  

Dynamic Stall Simulation of Oscillating NACA0012 Airfoil  

4.1 Governing Equation 
In this calculation for unsteady pitching airfoil, the filtered Navier-Stokes equations are defined 

here in a non-inertial frame of reference  

 
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥′𝑖𝑖

= 0 4-1 

 

 

𝜕𝜕𝑢𝑢� 𝑖𝑖
𝜕𝜕𝜕𝜕 +

𝜕𝜕(𝑢𝑢�𝑖𝑖 + 2𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖Ω′𝑚𝑚𝑥𝑥′𝑛𝑛)𝑢𝑢�𝑗𝑗
𝜕𝜕𝑥𝑥′𝑗𝑗

= −
𝜕𝜕
𝜕𝜕𝑥𝑥′ 𝑖𝑖

(𝑃𝑃�) + 𝜈𝜈
𝜕𝜕2𝑢𝑢� 𝑖𝑖
𝜕𝜕𝑥𝑥′𝑗𝑗𝑥𝑥′𝑗𝑗

−
𝜕𝜕𝜏𝜏𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥′𝑗𝑗

− 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖
𝜕𝜕Ω′

𝑗𝑗

𝜕𝜕𝜕𝜕 𝑥𝑥′𝑘𝑘 − 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚Ω′𝑗𝑗Ω′𝑚𝑚𝑥𝑥′𝑛𝑛 
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where 𝑃𝑃� is the effective pressure, 𝜈𝜈 is the kinematic viscosity, 𝜖𝜖𝑖𝑖𝑖𝑖𝑘𝑘 is Levi-Civita’s alternating 

tensor, 𝑢𝑢�𝑖𝑖 is the filtered velocity, and the  Ω′𝑖𝑖 is defined as the angular velocity component of 

the non-inertial system. For the coordinate system, 𝑥𝑥′𝑖𝑖 is derived based on the transformation in 

a non-inertial frame of reference. For this simulation, the axis of rotation is in 𝑥𝑥3 direction. The 

effect of system rotation appears as the Coriolis term, centrifugal term, and angular acceleration 

component of the non-inertial system resulted from coordinate transformation for time 

derivative term and nonlinear convective term. The detail of the derivation can be found in 

Appendix A. 

Equations 4-1 and 4-2 are transformed into a general curvilinear coordinate system, as shown 

below 

 
1
𝐽𝐽
𝜕𝜕(𝐽𝐽𝑈𝑈�𝑘𝑘)
𝜕𝜕𝜉𝜉′𝑘𝑘 = 0, 4-3 
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 𝜕𝜕𝑢𝑢� 𝑖𝑖
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𝐽𝐽
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In order to solve SGS stress, similar procedures explained in Chapter 2 are also executed 

here. In addition, all the coordinate systems are derived based on the transformation in the non-

inertial frame of reference. The transport equation for SGS kinetic energy, 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 is defined as 

 𝜕𝜕𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠
𝜕𝜕𝜕𝜕 +

𝜕𝜕
𝜕𝜕𝑥𝑥′𝑗𝑗

�𝑢𝑢𝚥𝚥�𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠�= 𝑃𝑃𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐶𝐶𝜀𝜀
𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠
3
2

𝛥̅𝛥 − 𝜀𝜀𝜔𝜔 +
𝜕𝜕
𝜕𝜕𝑥𝑥′𝑗𝑗

��𝜈𝜈 + 𝐶𝐶𝑑𝑑𝛥𝛥𝑣𝑣�𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠  �
𝜕𝜕𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠
𝜕𝜕𝑥𝑥′𝑗𝑗

�. 
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This transport equation is also presented in a non-inertial frame of reference. In most studies, 

the SGS models such as Smagorinsky model (SM), dynamic Smagorinsky model (DSM), and 

One-equation SGS kinetic energy are fundamentally based on the assumption that the small 

scale turbulence is nearly homogeneous and isotropic, hence the rotation effects (Coriolis and 

Centrifugal) are not counted in the equation [38]. Tsubokura et al. [39]  conducted a study to 

evaluate the effect of a rotating term such as Coriolis force in the SGS model; they have 

concluded that the velocity profiles, grid scale (GS) Reynolds stress, and GS turbulent 

intensities are independent of the rotating effect. Squires and Piomelli [40] found that the DSM 

without any modification to account for rotation has performed well in the rotating channel flow 

where good agreement with experimental data and DNS is observed for mean velocities and 

turbulent intensities.  

To date, most simulations based on the one-equation model have been performed without 

explicitly accounted for any rotating terms (Coriolis force). The difficulty in deriving that 

equation in the rotating frame is one of the reasons where the directional and two-point 

information are required [40]. Therefore, various additional ad-hoc modifications were 

proposed to account for the rotating flows. In addition, as far as LES is concerned, the impact 

of system rotation on SGS is less dominant than the local rotation rate of the GS [34], [39]; 

therefore, the author did not make any modifications to the model. 
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4.2 Computational Setup 
This study focuses on the dynamic stall simulation around NACA0012 at a Reynolds number 

of 1.35×105 based on chord length and freestream velocity. This range of Reynolds number is 

believed to provide a well-resolved large-eddy simulation and is within the range of the 

developed turbulent boundary layer before the dynamic stall takes place [11], [16]. This setup 

corresponded to the wind tunnel experiment setup conducted by Lee and Gerontakos [10]. Their 

experiment was conducted based on a 0.15 m chord length (c) and 2.5c span. The freestream 

velocity was 14 m/s, and the turbulence intensity of 0.08% was measured at freestream velocity.  

In this study, the airfoil performs the pitching motion based on the sinusoidal mode where 

 𝛼𝛼(𝑡𝑡) = 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎sin �2𝑘𝑘𝑈𝑈∞
𝑐𝑐

𝑡𝑡�. 
4-6 

 

The 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎 represent the mean angle of attack and amplitude, respectively. The 

pitching axis is located at the quarter chord from the leading edge. The 𝑘𝑘 = 𝜋𝜋𝜋𝜋𝜋𝜋/𝑈𝑈∞  is reduced 

frequency. The 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎  were set to 10° and 15°, respectively. These prescribed 

kinematic parameters would result in 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 = −5° and 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 = 25°, where the importance of 

dynamic stall phenomena such as leading-edge vortex (LEV), shedding of LEV, trailing-edge 

vortex (TEV), and the interaction with boundary layer could be evaluated. For the same 

kinematic parameters, previous researchers varied the reduced frequency, k  [23], [24], [41], [42], 

the effect of unsteady freestream velocity [24], grid resolution, and domain size effect [24]. A 

summary of a recent publication on the oscillating airfoil is listed in Table 4-1. 
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Table 4-1 A review of published study cases on NACA0012.  

Authors (year) 
Reynolds 
number 

Pitching motion Reduced 
frequency, 
k 

CFD methods, 
Turbulence 
model & 
dimension 

Research area 

X. Li et al. 
(2018) 
Rec=2.53×105 

 0.01 – 0.4 uRANS 2D (k-ω & 
k-ε) 

Influence of k, 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , 
𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎    

Geng et al. 
(2018) 
Rec=1.35×105 

10°+ 15°sin(ωt) 0.025, 
0.05, 0.1 

uRANS 2D (SST, 
SST k-ω) 
LES 2.5D 
(Smagorinsky 
Model Cs =0.1) 

Blockage ratio, grid 
resolution, y+, time step, 
freestream turbulence at 
inlet, trailing edge, 
turbulence model 

Visbal & 
Benton (2018) 
Rec=5.0×105 

4°+7°(1-cos(2kt) 0.2 ILES (high order 
low -pass filter) 

High frequency control 
(St), LSB 

Kim & Xie 
(2016) 
Rec=1.35×105 

10° + 15°sin(ωt) 0.025, 
0.05, 0.1 LES 3D (MTS) 

Influence of freestream 
turbulence on dynamic 
stall 

Gharali & 
Johnson (2013) 
Rec=1.35×105 

10° + 15°sin(ωt) 0.1 
URANS 2D (SST 
k-ω & k-ɛ) 
 

Influence of unsteady 
freestream velocity 

 

4.2.1 Computational Domain and Grid 

A typical C-type grid was used in this study where ξ coordinate went around the airfoil and η 

was in the outward direction from the solid wall and cut-line after the trailing edge. Meanwhile, 

ζ was in the spanwise direction.  The domain was extended 0.1c in a spanwise direction and had 

a uniform spacing. A study by Visbal and Garmann [12] showed that the spanwise extension of 

0.1c was sufficient to capture the LEV and dynamic stall vortex (DSV). The domain size for 

the X and Y direction was extended to 20c, as shown in Figure 4-1. This domain extension was 

found sufficient to hinder the boundary reflections [23].  
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Figure 4-1 Computational Domain and boundary conditions. 

 

The grid was designed to have more concentrated nodes near the airfoil to ensure the 𝑦𝑦+ ≤

1 in order to capture the boundary layer separation and reattachment. Hence, the heights of the 

first node adjacent to the airfoil wall were set to 1 × 10-4 and 3 × 10-4 around the leading and 

trailing edge, respectively. The finished C-mesh around the airfoil, leading, and trailing edge 

are shown in Figure 4-2. The details of the grid parameter are listed in Table 4-2. 
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Table 4-2 Grid Parameters. 

Grid Type C-grid 

# of points along the wake 65 

# of points on the pressure side 193 

# of points on the suction side 386 

# of points on wall normal  50 

# of points spanwise 33, 66 

Lz/c 0.1 

  

  

 
Figure 4-2 C-type mesh around NACA0012(trailing edge and leading edge). 

4.2.2 Boundary Conditions 

The no-slip boundary condition was imposed at the solid wall around the airfoil. The convective 

outlet boundary condition was used at the velocity outlet. For the inlet, freestream velocity 

without disturbance was set around the c-curve. The periodic boundary condition was applied 

to the spanwise direction. The computational domain and the respective boundary conditions 

are shown in Figure 4-1. 

 

4.2.3 Numerical Procedure 

The spatially filtered Navier-Stokes Equations (NSE) were solved using in-house finite 

difference method code. The influence of the rotational effect was added in the momentum 

equation, as shown in Eq. 4-2. The nonlinear term was discretized based on the quadratic 
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upstream interpolation for convective kinematics  (QUICK) upwinding scheme. In our 

calculation, the kinetic energy of the SGS transport equation also needed to be solved. For the 

nonlinear term, the donor cell method was adopted. For the diffusion term, the 2nd order central 

finite difference method was applied. In order to solve the temporal discretization, an explicit 

time stepping procedure based on the Adams-Bashforth method of the 2nd order accuracy was 

used. For this calculation, the non-dimensional time step was set to ∆𝑡𝑡𝑈𝑈∞
𝑐𝑐

= 3 × 10−5 to provide 

enough temporal resolution of SGS features. The Poisson equation was solved with the SOR 

(successive over-relaxation) method. 

 

4.3 Results and Discussion 

4.3.1 Numerical Configuration 

The results discussed in this section are associated with two and three-dimensional simulations. 

A similar grid was used for both simulations. For the 3-dimensional grid arrangement, the 

number of grid points in the spanwise direction was set to 33 and 66. For the 2-dimensiona l 

simulation, the number of grid points in the spanwise direction was only set to 2 points, with 

spanwise extent z/C was set to 0.002. The information about the C-grid arrangement is listed in 

Table 4-2. 

4.3.2 Three-Dimensional (3-D) Simulations 

For all computations, the reduced frequency, 𝑘𝑘 = 𝜋𝜋𝜋𝜋𝜋𝜋/𝑈𝑈∞ = 0.3 was set. In order to resolve 

adequate temporal resolution of the fine scale structures, a very small non-dimensional time 

step was initiated. As a result of these parameters, the non-dimensional period of the motion 

was 𝑇𝑇 = 10.5. On top of that, 350,000-time steps were required to complete one pitching cycle. 

Due to the limitations in computational time, the 3D simulations were run for only 1.5 cycles. 

This is a common practice for 3D LES simulations for the oscillating airfoil, where only 1 or 2 

cycles are simulated [15], [43].    

In order to investigate the effects of grid resolution in the spanwise direction, two different 

grid numbers were simulated in this study. Figure 4-3 shows a variation of lift and drag 

coefficient as a function of non-dimensional flow time (𝑡𝑡/𝑇𝑇) for NZ=33 and NZ=66. Note that 

symbols ‘↑’ and ‘↓’ refer to upstroke and downstroke motions, respectively. Generally, the drag 

and lift coefficients increase during upstroke motion and reach the peak value at the maximum 
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pitching angle. However, this trend is not identical for the drag coefficient, where the peak value 

is observed beyond the maximum angle of attack (around 𝛼𝛼 = 24° ↓). After reaching the peak 

value, both drag and lift coefficients exhibit a sudden drop, which represents the dynamic stall.  

For the simulated operating conditions, a large difference peak value for coefficients between 

cycle-to-cycle at a high angle of attack during upstroke and downstroke motion is clearly 

observed. This phenomenon is expected due to the dynamic stall phenomena such as large 

separation at trailing edge, effects of transition movement, and turbulence [44], [45].  
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Figure 4-3 Coefficient of drag (CD) and lift (CL) versus non-dimensional flow time (t/T). The Angle-of-attack 

(AoA) is on the right axis. 

Figure 4-4 shows the time and spanwise averaged pressure coefficients (CP) for selected 

upstroke and downstroke pitching motions. The first LEV is detected at 20°↑. The size of the 

LEV increases as the angle of attack increases. This event leads to the vortex shedding 

mechanism. At the maximum angle of attack 25°↑, the LEV is convected on nearly half of the 

airfoil's suction side; at the same time, the DSV also appears, as shown Figure 4-5. Consequently, 

the airfoil lift drops. 

In the region of the downstroke phase, the vortex is shedding downstream. At 17°↓, the 

counter-rotating vortex appears at the trailing edge. This counter-rotating vortex also increases 

in size as the angle of attack decreases. This can be seen in the pressure distribution, where the 

suction pressure peaks at the trailing edge. Finally, this vortex merges with the first LEV and 

convects into the wake. At this angle of attack, the lift and drag continue to decrease. 
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Figure 4-4 Time and spanwise averaged pressure coefficient (Cp) 

 

20°↑ 

22°↑ 

25°↑ 

12°↓ 

10°↓ 

17°↓ 
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The Q-criterion [46] is used to observe vortical phenomena in dynamic stall simulations. The 

Q-criterion is defined as the second invariant of the GS velocity gradient tensor. The unsteady 

flow field for the upstroke and downstroke phases based on Q-criterion colored by streamwise 

velocity are shown in Figure 4-5. From 15°↑, development of transitional flow field is observed 

(marked as ‘a’). At 18°↑, a fine-scale structure resulting from spanwise coherent structures from 

the transition region is formed. This observation was also discussed in detail in the work of [17]. 

The formation of the LEV is as shown at 20°↑. At the maximum angle of attack (25.0°↑), the 

LEV becomes larger and convects downstream. At this angle, the airfoil no longer produces lift.  

In addition, the formation of DSV begins from the downstroke phase until the flow is fully 

reattached at the beginning of the upstroke phase. The development of DSV is shown in Figure 

4-5 for 23°↓, 17°↓ , and 15°↓. 

 

   

   

15° ↑ 18° ↑ 

20° ↑ 23° ↑ 

a 
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Figure 4-5 Iso-surfaces of Q-criterion colored by streamwise velocity for selected angles (Grid Nz=33). 

For deep dynamic stall pitching airfoil, the most complicated flow development was 

observed during the downstroke phase [10], [23]. Figure 4-6 presents a chronology of vortex 

development around the suction side of the airfoil. The first vortex is observed around 20°↑.  

Large separation around the whole suction side of the airfoil is observed at the maximum angle 

of attack 25°↑. This separation is developed because of strong circulation from the LEV. When 

the airfoil moves downstroke, the first low-pressure LEV is detached from the airfoil surface 

and subsequently convected into the wake region. The first LEV in this study grows for about 

45% of the chord length compared to the 90% of chord length for the experimental result [10]. 

This phenomenon leads to the underpredicted of the lift coefficient. The DSV is sweeping 

around the suction side of the airfoil bringing the low-pressure vortex, and a few vortices around 

the leading edge are also captured during the downstroke phase. In this study, the development 

of the TEV is detected at around 17°↓, which deviated from the previous finding where the TEV 

was detected at 25°↑ [23]. The airfoil regains its aerodynamic forces when the flow is fully 

attached to the surface, as can be seen at -5°↓. 

 

25.0 ↑ 23° ↓ 

17° ↓ 15° ↓ 
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20°↑ 

25°↑ 
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Figure 4-6 Instantaneous Streamlines for selected upstroke and downstroke motion. 

 

 

17°↓ 

-5°↓ 
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Another interesting phenomenon for the deep dynamic stall around unsteady pitching airfoil 

is the development of a laminar separation bubble (LSB). This phenomenon is unique since the 

separation occurs in the laminar region. A strong adverse pressure gradient near the leading 

edge causes the flow separation in the laminar region. The separation in the laminar region is 

known as the laminar separation bubble (LSB), and the pressure plateau in pressure coefficient 

plots indicates the size of bubbles. Figure 4-7 exhibits the initiation of the LSB detected at 

15.3°↑. A similar finding was observed by Wang et al. [23], where they used the four equations 

turbulence model (SST-k-ω ) to capture the separation bubbles. 
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Figure 4-7 Iso-surfaces of pressure colored by streamwise velocity. 

Overall, the phenomena which occur around the pitching airfoil are also observed for Nz=66. 

Figure 4-8 shows the iso-surfaces of Q-criterion based on streamwise velocity for some selected 

angles of the pitching motion. The hairpin-like vortices are captured during both upstroke and 

downstroke motions. As a result of vortices breaking down, finer and random well-developed 

turbulent structures [36] were observed downstream of the airfoil suction side. Additionally, 
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Kobayashi et al. [47] elaborated that hairpin vortices were related to the forward and backward 

scatter events.  

   

   

   

   
Figure 4-8 Iso-surfaces of Q-criterion colored by streamwise velocity for selected angles (Grid Nz=66). 

 

13° ↑ 15° ↑ 

18° ↑ 22° ↑ 

23° ↑ 25° ↑ 

16° ↓ 11° ↓ 
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4.4 2D Simulations 
For 2D simulations, lift and drag coefficients were plotted at the left and right axis, respectively, 

as shown in Figure 4-9. The parameters set in 3D simulations were kept unchanged. Overall, an 

almost similar trend is observed for all cycles. The pitching airfoil for 𝛼𝛼(𝑡𝑡) = 10° +

15°sin (𝜔𝜔𝜔𝜔) is classified as deep dynamic stall conditions. Lift and drag coefficients reach the 

maximum angle of attack before dropping to indicate the stall condition. It is common for the 

oscillating airfoil to maintain lift and drag force at a higher angle of attack compared to the 

static condition. This condition persists due to the development of LEV at a higher angle of 

attack. The LEV can maintain higher lift and drag coefficients at a higher angle of attack before 

it falls at the beginning of the downstroke phase. The stall happens once the LEV detaches from 

the airfoil surface.  

 
Figure 4-9 History of lift and drag coefficient   
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Figure 4-10 shows instantaneous streamwise velocity contour for selected angles of attack. 

At the low angle of attack (i.e. 10.5°), an attached laminar flow is observed around the airfoil 

surface except in the small trailing edge region. This observation was also discussed in the 

experiments of Lee and Gerontakos [10]. The development of the energy-containing vortex 

(LEV) around the leading edge is first seen at 15.8°. This vortex increases in size as the angle 

of attack increases. Subsequently, this LEV sheds around the suction side of the airfoil and 

forms an extra suction region that contributes to the increments of lift and causes the delay of 

the stall angle [41]. At 25°, the formation of the LEV becomes larger, and subsequently, the lift 

drops. This larger vortex is shedding downstream and interacts with a counter-clockwise vortex 

known as Trailing-edge Vortex (TEV) and finally sheds to the wake region.  

 

   

  

  
Figure 4-10 Instantaneous Streamwise velocity contour ( ↑ for upstroke and ↓ downstroke). 

10.5° ↑ 15.8° ↑ 

22° ↑ 23.5° ↑ 

25° ↑ 23.6° ↓ 
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Interaction of the TEV can be illustrated based on the vorticity 𝜔𝜔𝑍𝑍𝐶𝐶/𝑈𝑈∞. Figure 4-11 shows 

the formation of TEV after the dynamic stall at the peak angle of attack 25°. The TEV forms as 

a counter-clockwise rotating vortex, which appears as the source of circulation [13]. The size 

of TEV becomes bigger as the airfoil moves in the downstroke phase and combines with the 

LEV; as a result, the aerodynamics load decreases. The effects of kSGS appear in the formation 

of TEV. This can be seen in Figure 4-12.  

 

   

   
Figure 4-11 Instantaneous vorticity field for oscillating airfoil for selected upstroke and downstroke motion.    

  
Figure 4-12 Instantaneous SGS energy, k SGS captured in formation of TEV 

 

25° ↑ 24° ↓ 

19° ↓ 16° ↓ 



45 
 

4.5 Concluding Remarks 
In this chapter, the OD model was applied to unsteady pitching NACA0012 airfoil, and it was 

revealed that all the essential flow phenomena such as the laminar separation bubble (LSB), 

leading-edge vortex (LEV), vortex shedding, dynamic stall vortex (DSV), and trailing-edge 

vortex (TEV) were observed. The angles of LSB and LEV onsets were 15.3° and 20° 

respectively, and these angles were also reported in the experimental and numerical studies. 

Plots of pressure coefficient confirmed the existence of a separation bubble where the pressure 

plateau was detected. Therefore, the results from this chapter revealed that the OD model was 

able to predict a wide variety of flow phenomena with practical grid points and without any 

additional transition model.
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CHAPTER 5  

Conclusion 

In this study, it has been intended to develop a practical method of the large-eddy simulation 

(LES) especially for the analysis of flow around an airfoil in unsteady motion. The SGS kinetic 

energy one-equation (OD) model was used where the dynamic procedure was applied to 

determine the coefficient in the production term. The production term was solved by utilizing 

the dynamic Smagorinsky model (DSM), where the coefficient in the Smagorinsky model (SM) 

was calculated dynamically. In the SM, the norm of the rate-of-strain tensor and the filter width 

length is non-zero; therefore, the only possible way to eliminate the eddy viscosity in the non-

turbulent region depends on the coefficient. By adopting the dynamic procedure, the coefficient 

was calculated locally and instantaneously, and the Germano’s identity in the dynamic 

procedure was responsible to filter the turbulent scales in between grid and test filter. The eddy 

viscosity in the filtered equation of motion was solved indirectly based on the turbulent kinetic 

energy of SGS, kSGS. Therefore, the production and dissipation terms are not locally equilibr ium. 

The major outcomes of this study are summarized as follows: 

• In chapter 1, the current method to predict the laminar-transition region was reviewed, 

and a special treatment to vanish the eddy viscosity was pointed out to solve that 

issue. For unsteady pitching airfoil, the transition model was required to predict the 

LSB. 

• In chapter 2, the one-equation kSGS model was shown, and each term in the transport 

equation was explained. The idea of calculating the production term based on the 

DSM was emphasized. Owing to these formulations, it could deal with the 

nonequilibrium feature of spatially developing flow and two-way energy transfer 

between resolved and SGS portions. 
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• In chapter 3, the OD model was used to predict the laminar-transitional flows over 

A-profile airfoil, and it was discovered that no kSGS was reproduced in the laminar 

region. The transition point was found in good agreement with the experimental data. 

• In chapter 4, the OD model was applied to predict the phenomena of deep dynamic 

stall around unsteady pitching NACA0012 airfoil, and it was revealed that the OD 

model could produce the laminar separation bubble (LSB), leading-edge vortex 

(LEV), dynamic stall vortex (DSV), and trailing-edge vortex (TEV) with current grid 

points. The formation of the LSB and LEV was around 15° and 20°, respectively, 

and these angles were found in good agreement with the experimental observation. 

The result of this study revealed that the OD model was able to predict a wide variety of flow 

physics involved in static and dynamic stalls without any additional transition model and with 

practical computational capacity. This model can be further expanded for various engineering 

applications such as turbomachinery and aeronautics. 
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APPENDIX A 

Derivation of Navier-Stokes Equations (NSE) in Non-
Inertial System 

The notation vector used for the derivation is elaborated in this chapter.  

 𝒆𝒆𝑖𝑖(𝑖𝑖 = 1,2,3) is a basis vector in a stationary system.  

 𝒆𝒆∗𝑖𝑖(𝑖𝑖 = 1,2,3) is a basis vector in a non-inertial system.  

For the coordinate system, (𝑥𝑥1,𝑥𝑥2,𝑥𝑥3) and (𝑥𝑥′1 ,𝑥𝑥′2,𝑥𝑥′3) are coordinate systems for the inertial 

and non-inertial system, respectively.  

 𝑒𝑒𝑖𝑖 =
𝜕𝜕𝑥𝑥𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

𝑒𝑒∗𝑗𝑗 =
𝜕𝜕𝑥𝑥′𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

𝑒𝑒∗𝑗𝑗 
A- 1 

 
𝑒𝑒∗𝑖𝑖 =

𝜕𝜕𝑥𝑥′𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

𝑒𝑒𝑗𝑗 =
𝜕𝜕𝑥𝑥𝑗𝑗
𝜕𝜕𝑥𝑥′𝑖𝑖

𝑒𝑒𝑗𝑗 
A- 2 

 

Equation A- 1 and A- 2 are basis vectors for the inertial and non-inertial terms. These 

equations are orthogonal where  

 
𝜕𝜕𝑥𝑥′𝑖𝑖
𝜕𝜕𝑥𝑥𝑝𝑝

𝜕𝜕𝑥𝑥′𝑗𝑗
𝜕𝜕𝑥𝑥𝑝𝑝

= 𝛿𝛿𝑖𝑖𝑖𝑖 
A- 3 

 

and any vector a, 𝑎𝑎 = 𝑎𝑎𝑖𝑖𝒆𝒆𝑖𝑖 = 𝑎𝑎′𝑖𝑖𝒆𝒆′𝑖𝑖  .The transformation rule is defined as 

 𝑎𝑎𝑖𝑖 =
𝜕𝜕𝑥𝑥𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

𝑎𝑎∗𝑗𝑗 =
𝜕𝜕𝑥𝑥′𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

𝑎𝑎∗𝑗𝑗 
A- 4 

 
𝑎𝑎∗𝑖𝑖 =

𝜕𝜕𝑥𝑥′𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

𝑎𝑎𝑗𝑗 =
𝜕𝜕𝑥𝑥𝑗𝑗
𝜕𝜕𝑥𝑥′𝑖𝑖

𝑎𝑎𝑗𝑗 
A- 5 

The product of 2 vectors (i.e., 𝑎𝑎 = 𝑎𝑎𝑖𝑖𝒆𝒆𝑖𝑖 = 𝑎𝑎∗𝑖𝑖𝒆𝒆∗𝑖𝑖, 𝑏𝑏 = 𝑏𝑏𝑖𝑖𝒆𝒆𝑖𝑖 = 𝑏𝑏∗𝑖𝑖𝒆𝒆∗𝑖𝑖)  
 

𝒂𝒂 × 𝒃𝒃 = 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑗𝑗𝑏𝑏𝑘𝑘𝑒𝑒𝑖𝑖 = 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎∗𝑗𝑗𝑏𝑏∗𝑘𝑘𝒆𝒆∗𝑖𝑖 
A- 6 

where  𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖  is Levi-Civita’s alternating tensor. The translational velocity of the non-inertial 

system is represented by 𝑼𝑼 = 𝑈𝑈𝑖𝑖𝒆𝒆𝑖𝑖 = 𝑈𝑈∗
𝑖𝑖𝒆𝒆∗𝑖𝑖, while the rotational speed is represented by 𝛀𝛀 =

Ω𝑖𝑖𝒆𝒆𝑖𝑖 = Ω∗
𝑖𝑖𝒆𝒆∗𝑖𝑖. 



49 
 

The time derivative of the basis vector in a non-inertial system is defined as 

 𝑑𝑑𝑒𝑒∗𝑖𝑖
𝑑𝑑𝑑𝑑 =

𝑑𝑑𝑒𝑒∗𝑖𝑖
𝑑𝑑𝑑𝑑′ = Ω× 𝑒𝑒∗𝑖𝑖 . 

 

A- 7 

Coordinate transformation on the filtered incompressible NSE has been performed where 

 𝜕𝜕𝑢𝑢� 𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

= 0 
A- 8 

 

 
𝜕𝜕𝑢𝑢� 𝑖𝑖
𝜕𝜕𝜕𝜕 +

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝑢𝑢� 𝑖𝑖𝑢𝑢�𝑗𝑗�= −
1
𝜌𝜌
𝜕𝜕𝑃𝑃�
𝜕𝜕𝑥𝑥𝑖𝑖

+ 𝜈𝜈
𝜕𝜕2𝑢𝑢� 𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

−
𝜕𝜕𝜏𝜏𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

. 
A- 9 

Performing coordinate transformation on eq. A- 8 and A- 9 yields 

 
𝜕𝜕𝑢𝑢� 𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

=
𝜕𝜕𝑥𝑥′𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥′𝑗𝑗

=
𝜕𝜕
𝜕𝜕𝑥𝑥′𝑗𝑗

�
𝜕𝜕𝑥𝑥′𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

𝑢𝑢� 𝑖𝑖� =
𝜕𝜕𝑢𝑢∗���𝑖𝑖
𝜕𝜕𝑥𝑥′𝑖𝑖

=
𝜕𝜕𝑢𝑢∗���𝑗𝑗
𝜕𝜕𝑥𝑥′𝑗𝑗

 
A- 10 

 

 
𝜕𝜕�𝑢𝑢� 𝑖𝑖𝑢𝑢�𝑗𝑗�
𝜕𝜕𝑥𝑥𝑗𝑗

=
𝜕𝜕�𝑢𝑢∗���𝑖𝑖𝑢𝑢�𝑗𝑗�
𝜕𝜕𝑥𝑥𝑗𝑗

=
𝜕𝜕𝑥𝑥′ 𝑙𝑙
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝑢𝑢∗���𝑖𝑖𝑢𝑢�𝑗𝑗
𝜕𝜕𝑥𝑥′𝑙𝑙

=
𝜕𝜕
𝜕𝜕𝑥𝑥′𝑙𝑙

�𝑢𝑢∗���𝑖𝑖
𝜕𝜕𝑥𝑥′ 𝑙𝑙
𝜕𝜕𝑥𝑥𝑗𝑗

𝑢𝑢�𝑗𝑗� =
𝜕𝜕𝑢𝑢∗���𝑖𝑖𝑢𝑢∗���𝑙𝑙
𝜕𝜕𝑥𝑥′𝑙𝑙

 

A- 11 

 

 
𝜕𝜕𝑃𝑃�
𝜕𝜕𝑥𝑥𝑖𝑖

=
𝜕𝜕𝑥𝑥′𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝑃𝑃�
𝜕𝜕𝑥𝑥′𝑗𝑗

=
𝜕𝜕𝑃𝑃�
𝜕𝜕𝑥𝑥′𝑖𝑖

=
𝜕𝜕𝑃𝑃�
𝜕𝜕𝑥𝑥′𝑗𝑗

 
A- 12 

 

 
𝜕𝜕2𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

=
𝜕𝜕2𝑢𝑢∗���𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

=
𝜕𝜕𝑥𝑥′ 𝑙𝑙
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝑥𝑥′𝑘𝑘
𝜕𝜕𝑥𝑥𝑗𝑗

�
𝜕𝜕2𝑢𝑢∗���𝑖𝑖
𝜕𝜕𝑥𝑥′𝑙𝑙𝜕𝜕𝑥𝑥′𝑘𝑘

� = 𝛿𝛿𝑙𝑙𝑙𝑙�
𝜕𝜕2𝑢𝑢∗���𝑖𝑖
𝜕𝜕𝑥𝑥′𝑙𝑙𝜕𝜕𝑥𝑥′𝑘𝑘

�=
𝜕𝜕2𝑢𝑢∗���𝑖𝑖
𝜕𝜕𝑥𝑥′𝑗𝑗𝜕𝜕𝑥𝑥′𝑗𝑗

 
A- 13 

 

 
𝜕𝜕𝜏𝜏𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

=
𝜕𝜕𝑥𝑥′𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝜏𝜏𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥′𝑗𝑗

=
𝜕𝜕𝜏𝜏𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥′𝑖𝑖

=
𝜕𝜕𝜏𝜏𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥′𝑗𝑗

 
A- 14 

 

Relative velocity component of fluid in non-inertial system for rotating frame of reference is 

defined as 

 
𝑢𝑢� = 𝑢𝑢∗���𝑖𝑖𝒆𝒆∗𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖Ω

∗
𝑖𝑖𝒙𝒙′𝒌𝒌𝒆𝒆

∗
𝑖𝑖 

A- 15 

where 𝑢𝑢� = 𝑢𝑢�𝑖𝑖𝑒𝑒𝑖𝑖 = 𝑢𝑢∗���𝑖𝑖𝒆𝒆∗𝑖𝑖 is the relative velocity of the fluid seen in a non-inertial system. By 

using eq. A- 16 and transforming the continuity and momentum equation yield 
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𝜕𝜕𝑢𝑢∗���𝑖𝑖
𝜕𝜕𝑥𝑥′𝑖𝑖

+
𝜕𝜕(𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖Ω∗𝑖𝑖𝒙𝒙′𝒌𝒌)

𝜕𝜕𝑥𝑥′𝑖𝑖
= 0 

A- 16 

 

 
𝜕𝜕𝑢𝑢∗���𝑖𝑖
𝜕𝜕𝑥𝑥′𝑖𝑖

= 0 
A- 17 

 

 
𝜕𝜕𝑢𝑢� 𝑖𝑖
𝜕𝜕𝜕𝜕 𝑒𝑒𝑖𝑖 =

𝜕𝜕𝑢𝑢∗���𝑖𝑖
𝜕𝜕𝜕𝜕 𝑒𝑒∗𝑖𝑖 + 𝑢𝑢∗���𝑖𝑖

𝜕𝜕𝑒𝑒∗𝑖𝑖
𝜕𝜕𝜕𝜕 +

𝜕𝜕�𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖Ω∗𝑖𝑖𝒙𝒙′𝒌𝒌�
𝜕𝜕𝜕𝜕 𝑒𝑒∗𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖Ω

∗
𝑖𝑖𝒙𝒙′𝒌𝒌

𝜕𝜕𝑒𝑒∗𝑖𝑖
𝜕𝜕𝜕𝜕  

 

A- 18 

 

                      =
𝜕𝜕𝑢𝑢∗���𝑖𝑖
𝜕𝜕𝜕𝜕 𝑒𝑒∗𝑖𝑖 + 𝑢𝑢∗���𝑖𝑖Ω×𝑒𝑒∗𝑖𝑖 +

𝜕𝜕�𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖Ω∗𝑖𝑖𝒙𝒙′𝒌𝒌�
𝜕𝜕𝜕𝜕 𝑒𝑒∗𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖Ω

∗
𝑖𝑖𝒙𝒙′𝒌𝒌Ω× 𝑒𝑒∗𝑖𝑖 

 

 

By using eq. A- 6, the time derivative term in eq. A- 19 can be transformed into 

 
                      

𝜕𝜕𝑢𝑢� 𝑖𝑖
𝜕𝜕𝜕𝜕 𝑒𝑒𝑖𝑖 =

𝜕𝜕𝑢𝑢∗���𝑖𝑖
𝜕𝜕𝜕𝜕 𝑒𝑒∗𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖Ω

∗
𝑖𝑖𝑢𝑢∗���𝑖𝑖𝒆𝒆∗𝑖𝑖+ 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖

𝜕𝜕(Ω∗𝑖𝑖)
𝜕𝜕𝜕𝜕′ 𝒙𝒙′𝒌𝒌𝑒𝑒∗𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚Ω

∗
𝑗𝑗Ω

∗
𝑚𝑚𝒙𝒙′𝒌𝒌𝑒𝑒∗𝑖𝑖 

 

A- 19 

For nonlinear convective term, 

 

 
𝜕𝜕𝑢𝑢∗���𝑖𝑖𝑢𝑢∗���𝑙𝑙
𝜕𝜕𝑥𝑥′𝑙𝑙

𝒆𝒆∗𝑖𝑖 = 
𝜕𝜕𝑢𝑢∗���𝑖𝑖(𝑢𝑢∗���𝑙𝑙 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖Ω∗𝑗𝑗𝒙𝒙′𝒌𝒌)

𝜕𝜕𝑥𝑥′𝑙𝑙
𝒆𝒆∗𝑖𝑖 

 

 

                                      = 
𝜕𝜕𝑢𝑢∗���𝑖𝑖𝑢𝑢∗���𝑙𝑙
𝜕𝜕𝑥𝑥′𝑙𝑙

𝒆𝒆∗𝑖𝑖 + 𝑢𝑢∗���𝑙𝑙
𝜕𝜕(𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖Ω∗𝑖𝑖𝒙𝒙′𝒌𝒌)

𝜕𝜕𝑥𝑥′𝑙𝑙
𝒆𝒆∗𝑖𝑖 

 

 
                          = 

𝜕𝜕𝑢𝑢∗���𝑖𝑖𝑢𝑢∗���𝑙𝑙
𝜕𝜕𝑥𝑥′𝑙𝑙

𝒆𝒆∗𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖Ω
∗
𝑖𝑖𝑢𝑢∗���𝑘𝑘𝒆𝒆∗𝑖𝑖 

A- 20 

For viscosity term,  

 
𝜕𝜕2𝑢𝑢∗���𝑖𝑖
𝜕𝜕𝑥𝑥′𝑗𝑗𝜕𝜕𝑥𝑥′𝑗𝑗

𝒆𝒆∗𝑖𝑖 =
𝜕𝜕2𝑢𝑢∗���𝑖𝑖
𝜕𝜕𝑥𝑥′𝑗𝑗𝜕𝜕𝑥𝑥′𝑗𝑗

𝒆𝒆∗𝑖𝑖 . 
A- 21 

 

For SGS stress,  

 𝜕𝜕𝜏𝜏𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

==
𝜕𝜕𝜏𝜏∗𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥′𝑖𝑖

. 
A- 22 

Finally, substituting the time derivative term, convective, pressure, viscous term, and SGS 

stress tensor to form the NSE in a non-inertial system  
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𝜕𝜕𝑢𝑢∗���𝑖𝑖
𝜕𝜕𝜕𝜕 𝑒𝑒∗𝑖𝑖 +

𝜕𝜕𝑢𝑢∗���𝑖𝑖𝑢𝑢∗���𝑗𝑗
𝜕𝜕𝑥𝑥′𝑗𝑗

𝒆𝒆∗𝑖𝑖 +
𝜕𝜕�𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖Ω∗𝑖𝑖𝒙𝒙′𝒌𝒌�

𝜕𝜕𝜕𝜕 𝑒𝑒∗𝑖𝑖 + 2𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖Ω∗𝑖𝑖𝑢𝑢∗���𝑘𝑘𝒆𝒆∗𝑖𝑖

+ 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚Ω∗𝑗𝑗Ω∗𝑚𝑚𝒙𝒙′𝒌𝒌𝑒𝑒∗𝑖𝑖 = −
𝜕𝜕𝑃𝑃�
𝜕𝜕𝑥𝑥′𝑗𝑗

𝒆𝒆∗𝑖𝑖 + 𝜈𝜈
𝜕𝜕2𝑢𝑢∗���𝑖𝑖
𝜕𝜕𝑥𝑥′𝑗𝑗𝜕𝜕𝑥𝑥′𝑗𝑗

𝒆𝒆∗𝑖𝑖 −
𝜕𝜕𝜏𝜏∗𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥′𝑖𝑖

 

A- 23 

 

which includes the angular acceleration force, the Coriolis force, and the centrifugal force. 

Equation A- 23 can be rearranged by combining the Coriolis force into the nonlinear convective 

term where 

 

𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖Ω∗𝑖𝑖𝑢𝑢∗���𝑘𝑘𝒆𝒆∗𝑖𝑖 =
𝜕𝜕𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖Ω∗𝑖𝑖𝑥𝑥′𝑛𝑛𝑢𝑢∗���𝑗𝑗

𝜕𝜕𝑥𝑥′𝑗𝑗
𝒆𝒆∗𝑖𝑖 , 

A- 24 

and the final form of NSE in a non-inertial system is defined as 

   

 
𝜕𝜕𝑢𝑢∗���𝑖𝑖
𝜕𝜕𝜕𝜕 𝑒𝑒∗𝑖𝑖 +

𝜕𝜕(𝑢𝑢∗���𝑖𝑖 +  2𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖Ω∗𝑖𝑖𝑥𝑥′𝑛𝑛)𝑢𝑢∗���𝑗𝑗
𝜕𝜕𝑥𝑥′𝑗𝑗

𝒆𝒆∗𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖
𝜕𝜕(Ω∗𝑖𝑖)
𝜕𝜕𝜕𝜕 𝒙𝒙′𝒌𝒌𝑒𝑒∗𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚Ω

∗
𝑗𝑗Ω

∗
𝑚𝑚𝒙𝒙′𝒌𝒌𝑒𝑒∗𝑖𝑖

= −
𝜕𝜕𝑃𝑃�
𝜕𝜕𝑥𝑥′𝑗𝑗

𝒆𝒆∗𝑖𝑖 + 𝜈𝜈
𝜕𝜕2𝑢𝑢∗���𝑖𝑖
𝜕𝜕𝑥𝑥′𝑗𝑗𝜕𝜕𝑥𝑥′𝑗𝑗

𝒆𝒆∗𝑖𝑖 −
𝜕𝜕𝜏𝜏∗𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥′𝑖𝑖

 

A- 25 
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