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Preface

The theory of Markov chains is one of the fundamental mathematical tools of analyzing
stochastic systems. For example, in many queueing models used in the performance
evaluation of telecommunications systems, the system behaviors can be formulated as
a discrete-time or continuous-time Markov chain on a countably infinite (or finite yet
huge) state space. In such a Markov chain, the stationary distribution, if exists, is of
primary interest because it represents the occurrence frequency of various events over a
long time interval.

Suppose that a Markov chain is irreducible and positive recurrent. The stationary
distribution is then given by the unique solution of the system of linear equations,
where the number of unknowns is given by the cardinality of the state space. Therefore,
if a Markov chain is defined on a huge state space, it is hard to obtain the stationary
distribution from a viewpoint of computational cost. To overcome this difficulty, two
main approaches are proposed in the literature. One is the matrix-analytic method
for structured Markov chains on a countably infinite state space, where the stationary
distribution is given in terms of the solution of a certain finite-dimensional matrix-
polynomial equation. The other is the augmented truncation approximation for general
Markov chains, where the original Markov chain on a countably infinite (or finite yet
huge) state space is approximated by another Markov chain on a finite state space of
moderate size.

In this study, we consider the conditional stationary distribution in the ergodic,
continuous-time Markov chain on the countably infinite state space {0, 1, . . .}, given
that the state is not greater than a predefined threshold N . By definition, the condi-
tional stationary distribution converges to the (unconditional) stationary distribution
element-wise as N goes to infinity. Therefore, if N is sufficiently large, the conditional
distribution may work as a good approximation to the stationary distribution.

The staring points of our discussions are systems of linear inequalities that the con-
ditional stationary distribution satisfies. Note that such systems of linear inequalities
determine convex regions that the conditional stationary distribution lies in. We study
inclusion and limiting properties of those convex regions. Furthermore, based on these
results, we consider numerical algorithms for computing the conditional stationary dis-
tribution given that the Markov chain is in {0, 1, . . . , N}.

To the best of our knowledge, the characterization of the (un)conditional stationary
distributions in Markov chains via systems of linear inequalities has not been studied
except for a recent paper by Takine in 2016, where a system of infinitely many linear
inequalities that the boundary probability vector satisfies is shown for Markov chains of
level-dependent M/G/1-type. Furthermore, under the assumption that matrices in the
infinitesimal generator, which represent downward jumps, are nonsingular, the vertices
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spanning the convex region specified by the system of linear inequalities are obtained in
terms of reverse-directional R-matrices.

In this dissertation, we characterize the conditional stationary distribution via sys-
tems of linear inequalities in two ways. In the first characterization, we analyze the condi-
tional stationary distribution in general Markov chains by examining reverse-directional
R-matrices and discuss computation of the conditional stationary distribution in Markov
chains of level-dependent M/G/1-type. In the second characterization, we analyze the
conditional stationary distribution by examining northwest corner submatrices of the
infinitesimal generator. Furthermore, we consider computation of the conditional sta-
tionary distribution based on these characterizations and develop the computational
algorithms. Our computational algorithms have a notable feature that we can evaluate
error bounds of the computed conditional stationary distribution because the conditional
stationary distribution lies in convex regions whose vertices are given by numerically
computable probability vectors.

Chapter 1 provides a background of this study and summarizes known approaches to
characterizing the stationary distribution in Markov chains on a countably infinite state
space. Chapter 2 characterizes the conditional distribution in bivariate Markov chains
via systems of linear inequalities and discusses some properties of the convex regions
containing the conditional stationary distribution. Chapter 3 considers the compu-
tation of the conditional stationary distribution for Markov chains of level-dependent
M/G/1-type based on the results in Chapter 2. Chapter 3 also provides some numerical
examples. Chapter 4 characterizes the conditional stationary distribution via systems
of linear inequalities constructed from northwest corner submatrices of the infinitesimal
generator. We introduce a new state transition structure called (K,N)-skip-free sets and
show their roles in the characterization. Chapter 5 provides the practical implications of
the results in Chapter 4 for the augmented truncation approximation. Furthermore, we
analyze a queueing model with disasters, which is a typical example analyzed effectively
by our linear-inequality characterizations, and provide numerical examples. Finally, we
conclude this dissertation in Chapter 6.

This dissertation summarizes my studies on the stationary distribution of Markov
chains in Doctor’s Course of Department of Information and Communications Technol-
ogy, Graduate School of Engineering, Osaka University. The contents of this dissertation
(except Chapters 1 and 6) are based on the papers in the publication list as follows.

Chapter 2: Publications A-1 and C-1,

Chapter 3: Publications A-1, C-2, and C-3,

Chapter 4: Publications A-2, C-4, C-5, C-6, and C-7,

Chapter 5: Publications A-3 and C-8.

Masatoshi Kimura

Osaka University
January 2021
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Abbreviations and Conventions

Throughout this dissertation, we use the following abbreviations:

ATA : augmented truncation approximation
MAM : matrix-analytic method
LD : level-dependent or level dependence
MAP : Markovian arrival process
MMAP : marked Markovian arrival process
MMPP : Markov modulated Poison process

In addition, we use the following conventions of mathematical notation unless otherwise
mentioned:

• Row vectors are denoted by bold-type lower-case Greek letters, or specific Roman
letters x and y.

• Column vectors are denoted by bold-type lower-case Roman letters, except for row
vectors x and y.

• Matrices are denoted by bold-type capital letters.

• Inequalities between matrices or vectors imply that they hold element-wise.

• Empty sum is defined as zero.

• Empty product is defined as one.

• The elements of vectors are counted from zero.

• The rows and columns of matrices are counted from zero.
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1 Introduction

Markov chains are stochastic processes with the Markov property, defined on a finite or
countably infinite state space. Owing to their simple mechanism of evolution in time,
Markov chains are used for describing stochastic systems in various application domains,
including the queueing theory. In this study, we restrict our attention to irreducible,
positive recurrent, continuous-time Markov chains on a countably infinite state space.
Note that continuous-time Markov chains are ergodic if and only if they are irreducible
and positive recurrent. Therefore, the unique stationary distribution exists in Markov
chains we consider.

The stationary distribution in an ergodic, continuous-time Markov chain is given by
the solution of a system of linear equations called the global balance equation. Except for
some special cases, however, the explicit expression for the stationary distribution will be
messy in nature even if it can be obtained. Therefore, from a viewpoint of applications,
the computation of the stationary distribution in Markov chains is important. We
thus consider characterizations of the conditional stationary distribution, given that
the Markov chain is in a predefined finite subset of the state space, and using it, we
develop new algorithms for computing the stationary distribution. In this chapter, we
briefly summarize known approaches to the stationary distribution in Markov chains on
a countably infinite state space and then, we describe the motivation of this study.

1.1 Infinite-state Markov chains

We consider a time-homogeneous, continuous-time Markov chain {X(t)}t≥0 on the state
space Z+ = {0, 1, . . . }, where Z+ denotes the set of nonnegative integers. In primitive
queueing models, X(t) (t ≥ 0) represents the number of customers in the system at time
t. From the Markov property, {X(t)}t≥0 satisfies for arbitrary s, t ≥ 0 and j ∈ Z+,

Pr(X(t+ s) = j | X(u) (0 ≤ u < t), X(t) = i) = Pr(X(t+ s) = j | X(t) = i).

Let qi,j (i, j ∈ Z+, i ̸= j) denote the transition rate from state i to state j. The transition
probabilities of {X(t)}t≥0 satisfy

Pr(X(t+ s) = j | X(t) = i) =

{
qi,js+ o(s), j ̸= i,

1− qis+ o(s), j = i,
i, j ∈ Z+, s, t ≥ 0,

where o(s) denotes the little-o notation such that lims→0 o(s)/s = 0, and

qi =
∑

j∈Z+\{i}

qi,j , i ∈ Z+.

1



2 CHAPTER 1. INTRODUCTION

We assume qi < ∞ (i ∈ Z+) throughout this dissertation. Let κ(t) (t ≥ 0) denote the
transient probability distribution at time t, i.e., the ith (i ∈ Z+) element [κ(t)]i of κ(t)
denotes Pr(X(t) = i). Note that the transient probability Pr(X(t) = i) depends on the
initial state. If the initial distribution κ(0) is given, we obtain κ(t) (t ≥ 0) as

κ(t) = κ(0) exp[Qt],

where Q denotes the infinitesimal generator of the Markov chain {X(t)}t≥0:

Q =



−q0 q0,1 q0,2 q0,3 q0,4 . . .
q1,0 −q1 q1,2 q1,3 q1,4 . . .
q2,0 q2,1 −q2 q2,3 q2,4 . . .
q3,0 q3,1 q3,2 −q3 q3,4 . . .
q4,0 q4,1 q4,2 q4,3 −q4 . . .
...

...
...

...
...

. . .


, (1.1)

and exp[Qt] denotes the matrix exponential of (Qt):

exp[Qt] =

∞∑
k=0

1

k!
(Qt)k.

Note that Q has negative diagonal elements and nonnegative off-diagonal elements, and
it satisfies

Qe = 0, (1.2)

where e denotes a column vector with an appropriate dimension, whose elements are all
equal to one.

Markov chains are classified according to the reachability and the recurrence time.
First, a Markov chain is called irreducible if and only if all states belong to one commu-
nication class, i.e., every state can be reached from every other state: for any i, j ∈ Z+

Pr(X(t) = j | X(0) = i) > 0, t > 0.

Note that Pr(X(t) = j | X(0) = i) = [exp[Qt]]i,j . Let τi,i denote the recurrence time to
state i, i.e., the first transition time to state i after visiting other states, starting from
state i. A Markov chain is called recurrent if Pr(τi,i < ∞) = 1 for all i ∈ Z+, otherwise
it is called transient. Furthermore a recurrent Markov chain is called positive-recurrent
if E[τi,i] < ∞ for all i ∈ Z+, otherwise it is called null-recurrent. An irreducible and
positive-recurrent continue-time Markov chain is ergodic and it has the unique stationary
distribution. In what follows, we assume that {X(t)}t≥0 is ergodic, unless otherwise
mentioned.

We also assume that the Markov chain {X(t)}t≥0 is stationary (i.e., κ(t) = κ(0)
(t ≥ 0)) and we define π as the stationary distribution in {X(t)}t≥0.

π = (π0 π1 π2 . . . ), (1.3)

where πi = Pr(X(0) = i) (i ∈ Z+). The stationary distribution satisfies

π exp[Qt] = π, t ≥ 0.
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By definition, π expresses the long-term property of Markov chains in two aspects. If a
continuous-time Markov chain is ergodic, for an arbitrary initial distribution κ(0) = κ∗,
the transient probability distribution κ(t) converges to the stationary distribution π as
t goes to infinity.

lim
t→∞

κ(t) = lim
t→∞

κ∗ · exp[Qt] = π.

The left-hand side limt→∞ κ(t) of the equation is called the limiting probability distri-
bution. Furthermore, it is known that the stationary probability πi equals the limiting
time average as follows.

lim
T→∞

1

T

∫ T

0
1l{X(t)=i}dt = πi, a.s.,

where 1l{E} denote the indicator function of event E.
The stationary distribution π in the ergodic Markov chain is determined uniquely

by the global balance equation:

πQ = 0, πe = 1. (1.4)

Note that π can be viewed as the left eigenvector of Q associated with the eigenvalue
0 with πe = 1. Because of the infinite-dimensional π and Q, it is hard to solve (1.4)
directly except for some special classes, e.g., Q is given in a tri-diagonal form. In many
practical situations, to obtain concrete information on the stationary distribution, we
have to rewrite the global balance equation (1.4) to be a more tractable form.

In the analysis, stochastic models are sometimes formulated as bivariate Markov
chains which are defined in terms of the univariate Markov chain {X(t)}t≥0 as follows.
We partition the state space Z+ of {X(t)}t≥0 into finite and disjoint subsets Lℓ (ℓ ∈ Z+)
called levels. We call Lℓ level ℓ in particular. Let Mℓ = |Lℓ| (ℓ ∈ Z+) denote the number
of states in level ℓ, where for any set X , |X | stands for the cardinality of X . Without
loss of generality, we assume Lℓ = {Lℓ−1, Lℓ−1+1, . . . , Lℓ− 1} (ℓ ∈ Z+), where L−1 = 0
and Lℓ (ℓ ∈ Z+) denotes the number of states in levels ℓ or lower.

Lℓ =


0, ℓ = −1,
ℓ∑

k=0

Mk, ℓ ∈ Z+.

We then partition the infinitesimal generator Q and the stationary distribution π in
conformance with the levels.

Q =



L0 L1 L2 L3 L4 ···

L0 Q0,0 Q0,1 Q0,2 Q0,3 Q0,4 · · ·
L1 Q1,0 Q1,1 Q1,2 Q1,3 Q1,4 · · ·
L2 Q2,0 Q2,1 Q2,2 Q2,3 Q2,4 · · ·
L3 Q3,0 Q3,1 Q3,2 Q3,3 Q3,4 · · ·
L4 Q4,0 Q4,1 Q4,2 Q4,3 Q4,4 · · ·
...

...
...

...
...

...
. . .


, (1.5)

π =
( L0 L1 L2 L3 L4 ···

π0 π1 π2 π3 π4 · · ·
)
. (1.6)
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The Markov chain {X(t)}t≥0 whose infinitesimal generator is given in the form of (1.5)
can be regarded as a bivariate Markov chain {(L(t), J(t))}t≥0, where L(t) ∈ Z+ denotes
the level at time t, and given L(t) = ℓ, J(t) takes a value in Mℓ = {0, 1, . . . ,Mℓ − 1}
and denotes the index of X(t) in Lℓ:

L(t) = ℓ, if X(t) ∈ Lℓ,

J(t) = X(t)− Lℓ−1, if X(t) ∈ Lℓ.

We call J(t) the phase. Note that (L(t), J(t)) = (ℓ, j) (ℓ ∈ Z+, j ∈ Mℓ) is equavalent
to X(t) = Lℓ−1 + j, so that [πℓ]j = Pr(L(0) = ℓ, J(t) = j) = Pr(X(0) = Lℓ−1 +
j). Furthermore, Lℓ is equivalent to {(ℓ, j); j ∈ Mℓ}. For a given Markov chain,
the univariate form {X(t)}t≥0 and the bivariate form {(L(t), J(t))}t≥0 can be used
exchangeably.

In many practical queueing models, the level variable L(t) represents the number
of customers at time t, and the phase variable J(t) does the auxiliary state interacting
with L(t). Typically, J(t) represents the underlying state of a Markovian arrival process
(MAP) or the phase of a phase-type service time distribution. The bivariate (i.e., level-
partitioned) Markov chains is called level-independent if Qk,ℓ = Aℓ−k (k, ℓ ∈ N) in (1.5),
otherwise it is called level-dependent, where N = {1, 2, . . .} denotes the set of positive
integers. The level independence can be viewed as the block-Toeplitz structure in the
infinitesimal generator Q := Q(LI):

Q(LI) =



L0 L1 L2 L3 L4 ···

L0 B0 B1 B2 B3 B4 · · ·
L1 B−1 A0 A1 A2 A3 · · ·
L2 B−2 A−1 A0 A1 A2 · · ·
L3 B−3 A−2 A−1 A0 A1 · · ·
L4 B−4 A−3 A−2 A−1 A0 · · ·
...

...
...

...
...

...
. . .


. (1.7)

1.2 Preliminaries

Throughout this dissertation, we use the following conventions. We first define Zℓ
m

(m, ℓ ∈ Z+) and Z∞
m (m ∈ Z+) as

Zℓ
m =

{
{m,m+ 1, . . . , ℓ}, m ≤ ℓ,

∅, m > ℓ,
Z∞
m = {m,m+ 1, . . . }, m ∈ Z+.

Note that Z+ = Z∞
0 , N = Z∞

1 , and for any ℓ ∈ Z+, Z+ is partitioned into a finite subset
Zℓ
0 and its complement Z∞

ℓ+1. For any row vector x, we define x as

x =


x

xe
, xe ̸= 0,

0, otherwise,

and for any matrix X composed of M+1 row vectors x(i) (i = 0, 1, . . . ,M), we define X
as the corresponding matrix composed of M +1 row vectors x(i) (i = 0, 1, . . . ,M). For
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any (M+1)-dimensional row or column vector x, let diag(x) denote an (M+1)×(M+1)
diagonal matrix whose ith diagonal element is given by the ith element [x]i of x. We
then have

x = xe · x, X = diag(Xe)X. (1.8)

For an arbitrary 1× (M +1) vector x = (x0 x1 · · · xM ), ∥x∥1 is defined as the ℓ1-norm
of x.

∥x∥1 =
M∑
j=0

|xj |. (1.9)

We will apply the same notation ∥ · ∥1 as the ℓ1-norm in (1.9) to the case of M = ∞
(i.e., the total variation norm) as well.

We construct a convex polytope P, by considering the intersection of a polyhedral
convex cone C on the first orthant {x ∈ RN+1; x ≥ 0} of RN+1 and a hyperplane
containing all probability vectors in RN+1. As we will see, C and P take the following
forms:

C = {x ∈ RN+1; xA ≥ 0, xB = 0},
P = C ∩ {x ∈ RN+1; xe = 1} = {x ∈ RN+1; xA ≥ 0, xB = 0, xe = 1}, (1.10)

where A and B denote appropriate matrices with N + 1 rows. Note that we allow
B = O and in that case, we can ignore the constraint xB = 0 in (1.10). In general, a
convex polytope P can also be represented by a set of convex combinations of vertices
of P. Specifically, by using an appropriate nonnegative matrix C with N + 1 columns
such that Ce = e, P in (1.10) can also be represented to be

P = {x ∈ RN+1; x = αC, α ≥ 0, αe = 1}.

Note that C is composed of 1 × (N + 1) probability vectors γi (i = 0, 1, . . . ,M) that
span P. If M vectors γ1 − γ0, γ2 − γ0, . . ., γM − γ0 are linearly independent, P is
called an M -simplex. For an arbitrarily convex polytope P, let riP denote the relative
interior of P [Roc70, Theorem 6.9].

riP = {x ∈ RN+1; xA > 0, xB = 0, xe = 1} (1.11)

= {x ∈ RN+1; x = αC, α > 0, αe = 1}. (1.12)

1.3 Known results on the stationary distribution

As stated in Section 1.1, it is hard to solve the global balance equation (1.4) analytically
except for some special classes. In the past, this problem has been tackled mainly
by two approaches: the matrix-analytic method (MAM) [Lat99, Neu81, Neu89] and
the augmented truncation approximation (ATA) [Har12, Liu18, Sen80, Zha04]. In this
section, we summarize these two approaches briefly.

1.3.1 The matrix-analytic method (MAM) and its extensions

The MAM targets Markov chains with special transition structures which appear often
in applications and gives semi-explicit expressions of the stationary distribution π. In
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this subsection, we will describe the MAM for continuous-time Markov chains based
on the results in [Joy16, Kli06]. In this subsection, we consider Markov chains in the
bivariate form {(L(t), J(t))}t≥0 (c.f. (1.5) and (1.6)).

The standard MAM is applicable to level-independent Markov chains with the fol-
lowing features: direct transitions between levels are skip-free in one direction (or both).
In particular, level-independent Markov chains are called M/G/1-type if transitions be-
tween levels are skip-free to the left [Neu89] and they are called G/M/1-type if tran-
sitions between levels are skip-free to the right [Neu81]. If transitions between levels
are skip-free to both directions, they are called quasi birth-and-death (QBD) processes
[Bri95, Neu81]. Note that the skip-free property of levels impliesAk = Bk = O (k ∈ Z∞

2 )
or A−k = B−k = O (k ∈ Z∞

2 ) in (1.7). In other words, the skip-free property of levels
can be view as the block-Hessenberg structure in the infinitesimal generator Q.

The MAM for Markov chains of M/G/1-type [Neu89, Kli06]: We consider
an ergodic and continuous-time Markov chain {(L(t), J(t))}t≥0 of M/G/1-type with
Mℓ = M (ℓ ∈ Z+). The infinitesimal generator Q := Q(M/G/1) is given by

Q(M/G/1) =



L0 L1 L2 L3 L4 ···

L0 B0 B1 B2 B3 B4 · · ·
L1 A−1 A0 A1 A2 A3 · · ·
L2 O A−1 A0 A1 A2 · · ·
L3 O O A−1 A0 A1 · · ·
L4 O O O A−1 A0 · · ·
...

...
...

...
...

...
. . .


.

We defineG as anM×M probability matrix whose (i, j)th (i, j ∈ M = {0, 1, . . . ,M−1})
element represents the probability that the first passage time from state (ℓ+1, i) (ℓ ∈ Z+)
to level ℓ ends at state (ℓ, j). The matrix G is called G-matrix and it is given by the
minimum nonnegative solution X to the following matrix polynomial equation.

A−1 +
∞∑
k=0

AkX
k+1 = O. (1.13)

We define Ãℓ (ℓ ∈ Z+) and B̃ℓ (ℓ ∈ Z+) as

Ãℓ =

∞∑
n=ℓ

AnG
n−ℓ, B̃ℓ =

∞∑
n=ℓ

BnG
n−ℓ.

It is known that πℓ (ℓ ∈ N) is given in terms of π0 (cf. (1.6)).

πℓ = π0Fℓ, ℓ ∈ N, (1.14)

where

Fℓ = (B̃ℓ +

ℓ−1∑
i=1

FiÃℓ−i)(−Ã0)
−1, ℓ ∈ N.
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The subvector π0 is called the boundary vector. It is also known that the boundary
vector π0 is determined uniquely by

π0B̃0 = 0, π0

(
I +

∞∑
ℓ=1

Fℓ

)
e = 1. (1.15)

Therefore, the stationary distribution π in Markov chains of M/G/1-type is given by
the semi-explicit expressions (1.14) with (1.15) in terms of G.

Note that the second equation in (1.15) determines π0e = Pr(L(0) = 0). By applying
the results for discrete-time Markov chains in [Neu89] to continuous-time Markov chains
via the uniformization technique, π0e is also determined as follows.

π0e =
(
1 + π0

( ∞∑
k=0

Bk +
∞∑
k=1

kBke · γ
)(

−
∞∑

k=−1

Ak −
∞∑
k=1

kAk−1eγ
)−1

e
)−1

,

where γ is the unique solution of

γG = γ, γe = 1.

The MAM for Markov chains of G/M/1-type [Neu81, Joy16]: We consider
an ergodic and continuous-time Markov chain {(L(t), J(t))}t≥0 of G/M/1-type with
Mℓ = M (ℓ ∈ N). The infinitesimal generator Q := Q(G/M/1) of {(L(t), J(t))}t≥0 is
given by

Q(G/M/1) =



L0 L1 L2 L3 L4 ···

L0 B0 A1 O O O · · ·
L1 B−1 A0 A1 O O · · ·
L2 B−2 A−1 A0 A1 O · · ·
L3 B−3 A−2 A−1 A0 A1 · · ·
L4 B−4 A−3 A−2 A−1 A0 · · ·
...

...
...

...
...

...
. . .


.

We define R as an M ×M matrix whose (i, j)th (i, j ∈ M = {0, 1, . . . ,M − 1}) element
represents the ratio of the mean total sojourn time in state (ℓ + 1, j) (ℓ ∈ N) in the
recurrence time to level ℓ starting from state (ℓ, i) to the mean sojourn time in state
(ℓ, i). The matrix R is called the R-matrix and it is given by the minimum nonnegative
solution X to the following matrix polynomial equation.

∞∑
k=0

XkA1−k = O. (1.16)

By definition, we have πℓ = πℓ−1R (ℓ ∈ N). We thus have

πℓ = π0R
ℓ, ℓ ∈ N. (1.17)

By substituting (1.17) into (1.4), the boundary vector π0 is determined uniquely by

π0

∞∑
ℓ=0

RℓB−ℓ = 0, π0

∞∑
ℓ=0

Rℓe = 1. (1.18)
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Therefore, the stationary distribution π in Markov chains of G/M/1-type is given by
the semi-explicit expressions (1.17) and (1.18) in terms of R.

Note that the second equation in (1.18) is also rewritten to be

π0(I −R)−1e = 1,

because the spectrum radius of R is less than one if the Markov chain is ergodic.

∞∑
ℓ=0

Rℓ = (I −R)−1.

Roughly speaking, in the standard MAM, the global balance equation is reduced
to the matrix polynomial equations determining G-matrix or R-matrix as in (1.13) or
(1.16). The stationary distribution in QBD processes is also studied in a similar way
[Neu81].

In the literature, extensions of the MAM for level-dependent Markov chains (here-
after referred to as LD-MAM) are studied. Level-dependent Markov chains are called
level-dependent M/G/1-type (LD-M/G/1-type) if the transition between levels are skip-
free to the left and they are called the level-dependent G/M/1-type (LD-G/M/1-type)
if the transition between levels are skip-free to the right. Specifically, the infinitesimal
generator Q := Q(LD-M/G/1) of Markov chains of LD-M/G/1-type is given by

Q(LD-M/G/1) =



L0 L1 L2 L3 L4 ···

L0 Q0,0 Q0,1 Q0,2 Q0,3 Q0,4 · · ·
L1 Q1,0 Q1,1 Q1,2 Q1,3 Q1,4 · · ·
L2 O Q2,1 Q2,2 Q2,3 Q2,4 · · ·
L3 O O Q3,2 Q3,3 Q3,4 · · ·
L4 O O O Q4,3 Q4,4 · · ·
...

...
...

...
...

...
. . .


. (1.19)

For Markov chains of LD-M/G/1-type, we can obtain a similar expression to (1.14) and
(1.15) based on the level-dependent G-matrix Gℓ (ℓ ∈ N) [Hof01, Kli06, Li05]. For
Markov chains of LD-G/M/1-type, we can also obtain a similar expression to (1.17) and
(1.18) based on the level-dependent R-matrix Rℓ (ℓ ∈ N). The stationary distribution
in level-dependent QBD processes is also studied in [Bau10, Bri95, Phu10].

1.3.2 The augmented truncation approximation (ATA)

To obtain the stationary distribution in Markov chains on a countably infinite state
space, we need to consider approximation except for cases that the explicit expression of
the stationary distribution is available or that the MAM or the LD-MAM is applicable.
In this subsection, we consider Markov chains in a univariate form {X(t)}t≥0.

Let ξ(N) (N ∈ Z+) denote the tail probability of the stationary distribution.

ξ(N) =

∞∑
i=N+1

πi = Pr(X(0) > N).
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In any ergodic Markov chains, the tail probability ξ(N) monotonically converges to
zero as N goes to infinity. Roughly speaking, for a sufficiently large i, the stationary
probability πi is negligible, so that the influence of transition structures in sufficiently
large states on π may be negligible. In the ATA, we choose a sufficiently large N ∈ Z+

and ignore the transition structures on Z∞
N+1. In other words, the ATA attempts to

obtain an approximation to π from the (N + 1)× (N + 1) northwest corner submatrix
Q(1,1)(N) of the infinitesimal generator Q (cf. (4.2) in Section 4.2):

Q(1,1)(N) =



−q0 q0,1 q0,2 q0,3 . . . q0,N−1 q0,N
q1,0 −q1 q1,2 q1,3 . . . q1,N−1 q1,N
q2,0 q2,1 −q2 q2,3 . . . q2,N−1 q2,N
q3,0 q3,1 q3,2 −q3 . . . q3,N−1 q3,N
...

...
...

...
. . .

...
...

qN−1,0 qN−1,1 qN−1,2 qN−1,3 . . . −qN−1 qN−1,N

qN,0 qN,1 qN,2 qN,3 . . . qN,N−1 −qN


.

The northwest corner submatrix Q(1,1)(N) of an irreducible Markov chain is a de-
fective infinitesimal generator, i.e., Q(1,1)(N) has negative diagonal elements and non-
negative off-diagonal elements, and it satisfies Q(1,1)(N)e ≤ 0 and Q(1,1)(N)e ̸= 0.
The approximations based on northwest corner submatrices are initially studied in
[Sen67, Sen68, Gol73].

In the ATA proposed in [Gol74], we construct an (N + 1) × (N + 1) infinitesimal
generator Q(1,1)(N) +QA(N), where QA(N) is an augmentation matrix such that

QA(N) ≥ O, QA(N)e = (−Q(1,1)(N))e. (1.20)

This procedure is called the augmentation. Usually, [Q(1,1)(N) +QA(N)] is assumed to
be irreducible. Let π(i)(N) (i = 1, 2) denote the subvector of π:

π =
( ZN

0 Z∞
N+1

π(1)(N) π(2)(N)
)
. (1.21)

We obtain an approximation πapprox(N) to π(1)(N) by solving

πapprox(N)[Q(1,1)(N) +QA(N)] = 0, πapprox(N)e = 1. (1.22)

We then adopt (πapprox(N) 0) as an approximation to π. Note that (1.22) is a global
balance equation for a Markov chain on ZN

0 . Roughly speaking, the ATA constructs a
finite-state Markov chain on ZN

0 with the infinitesimal generator Q(1,1)(N)+QA(N) as
an approximation to the original Markov chain {X(t)}t≥0 and solves its global balance
equation. In the ATA, we approximate π(2)(N) to be 0. Note that π(2)(N) (> 0) is neg-
ligible for a sufficiently large N , since ξ(N) = π(2)(N)e converges to zero monotonically
as N increases.

To obtain a good approximation (πapprox(N) 0) to π, it is important whether the
approximation (πapprox(N) 0) converges to π as N goes to infinity:

lim
N→∞

∥(πapprox(N) 0)− π∥1 = lim
N→∞

(
∥πapprox(N)− π(1)(N)∥1 + ξ(N)

)
= 0. (1.23)
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For discrete-time Markov chains, the convergence (1.23) is shown in the case that
the state transition probability matrix P is a upper-Hessenberg matrix or P satisfies
infi∈Z+ [P ]i,j > 0 for some j ∈ Z+ [Gib87a]. The convergence (1.23) is also known for
stochastically monotone or stochastically block-monotone discrete-time Markov chains
[Gib87b, Li00].

The approximation (πapprox(N) 0) clearly depends not only on the truncation point
N but also on the selection of the augmentation matrix QA(N). In the literature,
some strategies for it (hereinafter referred to as augmentation strategies) are studied.
The ATA is called linear if the rank of QA(N) is equal to one [Gib87a]. Specifically,
if QA(N) = (−Q(N)e)ζ for some 1 × (N + 1) probability vector ζ, QA(N) is called
a linear augmentation matrix and πapprox(N) is called a linear ATA solution. Let ei
(i ∈ Z+) denote the ith unit column vector. In particular, if QA(N) = (−Q(N)e)eT0
(resp. QA(N) = (−Q(N)e)eTN ), the augmentation is called the first-column augmenta-
tion (resp. the last-column augmentation), where T stands for the transpose operator.
Furthermore, the last-column-block augmentation [Mas18], the augmentation of diago-
nal elements [Gib87a], and others [Wol80, Li00] are proposed as augmentation strategies.
It is known that (1.23) holds for the first-column augmentation in any ergodic Markov
chains [Wol80]. On the other hand, the last-column augmentation requires some tech-
nical conditions for the convergence (1.23) [Wol80]. It is, however, claimed that the
last-column augmentation is the best augmentation in some stochastically monotone
Markov chains [Gib87a], i.e., the approximation converges to π faster than any other
augmentation strategies. In [Liu10, Section 2], the convergence is shown under well-
known technical conditions corresponding to the ergodicity [Bor98, Theorem 1.3, The-
orem 2.2].

From a practical point of view, the error ∥(πapprox(N) 0)− π∥1 for a specific N of
the approximation is also important as well as the convergence (1.23). Upper bounds
of the error for the last-column augmentation and the last-column-block augmentation
are shown under some monotonicity and/or ergodicity for discrete-time Markov chains
[Liu10, Mas15, Mas16, Twe98]. The upper bounds of the error is also given in terms of
parameters related to some drift conditions for discrete-time or continue-time Markov
chains [Liu10, Mas18, Liu18]. Note here that the constructions of the drift conditions
are difficult issues in general Markov chains.

1.4 Motivation of this study

By definition, the subvector π(1)(N) of π satisfies π(1)(N)e = 1− ξ(N), where π(1)(N)
appears in (1.21). In general, the approximation πapprox(N) to π(1)(N) is normalized
such that πapprox(N)e = 1 as in (1.22) because we cannot obtain the tail probability
ξ(N) exactly except for some special classes. Let π(N) (N ∈ Z+) denote the conditional
stationary distribution given X(0) ∈ ZN

0 .

π(N) = (π0(N) π1(N) · · · πN (N)),

where πi(N) = Pr(X(0) = i | X(0) ∈ ZN
0 ) (i ∈ ZN

0 ). By definition, we have

π(N) = π(1)(N) =
π(1)(N)

π(1)(N)e
. (1.24)
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It is clear that π(N) is the normalized π(1)(N) such that π(N)e = 1. Therefore, we can
regard the ATA solution πapprox(N) in (1.22) as an approximation to the conditional
stationary distribution π(N) rather than π(1)(N) because of π(N)e = πapprox(N)e = 1.
Note here that π(N) converges to the (unconditional) stationary distribution π element-
wise as N goes to infinity.

lim
N→∞

πi(N) = lim
N→∞

πi

π(1)(N)e
= πi, i ∈ Z+,

because limN→∞ π(1)(N)e = πe = 1.

It is known that the error in an approximation (πapprox(N) 0) to π is given in terms
of the tail probability ξ(N) = Pr(X(0) > N) and the error ϵ(N) = ∥πapprox(N)−π(N)∥1
[Zha04]:

2ξ(N) ≤ ∥(πapprox(N) 0)− π∥1 ≤ 2ξ(N) + ϵ(N). (1.25)

Recall that the tail probability ξ(N) monotonically converges to zero as N increases. To
suppress the error bound given in (1.25), we should set N large enough to make the tail
probability ξ(N) negligible. Because the exact estimation of the tail probability depends
on transition structures on Z∞

N+1, the analytical discussion on the tail probability is hard
in the general setting and the selection of N requires model-specific discussions. On the
other hand, for a givenN , we should suppress the error ϵ(N) in the computed conditional
stationary distribution πapprox(N). In this study, we focus on the conditional stationary
distribution explicitly.

Recently, characterizations of the (conditional) stationary distribution via systems of
linear inequalities have been studied in [Taki16]. Specifically, the stationary distribution
in Markov chains of LD-M/G/1-type is characterized as an unique feasible solution of
a system of infinitely many linear inequalities. Recall that the infinitesimal generator
Q := Q(LD-M/G/1) is given by (1.19).

Proposition 1.1 ([Taki16, Theorem 1]). Consider an ergodic Markov chain of LD-
M/G/1-type. For a sequence {Sk; k ∈ Z+} satisfying

ℓ+1∑
k=0

SkQk,ℓ = O, ℓ ∈ Z+,

we assume that there exists a feasible solution x = x∗ of the following system of linear
constraints:

xSℓ > 0 (ℓ ∈ Z+), xS0e = 1. (1.26)

We then have

πℓ = p0x
∗Sℓ, ℓ ∈ Z+,

where

p0 =
(
x∗

∞∑
k=0

Ske
)−1

.
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Note that Sℓ (ℓ ∈ Z+) in (1.26) exists but it is not unique. A trivial example is
Sℓ = eπℓ (ℓ ∈ Z+) [Taki16, Section 1]. Note also that Proposition 1.1 does not guarantee
the existence of a feasible solution x∗. On the other hand, if a feasible solution x∗ exists,
it is guaranteed to be unique from the global balance equation. Under the assumption
that Qℓ,ℓ−1 (ℓ ∈ N) is nonsingular, [Taki16] obtained a non-trivial Sℓ’s and for such Sℓ’s,
it showed that the system (1.26) of linear inequalities has an unique feasible solution
x∗ = π0. Furthermore, under the same assumption, [Taki16] represented the feasible
solution x∗ = π0 in terms of reverse-directional R-matrices. Finally, it developed a
computational algorithm of the conditional stationary distribution in a special class of
Markov chains of LD-M/G/1-type, which satisfies that Qℓ,ℓ−1 (ℓ ∈ Z∞

L∗) is nonsingular
for some nonnegative integer L∗.

In this dissertation, we clarify not the exact one-point solution of the conditional
stationary distribution, which is not available in the general setting, but regions con-
taining it. For this purpose, we characterize the conditional stationary distribution via
systems of linear inequalities, as with [Taki16]. Specifically, we derive systems of linear
inequalities that the conditional stationary distribution satisfies. Recall that a system
of linear inequalities determines a convex region that the conditional stationary distri-
bution lies in. Therefore, we can evaluate error bounds for an approximation to the
conditional stationary distribution, using our linear-inequality characterization. To the
best of our knowledge, characterizations of the (un)conditional stationary distribution
via systems of linear inequalities have not been studied except for [Taki16].

We consider two types of linear-inequality characterizations in this dissertation. We
first generalize the results in [Taki16] to general bivariate Markov chains, by elimi-
nating the assumption of the nonsingularity of Qℓ,ℓ−1’s and the skip-free-to-the-left
property posed in [Taki16]. Specifically, we characterize the conditional stationary dis-
tribution in general bivariate Markov chains via systems of linear inequalities obtained
from reverse-directional R-matrices. We show that the boundary probability vector of
the conditional stationary distribution is uniquely determined by infinitely many convex
polytopes spanned by reverse-directional R-matrices.

Secondly, we characterize the conditional stationary distribution via systems of lin-
ear inequalities obtained from northwest corner submatrices of the infinitesimal gener-
ator. We show the minimal convex polytope that contains the conditional stationary
distribution given that the state is not greater than N under the condition that the
(K + 1)× (K + 1) northwest corner submatrix of Q and some information on the tran-
sition structure are available. We also show that such convex polytopes monotonically
converges to the singleton with the conditional stationary distribution as K goes to
infinity.

Although we consider continuous-time infinite-state Markov chains in this disserta-
tion, almost all results in this dissertation, except for them corresponding to limit formu-
las, are applicable to finite-state Markov chains. Furthermore, the results for continuous-
time Markov chains on Z+ in this dissertation are applicable to time-homogeneous,
discrete-time Markov chains on Z+. Specifically, in a discrete-time Markov chain with a
state transient probability matrix PD, the stationary distribution πD, if exists, satisfies
πD = πDPD and πDe = 1. Therefore, we can study πD by considering the correspond-
ing continuous-time Markov chain with the infinitesimal generator Q = PD − I.
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Chapter 1: Introduction

Characterizations based on reverse-directional R-matrices

Chapter 2: Analytical results for general bivariate Markov chains

Chapter 3: A numerical algorithm based on the characterizations
for Markov chains of LD-M/G/1-type

Characterizations based on northwest corner submatrices of Q

Chapter 4: Analytical results for general Markov chains

Chapter 5: Computation based on the characterizations
• Implications of the analytical results for the ATA
• An application to a level-dependent disaster queue

Chapter 6: Conclusion

Figure 1.1: Overview of this dissertation.

1.5 Overview of the dissertation

This dissertation is organized as follows (cf. Figure 1.1).

In Chapter 2, we characterize the conditional stationary distribution in bivariate
Markov chains via systems of linear inequalities. We first summarize the known results
on reverse-directional R-matrices for the special class of Markov chains of LD-M/G/1-
type [Taki16]. Next, we generalize the known results to general, bivariate Markov chains.
Specifically, we characterize the conditional stationary distribution πlv(N) := π(LN−1)
given L(0) ∈ ZN

0 via the infinitely many convex polytopes spanned by the normalized row
vectors of reverse-directional R-matrices without any condition of the transition struc-
ture. The results imply that for any bivariate Markov chains, the computation of the
conditional stationary distribution is reduced to the computation of reverse-directional
R-matrices.

In Chapter 3, we consider the computation of the conditional stationary distribution
in Markov chains of LD-M/G/1-type, based on the results in Chapter 2. Our algorithm
for general Markov chains of LD-M/G/1-type is a slight modification of the algorithm
proposed in [Taki16]. The contributions of Chapter 3 are that (i) our algorithm is appli-
cable to any ergodic Markov chains of LD-M/G/1-type, i.e., we eliminate the assumption
in [Taki16] of the nonsingularity of matrices Qℓ,ℓ−1 (ℓ ∈ N) in (1.19) and that (ii) we
can set an allowable error bound for the conditional stationary distribution as an input
to the algorithm. We also provide some numerical examples.

In Chapter 4, we consider univariate Markov chains without any regular structures.
We characterize the conditional stationary distribution π(N) via systems of linear in-
equalities, by examining the (K + 1) × (K + 1) (K ≥ N) northwest corner submatrix
Q(1,1)(K) of the infinitesimal generator and a subset of states in ZK

0 , whose members
are directly reachable from at least one state in Z∞

K+1. Furthermore, for K such that
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K > N , we introduce new transition structures called (K,N)-skip-free sets and using
them, we obtain the minimum convex polytope that contains π(N).

In Chapter 5, we first provide some practical implications of the results in Chapter
4 for the ATA, and next consider the computation of the stationary distribution in
a queueing model with disasters as an application of the implications. In queueing
systems, a disaster is the event that all customers are removed from the system and it
is a typical event violating the skip-free-to-the-left property. We consider a single-server
queueing model with level-dependent disasters and generally distributed service times,
to which we cannot apply the MAM nor the LD-MAM, and we provide the numerical
implementation of its stationary distribution. Using the numerical example for the
queueing model, we also discuss our linear-inequality characterizations numerically, and
provide some tips for the numerical implementation of the ATA.

Finally, we conclude this dissertation in Chapter 6.



2 Characterizations of the Conditional
Stationary Distribution based on
Reverse-Directional R-Matrices

2.1 Introduction

This chapter considers a time-homogeneous, continuous-time bivariate Markov chain
{(L(t), J(t))}t≥0 stated in Section 1.1. We characterize the conditional stationary dis-
tribution via systems of linear inequalities obtained by reverse-directional R-matrices,
by generalizing the existing results in [Taki16] for a special class of Markov chains of
LD-M/G/1-type.

Recall that the level variable L(t) takes a value in Z+ = {0, 1, . . .}, and given L(t) = ℓ
(ℓ ∈ Z+), the phase variable J(t) takes a value in a finite set Mℓ = {0, 1, . . ., Mℓ − 1}.
It is assumed that the Markov chain is ergodic and stationary, and its infinitesimal
generator Q and stationary distribution π are partitioned in conformance with levels,
as in (1.5) and (1.6). Note that Qk,ℓ in (1.5) denotes an Mk ×Mℓ matrix representing
transitions from level k to level ℓ. We refer to a Markov chain {(L(t), J(t))}t≥0 with an
infinitesimal generator of the form in (1.5) as level-dependent G/G/1-type (LD-G/G/1-
type). Roughly speaking, the LD-G/G/1 type implies that a bivariate Markov chain
has no regular structures.

To characterize πℓ (ℓ ∈ Z+), we consider the recurrence time Tk(i) (k ∈ Z+, i ∈ Mk)
of level k, starting from state (k, i).

Tk(i) = min{t > 0; L(t) = k, (L(0), J(0)) = (k, i),

(L(s), J(s)) ̸= (k, i) for some s ∈ [0, t]}.

Let Nk,ℓ (k, ℓ ∈ Z+) denote an Mk×Mℓ matrix whose (i, j)th (i ∈ Mk, j ∈ Mℓ) element
represents the ratio of the mean total sojourn time in state (ℓ, j) in the recurrence time
Tk(i) to the mean sojourn time in state (k, i). By definition, Nk,ℓ (k, ℓ ∈ Z+) is a
nonnegative matrix, Nk,k = I (k ∈ Z+), and (cf. Remark 2.1 in Section 2.3)

πℓ = πkNk,ℓ, k, ℓ ∈ Z+. (2.1)

It is easy to verify that

πℓ =

{
πkRk+1Rk+2 · · · · ·Rℓ, ℓ > k,

πkZk−1Zk−2 · · · · ·Zℓ, ℓ < k,
(2.2)

where
Rℓ = Nℓ−1,ℓ (ℓ ∈ N), Zℓ = Nℓ+1,ℓ (ℓ ∈ Z+).

15
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Note that Rℓ is the level-dependent R-matrix [Bau10, Bri95, Li05, Phu10], which has
been studied mainly for quasi birth-and-death processes. Conversely, Zℓ represents the
reverse-directional analogue of the R-matrix. In particular, we have

πℓ = πℓ+1Zℓ, ℓ ∈ Z+. (2.3)

In this chapter, we focus on the multilevel reverse-directional R-matrix Nk,ℓ (k > ℓ). In
what follows, we refer to Nk,ℓ (k > ℓ) as the reverse-directional R-matrix for short.

We consider the conditional stationary distribution πlv(N) given L(0) ∈ ZN
0 .

πlv(N) = (π0(N) π1(N) · · · πN (N)),

where πℓ(N) (ℓ ∈ ZN
0 ) denotes a 1×Mℓ vector whose jth (j ∈ Mℓ) element represents

Pr((L(0), J(0)) = (ℓ, j) | L(0) ∈ ZN
0 ).

πℓ(N) =
πℓ

N∑
k=0

πke

, ℓ ∈ ZN
0 . (2.4)

Note that πlv(N)e = 1 by definition and πℓ(N) = πN (N) · NN,ℓ (ℓ ∈ ZN−1
0 ) because

of (2.1) and (2.4). Therefore, πlv(N) is given in terms of the (normalized) boundary
vector πN = πN/πNe = πN (N)/πN (N)e and Nk,ℓ’s:

πlv(N) =
πN (NN,0 NN,1 · · · NN,N )

πN (NN,0 NN,1 · · · NN,N )e
. (2.5)

In this chapter, we characterize the boundary vector πN based on the reverse-
directional R-matrix Nk,ℓ (k > ℓ). As stated in Section 1.4, the stationary distribu-
tion π in Markov chains of LD-M/G/1-type was characterized by systems of infinitely
many linear inequalities in [Taki16] (cf. Proposition 1.1). Furthermore, that paper
represented the conditional stationary distribution π(N) in a special class of Markov
chains of LD-M/G/1-type, which satisfies that Qℓ,ℓ−1’s is nonsingular, in terms of the
reverse-directional R-matrices. We generalize the results in [Taki16] to Markov chains
of LD-G/G/1-type.

The rest of this chapter is organized as follows. In Section 2.2, we summarize the
known results on the reverse-directional R-matrices for special Markov chains of LD-
M/G/1-type in [Taki16]. In Section 2.3, we characterize the boundary vector based on
the reverse-directional R-matrices for Markov chains of LD-G/G/1-type. Finally, we
conclude this chapter in Section 2.4.

2.2 Known results on reverse-directional R-matrices

In this section, we summarize known results on Nk,ℓ (k, ℓ ∈ Z+), which is shown in
[Taki16]. Let νk,ℓ(i) (k, ℓ ∈ Z+, i ∈ Mk) denote the ith row vector of Nk,ℓ. Recall
that νk,ℓ(i) = νk,ℓ(i)/(νk,ℓ(i)e) (i ∈ Mk) denotes the normalized νk,ℓ(i) if νk,ℓ(i)e ̸= 0,
otherwise νk,ℓ(i) = 0. In [Taki16], the stationary distribution in Markov chains of LD-
M/G/1-type is characterized via the system of linear inequalities as shown in Proposition
1.1, where the infinitesimal generator Q := Q(LD-M/G/1) of LD-M/G/1-type is given in
(1.19).
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For a while, we assume that Qℓ,ℓ−1 is nonsingular for all ℓ ∈ N. Let M := M0

(= M1 = M2 = · · · ). In [Taki16], an explicit form of Sℓ (ℓ ∈ Z+) in Proposition 1.1 is
given by S0 = I and

Sℓ =
(
Q0,ℓ−1 +

ℓ−1∑
n=1

SnQn,ℓ−1

)
(−Qℓ,ℓ−1)

−1, ℓ ∈ N. (2.6)

Note that (2.6) requires the nonsingularity of Qℓ,ℓ−1’s. Let P̂k (k ∈ Z+) denote a convex
polytope determined by xSk ≥ 0 and xe = 1:

P̂k = {x ∈ RM ; xSk ≥ 0, xe = 1}.

It is clear that π0 ∈ P̂k (k ∈ Z+) from Proposition 1.1. It is also known that Sk in (2.6)
is nonsingular and S−1

k = Nk,0 (k ∈ Z+). Furthermore, the vertices {νk,0(i); i ∈ M}
of P̂k are identified:

P̂k = {x ∈ RM ; x =
∑
i∈M

α(i)νk,0(i),
∑
i∈M

α(i) = 1, α(i) ≥ 0 (i ∈ M)}.

Roughly speaking, π0 is characterized via convex polytopes spanned by normalized
row vectors of Nk,0. Furthermore, by generalizing these results, [Taki16] showed the
following results for a special class of Markov chains of LD-M/G/1-type.

Proposition 2.1 ([Taki16, Equations (21), (27), and (31) and Theorems 2 and 3]).
Consider an ergodic Markov chain of LD-M/G/1-type. For a nonnegative integer N , if
every Qℓ,ℓ−1 (ℓ ∈ Z∞

N+1) is an M ×M nonsingular matrix, we have

(a) For every integer k (k > N), νk,N (i)e > 0 for all i ∈ M = {0, 1, . . . ,M − 1} and
νk,N (i)’s (i ∈ M) are linearly independent,

(b) limk→∞ νk,N (i) = πN for all i ∈ M,

(c) (M − 1)-simplices Pk,N (k > N) spanned by νk,N (i) (i ∈ M), i.e.,

Pk,N =
{
x ∈ RM ; x =

∑
i∈M

α(i)νk,N (i),
∑
i∈M

α(i) = 1, α(i) ≥ 0 (i ∈ M)
}
, (2.7)

satisfy Pk+1,N ⊆ Pk,N (k ∈ Z∞
N+1), and

(d) πN is given by

{πN} =
∞⋂

k=N+1

riPk,N = lim
k→∞

riPk,N .

2.3 Characterizations of the boundary probability vector
πN

In this section, we discuss similar properties ofNk,ℓ to Proposition 2.1 (b)–(d) in Markov
chains of LD-G/G/1-type. Note that Proposition 2.1 (b) is rewritten as follows: For an
arbitrary positive ϵ, there exists a natural number K (K > N) such that

∥νk,N (i)− πN∥1 ≤ ϵ, i ∈ M, k ∈ Z∞
K . (2.8)
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As we will see, even the skip-free-to-the-left property is not used to show the results
corresponding to Proposition 2.1 (b) and (d), so that they hold for Markov chains of
LD-G/G/1-type.

Note that Proposition 2.1 (a) does not hold in general because it is a consequence
of the M/G/1-type structure with nonsingular Qℓ,ℓ−1 (ℓ ∈ Z∞

N+1). Let M+
k,ℓ denote a

subset of Mk such that

M+
k,ℓ = {i ∈ Mk; νk,ℓ(i)e > 0}, k, ℓ ∈ Z+, k ̸= ℓ.

If νk,ℓ(i) = 0 (k ̸= ℓ) for all i ∈ Mk, {(L(t), J(t))}t≥0 could not reach from any state
in level k to level ℓ, which contradicts the irreducibility assumption. Therefore, in any
irreducible bivariate Markov chain {(L(t), J(t))}t≥0, we have M+

k,ℓ ̸= ∅ for arbitrarily

k, ℓ ∈ Z+ (k > ℓ), i.e., every Nk,ℓ has at least one non-zero row vector.
We first show a convex polytope corresponding to Pk,N in (2.7).

Theorem 2.1. Consider an ergodic Markov chain of LD-G/G/1-type. We have

πℓ ∈ riP+
k,ℓ, ℓ ∈ Z+, k ∈ Z∞

ℓ+1, (2.9)

where riP+
k,ℓ denotes a relative interior of a convex polytope P+

k,ℓ spanned by νk,ℓ(i)

(i ∈ M+
k,ℓ).

P+
k,ℓ =

{
x ∈ RMℓ ; x =

∑
i∈M+

k,ℓ

α(i)νk,ℓ(i),
∑

i∈M+
k,ℓ

α(i) = 1, α(i) ≥ 0 (i ∈ M+
k,ℓ)
}
.

Proof. It follows from (1.8) and (2.1) that

πℓ =
πkNk,ℓ

πkNk,ℓe
=

πk diag (Nk,ℓe)Nk,ℓ

πkNk,ℓe
= βk,ℓNk,ℓ,

where βk,ℓ = (βk,ℓ(0) βk,ℓ(1) · · · βk,ℓ(Mk − 1)) denotes a 1×Mk vector given by

βk,ℓ =
πkdiag (Nk,ℓe)

πkNk,ℓe
.

Since πk > 0, it is easy to verify that

βk,ℓ(i) > 0 (i ∈ M+
k,ℓ), βk,ℓ(i) = 0 (i ∈ Mk \M+

k,ℓ). (2.10)

We thus have
πℓ =

∑
i∈Mk

βk,ℓ(i)νk,ℓ(i) =
∑

i∈M+
k,ℓ

βk,ℓ(i)νk,ℓ(i). (2.11)

Furthermore, πℓe = 1 and νk,ℓ(i)e = 1 (i ∈ M+
k,ℓ) imply∑

i∈M+
k,ℓ

βk,ℓ(i) = 1. (2.12)

(2.9) follows from (1.12), (2.10), (2.11), and (2.12), which completes the proof.
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We next discuss the property corresponding to Proposition 2.1 (b), i.e., the conver-
gence of νk,ℓ(i)’s to πℓ. We first show a limiting formula under the condition that every
νk,ℓ(0) (k ∈ Z∞

ℓ+1) is not equal to 0.

Lemma 2.1. Consider an ergodic Markov chain of LD-G/G/1-type. For an arbitrarily
fixed ℓ (ℓ ∈ Z+), if νk,ℓ(0)e > 0 for all k (k ∈ Z∞

ℓ+1), we have

lim
k→∞

νk,ℓ(0) = πℓ.

Proof. Associated with an ergodic Markov chain {(L(t), J(t))}t≥0 of LD-G/G/1-type,
we consider an imbedded Markov chain {(Ln, Jn)}n=0,1,... immediately after state tran-
sitions. Let δℓ (ℓ ∈ Z+) denote a 1 × Mℓ vector whose jth (j ∈ Mℓ) element [δℓ]j
represents the rate −[Qℓ,ℓ]j,j of leaving from state (ℓ, j). The transition probability
matrix P of the imbedded Markov chain {(Ln, Jn)}n=0,1,... is then given by

P =



P0,0 P0,1 P0,2 P0,3 P0,4 · · ·
P1,0 P1,1 P1,2 P1,3 P1,4 · · ·
P2,0 P2,1 P2,2 P2,3 P2,4 · · ·
P3,0 P3,1 P3,2 P3,3 P3,4 · · ·
P4,0 P4,1 P4,2 P4,3 P4,4 · · ·
...

...
...

...
...

. . .


, (2.13)

where Pk,ℓ (k, ℓ ∈ Z+) is defined as

Pk,ℓ =

{
I + diag−1(δk)Qk,k, ℓ = k,

diag−1(δk)Qk,ℓ, ℓ ∈ Z+ \ {k}.

By definition, the imbedded Markov chain {(Ln, Jn)}n=0,1,... is irreducible and positive-
recurrent. We then define ρ = (ρ0 ρ1 · · · ) as the stationary probability vector of the
imbedded Markov chain {(Ln, Jn)}n=0,1,..., where ρℓ (ℓ ∈ Z+) denotes a 1 ×Mℓ vector
whose jth (j ∈ Mℓ) element represents the stationary probability of state (ℓ, j). Note
that ρ is determined uniquely by

ρ = ρP , ρe = 1. (2.14)

It follows from (1.4) and (2.14) that πℓ (ℓ ∈ Z+) is given in terms of ρk’s.

πℓ =
ρℓ diag

−1(δℓ)
∞∑
n=0

ρn diag
−1(δn)e

, ℓ ∈ Z+. (2.15)

Let kτk,ℓ(i) (k, ℓ ∈ Z+, k ̸= ℓ, i ∈ Mk) denote a 1×Mℓ vector whose jth (j ∈ Mℓ)
element represents the probability that the first passage time from state (k, i) to level
ℓ ends at state (ℓ, j) without visiting level k. Note that kτk,ℓ(i)e > 0 ⇔ νk,ℓ(i)e > 0
(i ∈ Mk). We thus have kτk,ℓ(0)e > 0 (k > ℓ) because of the assumption νk,ℓ(0)e > 0.
Let kFℓ,ℓ (k, ℓ ∈ Z+, k ̸= ℓ) denote an Mℓ×Mℓ matrix whose (i, j)th (i, j ∈ Mℓ) element
represents the conditional probability that the recurrence time to level ℓ ends at state
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(ℓ, j) without visiting level k, given that it starts from state (ℓ, i). Note that the jth
(j ∈ Mℓ) element of

kτk,ℓ(i)
∞∑
n=0

kF
n
ℓ,ℓ = kτk,ℓ(i)(I − kFℓ,ℓ)

−1 (2.16)

represents the mean number of visits to state (ℓ, j) in the recurrence time to level k,
given that the recurrence time starts from state (k, i). It then follows that

νk,ℓ(i) = [δk]i · kτk,ℓ(i)(I − kFℓ,ℓ)
−1diag−1(δℓ). (2.17)

We thus obtain

νk,ℓ(i) =
kτk,ℓ(i)(I − kFℓ,ℓ)

−1diag−1(δℓ)

kτk,ℓ(i)(I − kFℓ,ℓ)−1diag−1(δℓ)e
, if νk,ℓ(i)e > 0. (2.18)

To analyze νk,ℓ(i) (k ∈ Z∞
ℓ+1, i ∈ Mℓ), we introduce a discrete-time renewal pro-

cess {Xn(k, ℓ, i)}n=0,1,..., whose inter-renewal times follow a discrete-time phase-type
distribution with representation (eTi , kFℓ,ℓ). Note that immediately after renewals, the
underlying phase process for {Xn(k, ℓ, i)}n=0,1,... is in phase i with probability 1. Asso-

ciated with {Xn(k, ℓ, i)}n=0,1,..., we define kF̂ℓ(i) (k ∈ Z∞
ℓ+1) as an Mℓ×Mℓ matrix given

by

kF̂ℓ(i) = kFℓ,ℓ + (I − kFℓ,ℓ)ee
T
i . (2.19)

It is easy to verify that kF̂ℓ(i) is a stochastic matrix, more specifically, the transition
probability matrix of the underlying phase process for {Xn(k, ℓ, i)}n=0,1,..., which has a
single irreducible class composed of phases in Mℓ reachable from phase i with respect
to kFℓ,ℓ. We then define kρ̂ℓ(i) (k ∈ Z∞

ℓ+1, i ∈ Mℓ) as a 1 × Mℓ invariant probability

vector of kF̂ℓ(i), which is determined uniquely by

kρ̂ℓ(i) = kρ̂ℓ(i)kF̂ℓ(i), kρ̂ℓ(i)e = 1. (2.20)

We now consider the factor (I − kFℓ,ℓ)
−1 on the right-hand side of (2.18). Substi-

tuting (2.19) into (2.20) and rearranging terms yield

kρ̂ℓ(i)(I − kFℓ,ℓ) = kρ̂ℓ(i)(I − kFℓ,ℓ)e · eTi , i ∈ Mℓ. (2.21)

Let kP̂ℓ (k ∈ Z∞
ℓ+1) denote an Mℓ ×Mℓ matrix whose ith (i ∈ Mℓ) row vector is given

by kρ̂ℓ(i). Note that (2.21) is equivalent to

kP̂ℓ(I − kFℓ,ℓ) = diag(kγℓ) · I, k > ℓ,

where kγℓ (k ∈ Z∞
ℓ+1) denotes an Mℓ × 1 vector whose ith (i ∈ Mℓ) element [kγℓ]i is

given by
[kγℓ]i = kρ̂ℓ(i)(I − kFℓ,ℓ)e, i ∈ Mℓ.

By definition, [kγℓ]i (i ∈ Mℓ) represents the probability that a renewal happens at a
randomly chosen instant in the equilibrium version of {Xn(k, ℓ, i)}n=0,1,.... Therefore,
[kγℓ]i > 0 for all i ∈ Mℓ owing to the positive recurrence of the imbedded Markov chain
{(Ln, Jn)}n=0,1,.... We thus obtain

(I − kFℓ,ℓ)
−1 = diag−1(kγℓ) · kP̂ℓ, k > ℓ. (2.22)
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With (2.22), (2.18) is rewritten to be

νk,ℓ(i) =
kτk,ℓ(i)diag

−1(kγℓ) · kP̂ℓ · diag−1(δℓ)

kτk,ℓ(i)diag
−1(kγℓ) · kP̂ℓ · diag−1(δℓ)e

, if νk,ℓ(i)e > 0. (2.23)

To proceed further, we need the following limit formula whose proof is given in
Appendix A.

lim
k→∞

kρ̂ℓ(i) = ρℓ, ℓ ∈ Z+, i ∈ Mℓ. (2.24)

It follows from (2.24) and ρℓ > 0 (ℓ ∈ Z+) that for a fixed ℓ ∈ Z+ and for any ϵ > 0,
there exists a natural number k∗ := k∗(ℓ, ϵ) such that(

1− ϵ

2 + ϵ

)
eρℓ < kP̂ℓ <

(
1 +

ϵ

2 + ϵ

)
eρℓ, k ≥ k∗. (2.25)

Note also that kτk,ℓ(i), diag
−1(kγℓ), and diag−1(δℓ) in (2.23) are nonnegative. It then

follows from νk,ℓ(0)e > 0, (2.23), and (2.25) that for k ≥ k∗,

kτk,ℓ(0)diag
−1(kγℓ) ·

(
1− ϵ

2 + ϵ

)
eρℓ · diag−1(δℓ)

kτk,ℓ(0)diag
−1(kγℓ) ·

(
1 +

ϵ

2 + ϵ

)
eρℓ · diag−1(δℓ)e

< νk,ℓ(0) <
kτk,ℓ(0)diag

−1(kγℓ) ·
(
1 +

ϵ

2 + ϵ

)
eρℓ · diag−1(δℓ)

kτk,ℓ(0)diag
−1(kγℓ) ·

(
1− ϵ

2 + ϵ

)
eρℓ · diag−1(δℓ)e

,

which is reduced to

1

1 + ϵ
· ρℓdiag

−1(δℓ)

ρℓdiag
−1(δℓ)e

< νk,ℓ(0) < (1 + ϵ) · ρℓdiag
−1(δℓ)

ρℓdiag
−1(δℓ)e

.

Note here that (1 + ϵ)−1 > 1− ϵ for ϵ > 0 and that from (2.15),

ρℓdiag
−1(δℓ)

ρℓdiag
−1(δℓ)e

=
ρℓdiag

−1(δℓ)

ρℓdiag
−1(δℓ)e

= πℓ.

We thus obtain for an arbitrary ϵ > 0,

(1− ϵ)πℓ < νk,ℓ(0) < (1 + ϵ)πℓ, k ≥ k∗,

which completes the proof.

Remark 2.1. For k and ℓ (k, ℓ ∈ Z+, k ̸= ℓ), (2.1) can be proven as follows. Let Vk,ℓ

(k, ℓ ∈ Z+, k ̸= ℓ) denote an Mk ×Mℓ matrix whose ith (i ∈ Mk) row vector is given
by kτk,ℓ(i)(I − kFℓ,ℓ)

−1 (see (2.16)). It then follows from [Lat99, Theorem 5.2.1] that
ρℓ = ρkVk,ℓ (k, ℓ ∈ Z+, k ̸= ℓ), which is equivalent to (2.1) because of (2.15) and (2.17).

The following theorem corresponds to Proposition 2.1 (b), which does not require
the condition νk,ℓ(0)e > 0 (k ∈ Z∞

ℓ+1).
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Theorem 2.2. Consider an ergodic Markov chain of LD-G/G/1-type. For an arbitrarily
fixed ℓ (ℓ ∈ Z+) and ϵ (ϵ > 0), there exists a natural number K := K(ℓ, ϵ) such that for
all k (k ∈ Z∞

K ),

∥νk,ℓ(i)− πℓ∥1 < ϵ, i ∈ M+
k,ℓ. (2.26)

Proof. Recall that M+
k,ℓ ̸= ∅. We then define i∗k,ℓ (k ∈ Z∞

ℓ+1) as

i∗k,ℓ = argmax
i∈M+

k,ℓ

∥νk,ℓ(i)− πℓ∥1.

By definition, we have for all k (k ∈ Z∞
ℓ+1),

∥νk,ℓ(i)− πℓ∥1 ≤ ∥νk,ℓ(i
∗
k,ℓ)− πℓ∥1, i ∈ M+

k,ℓ. (2.27)

Note here that the labeling of phases in each level can be changed arbitrarily while
preserving the G/G/1-type (or M/G/1-type) structure. Therefore, re-labeling every i∗k,ℓ
(k ∈ Z∞

ℓ+1) as zero and applying Lemma 2.1, we see that for an arbitrary ϵ > 0, there
exists a natural number K such that

∥νk,ℓ(i
∗
k,ℓ)− πℓ∥1 < ϵ, k ≥ K. (2.28)

(2.26) now follows from (2.27) and (2.28).

We then obtain the limit formula corresponding to Proposition 2.1 (d).

Theorem 2.3. Consider an ergodic Markov chain of LD-G/G/1-type. For an arbitrary
fixed ℓ (ℓ ∈ Z+), πℓ is given by

{πℓ} =

∞⋂
k=ℓ+1

riP+
k,ℓ = lim

k→∞
riP+

k,ℓ. (2.29)

Proof. It follows from Theorem 2.1 that

πℓ ∈
∞⋂

k=ℓ+1

riP+
k,ℓ. (2.30)

On the other hand, we have from Theorem 2.2 and the definition of riP+
k,ℓ,

lim
k→∞

riP+
k,ℓ = {πℓ}. (2.31)

(2.29) now follows from (2.30) and (2.31).

Finally, we discuss the monotonic inclusion property of a sequence {P+
k,ℓ; k ∈ Z∞

ℓ+1},
which corresponds to Proposition 2.1 (c).

Theorem 2.4. Consider an ergodic Markov chain of LD-M/G/1-type. For an arbitrar-
ily fixed ℓ (ℓ ∈ Z+), we have

P+
k+1,ℓ ⊆ P+

k,ℓ, k ∈ Z∞
ℓ+1. (2.32)
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Remark 2.2. In general, (2.32) does not necessarily hold for Markov chains of LD-
G/G/1-type. Note that the G/G/1-type structure is preserved in any labeling of levels,
as well as phases in each level. Therefore, if (2.32) holds for any Markov chain of LD-
G/G/1-type, we also have P+

k+1,ℓ ⊇ P+
k,ℓ, by considering the corresponding Markov chain

produced by the label exchange of level k and level k + 1. As a result, P+
k,ℓ = P+

k+1,ℓ,

which does not necessarily hold clearly. Conversely, if P+
k,ℓ = P+

k+1,ℓ holds for all k > ℓ

in a specific Markov chain of LD-G/G/1-type, Theorem 2.3 implies P+
k,ℓ = {πℓ} (k > ℓ).

Proof. Suppose x ∈ P+
k+1,ℓ for some k (k ∈ Z∞

ℓ+1), i.e.,

x =
∑

i∈M+
k+1,ℓ

αk+1(i)νk+1,ℓ(i) = αk+1Nk+1,ℓ, (2.33)

where αk+1 = (αk+1(0) αk+1(1) · · · αk+1(Mk+1 − 1)) is a nonnegative 1×Mk+1 vector
satisfying ∑

i∈M+
k+1,ℓ

αk+1(i) = 1, αk+1(i) = 0 (i ∈ Mk+1 \M+
k+1,ℓ).

In what follows, we will show x ∈ P+
k,ℓ, which implies (2.32).

For an arbitrary vector y, let diag∗(y) denote a diagonal matrix whose ith diagonal
element [diag∗(y)]i,i is given by

[diag∗(y)]i,i =


1

[y]i
, [y]i ̸= 0,

0, otherwise.

By definition, Nk+1,ℓ = diag∗(Nk+1,ℓe)Nk+1,ℓ. It then follows from (2.33) and Nk+1,ℓ =
ZkNk,ℓ (k ∈ Z∞

ℓ+1) [Taki16, Lemma 1] that

x = αk+1diag
∗(Nk+1,ℓe)Nk+1,ℓ

= αk+1diag
∗(Nk+1,ℓe)Zkdiag(Nk,ℓe)Nk,ℓ

= αkNk,ℓ, (2.34)

where αk = (αk(0) αk(1) · · · αk(Mk − 1)) is given by

αk = αk+1diag
∗(Nk+1,ℓe)Zkdiag(Nk,ℓe).

It is easy to verify that αk ≥ 0. Furthermore,

αke = αk+1diag
∗(Nk+1,ℓe)ZkNk,ℓe = αk+1diag

∗(Nk+1,ℓe)Nk+1,ℓe

=
∑

i∈M+
k+1,ℓ

αk+1(i) = 1. (2.35)

The remaining is to show αk(i) = 0 (i ∈ Mk \ M+
k,ℓ). By definition, xe = 1. We

thus have from (2.34) and νk,ℓ(i)e = 0 for i ∈ Mk \M+
k,ℓ,

1 = xe = αkNk,ℓe =
∑

i∈M+
k,ℓ

αk(i)νk,ℓ(i)e+
∑

i∈Mk\M+
k,ℓ

αk(i)νk,ℓ(i)e

=
∑

i∈M+
k,ℓ

αk(i),
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which implies αk(i) = 0 (i ∈ Mk \ M+
k,ℓ) because αk ≥ 0 and αke = 1. We thus

conclude x ∈ P+
k,ℓ.

2.4 Conclusion

In this chapter, we considered the conditional stationary distribution πℓ in a Markov
chain of LD-G/G/1-type given that the Markov chain is in a fixed level ℓ. We first
obtained the convex polytope P+

k,ℓ containing πℓ in terms of the reverse-directional R-

matrix Nk,ℓ. We then showed that P+
k,ℓ converges to the singleton {πℓ} as k goes to

infinity. In addition, we showed the inclusion property P+
k+1,ℓ ⊆ P+

k,ℓ for Markov chains
of LD-M/G/1-type. These results are obvious generalizations of the results in [Taki16]
(cf. Proposition 2.1).

In this chapter, the state space of the marginal process {L(t)}t≥0 was assumed to
be countably infinite. It is easy to verify that Theorems 2.1 and 2.4 hold for Markov
chains on a finite state space

⋃K∗

k=0{k} ×Mk for some K∗ ∈ Z+ such that ℓ < k < K∗,
if we replace Z∞

ℓ+1 to ZK∗
ℓ+1.

If πℓ is given for some ℓ = N , we also have πℓ (ℓ = 0, 1, . . . , N − 1) up to a
multiplicative constant by (2.1). Therefore, we can obtain the conditional distribution
π(N) = (π0(N) π1(N) · · · πN (N)) by normalizing those. These observations naturally
lead to a numerical procedure for π(N), which will be discussed in the next chapter.



3 Computation of the Conditional Sta-
tionary Distribution in Markov Chains
of LD-M/G/1-Type

3.1 Introduction

We consider computation of the conditional stationary distribution based on the results
in Chapter 2, which showed that the conditional stationary distribution is given in terms
of the reverse-directional R-matrices. In general, it is hard to compute the reverse-
directional R-matrices because a reverse-directional R-matrix depends on the transition
structure among all levels. Note, however, that we can readily compute the reverse-
directional R-matrices in Markov chains of LD-M/G/1-type [Taki16].

This chapter considers a time-homogeneous, continuous-time bivariate Markov chain
{(L(t), J(t))}t≥0 of LD-M/G/1-type. Recall that the level variable L(t) takes a value
in Z+ = {0, 1, . . .}, and given L(t) = ℓ (ℓ ∈ Z+), the phase variable J(t) takes a value
in a finite set Mℓ = {0, 1, . . ., Mℓ − 1}. It is assumed that the Markov chain is ergodic
and stationary, and its infinitesimal generator Q := Q(LD-M/G/1) and the stationary
distribution π are partitioned in conformance with levels, as in (1.6) and (1.19). Note
that Qk,ℓ in (1.19) denotes an Mk ×Mℓ matrix representing transitions from level k to
level ℓ.

In [Taki16], a computational algorithm of the conditional stationary distribution
πlv(N) given that the level is not greater than a predefined threshold N has been
proposed for special class of Markov chains of LD-M/G/1-type, in which Qℓ,ℓ−1 (ℓ ∈ N)
is assumed to be nonsingular. Takine’s algorithm is based on the reverse-directional
R-matrices Nk,ℓ (k > ℓ) and evaluates the error bound of the computed boundary
probability vector πN (cf. (2.5)). We develop a computational algorithm of πlv(N) with
a predefined threshold N for general Markov chains of LD-M/G/1-type, by modifying
Takine’s algorithm slightly (i.e., the selection of an approximation to the boundary
vector and the error evaluation). In principle, our algorithm is applicable to any ergodic
Markov chain of LD-M/G/1-type. Furthermore, as an input to the algorithm, we can set
an allowable error bound for the computed conditional stationary distribution instead
of that for the computed boundary vector considered in [Taki16]. The error evaluation
is a notable feature of our algorithm.

The rest of this chapter is organized as follows. In Section 3.2, we develop a com-
putational algorithm for a conditional stationary distribution with the error evaluation.
In Section 3.3, we provide some numerical examples. Finally, we conclude this chapter
in Section 3.4.

25
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3.2 A computational algorithm

In this section, we develop a computational algorithm for the conditional stationary
distribution πlv(N) = (π0(N) π1(N) · · · πN (N)) (N ∈ Z+) given that the level is not
greater than a predefined threshold N . Recall that if πN is obtained, πlv(N) can be
computed by (cf. (2.2) and (2.4))

πℓ(N) =

{
c−1 · πN , ℓ = N,

c−1 · πNZN−1ZN−2 · · · · ·Zℓ, ℓ = 0, 1, . . . , N − 1,
(3.1)

where c denotes the normalized constant given by

c = 1 +

N−1∑
ℓ=0

πNZN−1ZN−2 · · · · ·Zℓe.

As stated in Section 3.1, the main body of our algorithm is identical to the algorithm
in [Taki16], which is based on the following result.

Proposition 3.1 ([Taki16, Lemma 1]). Consider an ergodic Markov chain of LD-
M/G/1-type. Zk (k ∈ Z+) is then given by

Zk = Qk+1,k(−Tk)
−1, k ∈ Z+, (3.2)

where T0 = Q0,0 and

Tk = Qk,k +

k−1∑
n=0

Zk−1Zk−2 · · · · ·ZnQn,k, k ∈ N. (3.3)

Furthermore, for an arbitrarily fixed, nonnegative integer N , Nk,N (k ∈ Z∞
N+1) is given

by NN,N = I and

Nk,N = Zk−1Nk−1,N , k ∈ Z∞
N+1. (3.4)

Remark 3.1. The Mk ×Mk matrix Tk denotes the northwest corner submatrix of the
infinitesimal generator Q(k) in the censored process obtained by observing the Markov
chain {(L(t), J(t))}t≥0 only when L(t) ≥ k. It is clear that Tk is a defective infinitesimal
generator and therefore it is nonsingular.

With Proposition 3.1, the conditional stationary distribution πlv(N) can be com-
puted as follows [Taki16].

Step 1: Compute Zk (k ∈ ZN−1
0 ) by (3.2) and (3.3).

Step 2: Compute Zk−1 and Nk,N (k ∈ Z∞
N+1) successively and obtain

πN (cf. Theorem 2.2).

Step 3: Compute πlv(N) = (π0(N) π1(N) · · · πN (N)) by (3.1).

The problem is thus how to stop the successive computation of Nk,N (k ∈ Z∞
N+1) in

Step 2, which is discussed below. As we will see, all analytical results in this section are
valid in Markov chains of LD-G/G/1-type because we will not use the skip-free-to-the-
left property.
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Recall that Mk \ M+
k,ℓ ̸= ∅ in general, i.e., νk,N (i) = 0 can happen for some i

(i ∈ Mk \M+
k,ℓ). Furthermore, i ∈ M+

k,ℓ (i ∈ Mk ∩Mk+1) does not imply i ∈ M+
k+1,ℓ

and vice versa. Taking account of these facts, we adopt

νk,N =
eTNk,N

eTNk,Ne
, k ∈ Z∞

N+1, (3.5)

as an approximation to πN . Since every Nk,N has at least one non-zero row vector,
we have eTNk,Ne > 0, so that νk,N is well-defined. The following corollary is obtained
from Theorem 2.1.

Corollary 3.1. Consider an ergodic Markov chain of LD-G/G/1-type. For an arbitrar-
ily fixed N (N ∈ Z+), we have

νk,N ∈ riP+
k,N , k ∈ Z∞

N+1, (3.6)

and

lim
k→∞

νk,N = πN . (3.7)

Proof. Note first that (3.5) is rewritten to be

νk,N = γk,NNk,N ,

where γk,N = (γk,N (0) γk,N (1) · · · γk,N (Mk − 1)) denotes a 1×Mk vector given by

γk,N =
eTdiag(Nk,Ne)

eTNk,Ne
.

It is easy to verify that γk,Ne = 1, γk,N (i) > 0 (i ∈ M+
k,ℓ), and γk,N (i) = 0 (i ∈

Mk \M+
k,ℓ). We thus have (3.6), and (3.7) follows from (2.9) and (3.6).

For a finite-dimensional matrix X, let rank(X) denote the rank of X. In an ergodic
Markov chain of LD-G/G/1-type, 1 ≤ rank(Nk,ℓ) ≤ min(Mk,Mℓ) (k, ℓ ∈ Z+, k ̸= ℓ)
because M+

k,ℓ ̸= ∅.

Corollary 3.2. Consider an ergodic Markov chain of LD-G/G/1-type. For an arbitrar-
ily fixed N (N ∈ Z+), if rank(Nk,N ) = 1 for some k (k > N), we have

νk,N = πN .

Proof. If rank(Nk,N ) = 1, we have Nk,N = Nk,Ne · νk,N , so that

P+
k,N = riP+

k,N = {νk,N}. (3.8)

The corollary now follows from (2.9) and (3.8).

Remark 3.2. Corollary 3.2 can also be shown algebraically as follows.

πN =
πN

πNe
=

πkNk,N

πNe
=

πkNk,Ne · νk,N

πNe
=

πNe · νk,N

πNe
= νk,N .
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Remark 3.3. Implications of Corollary 3.2 for computation of the conditional dis-
tribution πlv(N) in Markov chains of LD-M/G/1-type are as follows. Note first that
rank(XY ) ≤ min(rank(X), rank(Y )) for any finite matrices X and Y whose product
XY can be defined. Therefore, (3.4) and Corollary 3.2 imply that if rank(Zk−1) = 1
for some k (k > N), we have rank(Nk,N ) = 1 and in this case, we can exactly
compute πN (and the conditional stationary distribution πlv(N)). Note further that
rank(Zk−1) = 1 ⇔ rank(Qk,k−1) = 1 because of (3.2). Therefore, we can judge whether
a Markov chain of LD-M/G/1-type comes under this special class, by examining the in-
ternal structure of Qk,k−1. We notice that if rank(Qk,k−1) = 1, the level-dependent
G-matrix from level k to level k − 1 can be obtained explicitly, so that πlv(N) can also
be computed exactly by algorithms in [Kli06, Li05]. Finally, using this special case, we
can examine the magnitude of unavoidable numerical errors caused by finite-precision
computation, as demonstrated in Section 3.3.2.

Remark 3.4. If a Markov chain of LD-M/G/1-type satisfies rank(Nk,N ) = 1 for some k
and N , we have from (3.4), rank(Nℓ,N ) ≤ min(rank(Nℓ,k), rank(Nk,N )) = 1 (ℓ ∈ Z∞

k+1),
so that

rank(Nℓ,N ) = 1, ℓ ∈ Z∞
k+1.

Therefore, in Markov chain of LD-M/G/1-type, Corollary 3.2 implies that P+
ℓ,N = {πN}

for all ℓ ∈ Z∞
k .

In what follows, we implicitly assume rank(Nk,N ) ≥ 2 and discuss error bounds for
πN and πlv(N).

Lemma 3.1. Consider an ergodic Markov chain of LD-G/G/1-type. We then have

∥νk,N − πN∥1 ≤ eN (k,N), k ∈ Z∞
N+1, (3.9)

where
eN (k,N) = max

i∈M+
k,N

∥νk,N (i)− νk,N∥1, k ∈ Z∞
N+1. (3.10)

Furthermore, eN (k,N) satisfies

lim
k→∞

eN (k,N) = 0. (3.11)

Proof. We first consider (3.9). It follows from (2.10), (2.11), and (2.12) that

∥νk,N − πN∥1 =
∥∥∥∥ ∑
i∈M+

k,N

βk,N (i)(νk,N − νk,N (i))

∥∥∥∥
1

≤
∑

i∈M+
k,N

βk,N (i)
∥∥νk,N − νk,N (i)

∥∥
1

≤ max
i∈M+

k,N

∥∥νk,N − νk,N (i)
∥∥
1
,

which implies (3.9).
Next we consider (3.11). By definition, νk,N (i) ∈ P+

k,N for all i ∈ M+
k,N . Further-

more, since riP+
k,N ⊆ P+

k,N , (3.6) implies νk,N ∈ P+
k,N . We thus have

0 ≤ eN (k,N) ≤ diam(P+
k,N ), (3.12)
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where diam(P+
k,N ) denotes the diameter of P+

k,N .

diam(P+
k,N ) = max

x,y∈P+
k,N

∥x− y∥1.

Note here that Theorem 2.3 implies

lim
k→∞

diam(P+
k,N ) = 0. (3.13)

(3.11) now follows from (3.12) and (3.13).

Lemma 3.1 indicates that during the course of computing Nk,N (k ∈ Z∞
N+1), we can

keep track of the error bound eN (k,N) for an approximation νk,N to πN . Keeping this
in mind, we consider an error bound for the computed conditional stationary distribution
πlv(N) in terms of the error bound for the approximation νk,N to πN . For simplicity

in description, we define ÑN as

ÑN = (NN,0 NN,1 · · · NN,N−1 I) . (3.14)

It then follows from (2.1) that

πlv(N) = (π0(N) π1(N) · · · πN (N)) =
πNÑN

πNÑNe
. (3.15)

For k ∈ Z∞
N+1, we define πapprox,k

lv (N) = (πapprox,k
0 (N) πapprox,k

1 (N) · · · πapprox,k
N (N)) as

an approximation to πlv(N), which is given by

πapprox,k
lv (N) =

νk,N ÑN

νk,N ÑNe
. (3.16)

Theorem 3.1. Consider an ergodic Markov chain of LD-G/G/1-type. We then have

∥πapprox,k
lv (N)− πlv(N)∥1 ≤

eN (k,N)

νk,N wN
, (3.17)

where eN (k,N) is given by (3.10) and wN is defined as an MN × 1 vector given by

wN =
ÑNe

2eT ÑNe
.

Furthermore, we have

lim
k→∞

eN (k,N)

νk,N wN
= 0. (3.18)
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Proof. We first consider (3.17). From (3.15), we have πNÑN = πNÑNe · πlv(N). It
then follows from (3.16) that

∥πapprox,k
lv (N)− πlv(N)∥1

=
∥νk,N ÑN − νk,N ÑNe · πlv(N)∥1

νk,N ÑNe

=
∥(νk,N − πN )ÑN + πNÑNe · πlv(N)− νk,N ÑNe · πlv(N)∥1

νk,N ÑNe

≤
∥(νk,N − πN )ÑN∥1

νk,N ÑNe
+

∥(νk,N − πN )ÑNe · πlv(N)∥1
νk,N ÑNe

. (3.19)

Note here that for a vector x and a nonnegative matrix X whose product xX can be
defined, we have ∥xX∥1 ≤ eTXe · ∥x∥1 [Bel97, Section 10.3]. It then follows from
Lemma 3.1 and (3.19) that

∥πapprox,k
lv (N)− πlv(N)∥1

≤ eT ÑNe

νk,N ÑNe
· ∥νk,N − πN∥1 +

eT ÑNe · πlv(N)e

νk,N ÑNe
· ∥νk,N − πN∥1

≤ 2 · eT ÑNe

νk,N ÑNe
· eN (k,N)

=
1

νk,N wN
· eN (k,N),

which shows (3.17).
Next we show (3.18). Recall that νk,N converges to πN as k goes to infinity. Note

also that from the definition of ÑN in (3.14), we have ÑNe ≥ e. It then follows that

lim
k→∞

νk,NwN = πNwN =
πNÑNe

2eT ÑNe
≥ πNe

2eT ÑNe
=

1

2eT ÑNe
> 0. (3.20)

(3.18) now follows from (3.11) and (3.20).

Remark 3.5. For any probability vectors x and y on the same state space, ∥x−y∥1 ≤ 2,
so that eN (k,N) ≤ 2 (cf. (3.9)). On the other hand, νk,NwN can be smaller than one.
Therefore, eN (k,N)/(νk,N wN ) can be greater than 2 for a finite k, and if this is indeed
the case, the error bound in Theorem 3.1 is trivial.

Remark 3.6. The rate of convergence in (3.18) depends on the whole structure of Q,
so that we cannot discuss it in the general setting.

Let πapprox,k,N denote an approximation to the stationary distribution π obtained
from πapprox,k

lv (N) such that

πapprox,k,N = (πapprox,k
0 (N) πapprox,k

1 (N) · · · πapprox,k
N (N) 0 0 · · · ).

From an adaptation of (1.25), we have

2ξlv(N) ≤ ∥πapprox,k,N − π∥1 ≤ 2ξlv(N) + ϵlv(k,N), (3.21)
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where

ξlv(N) = Pr(L(0) > N) =

∞∑
ℓ=N+1

πℓe, ϵlv(k,N) = ∥πapprox,k
lv (N)− πlv(N)∥1.

Note that we obtain an upper bound of ϵlv(k,N) in Theorem 3.1. Theorem 3.1 and
(3.21) imply that the error bound for the approximation πapprox,k,N to the unconditional
stationary distribution π can be obtained if the upper bound for the tail probability
ξlv(N) of the level variable is available.

We now summarize our algorithm in Figure 3.1, where the input ϵ denotes the max-
imum allowable error in the computed conditional stationary distribution πapprox,k

lv (N)
and ν(i) (i ∈ M+

k,N ) in Step 2-2 denotes the ith row vector of N . Note that Step 1 and
Step 3 are identical to those in the algorithm of [Taki16]. In Step 2, Takine’s algorithm
stops the computation of N (= Nk,N ) when the upper bound of the boundary vector
in Lemma 3.1 becomes less than ϵ for the first time. In Step 2 of our algorithm, we stop
the computation of N when the upper bound of the conditional stationary distribution
in Theorem 3.1 becomes less than ϵ for the first time. Except for the computation of
inverse matrices in Steps 1 and 2-2 and eN in Step 2-2, the algorithm performs only
addition and multiplication of positive numbers. Furthermore, the computation of the
inverse matrix (−T )−1 is implemented without subtraction as follows.

(−T )−1 =
1

θ

∞∑
k=0

(I + T /θ)k,

where θ denotes the maximum of the absolute values of the diagonal elements of T .
Note that I + T /θ ≥ O. Therefore, our algorithm is numerically stable in principle.

Before closing this section, we briefly discuss the computational complexity of our
algorithm in Figure 3.1, where the algorithm is assumed to stop with k = K. The most
computationally intensive part of the algorithm is the repeated computation of T (= Tk)
in (A) and their inverses, and the total number of multiplications is in O(K2 ·M3

max(K)),
where

Mmax(K) = max{Mℓ; ℓ = 0, 1, . . . ,K}.

On the other hand, the space complexity of our algorithm is in O(K ·M2
max(K)) because

we have to store Zℓ (ℓ = 0, 1, . . . ,K − 1) during the course of the algorithm. Therefore,
the computational complexity of our algorithm is comparable to the existing methods
[Kli06, Li05, Mas18] for Markov chains of LD-M/G/1-type. Note that our algorithm is
also applicable to level-dependent QBD processes, and in this case, (A) is reduced to be

T := Qk,k +Zk−1Qk−1,k.

Therefore, for level-dependent QBD processes, the total number of multiplications is in
O(K ·M3

max(K)) and the space complexity is in O(N ·M2
max(K)), which are comparable

to the existing algorithms [Bau10, Bri95, Phu10] for level-dependent QBD processes.
Note here that the computational complexities are given in terms of the output value
K that depends on the model.
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Input: Qk,ℓ (k, ℓ ∈ Z+), N , and ϵ.
Output: K and πlv(N) = (π0(N) π1(N) . . . πN (N)).

Step 1: Computing Zℓ (ℓ = 0, 1, . . . , N − 1).
Let T := Q0,0.
for k = 1 to N do
Let Zk−1 := Qk,k−1(−T )−1.
Compute T by

T := Qk,k +

k−1∑
n=0

Zk−1Zk−2 · · · · ·ZnQn,k. (A)

endfor
Let N := I; k := N .

Step 2: Determining the normalized boundary vector πN .
Step 2-1: Setup for the stopping criterion.
Compute z by

z := e+

N−1∑
n=0

ZN−1ZN−2 · · · · ·Zne.

Let w := z/(2eTz).
Step 2-2: Computing νk,N .

Let k := k + 1; Zk−1 := Qk,k−1(−T )−1; N := Zk−1N .
Let ν := eTN/(eTNe); eN := maxi∈M+

k,N
∥ν(i)− ν∥1.

if eN/(νw) ≥ ϵ then
Compute T by (A) and return to Step 2-2.

endif
Let K := k.

Step 3: Computing πℓ(N) (ℓ = 0, 1, . . . , N).
Let αN := ν; c := 1.
for ℓ = N − 1 to 0 by −1 do
Let αℓ := αℓ+1Zℓ; c := c+αℓe.

endfor
for ℓ = 0 to N do
Let πℓ(N) := αℓ/c.

endfor

Figure 3.1: A computational algorithm for the conditional stationary distribution πlv(N)
in Markov chains of LD-M/G/1-type.
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3.3 Numerical examples

In this section, we present some numerical examples. Since the main body of our al-
gorithm is identical to the algorithm in [Taki16], two algorithms share the following
features:

(i) The main source of numerical errors lies in the computation of the inverse of Tk,

(ii) the numerically achievable minimum value of eN (k,N) increases with the number
of phases in each level, and

(iii) Markov chains with one hundred phases in each level can be handled and if N is
large enough, the output πlv(N) gives a good approximation to π.

As for (i) and (ii), some tips for program implementation are given in [Taki16,
Appendix 3], which we also follow in this section. We summarize the tips in Appendix
B briefly.

We implement our algorithm in C and conduct numerical experiments by a PC with
Intel®Core™i7-7700 (3.60GHz) and 16GB memory. In what follows, we first explain
models used in numerical examples and then, examine the magnitude of unavoidable
numerical errors caused by finite-precision computation. Next, we examine the conver-
gence of Step 2 in our algorithm and the tightness of the upper bound in Theorem 3.1.
Finally, we present some numerical examples for large-scale models.

3.3.1 Models for numerical examples

We consider a single-server queue, where both the batch arrival rate and the service rate
depend on the queue length. In particular, we set those rates in such a way that the
system is overloaded when the queue length is less than a certain threshold. Customers
arrive according to a batch Markov-modulated Poisson process (B-MMPP) characterized
by {Dk; k = 0, 1, . . .}, where the underlying Markov chain {JA(t)}t≥0 of the B-MMPP
is assumed to be a JA-state birth-and-death process with identical transition rates α.
When JA(t) = j (j ∈ {0, 1, . . . , JA − 1}), batches of customers arrive according to a
Poisson process with rate λj . Batch sizes B are independent and identically distributed
(i.i.d.) according to a (truncated) geometric distribution with mean E[B], independent
of JA(t). {Dk; k = 0, 1, . . .} is then given by

D0 =



β0 α 0 · · · 0 0
α β1 α · · · 0 0
0 α β2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · βJA−2 α
0 0 0 · · · α βJA−1


, Dk = b(k) · diag

(
(λ0 λ1 · · · λJA−1

)
)
,

where

βj =

{
−(α+ λj), j = 0, JA − 1,

−(2α+ λj), j = 1, 2, . . . , JA − 2,
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and

b(k) = Pr(B = k) =


1

E[B]

(
1− 1

E[B]

)k−1

, k = 1, 2, . . . , NB − 1,

(
1− 1

E[B]

)NB−1

, k = NB,

with NB = min(k ∈ Z+; (1 − 1/E[B])k < 10−20). When the overall arrival rate λB of
batches is given, λj is set to be

λj =
λB

2

(
1 +

2j

JA − 1

)
, j = 0, 1, . . . , JA − 1,

so that λB/2 = λ0 < λ1 < · · · < λJA−1 = 3λB/2 if JA ≥ 2. When JA = 1, the arrival
process is reduced to a batch Poisson process with arrival rate λB of batches.

D0 =
(
− λB

)
, Dk = b(k) ·

(
λB

)
(k ∈ N).

Unless otherwise stated, the amounts of service requirements of customers are as-
sumed to be i.i.d. according to a JS-stage Erlang distribution with mean one, which has
the phase-type representation (ζ,S), where ζ and S are a 1× JS vector and a JS × JS
matrix given by

ζ = (1 0 0 . . . 0), S =



−JS JS 0 · · · 0 0
0 −JS JS · · · 0 0
0 0 −JS · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −JS JS
0 0 0 · · · 0 −JS


.

Let s = −Se = (0 0 · · · 0 JS)
T . Customers are served on a FIFO basis by a single

server, where the service speed depends on the number of customers in the system. Let
µℓ (ℓ ∈ Z+) denote the service speed when there are ℓ customers in the system.

The queue length process in the above-mentioned queue can be formulated as a
bivariate Markov chain {(L(t), J(t))}t≥0 of LD-M/G/1-type, where L(t) denotes the
number of customers in the system at time t and J(t) denotes the combination of arrival
and service phases at time t. It is easy to verify that block matrices in the infinitesimal
generator Q are given by

Qk,k−1 =

{
IA ⊗ (µks), k = 1,

IA ⊗ (µks)ζ, k = 2, 3, . . . ,
Qk,k =

{
D0, k = 0,

D0 ⊕ (µkS), k = 1, 2, . . . ,

Qk,ℓ =

{
Dℓ−k ⊗ ζ, ℓ > k, k = 0,

Dℓ−k ⊗ IS, ℓ > k, k = 1, 2, . . . ,

where IA and IS denote JA × JA and JS × JS unit matrices. Note that M0 = JA and
Mℓ = JAJS (ℓ ∈ N). Unless otherwise stated, we fix α = 0.1, E[B] = 2.0 (NB = 67),
and λB = 7.0. The offered load ρ is then given by ρ = 14.0. In Sections 3.3.2–3.3.4, we
consider the following two cases of the service speed µℓ (ℓ ∈ N).



3.3. NUMERICAL EXAMPLES 35

0 100 200 300 400 500 600 700 800

`

0

20

40

60

µ
`

(a) Service speed µℓ.
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(b) Stationary distribution (JA = 1, K = 801).
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(c) Stationary distribution (JA = 3, K = 867).

Figure 3.2: Models for numerical examples: Case 1 (JS = 2, N = 800, ϵ = 10−13).

Case 1: We set µℓ = ℓ/10 (ℓ ∈ N), so that the mean drift of L(t) is
negative when L(t) > 140.

Case 2: We set

µℓ =


ℓ/10, ℓ = 1, 2, . . . , 139,

14, ℓ = 140, 141, . . . 400,

(ℓ− 260)/10, ℓ = 401, 402, . . . ,

so that the mean drift of L(t) is equal to zero when L(t) ∈
[140, 400], and it is negative when L(t) > 400.

Note that the system is stable in the both cases, because the service speed increases
unboundedly, whereas the instantaneous offered load is bounded above by (3λB/2)E[B] ·
1 = 21.0.

Let ν
comp
k,N and πcomp,k

lv (N) (N ∈ Z+, k ∈ Z∞
N+1) denote the computed νk,N and

πapprox,k
lv (N). To gain a picture of the (unconditional) stationary distribution, we plot

µℓ and πcomp,K
ℓ (N)e (≃ Pr(L(0) = ℓ)) in Figures 3.2 and 3.3.

3.3.2 The magnitude of unavoidable numerical errors

As stated in Remark 3.3, we examine the unavoidable numerical errors by using the case
of JA = 1. When JA = 1, the arrival process is reduced to a batch Poisson process, and
Zk (k ∈ N) has only one non-zero row. Therefore, if JA = 1, rank(Nk,ℓ) = 1 (ℓ ∈ Z+,

k ∈ Z∞
ℓ+1) and it follows from Corollary 3.2 that πcomp,k

N (N) = νk,N = πN for all k

(k > N). Note, however, that πcomp,k
N (N) ̸= πcomp,N+1

N (N) (k ∈ Z∞
N+2) in general, due
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(b) Stationary distribution (JA = 1, K = 801).
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(c) Stationary distribution (JA = 3, K = 880).

Figure 3.3: Models for numerical examples: Case 2 (JS = 2, N = 800, ϵ = 10−13).

to finite-precision computation.

Figure 3.4 shows the 1-norm ∥πcomp,k
lv (N) − πcomp,N+1

lv (N)∥1 of the difference of

πcomp,k
lv (N) from πcomp,N+1

lv (N) as a function of k (k > N), where JA = 1. We observe
that (i) the conditional stationary distribution in Case 2 contains a larger magnitude
of error than that in Case 1, (ii) the magnitude of the error tends to increase with the
number of phases, and (iii) in all cases, the magnitude of error is less than 10−14.

3.3.3 Convergence characteristics

Next we discuss the convergence of the procedure at Step 2 in our algorithm, where
we set JA = 3. Figure 3.5 shows the upper bound eN (k,N)/(νk,N wN ) for the error

in the conditional stationary distribution πcomp,k
lv (N) as a function of k. In any case,

the upper bound decreases monotonically with k, even though their convergence rates
are not necessarily constant. From Figures 3.2 (c) and 3.3 (c), we observe that the
probability mass function πℓ(N)e takes conspicuous values in the range of ℓ ∈ [50, 250]
in Case 1 and ℓ ∈ [50, 500] in Case 2, and in those ranges, the convergence becomes
slow.

Figure 3.6 shows upper bounds for errors and differences of the first order in the con-
ditional stationary distribution πcomp,k

lv (N) and the normalized boundary vector νk,N ,
as a function of k, where N = 150. It is interesting to observe that differences of the first
order in {πcomp,k

lv (N); k ∈ Z∞
N+1} and {νk,N ; k ∈ Z∞

N+1} do not necessarily converge
monotonically, and therefore they are not suitable for stopping criteria.
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Figure 3.4: The magnitude of unavoidable numerical errors (JA = 1, N = 150).
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Figure 3.5: Error bounds in πcomp,k
lv (N) (JA = 3, JS = 2).
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Figure 3.6: Error bounds and differences of the first order in πcomp,k
lv (N) and νk,N

(JA = 3, JS = 2, N = 150).
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Table 3.1: Two approximations πcomp,K
lv (N) and πcomp,K∗

lv (N) whose errors are bounded
above by 10−13 (JA = 3, JS = 2).

Case N K K∗ e∗(K∗, N)

0 41 33 1.4× 10−11

50 234 119 1.6× 10−9

100 353 341 1.9× 10−12

150 381 369 2.3× 10−12

1 300 425 382 3.4× 10−8

400 497 401 1.2× 101

500 583 501 1.1× 101

600 676 601 1.1× 101

800 867 801 9.9× 100

Case N K K∗ e∗(K∗, N)

0 41 33 1.4× 10−11

50 207 120 1.4× 10−09

100 431 255 9.9× 10−07

150 531 497 4.2× 10−12

2 300 603 584 7.9× 10−12

400 639 622 8.0× 10−12

500 657 637 3.0× 10−11

600 711 640 4.0× 10−4

800 880 801 1.1× 101

3.3.4 Tightness of the upper bound

We discuss the tightness of the upper bound in Theorem 3.1, where we set JA = 3. For
this purpose, we prepare two approximations to the conditional stationary distributions,
whose errors are bounded above by 10−13.

(i) We compute πcomp,k
lv (N) for ϵ = 10−13, and obtain K.

(ii) We first compute π∗
lv(N) := πcomp,k

lv (N) for ϵ = 0.5×10−13, and then, we compute

{πcomp,k
lv (N); k ∈ Z∞

N+1} and obtain K∗, where

K∗ := min{k > N ; ∥πcomp,k
lv (N)− π∗

lv(N)∥1 < 0.5× 10−13}.

Finally, we compute the error bound e∗(K∗, N) of the computed conditional sta-
tionary distribution for k = K∗ (Theorem 3.1), where

e∗(K∗, N) :=
eN (K∗, N)

νK∗,N wN
.

From Theorem 3.1, ∥πcomp,K∗

lv (N)− πlv(N)∥1 ≤ e∗(K∗, N). Besides, we have

∥πcomp,K∗

lv (N)− πlv(N)∥1 ≤ ∥πcomp,K∗

lv (N)− π∗
lv(N)∥1 + ∥π∗

lv(N)− πlv(N)∥1 < 10−13.

Therefore, πcomp,K∗

lv (N) always has the target accuracy 10−13, regardless of the value
of e∗(K∗, N). Table 3.1 shows K, K∗, and e∗(K∗, N) for various N . We observe that
K > K∗ in all cases and in most cases, e∗(K∗, N) is fairly large, compared with 10−13.
This implies that the upper bound in Theorem 3.1 can be loose and the stopping criterion
of our algorithm is conservative. In particular, as stated in Remark 3.5, the upper bound
e∗(K∗, N) is trivial for N = 400, 500, 600, and 800 in Case 1 and for N = 800 in Case
2.

It is also interesting to observe that K∗ = N + 1 when N is sufficiently large. We
discuss this phenomenon below. For a natural number N∗ such that N∗ < N , we
partition πapprox,k

lv (N) (k > N) into two parts.

πapprox,k
lv (N) =

( ZN∗
0 ZN

N∗+1

πapprox,k
− (N ;N∗) πapprox,k

+ (N ;N∗)
)
.
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Figure 3.7: The stationary distribution in Case 1 (JA = 3, JS = 2, N = 800, ϵ = 10−13,
K = 867).

Lemma 3.2. For N∗ such that N∗ < N , suppose

∥πapprox,N+1
lv (N∗)− πlv(N

∗)∥1 < ε1, πapprox,N+1
+ (N ;N∗)e = ε2.

We then have

∥πapprox,N+1
lv (N)− πlv(N)∥1 ≤ ε1 + 2ε2 + 2Pr(L(0) > N∗ | L(0) ≤ N). (3.22)

Furthermore, for all k (k ∈ Z∞
N+1),

Pr(L(0) > N∗ | L(0) ≤ N) ≤ eN (k,N)

νk,N wN
+ πapprox,k

+ (N ;N∗)e. (3.23)

Lemma 3.2 implies that we may have K∗ = N + 1 if the right-hand side of (3.22) is
small enough.

To confirm the above discussion, we consider N = 500 in Case 1. Figure 3.7 shows
the computed stationary distribution in a logarithmic scale, which is the same result as
in Figure 3.2 (c). For N∗ = 400, we have

∥πcomp,501
lv (400)− πlv(400)∥1 ≤

eN (501, 400)

ν501,400w400
= ε1 < 1.8× 10−14, (3.24)

πcomp,501
+ (500; 400)e = ε2 < 2.7× 10−18. (3.25)

On the other hand, for ϵ = 10−14, we have K = 589, eN (K, 500)/νK,500w500 ≤ 10−14,

and πcomp,K
+ (500; 400)e < 2.7 × 10−18, so that Pr(L(0) > 400 | L(0) ≤ 500) ≤ 10−14 +

2.7× 10−18. It then follows from Lemma 3.2 that

∥πcomp,501
lv (500)− πlv(500)∥1

≤ ε1 + 2ε2 + 2Pr(L(0) > 400 | L(0) ≤ 500)

≤ 1.8× 10−14 + 2× 2.7× 10−18 + 2× (10−14 + 2.7× 10−18)

< 10−13.

The above inequality shows that πcomp,501
lv (500) is a good approximation to π(500) under

the criterion of 10−13.

3.3.5 Numerical examples for large-scale models

Finally, we present numerical examples for large-scale models, so as to confirm the
applicability of our algorithm to such models. We assume JA = 11. We also assume
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Table 3.2: Values of K and computation time (N = 4000, ϵ = 10−12).
Exp. Hyper-Exp. Erlang

K 4374 4609 4327

time (second) 10.20 24.41 983.22

λB = 500 and E[B] = 2, so that ρ = 1000. Furthermore, the service speed µℓ (ℓ ∈ N) is
set to be

µℓ =

{
ℓ, ℓ = 1, 2, . . . , 1000,

1000 + 0.25(ℓ− 1000), ℓ = 1001, 1002, . . . ,

and N is set to be N = 4000.
In this setting, we consider three service time distributions with mean one and differ-

ent coefficient Cv of variation: 10-stage Erlang distribution (Cv = 1/
√
10), exponential

distribution (Cv = 1.0), and balanced hyper-exponential distribution with Cv = 2.0.
Note that in the case of 10-stage Erlang service times, JA × JS × (N +1) = 440, 110, so
that π(4000) is a 1× 440, 110 vector.

Figure 3.8 shows the upper bound eN (k, 4000)/(νk,4000w4000) for the error in the con-

ditional stationary distribution πcomp,k
lv (4000) as a function of k and the computed con-

ditional stationary distribution πcomp,k
lv (4000). We observe that the shape of πlv(4000)

becomes smooth as Cv increases. Table 3.2 shows the value of K and the computation
time for these examples.

3.4 Conclusion

In this chapter, we presented a computational algorithm for the conditional stationary
distribution in Markov chains of LD-M/G/1-type, given that the level is not greater
than a predefined threshold. The main body of our algorithm is identical to that in
[Taki16], which had been developed under the assumption that matrices representing
downward jumps are nonsingular. To eliminate this assumption, we utilized the results
for Markov chains of LD-G/G/1-type, which is given in Chapter 2.

We first showed the error bound of the computed boundary vector as well as the result
in [Taki16] for a special class of Markov chains of LD-M/G/1-type. Furthermore, we
derived the error bound of the computed conditional stationary distribution. Therefore,
in our algorithm, we can set an error bound for the computed conditional stationary
distribution, which distinguishes our algorithm from others.

Through numerical examples, we also showed that (i) unavoidable numerical errors
can be estimated, (ii) the algorithm converges monotonically, (iii) the stopping criterion
of our algorithm is conservative, and (iv) if N is sufficiently large, we can obtain a
good approximation to the conditional stationary distribution πlv(N) by performing
the iterative procedure (Step 2-2 in the algorithm) for the computation of the boundary
vector πN only once.
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Figure 3.8: Large-scale examples (JA = 11, N = 4000, ϵ = 10−12).





4 Characterizations of the Conditional
Stationary Distribution based on
Northwest Corner Submatrices of
the Infinitesimal Generator

4.1 Introduction

This chapter considers an ergodic, continuous-time Markov chain {X(t)}t≥0 on the state
space Z+ = {0, 1, . . . }. Recall that its infinitesimal generator Q and stationary distri-
bution π are given in (1.1) and (1.3). It is assumed that qi < ∞ (i ∈ Z+) and the
chain is stationary. We consider the conditional stationary distribution based not on
reverse-directional R-matrices but on northwest corner submatrices of the infinitesimal
generator Q.

The purpose of this chapter is to characterize the conditional stationary distribu-
tion π(N) given that X(0) ∈ ZN

0 = {0, 1, . . . , N} via systems of linear inequalities,
without assuming any regular structures. In other words, we will attempt to find min-
imum regions on the first orthant {x ∈ RN+1; x ≥ 0} of RN+1, which contain π(N).
Specifically, we first consider π(N) based only on the (N + 1) × (N + 1) northwest
corner submatrix Q(1,1)(N) of the infinitesimal generator Q and we obtain a system of
N+1 linear inequalities that π(N) satisfies. It immediately follows that π(N) lies in an
N -simplex P(N) on the first orthant of RN+1, where vertices of P(N) are determined
only by Q(1,1)(N). As we will see, the derivation of these results is absurdly simple.
Nonetheless, the N +1 vertices of the N -simplex P(N) (i.e., N +1 linearly independent
probability vectors that span P(N)) are essential for π(N); in any ergodic, continuous-
time Markov chain with Q(1,1)(N), π(N) can be expressed as a convex combination of
those vertices. We also provide a probabilistic interpretation of this result.

Next we consider the case that a subset

J (N) = {j ∈ ZN
0 ; qi,j > 0 for some i ∈ Z∞

N+1} (4.1)

of ZN
0 is available, as well as Q(1,1)(N). Note that J (N) can be regarded as a sort

of structural information because it is a subset of states in ZN
0 , which are directly

reachable from at least one state in Z∞
N+1. We show that J (N) fills the role of eliminating

redundant vertices of P(N) and we obtain a (|J (N)|−1)-simplex P+(N) whose relative
interior contains π(N). In other words, when J (N) is available, π(N) is given by a
convex combination of |J (N)| vertices of P+(N) with positive weights.

45
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Next we consider an extension of the above results, using state transitions in periph-
eral states of ZN

0 . Specifically, for a fixed K (K > N), we obtain an N -simplex P̃(K,N)
(⊆ P(N)) that contains π(N), which is determined only by the (K + 1) × (K + 1)
northwest corner submatrix Q(1,1)(K) of Q. Furthermore, when both Q(1,1)(K) and
J (K) are available, we show that redundant vertices of P̃(K,N) can be eliminated.

The common feature of all the above results is that we characterize π(N) by specify-
ing simplices on the first orthant of RN+1, which contain π(N). In order to refine those
results further, we consider general convex polytopes, using Q(1,1)(K) and J (K). For
this purpose, we introduce a new structure called (K,N)-skip-free sets and using them,
we obtain the minimum convex polytope that contains π(N), under the condition that
only Q(1,1)(K) and J (K) are available.

The rest of this chapter is organized as follows. In Section 4.2, we obtain simplices
that contain π(N), based on Q(1,1)(N) (and J (N)). In Section 4.3, we extend the result
in the preceding section, using state transitions in peripheral states. In Section 4.4, we
introduce skip-free sets and obtain the minimum convex polytope that contains π(N).
Finally, we conclude this chapter in Section 4.5.

4.2 Characterizations of the conditional stationary distri-
bution π(N): Fundamental results

In this section, we characterize the conditional stationary distribution π(N) via systems
of linear inequalities, based on the (N +1)× (N +1) northwest corner submatrix of the
infinitesimal generator Q.

4.2.1 Characterization in terms of Q(1,1)(N)

In this subsection, we assume that for an arbitrarily fixed N ∈ Z+, the stationary
distribution π of an ergodic, continuous-time Markov chain {X(t)}t≥0 is partitioned as
in (1.21) and the infinitesimal generator Q is partitioned as follows.

Q =

( ZN
0 Z∞

N+1

ZN
0 Q(1,1)(N) Q(1,2)(N)

Z∞
N+1 Q(2,1)(N) Q(2,2)(N)

)
. (4.2)

We define M(Q(1,1)(N)) as a collection of ergodic, continuous-time Markov chains on
Z+, whose infinitesimal generators have a specific (N + 1) × (N + 1) northwest corner
submatrix Q(1,1)(N).

We first characterize the conditional stationary distribution π(N) of Markov chains
in M(Q(1,1)(N)). Owing to the ergodicity, the northwest corner submatrix Q(1,1)(N) is
nonsingular regardless of whether it is irreducible or not. We then define H(N) as

H(N) = (−Q(1,1)(N))−1. (4.3)

By definition, H(N) ≥ O and H(N)e > 0. Let H(N) denote an (N + 1) × (N + 1)
matrix obtained by normalizing each row of H(N) in such a way that H(N)e = e.

H(N) = diag−1(H(N)e)H(N).
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We also define Γ(n) (n ∈ Z+) as a set of all (n+ 1)-dimensional probability vectors.

Γ(n) = {α ∈ Rn+1; α ≥ 0, αe = 1}, n ∈ Z+. (4.4)

Theorem 4.1. For any Markov chain in M(Q(1,1)(N)), we have

π(N) ∈ P(N), N ∈ Z+, (4.5)

where P(N) (N ∈ Z+) denotes an N -simplex on the first orthant of RN+1, which is
given by

P(N) = {x ∈ RN+1; x(−Q(1,1)(N)) ≥ 0, xe = 1} (4.6)

=
{
x ∈ RN+1; x = αH(N), α ∈ Γ(N)

}
. (4.7)

Proof. The starting point of the proof is the global balance equation (1.4) for π(1)(N).

π(1)(N)Q(1,1)(N) + π(2)(N)Q(2,1)(N) = 0. (4.8)

It then follows from (1.24) and (4.8) that

π(N)(−Q(1,1)(N)) =
π(2)(N)

π(1)(N)e
·Q(2,1)(N). (4.9)

Because π(2)(N)/π(1)(N)e > 0 and Q(2,1)(N) ≥ O, π(N) satisfies

π(N)(−Q(1,1)(N)) ≥ 0, π(N)e = 1,

from which (4.5) with (4.6) follows.
Next, we show the equivalence between (4.6) and (4.7). We rewrite (4.6) to be

{x ∈ RN+1; x(−Q(1,1)(N)) ≥ 0, xe = 1}
= {x ∈ RN+1; x(−Q(1,1)(N)) = y, y ≥ 0, xe = 1}
= {x ∈ RN+1; x = yH(N), y ≥ 0, xe = 1}
= {x ∈ RN+1; x = ydiag(H(N)e)H(N), y ≥ 0, xe = 1}.

Let α = ydiag(H(N)e). Since x = αH(N), we have xe = αe. Furthermore, if y ≥ 0,
we have α = ydiag(H(N)e) ≥ 0 and vice versa, since H(N)e > 0. We thus have

{x ∈ RN+1; x = ydiag(H(N)e)H(N), y ≥ 0, xe = 1}
= {x ∈ RN+1; x = αH(N), α ≥ 0, αe = 1}. (4.10)

Because H(N) is composed of N + 1 linearly independent probability vectors, P(N) is
an N -simplex on the first orthant of RN+1.

Theorem 4.1 implies that the conditional stationary distribution π(N) of any Markov
chain in M(Q(1,1)(N)) is given by a convex combination of row vectors of H(N), i.e.,
there exists α∗(N) such that

π(N) = α∗(N)H(N), α∗(N) ∈ Γ(N). (4.11)
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Remark 4.1. Since H(N) is nonsingular, there is a one-to-one correspondence be-
tween π(N) and α∗(N), i.e., α∗(N) = π(N)(−Q(1,1)(N))diag(H(N)e). Consequently,
obtaining the conditional stationary distribution π(N) in an ergodic, continuous-time
Markov chain is equivalent to obtaining the nonnegative weight vector α∗(N).

The following corollary can be used to evaluate the accuracy of an approximation x
to π(N).

Corollary 4.1. For an arbitrary probability vector x ∈ Γ(N), we have

∥x− π(N)∥1 ≤ max
i∈ZN

0

∥x− ηi(N)∥1, (4.12)

where ηi(N) (i ∈ ZN
0 ) denotes the ith row vector of H(N). Furthermore, if x ∈ P(N),

we have
max
i∈ZN

0

∥x− ηi(N)∥1 ≤ max
i,j∈ZN

0

∥ηj(N)− ηi(N)∥1, x ∈ P(N). (4.13)

Proof. (4.12) immediately follows from Theorem 4.1 and the convexity of P(N). Fur-
thermore, if x ∈ P(N), there exists a probability vector β = (β0 β1 · · · βN ) ∈ Γ(N)
such that

∥x− ηi(N)∥1 = ∥
∑
j∈ZN

0

βj
(
ηj(N)− ηi(N)

)
∥1 ≤

∑
j∈ZN

0

βj∥ηj(N)− ηi(N)∥1,

from which (4.13) follows.

We now provide a probabilistic interpretation of (4.11). For the sake of convenience,
we assume that the Markov chain starts at time −∞ in the rest of this subsection. We
then partition the state space Z+ into ZN

0 and Z∞
N+1 and regard {X(t)}t∈(−∞,∞) as an

alternating Markov-renewal process. For an integer n ∈ Z, let T
(1)
n (resp. T

(2)
n ) denote

the nth time instant at which {X(t)}t∈(−∞,∞) enters into ZN
0 from Z∞

N+1 (resp. into

Z∞
N+1 from ZN

0 ), where we assume T
(1)
n < T

(2)
n < T

(1)
n+1 without loss of generality. We

define I(t) (t ∈ (−∞,∞)) as the state at the last renewal epoch before time t, i.e.,

I(t) =

{
X(T

(1)
n ), T

(1)
n ≤ t < T

(2)
n ,

X(T
(2)
n ), T

(2)
n ≤ t < T

(1)
n+1.

We then consider the joint process {(X(t), I(t))}t∈(−∞,∞), which is assumed to be sta-
tionary.

Corollary 4.2. For any Markov chain {X(t)}t∈(−∞,∞) in M(Q(1,1)(N)), the (i, j)th

(i, j ∈ ZN
0 ) element of H(N) is given by

[H(N)]i,j = Pr(X(0) = j | I(0) = i), i, j ∈ ZN
0 , (4.14)

and the ith (i ∈ ZN
0 ) element of α∗(N) is given by

[α∗(N)]i = Pr(I(0) = i | X(0) ∈ ZN
0 ). (4.15)

We thus interpret (4.11) as

[π(N)]j =
∑
i∈ZN

0

Pr(I(0) = i | X(0) ∈ ZN
0 ) · Pr(X(0) = j | I(0) = i), j ∈ ZN

0 . (4.16)
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The proof of Corollary 4.2 is given in Appendix D.

Note that for a given northwest corner submatrix Q(1,1)(N), P(N) in Theorem 4.1
may not be tight in M(Q(1,1)(N)), i.e., P(N) may contain redundant vectors. For
example, P(N) may contain x ∈ RN+1 such that [x]i = 0 for some i ∈ ZN

0 , whereas
π(N) > 0 since Markov chains in M(Q(1,1)(N)) are ergodic. In the next subsection, we
eliminate redundancy in P(N) using structural information J (N) in (4.1).

4.2.2 Characterization in terms of Q(1,1)(N) and J (N)

For specific Q(1,1)(N) and J (N), we define M(Q(1,1)(N),J (N)) as a collection of
ergodic, continuous-time Markov chains on Z+, whose infinitesimal generators have
Q(1,1)(N) and J (N). By definition,

M(Q(1,1)(N)) =
⋃

J (N)∈2Z
N
0 \{∅}

M(Q(1,1)(N),J (N)).

Note here that M(Q(1,1)(N),J (N)) may be empty for some pairs of Q(1,1)(N) and
J (N). For example, if Q(1,1)(N) is a diagonal matrix, M(Q(1,1)(N),J (N)) = ∅ unless
J (N) = ZN

0 , owing to the ergodicity. In the rest of this subsection, we assume that if
M(Q(1,1)(N),J (N)) ̸= ∅, J (N) = {0, 1, . . . , |J (N)| − 1} without loss of generality.

If J (N) ̸= ZN
0 , we partition Q(1,1)(N) and Q(2,1)(N) in (4.2) into two matrices.

(
Q(1,1)(N)

Q(2,1)(N)

)
=

( J (N) ZN
0 \J (N)

ZN
0 Q

(1,1)
+ (N) Q

(1,1)
0 (N)

Z∞
N+1 Q

(2,1)
+ (N) O

)
. (4.17)

(4.9) is then rewritten to be

π(N) ·
( J (N) ZN

0 \J (N)

−Q
(1,1)
+ (N) −Q

(1,1)
0 (N)

)
=

( J (N) ZN
0 \J (N)

π(2)(N)

π(1)(N)e
·Q(2,1)

+ (N) 0

)
. (4.18)

We define Γ+(N) as

Γ+(N) =
{
α ∈ RN+1; α ≥ 0, αe = 1, [α]i = 0 (i ∈ ZN

0 \ J (N))
}
. (4.19)

Theorem 4.2. Suppose that M(Q(1,1)(N),J (N)) is not empty. For any Markov chain
in M(Q(1,1)(N),J (N)), we have

π(N) ∈ riP+(N), N ∈ Z+, (4.20)

where P+(N) (N ∈ Z+) denotes a (|J (N)| − 1)-simplex on the first orthant of RN+1,
which is given by P+(N) = P(N) if J (N) = ZN

0 and otherwise,

P+(N) =
{
x ∈ RN+1; x(−Q

(1,1)
+ (N)) ≥ 0, x(−Q

(1,1)
0 (N)) = 0, xe = 1

}
(4.21)

=
{
x ∈ RN+1; x = αH(N), α ∈ Γ+(N)

}
. (4.22)
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Proof. If J (N) = ZN
0 , we have π(2)(N)Q(2,1)(N) > 0 since π(2)(N) > 0. Theorem 4.2

for J (N) = ZN
0 then follows from (1.11), (4.9), and Theorem 4.1. On the other hand,

if J (N) ̸= ZN
0 , π(2)(N)Q

(2,1)
+ (N) > 0. (4.20) with (4.21) then follows from (1.11) and

(4.18). The equivalence between (4.21) and (4.22) for J (N) ̸= ZN
0 can be shown in

a way similar to the proof of Theorem 4.1, as shown in Appendix E. Since H(N) is
nonnegative and nonsingular, P+(N) is a (|J (N)| − 1)-simplex on the first orthant of
RN+1.

By definition, we have Γ+(N) ⊆ Γ(N) and therefore,

P+(N) ⊆ P(N), (4.23)

where P+(N) = P(N) iff J (N) = ZN
0 . Theorem 4.2 indicates the importance of the

structural information J (N) about direct transitions from Z∞
N+1 to ZN

0 . For example,
if J (N) is a singleton for a certain N , say, J (N) = {i} (i ∈ ZN

0 ), π(N) is given by the
ith row vector of H(N), as pointed out in [Zha04, Corollary 3].

The following corollary follows from Theorem 4.2, whose proof is omitted because it
is almost the same as Corollary 4.1.

Corollary 4.3. Suppose that M(Q(1,1)(N),J (N)) is not empty. For an arbitrary prob-
ability vector x ∈ Γ(N), we have

∥x− π(N)∥1 ≤ max
i∈J (N)

∥x− ηi(N)∥1.

Furthermore, if x ∈ P+(N), we have

max
i∈J (N)

∥x− ηi(N)∥1 ≤ max
i,j∈J (N)

∥ηj(N)− ηi(N)∥1, x ∈ P+(N).

Example 4.1. Consider an ergodic, level-dependent MX/M/1 queue with disasters,
whose infinitesimal generator Q takes the following form.

Q =



−q0 q0,1 q0,2 q0,3 q0,4 q0,5 . . .
q1,0 −q1 q1,2 q1,3 q1,4 q1,5 . . .
q2,0 q2,1 −q2 q2,3 q2,4 q2,5 . . .
q3,0 0 q3,2 −q3 q3,4 q3,5 . . .
q4,0 0 0 q4,3 −q4 q4,5 . . .
q5,0 0 0 0 q5,4 −q5 . . .
...

...
...

...
...

...
. . .


,

where qi,0 > 0 and qi,i−1 > 0 (i ∈ N). We then have

J (N) = {0, N},

because the state immediately after a downward transition from state i (i ≥ N + 1) is
either state 0 or state i− 1. It then follows that

Γ+(N) =
{(

α0 0 0 · · · 0 1− α0

)
∈ RN+1; α0 ∈ [0, 1]

}
,

and

π(N) ∈ riP+(N) =
{
x ∈ RN+1; x = α0η0(N) + (1− α0)ηN (N), α0 ∈ (0, 1)

}
.
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Note here that ηi(N) (i ∈ ZN
0 ) can be obtained by (i) solving xi(−Q(1,1)(N)) = eTi for

xi ∈ RN+1 and (ii) let ηi(N) = xi/xie. Recall that ei denotes the ith unit column
vector. The simplest way to obtain an approximation πapprox(N) ∈ riP+(N) to π(N)
might be to solve x(−Q(1,1)) = β0e

T
0 + (1 − β0)e

T
N for an arbitrary β0 ∈ (0, 1) and let

πapprox(N) = x/xe.

We now show that P+(N) is tight in M(Q(1,1)(N),J (N)), i.e., P+(N) does not
contain any redundant vectors.

Lemma 4.1. If M(Q(1,1)(N),J (N)) ̸= ∅ and x ∈ riP+(N), we have x > 0.

Proof. We assume [x]j∗ = 0 for some j∗ ∈ ZN
0 and show a contradiction. Since x =

α(x)H(N) for some α(x) ∈ ri Γ+(N), [x]j∗ = 0 is equivalent to [α(x)H(N)]j∗ = 0
for some α(x) ∈ ri Γ+(N). This implies that [H(N)]i,j∗ = 0 for all i ∈ J (N) since
[α(x)]i > 0 for all i ∈ J (N) and H(N) ≥ O. It then follows from (4.14) that Pr(X(0) =
j∗ | I(0) ∈ J (N)) = 0 for any Markov chain in M(Q(1,1)(N),J (N)). Furthermore,
Pr(I(0) ∈ ZN

0 \J (N)) = 0 and Pr(X(0) = j∗ | I(0) ∈ Z∞
N+1) = 0 by definition. We thus

have

Pr(X(0) = j∗) = Pr(I(0) ∈ J (N)) Pr(X(0) = j∗ | I(0) ∈ J (N))

+ Pr(I(0) ∈ Z∞
N+1) Pr(X(0) = j∗ | I(0) ∈ Z∞

N+1)

= 0,

for any Markov chain in M(Q(1,1)(N),J (N)), which contradicts the ergodicity.

Theorem 4.3. Suppose that M(Q(1,1)(N),J (N)) is not empty. For any x ∈ riP+(N),
there exists a Markov chain in M(Q(1,1)(N),J (N)), whose π(N) is given by x.

Proof. It follows from (4.23) that if x ∈ riP+(N), we have x(−Q(1,1)(N)) ≥ 0 and xe =
1 because of x ∈ P(N). Note also that x(−Q(1,1)(N)) ̸= 0 because if x(−Q(1,1)(N)) = 0
held, we would have x = 0 · (−Q(1,1)(N))−1 = 0, which contradicts xe = 1. We then
define ζ(x) as

ζ(x) =
x(−Q(1,1)(N))

x(−Q(1,1)(N))e
. (4.24)

It is easy to see that ζ(x) ∈ ri Γ+(N) for x ∈ riP+(N). For an arbitrarily chosen
x ∈ riP+(N), we consider a Markov chain whose infinitesimal generator Q is given by

Q =

( ZN
0 Z∞

N+1

ZN
0 Q(1,1)(N) Q(1,2)(N)

Z∞
N+1 (−Q(2,2)(N))eζ(x) Q(2,2)(N)

)
. (4.25)

Its global balance equation is then given by

π(1)(N)Q(1,1)(N) + π(2)(N)(−Q(2,2)(N))eζ(x) = 0, (4.26)

π(1)(N)Q(1,2)(N) + π(2)(N)Q(2,2)(N) = 0. (4.27)

From (4.24) and (4.26), we observe that the special Q(2,1)(N) = (−Q(2,2)(N))eζ(x)
ensures π(1)(N) = c1x for some positive constant c1. We now set

Q(1,2)(N) = (−Q(1,1)(N))ez, Q(2,2)(N) = −I, (4.28)



52 CHAPTER 4. CHARACTERIZATION BASED ON NORTHWEST CORNERS

where z denotes a 1×∞ positive probability vector. (4.27) is then reduced to

π(1)(N)(−Q(1,1)(N))ez − π(2)(N) = 0, (4.29)

which indicates that (4.28) ensures π(2)(N) = c2z > 0 for some positive constant c2. In
fact, solving (4.26) and (4.29) with π(1)(N)e+ π(2)(N)e = 1, we obtain

π =
(
π(1)(N) π(2)(N)

)
=

1

1 + x(−Q(1,1)(N))e

(
x x(−Q(1,1)(N))e · z

)
> 0.

We thus conclude that the Markov chain with the infinitesimal generator Q defined by
(4.25) and (4.28) is a member of M(Q(1,1)(N),J (N)) and it has π(N) = x.

Example 4.2 (cont’d). Consider Q in Example 4.1 of Section 4.2.2. Theorem 4.2
implies that there exists α0 = α∗

0 ∈ (0, 1) such that π(N) = α∗
0η0(N)+(1−α∗

0)ηN (N). As
stated in Theorem 4.3, however, riP+(N) is tight in M(Q(1,1)(N),J (N)). Therefore,
we cannot identify the exact α∗

0 ∈ (0, 1) if only Q(1,1)(N) and J (N) = {0, N} are
available.

4.3 Extensions using state transitions in peripheral states

In this section, we consider extensions of the results in Section 4.2 by using the (K +
1)×(K+1) northwest corner submatrix of the infinitesimal generator Q, where K > N .
For this purpose, we partition π and Q as follows.

π =
( ZK

0 Z∞
K+1

π(1)(K) π(2)(K)
)
=
( ZN

0 ZK
N+1 Z∞

K+1

π(1)(K,N) π(2)(K,N) π(3)(K,N)
)
,

Q =

( ZK
0 Z∞

K+1

ZK
0 Q(1,1)(K) Q(1,2)(K)

Z∞
K+1 Q(2,1)(K) Q(2,2)(K)

)

=


ZN
0 ZK

N+1 Z∞
K+1

ZN
0 Q(1,1)(K,N) Q(1,2)(K,N) Q(1,3)(K,N)

ZK
N+1 Q(2,1)(K,N) Q(2,2)(K,N) Q(2,3)(K,N)

Z∞
K+1 Q(3,1)(K,N) Q(3,2)(K,N) Q(3,3)(K,N)

. (4.30)

Note here that from (1.21) and (4.2),

π(1)(K,N) = π(1)(N), π(3)(K,N) = π(2)(K),

Q(1,1)(K,N) = Q(1,1)(N), Q(3,3)(K,N) = Q(2,2)(K).

In order to utilize the results in Section 4.2, we consider the censored Markov chain
{X̃(t)}t≥0 obtained by observing the Markov chain {X(t)}t≥0 only when X(t) ∈ ZN

0 ∪
Z∞
K+1. The infinitesimal generator of {X̃(t)}t≥0 is then given by

Q̃(K,N) =

( ZN
0 Z∞

K+1

ZN
0 Q̃(1,1)(K,N) Q̃(1,3)(K,N)

Z∞
K+1 Q̃(3,1)(K,N) Q̃(3,3)(K,N)

)
, (4.31)
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where for i, j = 1, 3,

Q̃(i,j)(K,N) = Q(i,j)(K,N) +Q(i,2)(K,N)(−Q(2,2)(K,N))−1Q(2,j)(K,N). (4.32)

In particular, we have

Q̃(1,1)(K,N) = Q(1,1)(N)(I −R(K,N)), (4.33)

where

R(K,N) = (−Q(1,1)(N))−1Q(1,2)(K,N)(−Q(2,2)(K,N))−1Q(2,1)(K,N). (4.34)

Note that (I − R(K,N)) in (4.33) is nonsingular because Q̃(1,1)(K,N) and Q(1,1)(N)
are nonsingular.

Apparently, Theorem 4.1 is applicable to the censored Markov chain {X̃(t)}t≥0 on

ZN
0 ∪ Z∞

K+1. Note also that the conditional stationary distribution of {X̃(t)}t≥0 given

X̃(0) ∈ ZN
0 is identical to π(N). To proceed further, we define Γ̃(K,N) (K > N) as

Γ̃(K,N) =
{
α ∈ RN+1;α = βdiag−1(H̃(K,N)e)(I −R(K,N))−1diag(H(N)e),

β ∈ Γ(N)
}
, (4.35)

where
H̃(K,N) = (−Q̃(1,1)(K,N))−1. (4.36)

Remark 4.2. It can be verified that H̃(K,N) is identical to the (N + 1) × (N + 1)
northwest corner submatrix of the (K + 1)× (K + 1) matrix H(K) = (−Q(1,1)(K))−1.

For a specific (K + 1) × (K + 1) northwest corner submatrix Q(1,1)(K), we define
M(Q(1,1)(K)) as a collection of ergodic, continuous-time Markov chains on Z+, whose
infinitesimal generators have Q(1,1)(K).

Theorem 4.4. For any Markov chain in M(Q(1,1)(K)), we have

π(N) ∈ P̃(K,N), K,N ∈ Z+, K > N,

where P̃(K,N) denotes an N -simplex on the first orthant of RN+1, which is given by

P̃(K,N) =
{
x ∈ RN+1; x(−Q(1,1)(N))(I −R(K,N)) ≥ 0,xe = 1

}
(4.37)

= {x ∈ RN+1; x = αH(N), α ∈ Γ̃(K,N)}, (4.38)

with R(K,N) in (4.34).

Proof. Associated with H̃(K,N) in (4.36), we define H̃(K,N) as

H̃(K,N) = diag−1(H̃(K,N)e)H̃(K,N). (4.39)

Applying Theorem 4.1 to (4.31), we obtain π(N) ∈ P̂(K,N), where P̂(K,N) has two
equivalent expressions:

P̂(K,N) =
{
x ∈ RN+1; x(−Q̃(1,1)(K,N)) ≥ 0,xe = 1

}
=
{
x ∈ RN+1; x = βH̃(K,N), β ∈ Γ(N)

}
. (4.40)
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Because of (4.33), P̃(K,N) in (4.37) is identical to P̂(K,N).
Next, we show the equivalence between (4.38) and (4.40). It follows from (4.33) and

(4.36) that

H̃(K,N) = (−Q̃(1,1)(K,N))−1 = (I −R(K,N))−1(−Q(1,1)(N))−1

= (I −R(K,N))−1H(N). (4.41)

Therefore, for an arbitrary β ∈ Γ(N), we have from (4.39) and (4.41),

βH̃(K,N) = βdiag−1(H̃(K,N)e)(I −R(K,N))−1H(N)

= βdiag−1(H̃(K,N)e)(I −R(K,N))−1diag(H(N)e)H(N)

= αH(N), (4.42)

where
α = βdiag−1(H̃(K,N)e)(I −R(K,N))−1diag(H(N)e), (4.43)

which shows the equivalence between (4.38) and (4.40). We thus conclude that

P̃(K,N) = P̂(K,N). (4.44)

P̃(K,N) is an N -simplex on the first orthant of RN+1 because of the nonsingularity of

H̃(K,N) ≥ O, (4.40), and (4.44).

Corollary 4.4. Γ̃(K,N) in (4.35) is a subset of Γ(N).

Γ̃(K,N) ⊆ Γ(N), N,K ∈ Z+, N < K. (4.45)

Furthermore,

Γ̃(K2, N) ⊆ Γ̃(K1, N), N,K1,K2 ∈ Z+, N < K1 < K2, (4.46)

and therefore
P̃(K2, N) ⊆ P̃(K1, N) ⊆ P(N), (4.47)

where P(N) is given in Theorem 4.1.

The proof of Corollary 4.4 is given in Appendix F.
Next, we consider an extension of the results in Section 4.2.2. For specific (K +

1) × (K + 1) northwest corner submatrix Q(1,1)(K) and structural information J (K)
(K > N), we define M(Q(1,1)(K),J (K)) as a collection of ergodic, continuous-time
Markov chains on Z+, whose infinitesimal generators have Q(1,1)(K) and J (K). For
Markov chains in M(Q(1,1)(K),J (K)), we define J̃ (K,N) (K > N) as a set of states
in ZN

0 , which is reachable from some states in Z∞
K+1 directly or via only some states in

ZK
N+1.

J̃ (K,N) = {j ∈ ZN
0 ; [eT Q̃(3,1)(K,N)]j > 0}. (4.48)

Note here that J̃ (K,N) ̸= ∅ because of the ergodicity. Note also that J̃ (K,N) is
determined completely by Q(1,1)(K) and J (K), because from (4.1), (4.30), and (4.32),

J (K) = {j ∈ ZN
0 ;
[
eTQ(3,1)(K,N)

]
j
> 0} ∪ {j ∈ ZK

N+1;
[
eTQ(3,2)(K,N)

]
j
> 0},

Q̃(3,1)(K,N) = Q(3,1)(K,N) +Q(3,2)(K,N) · (−Q(2,2)(K,N))−1Q(2,1)(K,N).
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Furthermore, by definition,
J̃ (K,N) ⊆ J (N), (4.49)

and states in J (N)\J̃ (K,N), if any, can be reached from Z∞
K+1 only after visiting some

states in J̃ (K,N).

Example 4.3 (cont’d). Consider Q in Example 4.1 of Section 4.2.2. By definition,
J (K) = {0,K} and J̃ (K,N) = {0, N} = J (N).

Without loss of generality, we assume J̃ (K,N) = {0, 1, . . . , |J̃ (K,N)|−1}. We then
partition Q̃(1,1)(K,N) in (4.31) into two matrices:

Q̃(1,1)(K,N) =
( J̃ (K,N) ZN

0 \J̃ (K,N)

Q̃
(1,1)
+ (K,N) Q̃

(1,1)
0 (K,N)

)
, (4.50)

and define Γ̃+(K,N) as

Γ̃+(K,N) =
{
α ∈ RN+1; α = βdiag−1(H̃(K,N)e)(I −R(K,N))−1diag(H(N)e),

β ∈ Γ(N), [β]i = 0 (i ∈ ZN
0 \ J̃ (K,N))

}
. (4.51)

Theorem 4.5. Suppose that M(Q(1,1)(K),J (K)) is not empty. For any Markov chain
in M(Q(1,1)(K),J (K)) (K > N), we have

π(N) ∈ ri P̃+(K,N), K,N ∈ Z+, K > N, (4.52)

where P̃+(K,N) denotes a (|J̃ (K,N)| − 1)-simplex on the first orthant of RN+1, which
is given by P̃(K,N) if J̃ (K,N) = ZN

0 and otherwise,

P̃+(K,N) =
{
x ∈ RN+1; x(−Q̃

(1,1)
+ (K,N)) ≥ 0,

x(−Q̃
(1,1)
0 (K,N)) = 0, xe = 1

}
(4.53)

=
{
x ∈ RN+1; x = αH(N), α ∈ Γ̃+(K,N)

}
. (4.54)

Proof. If J̃ (K,N) = ZN
0 , Theorem 4.5 can be shown in the same way as Theorem 4.2

for J (N) = ZN
0 . We thus assume that J̃ (K,N) ̸= ZN

0 . Applying Theorem 4.2 to the

censored Markov chain with infinitesimal generator Q̃(K,N) in (4.31) with partition
(4.50), we obtain (4.52) with (4.53), where (4.53) can also be expressed as follows.

P̃+(K,N) =
{
x ∈ RN+1; x = βH̃(K,N),

β ∈ Γ(N), [β]i = 0 (i ∈ ZN
0 \ J̃ (K,N))

}
, (4.55)

where H̃(K,N) is given by (4.39). (4.54) now follows from (4.42) and (4.55). Since

H̃(K,N) is nonnegative and nonsingular, (4.55) implies that P̃+(K,N) is a (|J̃ (K,N)|−
1)-simplex on the first orthant of RN+1.

By definition,
Γ̃+(K,N) ⊆ Γ̃(K,N), (4.56)

where Γ̃(K,N) is given by (4.35). We thus have

P̃+(K,N) ⊆ P̃(K,N), (4.57)

where P̃(K,N) is given in Theorem 4.4.
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Corollary 4.5. Γ̃+(K,N) in (4.51) is a subset of Γ+(N) in (4.19).

Γ̃+(K,N) ⊆ Γ+(N). (4.58)

Furthermore,

Γ̃+(K2, N) ⊆ Γ̃+(K1, N), N,K1,K2 ∈ Z+, N < K1 < K2, (4.59)

and therefore

P̃+(K2, N) ⊆ P̃+(K1, N) ⊆ P+(N). (4.60)

The proof of Corollary 4.5 is given in Appendix G. Since P̃(K,N) in Theorem 4.4
and P̃+(K,N) in Theorem 4.5 are compact, Corollaries 4.4 and 4.5 suggest that those
simplices converge to certain sets as K goes to infinity. In fact, we have the following
proposition.

Proposition 4.1 ([Mas18, Theorem 2.3]). In any ergodic, continuous-time Markov
chain {X(t)}t≥0 on Z+,

lim
K→∞

H̃(K,N) = eπ(N), N ∈ Z+.

The following corollary immediately follows from (4.40), (4.44), (4.47), (4.55), (4.57),
(4.60), and Proposition 4.1.

Corollary 4.6. In any ergodic, continuous-time Markov chain {X(t)}t≥0 on Z+,

∞⋂
K=N+1

P̃(K,N) = lim
K→∞

P̃(K,N) = {π(N)}, N ∈ Z+,

and
∞⋂

K=N+1

P̃+(K,N) = lim
K→∞

P̃+(K,N) = {π(N)}, N ∈ Z+.

Since ri P̃+(K,N) ⊆ P̃+(K,N), ri P̃+(K,N) also converges to {π(N)} as K goes
to infinity. Note here that ri P̃+(K,N) may not be tight in M(Q(1,1)(K),J (K)) for a
finite K. For example, we consider M(Q(1,1)(N + 1),J (N + 1)), where K = N + 1,
J (N+1) = {N+1}, and qN+1,j > 0 for all j ∈ ZN

0 . We then have J̃ (N+1, N) = ZN
0 and

therefore P̃+(N+1, N) is an N -simplex spanned by (N+1) row vectors of H̃(N+1, N),
as shown in the proof of Theorem 4.5. On the other hand, it follows from Theorem 4.2
that P+(N + 1) is given by a singleton with the (N + 1)st row vector ηN+1(N + 1) of
H(N + 1). In other words, all Markov chains in M(Q(1,1)(N + 1), {N + 1}) have the
same π(N) (i.e., the normalized vector of the first N + 1 elements of ηN+1(N + 1)), so

that ri P̃+(N+1, N) is not tight. In the next section, we find minimum convex polytopes
that contain π(N) in a sense that it is tight in M(Q(1,1)(K),J (K)).
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4.4 Minimum convex polytopes for M(Q(1,1)(K),J (K))

In this section, we consider minimum convex polytopes that contain π(N) for Markov
chains in M(Q(1,1)(K),J (K)). The outline of our approach can be summarized as
follows. For convenience, we partition H(K) = (−Q(1,1)(K))−1 and π(K) as follows.

H(K) =
( ZN

0 ZK
N+1

H(∗,1)(K; N) H(∗,2)(K; N)
)
, (4.61)

π(K) =
( ZN

0 ZK
N+1

π(1)(K; N) π(2)(K; N)
)
.

Since π(K) ∈ riP+(K) by Theorem 4.2, π(N) = π(1)(K; N)/π(1)(K; N)e is given by a
convex combination of normalized row vectors of H(∗,1)(K; N) corresponding to J (K).

Note here that in all sample paths of the first passage from Z∞
K+1 to ZN

0 , {X(t)}t≥0

must visit at least one state in J (K). In view of this fact, we first introduce (K,N)-skip-
free sets. Roughly speaking, a (K,N)-skip-free set X is a proper subset of ZK

0 , where
in all sample paths of the first passage from Z∞

K+1 to ZK
0 , {X(t)}t≥0 must visit at least

one state in X . We then show in Theorem 4.6 that π(N) = π(1)(K; N)/π(1)(K; N)e is
given by a convex combination of normalized row vectors of H(∗,1)(K; N) corresponding
to members in X .

To find the minimum convex polytopes that contain π(N), we introduce a partial
order among (K,N)-skip-free sets, considering the first passage time from Z∞

K+1 to those.
We then show the inclusion relation among convex polytopes associated with (K,N)-
skip-free sets in Lemma 4.2. Finally, we find the smallest (K,N)-skip-free set and the
corresponding minimum convex polytope in Theorem 4.7, which is shown to be tight in
M(Q(1,1)(K),J (K)).

4.4.1 (K,N)-skip-free sets

For an arbitrary, non-empty subset B of Z+, we define F (B) as the first passage time to
B.

F (B) = inf{t ≥ 0; X(t) ∈ B}, B ⊆ Z+.

Definition 4.1 ((K,N)-skip-free set). For arbitrarily fixed K,N ∈ Z+ (K > N), con-
sider a Markov chain {X(t)}t≥0 in M(Q(1,1)(K),J (K)). We refer to a subset X of ZK

0

as a (K,N)-skip-free set if {X(t)}t≥0 starting from any state in Z∞
K+1 must visit X by

the first passage time to ZN
0 , i.e.,

Pr(X(t) ∈ X for some t ∈ (0, F (ZN
0 )] | X(0) ∈ Z∞

K+1) = 1.

In particular, a (K,N)-skip-free set X is called proper if for any proper subset Y of X ,

Pr(X(t) ∈ Y for some t ∈ (0, F (ZN
0 )] | X(0) ∈ Z∞

K+1) < 1.

Let S(K,N) denote the family of all (K,N)-skip-free sets and S∗(K,N) denote the
family of all proper (K,N)-skip-free sets.

Remark 4.3. By definition,
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(i) (K,N)-skip-free sets are determined only by Q(1,1)(K) and J (K),

(ii) S∗(K,N) ⊆ S(K,N),

(iii) J (K) ∈ S(K,N) and J̃ (K,N) ∈ S∗(K,N), where J̃ (K,N) is given by (4.48),
and

(iv) J (K) ∩ ZN
0 ⊆ X for all X ∈ S(K,N).

We can provide an equivalent definition of (K,N)-skip-free sets by considering a
directed graph associated with Q(1,1)(K) and J (K). Specifically, for arbitrarily fixed
K,N ∈ Z+ (K > N), we define

G(K,N) = (V (K,N), E(K,N)) (4.62)

as a directed graph, where V (K,N) and E(K,N) denote sets of nodes and arcs defined
as

V (K,N) = {s, t} ∪ ZK
0 ,

E(K,N) = {(s, j); j ∈ J (K)} ∪ {(i, t); i ∈ ZN
0 }

∪ {(i, j); i ∈ ZK
N+1, j ∈ ZK

0 , qi,j > 0}.

Node s represents the set of states in Z∞
K+1 and node t is a virtual terminal node for

the first passage to ZN
0 . It is readily seen from Definition 4.1 that a subset X of ZK

0 is
a (K,N)-skip-free set iff X is an (s, t)-node cut in G(K,N) and that X is proper iff it
is a minimal (s, t)-node cut.

For a given G(K,N), nodes in ZK
0 can be classified into two classes, depending on if

they appear on the way of at least one path from node s to node t.

ZK
0 = N+(K,N) ∪N0(K,N), N+(K,N) ∩N0(K,N) = ∅,

where nodes in N+(K,N) are reachable from node s and each of them have at least one
path to node t. Note here that N0(K,N) = ZK

0 \ N+(K,N) is given by

N0(K,N) = N (1)
0 (K,N) ∪N (2)

0 (K,N) ∪N (3)
0 (K,N),

where N (i)
0 (K,N) (i = 1, 2, 3) are defined as

N (1)
0 (K,N) = ZN

0 \ J̃ (K,N) = {i ∈ ZN
0 ; Pr(X(F (ZN

0 )) = i | X(0) ∈ Z∞
K+1) = 0},

N (2)
0 (K,N) = {i ∈ ZK

N+1;

Pr(X(t) ∈ Z∞
N+1 for all t ∈ (0, F ({i})] | X(0) ∈ Z∞

K+1) = 0},

N (3)
0 (K,N) = {i ∈ ZK

N+1; Pr(X(t) ∈ ZK
N+1 for all t ∈ (0, F (ZN

0 )] | X(0) = i) = 0}.

Roughly speaking, states in N (1)
0 (K,N) ⊆ ZN

0 and states in N (2)
0 (K,N) ⊆ ZK

N+1 can be

reached from any states in Z∞
K+1 only after visiting J̃ (K,N) ⊆ ZN

0 . On the other hand,

states in N (3)
0 (K,N) ∈ ZK

N+1 have no paths to ZN
0 without visiting Z∞

K+1.
By definition, X ∩ N0(K,N) = ∅ if X ∈ S∗(K,N), whereas there may exist X ∈

S(K,N) such that X ∩ N0(K,N) ̸= ∅. As we will see, all states in N0(K,N) can be
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excluded from consideration when we study the conditional stationary distribution π(N)
for Markov chains in M(Q(1,1)(K),J (K)).

Before considering minimum convex polytopes for Markov chains in M(Q(1,1)(K),
J (K)), we provide a remark on (K,N)-skip-free sets. Note that (K,N)-skip-free sets
can be regarded as a natural extension of levels with the skip-free-to-the-left property
in Markov chains of LD-M/G/1-type. Suppose a Markov chain {X(t)}t≥0 is of LD-
M/G/1-type, i.e., its state space Z+ is partitioned into disjoint levels {Lm; m ∈ Z+}
and transitions between two levels are skip-free to the left. We now consider the first
passage time from LK+1 to LN (K > N). It then follows that each level Lm (m =
N,N + 1, . . . ,K) can be regarded as a (K̂, N̂)-skip-free set, where K̂ and N̂ denote
the greatest state in ∪K

m=0Lm and ∪N
m=0Lm, i.e., K̂ = LK − 1 and N̂ = LN − 1. One

of the most notable differences between (K,N)-skip-free sets and levels with the skip-
free-to-the-left property is that (K,N)-skip-free sets are not disjoint, while levels are
disjoint.

Example 4.4 (cont’d). Consider Q in Example 4.1 of Section 4.2.2. S∗(K,N) is given
by

S∗(K,N) =
{
{0, k}; k ∈ ZK

N

}
.

4.4.2 Minimum convex polytopes

We consider convex polytopes associated with (K,N)-skip-free sets. We then partition
H(K) = (−Q(1,1)(K))−1 into two matrices as in (4.61). Note here that

[H(∗,1)(K; N)e]i = 0, i ∈ N (3)
0 (K,N), (4.63)

and [H(∗,1)(K; N)e]i > 0 for all i ∈ ZK
0 \ N (3)

0 (K,N). For any (K + 1)-dimensional
vector x, we define diag∗(x) as a (K+1)-dimensional diagonal matrix whose ith (i ∈ ZK

0 )
diagonal element is given by

[diag∗(x)]i,i =


1

[x]i
, [x]i ̸= 0,

0, otherwise.

We then define Γ(K,N ; B) (K,N ∈ Z+, K > N , B ⊆ ZK
0 ) as

Γ(K,N ; B) =
{
α ∈ RN+1; α = βU(K,N), β ∈ Γ(K),

[β]i ≥ 0 (i ∈ B), [β]i = 0 (i ∈ ZK
0 \ B)},

where Γ(n) (n ∈ Z+) is defined in (4.4) and U(K,N) is given by

U(K,N) = diag∗(H(∗,1)(K; N)e)

(
I

(−Q(2,2)(K,N))−1Q(2,1)(K,N)

)
· (I −R(K,N))−1diag(H(N)e).

Moreover, for X ∈ S(K,N), we define X ∗ as

X ∗ = X \ N0(K,N).
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Note that

X ∗ ∈ S(K,N) if X ∈ S(K,N), X ∗ = X if X ∈ S∗(K,N). (4.64)

We then have the following theorem, whose proof is given in Appendix H.

Theorem 4.6. Suppose that M(Q(1,1)(K),J (K)) is not empty. For any Markov chain
in M(Q(1,1)(K),J (K)), we have for X ∈ S(K,N) (K > N),

π(N) ∈ P+(K,N ; X ∗),

where P+(K,N ; X ∗) denotes a convex polytope on the first orthant of RN+1, which is
given by

P+(K,N ; X ∗) =
{
x ∈ RN+1;

[
(x y)(−Q(1,1)(K))]i ≥ 0 (i ∈ X ∗),[
(x y)(−Q(1,1)(K))]i = 0 (i ∈ ZK

0 \ X ∗),

xe = 1, y ≥ 0
}

(4.65)

= {x ∈ RN+1; x = αH(N), α ∈ Γ(K,N ; X ∗)}. (4.66)

In particular,

π(N) ∈ riP+(K,N ; X ∗) if X ∗ ∈ S∗(K,N).

Remark 4.4. Consider two (K,N)-skip-free sets XA,XB ∈ S(K,N). If XA ⊆ XB, we
have X ∗

A ⊆ X ∗
B by definition. Therefore, it follows from (4.65) that P+(K,N ; X ∗

A) ⊆
P+(K,N ; X ∗

B) if XA ⊆ XB.

Lemma 4.2. For Markov chains in M(Q(1,1)(K),J (K)) with XA,XB ∈ S(K,N), we
consider the first passage times F (X ∗

A), F (X ∗
B), and F (ZN

0 ). If the statements

F (X ∗
A) ≤ F (X ∗

B) given that X(0) ∈ Z∞
K+1

and

F (X ∗
B) ≤ F (ZN

0 ) given that X(0) ∈ X ∗
A, (4.67)

hold sample path-wise, we have

P(K,N ; X ∗
A) ⊆ P(K,N ; X ∗

B).

The proof of Lemma 4.2 is given in Appendix I. By definition, J̃ (K,N) ∈ S∗(K,N)
and P+(K,N ; J̃ (K,N)) is identical to P̃+(K,N) in (4.53). Recall that J̃ (K,N) ⊆ ZN

0 .

Therefore, for any X ∈ S(K,N), F (X ) ≤ F (J̃ (K,N)) holds sample path-wise, given
X(0) ∈ Z∞

K+1. On the other hand, J (K) ∈ S(K,N) and each state in J (K) is reachable
from some states in Z∞

K+1 by direct transitions. Note here that

J ∗(K) = J (K) \ N0(K,N) = J (K) \ N (3)
0 (K,N). (4.68)

We thus have F (J ∗(K)) ≤ F (X ∗) sample path-wise, given X(0) ∈ Z∞
K+1. The following

corollary follows from Theorem 4.6 and the above observations.
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Corollary 4.7. Among (K,N)-skip-free sets, J̃ (K,N) in (4.48) gives a maximum con-
vex polytope, i.e.,

P+(K,N ; X ∗) ⊆ P+(K,N ; J̃ (K,N)), X ∈ S(K,N).

On the other hand, among (K,N)-skip-free sets, J ∗(K) gives a minimum convex poly-
tope, i.e.,

P+(K,N ; J ∗(K)) ⊆ P+(K,N ; X ∗), X ∈ S(K,N).

Note here that J ∗(K) is not proper in general. We thus consider a proper (K,N)-
skip-free set that gives the minimum convex polytope P+(K,N ; J ∗(K)). Specifically,
we introduce a subset D(K,N) of J (K), which is generated by the following procedure.

Procedure 4.1 ([Nag18]).

(i) We obtain a directed graph G∗(K,N) from G(K,N) in (4.62) by removing all
incoming edges to nodes in J (K) and

(ii) find a subset D(K,N) of nodes in J (K), from which node t is reachable in
G∗(K,N).

Note that Step (ii) can be performed with O(K) operations, by considering reverse
paths from node t to node s in graph G∗(K,N). The subset D(K,N) gives the minimum
convex polytope.

Lemma 4.3 ([Nag18]). Suppose that M(Q(1,1)(K),J (K)) is not empty. For any
Markov chain in M(Q(1,1)(K),J (K)) (K > N), we have D(K,N) ∈ S∗(K,N). Fur-
thermore, D(K,N) ⊆ X for all X ⊆ J (K) such that X ∈ S(K,N).

The proof of Lemma 4.3 is given in Appendix J.

Lemma 4.4. Suppose that M(Q(1,1)(K),J (K)) is not empty. For any Markov chain
in M(Q(1,1)(K),J (K)) (K > N), we have

P+(K,N ; D(K,N)) = P+(K,N ; J ∗(K)), K,N ∈ Z+, K > N,

where J ∗(K) is given by (4.68).

Proof. Since D(K,N) ∈ S∗(K,N), we have D∗(K,N) = D(K,N) from (4.64). It then
follows from Remark 4.4 and D(K,N) ⊆ J (K) that P+(K,N ; D(K,N)) = P+(K,N ;
D∗(K,N)) ⊆ P+(K,N ; J ∗(K)). On the other hand, it follows from Lemma 4.3 that
F (J ∗(K)) ≤ F (D(K,N)) if X(0) ∈ Z∞

K+1 and F (D(K,N)) ≤ F (ZN
0 ) if X(0) ∈ J ∗(K).

We thus have P+(K,N ; J ∗(K)) ⊆ P+(K,N ; D(K,N)) from Lemma 4.2, which com-
pletes the proof.

The following theorem shows that the minimum convex polytope P+(K,N ; D(K,N))
is tight in M(Q(1,1)(K),J (K)).

Theorem 4.7. Suppose that M(Q(1,1)(K),J (K)) is not empty. For any probability
vector x ∈ riP+(K,N ; D(K,N)), there exists a Markov chain in M(Q(1,1)(K),J (K)),
whose π(N) is given by x.
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Table 4.1: The worst-case error bounds in Example 4.5 (N = 50).
K worst-case error bound

50 1.4822557975239× 10−1

60 2.8325135949980× 10−2

70 3.3500314471736× 10−3

80 2.3592892522569× 10−4

90 1.0840482894389× 10−5

100 3.5265317430058× 10−7

110 8.6146805062734× 10−9

120 1.6515206910372× 10−10

130 2.5711073894930× 10−12

140 3.2661373605691× 10−14

150 2.0140139556091× 10−15

The proof of Theorem 4.7 is given in Appendix K. As shown in the proof, if
M(Q(1,1)(K),J (K)) ̸= ∅ and x ∈ riP+(K,N ; D(K,N)), we have x > 0. The fol-
lowing corollary comes from the fact that P+(K,N ; D(K,N)) is a convex polytope

spanned by η
(∗,1)
i (K; N) for i ∈ D(K,N) (cf. (A.18)), where η

(∗,1)
i (K; N) (i ∈ ZK

0 )
denotes the ith normalized row vector of H(∗,1)(K; N) in (4.61).

Corollary 4.8. Suppose that M(Q(1,1)(K),J (K)) is not empty. For an arbitrary prob-
ability vector x ∈ Γ(N), we have

∥x− π(N)∥1 ≤ max
i∈D(K,N)

∥x− η
(∗,1)
i (K; N)∥1.

Furthermore, if x ∈ P+(K,N ; D(K,N)), we have

max
i∈D(K,N)

∥x− η
(∗,1)
i (K; N)∥1 ≤ max

i,j∈D(K,N)
∥η(∗,1)

j (K; N)− η
(∗,1)
i (K; N)∥1,

x ∈ P+(K,N ; D(K,N)).

Example 4.5 (cont’d). Consider Q in Example 4.1 of Section 4.2.2. Note that J (N) =
{0, N} and J (K) = J ∗(K) = D(K,N) = {0,K}. We set qi,j = λibj−i (i ∈ Z+, j > i),
qi,i−1 = µi (i ∈ N = Z+ \ {0}), and qi,0 = γi (i ∈ N), where

λi = 2− 1

i+ 1
(i ∈ Z+), bi =

1

2i
(i ∈ N),

µi =
i

10
(i ∈ N), γi =

λi

i
(i ∈ Z+ \ {0, 1}).

Table 4.1 shows the worst-case error bound maxi,j∈D(K,N) ∥η
(∗,1)
j (K; N)−η

(∗,1)
i (K; N)∥1

= ∥η(∗,1)
0 (K; N) − η

(∗,1)
K (K; N)∥1 in Corollary 4.8, where N = 50 and the result for

K = N indicates the worst-case error bound maxi,j∈J (N) ∥ηj(N)−ηi(N)∥1 = ∥η0(N)−
ηN (N)∥1 in Corollary 4.3. We observe that the worst-case error bound steadily decreases
as K increases and that if K = 150, any probability vector x ∈ riP+(K,N ; D(K,N))
is a good approximation to π(N) in this specific case.
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4.5 Conclusion

In this chapter, we considered ergodic, continuous-time Markov chains on Z+ and char-
acterized the conditional stationary distribution π(N) given that the Markov chain is in
ZN
0 via systems of linear inequalities. Specifically, we first obtained an N -simplex P(N)

that contains π(N), assuming that we know only the (N+1)×(N+1) northwest corner
submatrix Q(1,1)(N) of the infinitesimal generator. We then refined this result and elim-
inated unnecessary vertices from P(N), using the structural information J (N). Next,
we extended those results to the cases that the (K + 1)× (K + 1) (K > N) northwest
corner submatrix (and J (K)) are available. Furthermore, we introduced a new state
transition structure called (K,N)-skip-free sets and obtained a tight convex polytope
that contains π(N), under the condition that only Q(1,1)(K) and J (K) are available.
Recall that the state space of a Markov chain {X(t)}t≥0 was assumed to be countably
infinite. Except for Corollary 4.6, however, all the results in this chapter also hold for
Markov chains with finite state space ZK∗

0 for some K∗ ∈ Z+ such that N < K < K∗,
if we replace Z∞

N and Z∞
K by ZK∗

N and ZK∗
K .

We scarcely ever discussed one-point approximations to the conditional stationary
distribution π(N). In view of the error bounds in Corollaries 4.3 and 4.8, it seems to be
reasonable to choose a center of a convex polytope that contains π(N) as a one-point
approximation to π(N). Note, however, that we cannot identify the exact location of
π(N) within the convex polytopes, unless further information is available. Therefore,
for a specific problem, the choice of the center may or may not work well. We will
discuss the selections of one-point approximations in the next chapter.

In Chapter 2, we characterized the conditional stationary distribution in terms of
the reverse-directional R-matrices. On the other hand, this chapter characterized the
conditional stationary distribution in general Markov chains based on the northwest cor-
ner submatrices of the infinitesimal generator. Therefore, all the results in this chapter
are also applicable to Markov chains of LD-M/G/1-type and in this special case, both
characterizations are different but closely related. See Appendix L for details.





5 Implications for the Augmented Trun-
cation Approximation and their Appli-
cation to Disaster Queues

5.1 Introduction

In this chapter, we discuss numerical computations of the (conditional) stationary dis-
tribution based on the results in Chapter 4. We first provide practical implications of
results in Chapter 4 for the augmented truncation approximation (ATA). As shown in
Section 1.3, the standard ATA constructs a finite-state Markov chain based on the north-
west corner submatrix of the infinitesimal generator and then, it computes the stationary
distribution in the finite-state Markov chain so as to obtain a one-point approximation
of the conditional stationary distribution. We provide numerical implementations of
the conditional stationary distribution based on the standard ATA, which enable us to
evaluate the error bound of the computed conditional stationary distribution.

Next, we analyze a specific queueing model with disasters by applying the above-
mentioned numerical implementation. In queueing systems, a disaster is the event that
all customers are removed from the system [Jai96, Kum08]. For instance, resets in
computer systems, which arise from overloads or virus infections, can be modeled by
disasters. We consider a queueing model with queue-length-dependent disasters and gen-
erally distributed service times. In such a model, the stochastic process of the number
of customers is not formulated as a continuous-time Markov chain because of the gener-
ally distributed service times, so that we analyze the model using an imbedded Markov
chain. Specifically, (i) we construct the imbedded Markov chain associated with the
original stochastic process of the number of customers, i.e, compute the state transition
probability matrix, (ii) compute the stationary distribution in the imbedded chain, and
(iii) convert the stationary distribution in the imbedded chain to the stationary distribu-
tion in the original continuous-time process. We first discuss Step (i) and then, we study
the error in Step (i) and its propagation on the Steps (ii)–(iii). Finally, we develop the
numerical computation of the stationary distribution of queue-length-dependent disaster
queues and provide its numerical examples.

The rest of this chapter is organized as follows. In Section 5.2, we provide practical
implications for the ATA. In Section 5.3, we describe the model. In Section 5.4, we
give the overview of the approach to computing the stationary distribution. In Section
5.5, we consider the numerical computations of the state transition probability matrix
of the imbedded Markov chain. In Section 5.6, we briefly discuss the selection of the
augmentation matrix and the error bound of the ATA solution in disaster queues. In

65
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Section 5.7, we discuss the error in the approximation to the stationary distribution.
In Section 5.8, we show some numerical examples to demonstrate that our numerical
procedure works well. Finally, we conclude this chapter in Section 5.9.

5.2 Implications for the augmented truncation approxima-
tion

In this section, we consider an ergodic, time-homogeneous, and continuous-time Markov
chain {X(t)}t≥0 on Z+ = {0, 1, . . .} described in Chapter 1. It is assumed that {X(t)}t≥0

is stationary and the infinitesimal generator Q and the stationary distribution π are
partitioned in conformance with Z+ = ZN

0 ∪ Z∞
N+1, as in (1.21) and (4.2). We provide

some practical implications of the results in Chapter 4 for the ATA. As mentioned in
Section 1.3, for a given N , an ATA solution πapprox(N) to the conditional stationary
distribution π(N) is given by the solution of (1.22). Recall that the central topic in the
literature on the ATA is the convergence of (πapprox(N) 0) to the stationary distribution
π as N goes to infinity. Note that our interest is different from it, that is to say, we are
interested in what kind of augmentation matrices QA(N) is reasonable for a given N .

Although QA(N) is usually chosen in such a way that [Q(1,1)(N) +QA(N)] is irre-
ducible, we allow reducible [Q(1,1)(N)+QA(N)] as well. Recall that the error bound for
the approximation (πapprox(N) 0) to the stationary distribution π is given by the tail
probability ξ(N) = Pr(X(0) > N) and the error ϵ(N) = ∥πapprox(N) − π(N)∥1 in the
approximation πapprox(N) to the conditional stationary distribution π(N) (cf. (1.25)).
It is clear that for a given N , the tail probability ξ(N) is an unknown but positive fixed
value and (πapprox(N) 0) will be the best approximation to π when πapprox(N) = π(N)
(i.e., ϵ(N) = 0) [Zha04]. In what follows, we first consider some implications of our
results in Section 4.2.1 for the ATA under the condition that only (N + 1) × (N + 1)
northwest corner submatrix Q(1,1)(N) is available.

We define T (N) as a set of all possible ATA solutions satisfying (1.22).

T (N) =
{
x ∈ RN+1; x

[
Q(1,1)(N) +QA(N)

]
= 0, xe = 1, QA(N) ∈ A(N)

}
,

where A(N) denotes a set of all possible augmentation matrices.

A(N) =
{
X ∈ R(N+1)×(N+1); X ≥ O, Xe = (−Q(1,1)(N))e

}
.

In the literature, ATA is called linear if the rank of QA(N) is equal to one [Gib87a]. We
then define TL(N) as a set of all possible approximations obtained by the linear ATA.

TL(N) =
{
x ∈ RN+1; x

[
Q(1,1)(N) +QA(N)

]
= 0, xe = 1, QA(N) ∈ AL(N)

}
,

where AL(N) denotes a set of all possible linear augmentation matrices.

AL(N) =
{
X ∈ R(N+1)×(N+1); X = (−Q(1,1)(N))eζ, ζ ∈ Γ(N)

}
,

where Γ(N) denotes the set of all 1 × (N + 1) probability vectors, which is defined in
(4.4).

Lemma 5.1. Consider an ergodic Markov chain {X(t)}t≥0 on Z+. We have

T (N) = TL(N) = P(N), N ∈ Z+,

where P(N) is given by (4.7).
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The proof of Lemma 5.1 is given in Appendix M. Lemma 5.1 implies the following.

Implication 5.1. The linear ATA solution has the same degree of freedom as the gen-
eral ATA solution does. Specifically, for any general augmentation, there is a linear
augmentation which constructs the same ATA solution.

We thus restrict our attention to the linear ATA with QA(N) = (−Q(1,1)(N))eζ,
where ζ ∈ Γ(N). In this case, (1.22) is reduced to

πapprox(N ; ζ)[Q(1,1)(N) + (−Q(1,1)(N))eζ] = 0, πapprox(N ; ζ)e = 1. (5.1)

Note here that πapprox(N ; ζ) in (5.1) is closely related to π(N) in a Markov chain with
the infinitesimal generator Q in (4.25). Specifically, using the cut-flow balance equation

π(1)(N)(−Q(1,1)(N))e = π(2)(N)(−Q(2,2)(N))e,

we can rewrite (4.26) to be

π(1)(N)
[
Q(1,1)(N) + (−Q(1,1)(N))eζ(x)

]
= 0.

We thus have πapprox(N ; ζ) = π(N) = x ∈ P(N) if we set ζ = ζ(x) in (5.1).

Implication 5.2. The linear ATA solution πapprox(N ; ζ) for a specific ζ is identical
to π(N) in an ergodic Markov chain whose infinitesimal generator takes the following
form:

Q =

( ZN
0 Z∞

N+1

ZN
0 Q(1,1)(N) Q(1,2)(N)

Z∞
N+1 (−Q(2,2)(N)e)ζ Q(2,2)(N)

)
.

Since πapprox(N ; ζ) ∈ TL(N) = P(N), it follows from Theorem 4.1 that

πapprox(N ; ζ) = α(N ; ζ)H(N), (5.2)

for some α(N ; ζ) ∈ Γ(N). Recall that there is a one-to-one correspondence between
πapprox(N ; ζ) and α(N ; ζ), as stated in Remark 4.1. Note also that there are one-to-one
correspondences between ζ and α(N ; ζ):

α(N ; ζ) =
ζdiag(H(N)e)

ζdiag(H(N)e)e
, ζ =

α(N ; ζ)diag−1(H(N)e)

α(N ; ζ)diag−1(H(N)e)e
, (5.3)

and between πapprox(N ; ζ) and ζ:

πapprox(N ; ζ) =
ζH(N)

ζH(N)e
, ζ =

πapprox(N ; ζ)(−Q(1,1)(N))

πapprox(N ; ζ)(−Q(1,1)(N))e
.

It is readily seen that the vertex ηi(N) of the convex polytope P(N) (= TL(N)) is given
by a linear ATA solution with a single-column augmentation.

ηi(N) = πapprox(N ; eTi ). (5.4)
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From (5.2), we also observe that πapprox(N ; ζ) is given by a convex combination of
row vectors ηi(N)’s (i ∈ ZN

0 ) of H(N) with the nonnegative weight vector α(N ; ζ). It
then follows from (4.12) that

∥πapprox(N ; ζ)− π(N)∥1 ≤ max
i∈ZN

0

∥πapprox(N ; ζ)− ηi(N)∥1, (5.5)

= max
i∈ZN

0

∥πapprox(N ; ζ)− πapprox(N ; eTi )∥1.

This error bound tempts us to set α(N ; ζ) in such a way that πapprox(N ; ζ) is located
at the center of P(N) spanned by ηi(N)’s (i ∈ ZN

0 ). For example, if we set α(N ; ζ) =
eT /(N + 1), πapprox(N ; ζ) is given by the center of gravity of P(N). Note here that
(5.2) is equivalent to πapprox(N ; ζ)(−Q(1,1)(N)) = α(N ; ζ)diag−1(H(N)e).

Implication 5.3. If we have a desirable α(N ; ζ) rather than ζ itself, πapprox(N ; ζ) for
such an α(N ; ζ) can be computed as follows:

(i) We first obtain h(N) := H(N)e by solving (−Q(1,1)(N))h(N) = e and then

(ii) obtain πapprox(N ; ζ) by solving

πapprox(N ; ζ)(−Q(1,1)(N)) = α(N ; ζ)diag−1(h(N)).

In the above procedure, we have to solve two systems of linear equations with
−Q(1,1)(N). Therefore, comparing with the procedure for solving (5.1) directly for a
specific ζ, the computational cost increases by (N +1)2 in terms of the number of mul-
tiplications/divisions, if we utilize the LU decomposition. This increase can be regarded
as a cost of specifying the weight vector α(N ; ζ) directly, instead of ζ.

Next we consider Markov chains under the condition that the northwest corner sub-
matrix Q(1,1)(N) and the structural information J (N) are available. Note that J (N)
is given in (4.1) and represents a subset of states in ZN

0 , which are directly reachable
from at least one state in Z∞

N+1.

It follows from (5.3) that for all i ∈ ZN
0 ,

[α(N ; ζ)]i = 0 ⇔ [ζ]i = 0. (5.6)

We then define T +
L (N) as the set of all possible approximations obtained by the linear

ATA when J (N) is available.

T +
L (N) =

{
x ∈ RN+1; x

[
Q(1,1)(N) + (−Q(1,1)(N))eζ

]
= 0, xe = 1, ζ ∈ Γ+(N)

}
,

where Γ+(N) is given by (4.19). By definition, we have T +
L (N) ⊆ TL(N).

Lemma 5.2. Consider an ergodic Markov chain {X(t)}t≥0 on Z+. We have

T +
L (N) = P+(N), N ∈ Z+,

where P+(N) is given by (4.22).
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Input: Q(1,1)(N) and J (N).
Output: πapprox(N) = πapprox(N ; ζ) and ε(N).

Compute ηi(N) = xi/xie for all i ∈ J (N),
where xi is the unique solution of xi(−Q(N)) = eTi .

Compute πapprox(N) = |J (N)|−1
∑

i∈J (N) ηi(N).

Compute the error bound ε(N) = maxi∈J (N) ∥πapprox(N ; ζ)− ηi(N)∥1.

Figure 5.1: A computational algorithm for an ATA solution πapprox(N) and its error
bound ε(N).

The proof of Lemma 5.2 is given in Appendix N. We thus have π(N) ∈ ri T +
L (N)

from Theorem 4.2. It also follows from (5.6) that if [ζ]i > 0 for some i ∈ ZN
0 \ J (N),

we have πapprox(N ; ζ) /∈ P+(N) because ηj(N)’s (j ∈ ZN
0 ) are linearly independent.

Moreover, it follows from Corollary 4.3 that

∥πapprox(N ; ζ)− π(N)∥1 ≤ max
i∈J (N)

∥πapprox(N ; ζ)− ηi(N)∥1, (5.7)

= max
i∈J (N)

∥πapprox(N ; ζ)− πapprox(N ; eTi )∥1,

which is tighter than (5.5). In summary, we have:

Implication 5.4. If the structural information J (N) is available, it is natural that
we should choose ζ from ri Γ+(N) in obtaining a linear ATA solution, where Γ+(N) is
given by (4.19). For example, we may choose ζ whose ith (i ∈ ZN

0 ) element is given by
1/|J (N)| if i ∈ J (N) and otherwise it is given by 0.

Implication 5.4 indicates that the last-column augmentation ζ = (0 0 · · · 0 1), which
is one of the common augmentation strategies in the literature [Gib87a, Wol80], may not
be effective unless J (N) = {N}, because if J (N) ̸= {N}, we have ζ = (0 0 · · · 0 1) ̸∈
ri Γ+(N) and therefore πapprox(N ; ζ) ̸∈ riP+(N), while π(N) ∈ riP+(N). In Figure
5.1, we summarize the numerical implementation of the conditional stationary distribu-
tion π(N) with an error evaluation according to our implications.

Remark 5.1. As shown in (A.9), we have

ζ∗ =
π(2)(N)Q(2,1)(N)

π(2)(N)Q(2,1)(N)e
,

which satisfies π(N)[Q(1,1)(N)+ (−Q(1,1)(N))eζ∗] = 0. Therefore, in order to obtain a
good one-point approximation to the conditional stationary distribution π(N), we need
some information about π(2)(N), as in the Iterative Aggregation/Disaggregation methods
for finite-state Markov chains [Ste94, Taka75].

As we will see in Section 5.8, when K is sufficiently large, a pathological phenomenon
can be observed in the tail of an approximation πapprox(K; ζ) to π(K) because the
truncation at K may have a strong impact on the tail of πapprox(K; ζ). If this is
the case, we might adopt an approximation πapprox(K,N ; ζ) to π(N) by truncating
πapprox(K; ζ) and normalizing it.
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Specifically, we partition πapprox(K; ζ) as follows.

πapprox(K; ζ) =
( ZN

0 ZK
N+1

πapprox,(1)(K,N ; ζ) πapprox,(2)(K,N ; ζ)
)
.

Let πapprox(K,N ; ζ) denote an approximation to the conditional stationary distribution
π(N) obtained from πapprox(K; ζ).

πapprox(K,N ; ζ) =
πapprox,(1)(K,N ; ζ)

πapprox,(1)(K,N ; ζ)e
.

It is easy to verify that we have πapprox(K,N ; ζ) ∈ P̃(K,N), where P̃(K,N) is given
in (4.38), and we have

πapprox(K,N ; ζ) ∈ riP+(K,N ;D(K,N))

if [ζ]i > 0 (i ∈ D(K,N)) and [ζ]i = 0 (i ∈ ZK
0 \ D(K,N)).

Note that D(K,N) is given by Procedure 4.1 and P+(K,N ;D(K,N)) denotes the min-
imum convex polytope containing π(N) under the condition that only Q(1,1)(K) and
J (K) are available (cf. Corollary 4.7 and Lemma 4.4). It then follows from Corollary
4.8 that

∥πapprox(K,N ; ζ)− π(N)∥1 ≤ max
i∈D(K,N)

∥πapprox(K,N ; ζ)− η
(∗,1)
i (K;N)∥1 (5.8)

= max
i∈D(K,N)

∥πapprox(K,N ; ζ)− πapprox(K,N ; eTi )∥1.

Note that η
(∗,1)
i (K;N) denotes the 1 × (N + 1) subvector composed of the first N + 1

elements of ηi(K). It follows from Corollaries 4.6 and 4.7 and Lemma 4.4 that

lim
K→∞

riP+(K,N ;D(K,N)) = {π(N)},

and therefore the error bound given in (5.8) converges to zero as K goes to infinity if
πapprox(K,N ; ζ) ∈ riP+(K,N ;D(K,N)) for all K ∈ Z∞

N+1, i.e., [ζ]i > 0 (i ∈ D(K,N))
and [ζ]i = 0 (i ∈ ZK

0 \ D(K,N)). It is, however, hard to discuss the rate of the
convergence of the error bound because it depends on the model.

5.3 A single-server queue with disasters

In this section, we describe the queueing model with the queue-length-dependent disas-
ters. Recall that a disaster is the event that all customers are removed from the system.
Such events are also called clearing [Box01], (total) catastrophe [Cha03, Kum08], or
mass exodus [Che97] in the literature. The stationary workload [Box01, Ino14, Jai96]
and the stationary queue length [Dud99, Dud04, Li06, Shi04] in single-server queues
with (queue-length-independent) disasters and generally distributed service times have
been studied in the literature.

Queueing systems whose arrival rates and/or occurrence rates of disasters depend on
the queue length are termed state-dependent queues or level-dependent queues. Such
queueing systems naturally arise in practical modeling. In many situations, a long
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waiting line discourages prospective customers from joining the queue, so that the net
arrival rate depends on the queue length. Furthermore, a huge backlog may cause a
fatal fault or a compulsory reset. To the best of our knowledge, single-server queues
with generally distributed service times and level-dependent disasters have not been
studied so far.

We consider a single-server queue, where arrivals and disasters occur according to
a level-dependent marked Markovian arrival process (LD-MMAP) described in later.
We assume that customers are served on a FIFO basis and that their service times are
independent and identically distributed (i.i.d.) according to a general distribution H(x)
(x ≥ 0) with finite mean E[H].

We define L(t) (t ≥ 0) as the number of customers in the system at time t and
S(t) ∈ M = {0, 1, . . . ,M−1} (t ≥ 0) as the state of the auxiliary variable at time t. We
call L(t) level at time t and S(t) phase at time t. We also define level k as the subset
{k} × M (k ∈ Z+) of the state space {0, 1, . . .} × M of {(L(t), S(t))}t≥0. Let N(s, t]
(s < t) denote the number of customers entering the system in time interval (s, t]. We
then define Ck, Dk, and Γk (k ∈ Z+) as M ×M matrices whose elements are given by

[Ck]i,j = lim
∆t→0

Pr
(
N(t, t+∆t] = 0, S(t+∆t) = j | (L(t), S(t)) = (k, i)

)
∆t

,

i, j ∈ M, i ̸= j,

[Dk]i,j = lim
∆t→0

Pr
(
N(t, t+∆t] = 1, S(t+∆t) = j | (L(t), S(t)) = (k, i)

)
∆t

, i, j ∈ M,

[Γk]i,j = lim
∆t→0

Pr
(
a disaster occurs in (t, t+∆t], S(t+∆t) = j | (L(t), S(t)) = (k, i)

)
∆t

,

i, j ∈ M,

and

[Ck]i,i = −
(∑
j∈M
j ̸=i

[Ck]i,j +
∑
j∈M

(
[Dk]i,j + [Γk]i,j

))
, i ∈ M.

We assume Γ0 = O without loss of generality. We also assume Dk ̸= O (k ∈ Z+) and
0 < [−Ck]i,i < ∞ (k ∈ Z+, i ∈ M). By definition, {(Ck,Dk,Γk); k ∈ Z+} describes
the arrival/disaster process. Roughly speaking, when k (k ∈ Z+) customers stay in the
system (i.e., L(t) = k), an arrival (resp. a disaster) occurs along with a transition driven
by Dk (resp. Γk). By definition, (Ck +Dk + Γk) (k ∈ Z+) represents the infinitesimal
generator of the underlying phase process {S(t)}t≥0 when L(t) = k. Note that

(Ck +Dk + Γk)e = 0, k ∈ Z+. (5.9)

Note also that when a service completes, L(t) decreases by one, while S(t) remains
unchanged.

We are interested in the stationary distribution in {(L(t), S(t))}t≥0. We thus assume
that for any pair of states (k1, j1) and (k2, j2) (k1, k2 ∈ Z+, j1, j2 ∈ M), there exists a
sample path from (k1, j1) to (k2, j2). Unfortunately, the necessary and sufficient stability
condition for queueing systems with level-dependent arrivals and disasters has not been
clarified. In the rest of this chapter, we assume the following sufficient condition for the
stability.
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Assumption 5.1. {(L(t), S(t))}t≥0 satisfies either of the following two conditions.

(i) There exists K†
1 ∈ Z+ and α > 0 such that Dke− kΓke ≤ −α (k ∈ Z∞

K†
1

), or

(ii) there exists K†
2 ∈ Z+ and α > 0 such that Dke − µe ≤ −α (k ∈ Z∞

K†
2

), where

µ = 1/E[H].

Assumption 5.1 (i) is a drift condition ignoring service completions, while Assump-
tion 5.1 (ii) is a drift condition ignoring disasters. Note that under Assumption 5.1,
the arrival/disaster process characterized by {(Ck,Dk,Γk); k ∈ Z+} is non-explosive,
i.e., for an arbitrary finite T > 0 and an arbitrary initial state (L(0), S(0)), the number
N(0, T ] of arrivals in time interval (0, T ] is finite with probability 1.

Remark 5.2. The stability under Assumption 5.1 (i) can be shown as follows. For a
while, we assume that services never complete. In this case, {(L(t), S(t))}t≥0 forms a
continuous-time Markov chain and it is readily shown by Pakes’s Lemma [Bre99, Corol-
lary 1.1 of Chap. 5] that {(L(t), S(t))}t≥0 is positive-recurrent under Assumption 5.1
(i). Therefore, in the model with a finite E[H] described above, the mean first passage
time from any state to the empty system is finite, so that {(L(t), S(t))}t≥0 is stable. On
the other hand, the stability under Assumption 5.1 (ii) can be shown by considering a
modified model in which all customers remain in the system at the occurrence of disas-
ters (i.e., the ordinary LD-MAP/G/1 queueing model without disasters), and applying
Theorem 3.3-3 in [Hof01].

5.4 Overview of the standard approach to the single-server
queue with disasters

Let ϖ = (ϖ0 ϖ1 · · · ) denote the stationary distribution in {(L(t), S(t))}t≥0, where ϖℓ

denotes a 1×M vector whose jth (j ∈ M) element is given by limt→∞ Pr
(
(L(t), S(t) =

(ℓ, j)
)
. Since service times are generally distributed, the process {(L(t), S(t))}t≥0 is not

Markovian. We consider an imbedded Markov chain associated with {(L(t), S(t))}t≥0.
Specifically, the standard approach to the analysis of the stationary distribution ϖ is
outlined as follows.

Step 1: Construct an imbedded Markov chain: We choose time instants at which
services complete or disasters occur as imbedded Markov points. We define τn
(n = 0, 1, . . .) as the nth imbedded Markov point, where τ0 = 0. Let (Ln, Sn) =
(L(τn), S(τn)) (n = 0, 1, . . .). It is clear that {(Ln, Sn)}n=0,1,... forms a discrete-
time Markov chain whose state transition probability matrix P takes the following
form:

P =



P0,0 P0,1 P0,2 P0,3 P0,4 P0,5 · · ·
P1,0 P1,1 P1,2 P1,3 P1,4 P1,5 · · ·
P2,0 P2,1 P2,2 P2,3 P2,4 P2,5 · · ·
P3,0 O P3,2 P3,3 P3,4 P3,5 · · ·
P4,0 O O P4,3 P4,4 P4,5 · · ·
P5,0 O O O P5,4 P5,5 · · ·
...

...
...

...
...

...
. . .


, (5.10)
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where Pk,0 (k ∈ Z+) and Pk,ℓ (k, ℓ ∈ Z+, ℓ ≥ k − 1) are M ×M matrices.

Step 2: Compute the stationary distribution in the imbedded Markov chain: We define
π = (π0 π1 · · · ) as the stationary distribution in the imbedded Markov chain
{(Ln, Sn)}n=0,1,..., where πℓ (ℓ ∈ Z+) denotes a 1×M vector whose jth (j ∈ M)
element is given by limn→∞ Pr((Ln, Sn) = (ℓ, j)). By definition, π satisfies π =
πP and πe = 1.

Step 3: Compute the stationary distribution ϖ = (ϖ0 ϖ1 · · · ) of {(L(t), S(t))}t≥0:
ϖ is given in terms of πk (k ∈ Z+) as follows.

ϖ0 =
π0(−C0)

−1

E[T ]
, ϖℓ =

π0(−C0)
−1D0W1,ℓ

E[T ]
+

ℓ∑
k=1

πkWk,ℓ

E[T ]
(ℓ ∈ N), (5.11)

where E[T ] denotes the average of τn+1 − τn (n = 0, 1, . . . ) and Wk,ℓ (k, ℓ ∈ N,
ℓ ≥ k) denotes an M ×M matrix whose (i, j)th (i, j ∈ M) element represents the
mean total sojourn time in state (ℓ, j) in (τn, τn+1], starting from (Ln, Sn) = (k, i).

The numerical implementation of the above three steps in the LD-MMAP/G/1 queue
with level-dependent disasters is not straightforward. In what follows, we identify the
problems to be resolved in each step.

In Step 1, we have to compute Pk,ℓ’s in P . As we will see in (5.20), Pk,ℓ’s are given
in terms of M ×M matrices BP,k,ℓ’s in BP:

BP =



I O O O O · · ·
BP,1,0 BP,1,1 BP,1,2 BP,1,3 BP,1,4 · · ·
BP,2,0 O BP,2,2 BP,2,3 BP,3,4 · · ·
BP,3,0 O O BP,3,3 BP,3,4 · · ·
BP,4,0 O O O BP,4,4 · · ·

...
...

...
...

...
. . .


=

∫ ∞

0
exp[U t]dH(t), (5.12)

where U denotes the infinitesimal generator of an absorbing Markov chain that repre-
sents the arrival process until a disaster occurs.

U =



O O O O O · · ·
Γ1 C1 D1 O O · · ·
Γ2 O C2 D2 O · · ·
Γ3 O O C3 D3 · · ·
Γ4 O O O C4 · · ·
...

...
...

...
...

. . .


. (5.13)

In what follows, we use the following convention, as with BP in (5.12). For any matrix
X composed of M × M block matrices, let Xk,ℓ (k, ℓ ≥ 0) denote the (k, ℓ)th block
matrix of X. For example, for U in (5.13), Uk,k = Ck (k ∈ N).

Remark 5.3. Note that exp[U t] (t ≥ 0) can be regarded as a transition probability
matrix, i.e., exp[U t] ≥ O and exp[U t]e = e. Therefore, all elements in BP are finite
because

∫∞
0 exp[U t]dH(t)e =

∫∞
0 dH(t)e = e.
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The stable and accurate numerical computation of block matrices BP,k,ℓ in BP is
crucial and it is one of the main topics of the following sections. We define θ as

θ = sup
k∈N

(
max
i∈M

[−Ck]i,i
)
.

If θ is finite, the uniformization technique is directly applicable and BP,k,ℓ (k ∈ N,
ℓ ∈ {0} ∪ Z∞

k ) is given by the weighted sum of infinitely many M × M non-negative
matrices, where the weights are given in terms of θ and the service time distribution
H(x). The advantages of the uniformization technique are that (i) the procedure is
numerically stable because it does not involve subtractions and that (ii) for a given
error bound ϵ, we can set an appropriate truncation point n := n∗(ϵ) of the infinite sum
representing BP,k,ℓ.

Note that θ can be infinite and in this case, there are no standard methods for
computing block matrices BP,k,ℓ in BP in (5.12), which guarantee error bounds. We
consider computing an approximation to BP,k,ℓ by using only the (m+1)M × (m+1)M
northwest corner submatrix U(m) of U because exp[U(m)t] is always uniformizable
since [−Ck]i,i < ∞ (i ∈ M) for all k ∈ N.

The truncation of U at level m does not affect the accuracy of computed BP,k,ℓ

(ℓ ∈ Zm
k ) because it can be represented completely in terms of U(m). Contrarily, the

accuracy of computed BP,k,0 is affected by the truncation of U by the following reason.
Note that BP,k,0 includes the occurrence probability that a disaster occurs before a
service completion given that the service starts with Ln = k. Because level L(τn+1−)
immediately before the occurrence of the disaster is unbounded, the exact expression
of BP,k,0 is given in terms of the whole U . Therefore, if we compute BP,k,0 using the
truncated U(m) of U at level m, we will obtain an approximation BP,k,0(m) to BP,k,0,
which ignores all sample paths with L(τn+1−) > m. Consequently, in terms of an
approximation Pk,0(m) to Pk,0, we have for k ∈ Zm

0 and i, j ∈ M,

[Pk,0(m)]i,j = Pr
(
(Ln+1, Sn+1) = (0, j), L(τn+1−) ≤ m | (Ln, Sn) = (k, i)

)
.

The above discussion makes it clear that our approach has two sources of errors: one is
the truncation of U at level m and the other is the truncation of the weighted infinite
sum obtained by uniformization. While the latter is controllable, the error control of
the former is not straightforward because it requires information beyond level m.

To control errors inherent in our approach, we adopt a cross-layer design of the
computational procedure. Specifically, we assume that the augmented truncation ap-
proximation (ATA) is employed in Step 2, as we will explain below, where the truncation
level K in the ATA is assumed to be given in advance. We then utilize this information
in Step 1, i.e., we consider a computational procedure for Pk,0 only for k ∈ ZK

0 , which
satisfies a predefined error bound under Assumption 5.1.

In Step 2, we compute the stationary distribution π in the imbedded Markov chain
{(Ln, Sn)}n=0,1,.... Owing to the level dependence of arrivals and disasters, however,
it is hard to obtain the analytical expression of the stationary distribution π. We
thus adopt the ATA, which attempts to compute an approximation to the conditional
stationary distribution πlv(K) = (π0(K) π1(K) · · · πK(K)) for an appropriate K,
where πℓ(K) (ℓ ∈ ZK

0 ) denotes a 1 × M vector whose jth (j ∈ M) element is given
by limn→∞ Pr((Ln, Sn) = (ℓ, j) | Ln ≤ K). Specifically, we compute an ATA solution
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πapprox
lv (K) as an approximation to πlv(K) by solving

πapprox
lv (K) = πapprox

lv (K)[P (K) + PA(K)], πapprox
lv (K)e = 1, (5.14)

where P (K) denotes the (K + 1)M × (K + 1)M northwest corner submatrix of P :

P (K) =



P0,0 P0,1 P0,2 P0,3 · · · P0,K−1 P0,K

P1,0 P1,1 P1,2 P1,3 · · · P1,K−1 P1,K

P2,0 P2,1 P2,2 P2,3 · · · P2,K−1 P2,K

P3,0 O P3,2 P3,3 · · · P3,K−1 P3,K
...

...
...

...
. . .

...
...

PK−1,0 O O O · · · PK−1,K−1 PK−1,K

PK,0 O O O · · · PK,K−1 PK,K


,

and PA(K) denotes an augmentation matrix such that PA(K) ≥ O and [P (K) +
PA(K)]e = e.

If the numerical errors in elements of P (K) are negligible, the error in an approx-
imation πapprox = (πapprox

lv (K) 0) to π obtained by the ATA can be evaluated by the
tail probability and the error in the ATA solution πapprox

lv (K) (cf. (1.25)). Let

ξlv(K) = lim
n→∞

Pr(Ln > K), ϵlv(K) = ∥πapprox
lv (K)− πlv(K)∥1.

We then have

2ξlv(K) ≤ ∥π − πapprox∥1 ≤ 2ξlv(K) + ϵlv(K). (5.15)

Recall that the tail probability ξlv(K) decreases monotonically as K increases. On the
other hand, the error ϵlv(K) in the ATA solution πapprox

lv (K) depends on the selection of
the augmentation matrix PA(K). As shown in Section 1.4, the implications in Section
5.2 are applicable to the discrete-time Markov chain. We discuss reasonable selections
of the augmentation matrix PA(K) and upper bounds of ϵlv(K), and therefore we apply
the discrete-time version of the procedure in Figure 5.1 to the imbedded Markov chain.

In Step 3, we compute the approximation ϖapprox = (ϖapprox
0 ϖapprox

1 · · · ) to the
stationary distribution ϖ using πapprox = (πapprox

lv (K) 0). It follows from (5.11) that
ϖapprox

ℓ (ℓ = 0, 1, . . .) is given in terms of πapprox
lv (K):

ϖapprox
0 =

πapprox
0 (K)(−C0)

−1

c
, (5.16)

ϖapprox
ℓ =

πapprox
0 (K)(−C0)

−1D0W1,ℓ

c
+

min(ℓ,K)∑
k=1

πapprox
k (K)Wk,ℓ

c
, ℓ ∈ N, (5.17)

where c denotes the normalizing constant such that ϖapproxe = 1. Note here that Wk,ℓ’s
in (5.17) are given by block matrices in W defined as

W =



I O O O O · · ·
W1,0 W1,1 W1,2 W1,3 W1,4 · · ·
W2,0 O W2,2 W2,3 W2,4 · · ·
W3,0 O O W3,3 W3,4 · · ·
W4,0 O O O W4,4 · · ·
...

...
...

...
...

. . .


=

∫ ∞

0
exp[U t]

(
1−H(t)

)
dt.
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It then follows that

W = E[H]BW,

where

BW =

∫ ∞

0
exp[U t]

1−H(t)

E[H]
dt. (5.18)

Because (1 − H(t))/E[H] is the probability density function of elapsed service times,
BW can be computed in the same way as BP in (5.12).

If the numerical errors in Wk,ℓ (k ∈ ZK
1 , ℓ ∈ Z∞

k ) are negligible, the error in ϖapprox

can be evaluated as follows.

∥ϖ −ϖapprox∥1 ≤ cp∥π − πapprox∥1 + o(∥π − πapprox∥1), (5.19)

where cp is a finite coefficient. (5.19) shows that we can control the error in ϖapprox

through the error in πapprox.

In summary, to guarantee a sufficient accuracy of ϖapprox, we have to pay attention
to the followings.

(i) K should be set appropriately to make the tail probability ξlv(K) negligible,

(ii) the numerical errors in Pk,ℓ’s and Wk,ℓ’s should be sufficiently small, and

(iii) the error ϵlv(K) in πapprox
lv (K) due to the selection of PA(K) should be small as

much as possible.

In what follows, we mainly consider the last two points. In Section 5.5, we consider the
point (ii). In Section 5.6, we consider the point (iii). Furthermore, the error propagation
in Step 3, i.e., the equation (5.19), is discussed through Section 5.7. The point (i) is
briefly discussed in numerical examples in Section 5.8.

5.5 Computation of Pk,ℓ’s and Wk,ℓ’s

As stated in Section 5.4, we adopt the ATA in Step 2. We thus consider the numerical
computation of the northwest corner submatrix P (K) of P for a given K. By definition,
block matrices Pk,ℓ’s (k, ℓ ∈ ZK

0 ) in P (K) are given in terms of M ×M block matrices
in BP defined by (5.12).

Pk,ℓ =



(−C0)
−1D0P1,ℓ, k = 0, ℓ = 0, 1, . . . ,K,

BP,1,0 +BP,1,1, k = 1, ℓ = 0,

BP,1,ℓ+1, k = 1, ℓ = 1, 2, . . . ,K,

BP,k,0, k = 2, 3, . . . ,K, ℓ = 0,

BP,k,ℓ+1, k = 2, 3, . . . ,K, ℓ = k − 1, k, . . . ,K,

O, otherwise.

(5.20)

Therefore, we consider the computation of BP,k,ℓ’s below. We also discuss the compu-
tation of Wk,ℓ in this section because W = E[H]BW and block matrices in BW can be
computed in the same way as those in BP.
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5.5.1 The uniformizable case

We first consider the case that exp[U t] is uniformizable, i.e., there exists a finite θ such
that [−Ck]i,i ≤ θ (k ∈ N, i ∈ M). In this case, by applying the uniformization technique
to BP in (5.12) and BW in (5.18), we can rewrite them to be

BP =

∫ ∞

0
e−θt exp[(I + θ−1U)θt]dH(t) =

∞∑
n=0

γnV
n,

BW =

∫ ∞

0
e−θt exp[(I + θ−1U)θt]

1−H(t)

E[H]
dt =

∞∑
n=0

ηnV
n,

where γn and ηn (n = 0, 1, . . .) denote probability functions given by

γn =

∫ ∞

0
e−θt (θt)

n

n!
dH(t), ηn =

∫ ∞

0
e−θt (θt)

n

n!
· 1−H(t)

E[H]
dt,

and V = I + θ−1U ≥ O. Note here that V 0 = I and V e = e. Block matrices V
(n)
k,ℓ in

V n (n = 2, 3, . . .) can be computed recursively by V
(1)
k,ℓ = Vk,ℓ and for n = 2, 3, . . .,

V
(n)
k,ℓ =



V
(n−1)
k,0 +

k+n−1∑
r=k

V
(n−1)
k,r θ−1Γr, ℓ = 0,

V
(n−1)
k,k (I + θ−1Ck), ℓ = k,

V
(n−1)
k,ℓ−1 θ−1Dℓ−1 + V

(n−1)
k,ℓ θ−1(I + θ−1Cℓ), ℓ = k + 1, k + 2, . . . ,K + 1,

O, otherwise.

In numerical computation, we assume that the recursion of V
(n)
k,ℓ for BP,k,ℓ stops at

n = nP and that for BW,k,ℓ at n = nW.

Bcomp,nP
P =

nP∑
n=0

γnV
n, Bcomp,nW

W =

nW∑
n=0

ηnV
n.

We then adopt Bcomp,nP
P as an approximation to BP and Bcomp,nW

W as an approximation
to BW, where O ≤ Bcomp,nP

P ≤ BP and O ≤ Bcomp,nW
W ≤ BW. In what follows, we

determine nP = n∗
P and nW = n∗

W separately in such a way that for k = 0, 1, . . . ,K,

K∑
ℓ=0

(Pk,ℓ − P
comp,n∗

P
k,ℓ )e ≤ ϵPe,

∞∑
ℓ=k

(Wk,ℓ −W
comp,n∗

W
k,ℓ )e ≤ ϵWe, (5.21)

where ϵP and ϵW are sufficiently small positive constants.

It follows from (5.20) that the inequality for P
comp,n∗

P
k,ℓ (k = 0, 1, . . . ,K) in (5.21) is

equivalent to
K+1∑
ℓ=0

(BP,k,ℓ −B
comp,n∗

P
P,k,ℓ )e ≤ ϵPe, k ∈ ZK

1 . (5.22)

Note here that

K+1∑
ℓ=0

(BP,k,ℓ−Bcomp,nP

P,k,ℓ )e ≤
∞∑
ℓ=0

(BP,k,ℓ−Bcomp,nP

P,k,ℓ )e =

∞∑
n=nP+1

γn

∞∑
ℓ=0

V
(n)
k,ℓ e =

∞∑
n=nP+1

γne.
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Therefore, we set nP = n∗
P in such a way that

n∗
P∑

n=0

γn ≥ 1− ϵP,

which guarantees (5.22).
Similarly, we have for W comp,nW

k,ℓ ,

∞∑
ℓ=k

(Wk,ℓ −W comp,nW

k,ℓ )e ≤
∞∑
ℓ=0

(Wk,ℓ −W comp,nW

k,ℓ )e

= E[H]

∞∑
n=nW+1

ηn

∞∑
ℓ=0

V
(n)
k,ℓ e = E[H]

∞∑
n=nW+1

ηne.

Therefore, we set nW = n∗
W in such a way that

n∗
W∑

n=0

ηn ≥ 1− ϵW
E[H]

,

which guarantees the inequality for W
comp,n∗

W
k,k+ℓ in (5.21). Note that for each k ∈ ZK

1 , the

computation of B
comp,n∗

W
W,k,ℓ automatically stops at ℓ = k + n∗

W and B
comp,n∗

W
W,k,ℓ = O for all

ℓ > k + n∗
W.

5.5.2 The non-uniformizable case

In this subsection, we consider the computation of approximations to Pk,ℓ’s and Wk,ℓ’s
under the assumption that exp[U t] is non-uniformizable, i.e.,

sup
k∈N

(
max
i∈M

[−Ck]i,i
)
= ∞. (5.23)

We define U(m) (m ∈ N) as

U(m) =



O O O O · · · O O
Γ1 C1 D1 O · · · O O
Γ2 O C2 D2 · · · O O
Γ3 O O C3 · · · O O
...

...
...

...
. . .

...
...

Γm−1 O O O · · · Cm−1 Dm−1

Γm O O O · · · O Cm


.

By definition, U(m) (m ∈ N) is a defective infinitesimal generator. Let θm (m ∈ N)
denote the maximum of the absolute values of the diagonal elements of U(m).

θm = max
k=1,2,...,m

i∈M

[−Ck]i,i. m ∈ N.

In what follows, we first consider Pk,ℓ’s and then consider Wk,ℓ’s.
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We assume that U is truncated at level mP in computing Pk,ℓ’s, where mP ≥ K+1.
We then define BP(mP) as

BP(mP) =

∫ ∞

0
exp[U(mP)t]dH(t) =

∞∑
n=0

γn(mP)V
n(mP), (5.24)

where γn(mP) (n = 0, 1, . . .) denotes a probability function given by

γn(mP) =

∫ ∞

0
e−θmP

t (θmPt)
n

n!
dH(t),

and V (mP) = I + θ−1
mP

U(mP). Note that V (mP) is substochastic, i.e., V (mP)e ≤ e.

For any m ∈ N, block matrices V
(n)
k,ℓ (m) in V n(m) (n = 1, 2, . . .) can be computed

recursively by V
(1)
k,ℓ (m) = Vk,ℓ(m) and for n = 2, 3, . . .,

V
(n)
k,ℓ (m) =



V
(n−1)
k,0 (m) +

min(m,k+n−1)∑
r=k

V
(n−1)
k,r (m)θ−1

m Γr, ℓ = 0,

V
(n−1)
k,k (m)(I + θ−1

m Ck), ℓ = k,

V
(n−1)
k,ℓ−1 (m)θ−1

m Dℓ−1 + V
(n−1)
k,ℓ (m)(I + θ−1

m Cℓ),

ℓ = k + 1, k + 2, . . . ,min(m, k + n),
O, otherwise.

(5.25)

In numerical computation, we have to truncate the infinite sum in (5.24), i.e.,

Bcomp,nP
P (mP) =

nP∑
n=0

γn(mP)V
n(mP).

We adopt Bcomp,nP

P,k,ℓ (mP) as an approximation to BP,k,ℓ. Specifically, for k ∈ ZK
1 , an

approximation Bcomp,nP

P,k,ℓ (mP) to BP,k,ℓ is given by

Bcomp,nP

P,k,ℓ (mP) =



nP∑
n=1

γn(mP)V
(n)
k,0 (mP), ℓ = 0,

nP∑
n=ℓ−k

γn(mP)V
(n)
k,ℓ (mP), ℓ = k, k + 1, . . . ,min(mP, k + nP),

O, otherwise.

(5.26)
Furthermore, it follows from (5.20) that an approximation P comp,nP

k,ℓ (mP) to Pk,ℓ is given
by

P comp,nP

k,ℓ (mP) =



(−C0)
−1D0P

comp,nP

1,ℓ (mP), k = 0, ℓ = 0, 1, . . . ,mP − 1,

Bcomp,nP
P,1,0 (mP) +Bcomp,nP

P,1,1 (mP), k = 1, ℓ = 0,

Bcomp,nP

P,1,ℓ+1 (mP), k = 1, ℓ = 1, 2, . . . ,mP − 1,

Bcomp,nP

P,k,0 (mP), k = 2, 3, . . . ,K, ℓ = 0,

Bcomp,nP

P,k,ℓ+1 (mP), k = 2, 3, . . . ,K,

ℓ = k − 1, k, . . . ,mP − 1,

O, otherwise.

(5.27)
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Note here that
P comp,nP

k,ℓ (mP) ≤ Pk,ℓ, k ∈ ZK
0 , ℓ ∈ ZmP−1

0 . (5.28)

For a given ϵP > 0, we would like to find mP = m∗
P and nP = n∗

P that satisfy

K∑
ℓ=0

(
Pk,ℓ − P

comp,n∗
P

k,ℓ (m∗
P)
)
e ≤ ϵPe, k ∈ ZK

0 . (5.29)

Remark 5.4. It follows from (5.28) that for k ∈ ZK
0 ,

K∑
ℓ=0

(
Pk,ℓ − P comp,nP

k,ℓ (mP)
)
e ≤

mP−1∑
ℓ=0

(
Pk,ℓ − P comp,nP

k,ℓ (mP)
)
e

≤
∞∑
ℓ=0

Pk,ℓe−
mP−1∑
ℓ=0

P comp,nP

k,ℓ (mP)e = e−
mP−1∑
ℓ=0

P comp,nP

k,ℓ (mP)e. (5.30)

Therefore, if mP and nP are fixed, we can evaluate the upper bound of the left-hand side
of (5.29) by computing P comp,nP

k,ℓ (mP) (k ∈ ZK
0 , ℓ ∈ ZmP−1

0 ).

This approach has two potential sources of errors: the truncation of U at level mP

and the truncation of the infinite sum in (5.24) at n = nP. Note here that

mP∑
ℓ=0

V
(n)
k,ℓ (mP)e = e, k ∈ ZK

1 , n = 0, 1, . . . ,mP − k.

Therefore, if nP ≤ mP −K,

mP−1∑
ℓ=0

P comp,nP

k,ℓ (mP)e =

mP∑
ℓ=0

Bcomp,nP

P,k,ℓ e =

mP∑
ℓ=0

nP∑
n=0

γn(mP)V
(n)
k,ℓ (mP)e =

nP∑
n=0

γn(mP)e,

for all k ∈ ZK
1 . It then follows from (5.30) that

K∑
ℓ=0

(
Pk,ℓ − P comp,nP

k,ℓ (mP)
)
e ≤

(
1−

nP∑
n=0

γn(mP)
)
e if nP ≤ mP −K. (5.31)

Because the right-hand side of (5.31) takes the minimum value at nP = mP −K, (5.29)
would hold if we could find mP = m∗

P such that

(
1−

m∗
P−K∑
n=0

γn(m
∗
P)
)
e = Pr(Nθm∗

P
(H) > m∗

P −K) ≤ ϵP, (5.32)

where Nθm∗
P
(H) denotes the number of Poisson arrivals with rate θm∗

P
during a randomly

chosen service time H.
Note, however, that m∗

P satisfying (5.32) does not necessary exist in general. The
reason is that (i) for a fixed x, Pr(NθmP

(H) > x) is an increasing function of θmP and
(ii) θmP is a non-decreasing function of mP, which imply that Pr(NθmP

(H) > mP −K)
may or may not decrease as mP increases. Besides, Pr(NθmP

(H) > x) depends on the
distribution of H. For example, if θmP/mP is equal to zero in the limit mP → ∞, it
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can be shown that mP −K > E[NθmP
(H)] = θmPE[H] for a sufficient large mP and in

this case, the one-side Chebyshev’s inequality (also called Cantelli’s inequality) [Usp37,
pp.198–199] yields

Pr(NθmP
(H) > mP −K) ≤

θ2mP
Var[H] + θmPE[H]

θ2mP
Var[H] + θmPE[H] + (mP −K − θmPE[H])2

, (5.33)

where the variance Var[H] of service times is assumed to be finite. Furthermore, it can
be readily verified that the right-hand side of (5.33) is equal to zero in the limit mP → ∞
if θmP/mP is equal to zero in the limit mP → ∞. Another example is that if the service
time distribution belongs to a certain class of long-tailed distributions, we have [Asm99,
Eq. (1.1)]

lim
x→∞

Pr(NθmP
(H) > x)

Pr(H > x/θmP)
= 1.

These examples suggest that for the existence of mP = m∗
P satisfying (5.32), we need

some additional assumptions on the service time distribution and/or the asymptotic
property of the sequence of θmP ’s. In what follows, we develop a numerical procedure
that always works under Assumption 5.1 introduced in Section 5.3.

Theorem 5.1. Suppose the arrival/disaster process of {(L(t), S(t))}t≥0 is non-explosive,
i.e.,

∑∞
ℓ=0Pk,ℓe = e. We then have for k ∈ ZK

0 ,

K∑
ℓ=0

(
Pk,ℓ − P comp,nP

k,ℓ (mP)
)
e ≤ max

i∈M

(
b+P,(K,i)(mP)

)
e+

(
1−

nP∑
n=0

γn(mP)
)
e, (5.34)

where b+P,(k,i)(mP) (k ∈ ZK
0 , i ∈ M) is defined as

b+P,(k,i)(mP) = Pr
(
L(τn+1−) > mP | (Ln, Sn) = (k, i)

)
. (5.35)

Proof. Note first that for an arbitrary ϵ > 0,

K∑
ℓ=0

(
P1,ℓ − P comp,nP

1,ℓ (mP)
)
e ≤ ϵe ⇒

K∑
ℓ=0

(P0,ℓ − P comp,nP

0,ℓ (mP))e ≤ (−C0)
−1D0 · ϵe

= ϵe.

We thus consider (5.34) for k ∈ ZK
1 .

It follows from (5.20) and Bcomp,nP

P,k,ℓ (mP) ≤ BP,k,ℓ (k ∈ ZK
1 , ℓ ∈ ZmP

0 ) that for

k ∈ ZK
1 ,

K∑
ℓ=0

(
Pk,ℓ − P comp,nP

k,ℓ (mP)
)
e =

K+1∑
ℓ=0

(
BP,k,ℓ −Bcomp,nP

P,k,ℓ (mP)
)
e

≤
∞∑
ℓ=0

(
BP,k,ℓ −Bcomp,nP

P,k,ℓ (mP)
)
e,

where Bcomp,nP

P,k,ℓ (mP) = O for ℓ > mP. In what follows, we will show for k ∈ ZK
1 ,

∞∑
ℓ=0

(
BP,k,ℓ −Bcomp,nP

P,k,ℓ (mP)
)
e ≤ max

i∈M

(
b+P,(K,i)(mP)

)
e+

(
1−

nP∑
n=0

γn(mP)
)
e. (5.36)
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By definition, BP,k,ℓ(mP) = BP,k,ℓ (k ∈ ZK
1 , ℓ ∈ ZmP

1 ), where mP ≥ K + 1. It then
follows that for k ∈ ZK

1 ,

∞∑
ℓ=0

(
BP,k,ℓ −Bcomp,nP

P,k,ℓ (mP)
)
e

=
(
BP,k,0 −BP,k,0(mP)

)
e+

mP∑
ℓ=0

(
BP,k,ℓ(mP)−Bcomp,nP

P,k,ℓ (mP)
)
e+

∞∑
ℓ=mP+1

BP,k,ℓe.

(5.37)

Note here that for k ∈ ZK
0 and j ∈ M,

[(
BP,k,0−BP,k,0(mP)

)
e+

∞∑
ℓ=mP+1

BP,k,ℓe
]
j
= b+P,(k,j)(mP) ≤ max

i∈M

(
b+P,(K,i)(mP)

)
. (5.38)

On the other hand, we have for k ∈ ZK
1 ,

mP∑
ℓ=0

(
BP,k,ℓ(mP)−Bcomp,nP

P,k,ℓ (mP)
)
e =

mP∑
ℓ=0

∞∑
n=nP+1

γn(mP)V
(n)
k,ℓ (mP)e ≤

∞∑
n=nP+1

γn(mP)e.

(5.39)

(5.36) now follows from (5.37), (5.38), and (5.39), which completes the proof.

By definition, maxi∈M
(
b+P,(K,i)(mP)

)
on the right-hand side of (5.34) monotonically

converges to zero as mP goes to infinity and for a fixed mP, the second term also
converges to zero monotonically as nP goes to infinitely. Under Assumption 5.1 (i), we
have the following theorem, where

b+P,K(mP) =
(
b+P,(K,1)(mP) b

+
P,(K,2)(mP) · · · b+P,(K,M)(mP)

)T
.

Theorem 5.2. We consider {(L(t), S(t))}t≥0, where (5.23) is assumed to hold. For
arbitrary positive integers K and mP (mP ≥ K + 1), we have

b+P,K(mP) ≤ (−CK)−1DK(−CK+1)
−1DK+1 · · · (−CmP)

−1DmPe. (5.40)

Furthermore, for arbitrary K and ϵ > 0, there exists mP = m∗
P satisfying

(−CK)−1DK(−CK+1)
−1DK+1 · · · (−CmP)

−1Dm∗
P
e ≤ ϵe, (5.41)

under Assumption 5.1 (i).

Proof. We first prove (5.40) by a probabilistic argument, even though it can also be
shown algebraically. It follows from (5.35) that

b+P,(K,i)(mP) = Pr(L(τn+1−) > mP | (Ln, Sn) = (K, i))

= Pr(L(t) = mP + 1 for some t ∈ (τn, τn+1) | (Ln, Sn) = (K, i)).

Note here that τn+1 = min(dn+1, τn + Hn), where dn+1 denotes the first occurrence
time of a disaster after time τn and Hn denotes the service time starting at time τn.
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Let Ñ(s, t) (s < t) denote the number of arrivals during an interval (s, t) under the
assumption that the service never completes. We then have

b+P,(K,i)(mP) = Pr(L(t) = mP + 1 for some t ∈ (τn, τn+1) | (Ln, Sn) = (K, i))

≤ Pr(L(t) = mP + 1 for some t ∈ (τn, dn+1) | (Ln, Sn) = (K, i))

= Pr(Ñ(τn, dn+1) > mP −K | (Ln, Sn) = (K, i))

= [(−CK)−1DK(−CK+1)
−1DK+1 · · · (−CmP)

−1DmPe]i,

from which (5.40) follows.

Next we consider (5.41) under Assumption 5.1 (i). It follows from (5.9) and Assump-
tion 5.1 (i) that (−Ck)

−1Dke < {k/(k + 1)} · e (k ∈ Z∞
K†

1

). We then have

lim
mP→∞

(−C
K†

1
)−1D

K†
1
(−C

K†
1+1

)−1D
K†

1+1
· · · (−CmP)

−1DmPe

< lim
mP→∞

K†
1

K†
1 + 1

· K
†
1 + 1

K†
1 + 2

· · · mP

mP + 1
· e = lim

mP→∞

K†
1

mP + 1
· e = 0,

so that for an arbitrary ϵ (0 < ϵ < 1), mP = m∗
P satisfying (5.41) exists.

Next we consider Assumption 5.1 (ii). Preliminary to it, we show the following
lemma.

Lemma 5.3. Let C♮
k = Ck + diag(Γke).

(i) For any t ≥ 0, we have

exp[Ckt] ≤ exp[C♮
kt], k ∈ N. (5.42)

(ii) For any M × 1 vector x ≥ 0, we have

(−C♮
k)

−1Dk =
[
−
(
C♮

k − diag(x)
)]−1

[Dk + diag(x)(−C♮
k)

−1Dk]. (5.43)

(iii) For any M × 1 vector x ≥ 0 and τ ≥ 0, we have∫ τ

0
exp[C♮

kt]Dkdt ≤
∫ τ

0
exp
[(
C♮

k − diag(x)
)
t
]
[Dk + diag(x)(−C♮

k)
−1Dk]dt.

(5.44)

Proof. We first consider (5.42). Since diag(Γke) ≥ O, we have Ck ≤ Ck + diag(Γe) =

C♮
k. It then follows that [I + θ−1

mP
Ck]

n ≤ [I + θ−1
mP

C♮
k]

n and therefore

exp[Ckt] = e−θmP
t

∞∑
n=0

(θmPt)
n

n!
[I + θ−1

mP
Ck]

n ≤ e−θmP
t

∞∑
n=0

(θmPt)
n

n!
[I + θ−1

mP
C♮

k]
n

= exp[C♮
kt].
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(5.43) also follows from
[
−
(
C♮

k − diag(x)
)]
(−C♮

k)
−1Dk = Dk + diag(x)(−C♮

k)
−1Dk.

Finally, (5.44) follows from∫ τ

0
exp
[(
C♮

k − diag(x)
)
t
]
[Dk + diag(x)(−C♮

k)
−1Dk]dt

=
(
I − exp

[(
C♮

k − diag(x)
)
τ ]
)[
−
(
C♮

k − diag(x)
)]−1

[Dk + diag(x)(−C♮
k)

−1Dk]

=
(
I − exp

[(
C♮

k − diag(x)
)
τ ]
)
(−C♮

k)
−1Dk

≥ (I − exp[C♮
kτ ])(−C♮

k)
−1Dk =

∫ τ

0
exp[C♮

kt]Dkdt,

where (5.43) is used in the second equality and the inequality can be shown in the same

way as (5.42) because (−C♮
k)

−1Dk ≥ O.

Theorem 5.3. We consider {(L(t), S(t))}t≥0 under Assumption 5.1 (ii), where (5.23)
is assumed to hold. For an arbitrary integer K > 0, we have

max
i∈M

(
b+P,(K,i)(mP)

)
≤ 1−

mP−max(K,K†
2)∑

n=0

∫ ∞

0
e−µt (µt)

n

n!
dH(t), mP ≥ max(K,K†

2),

where µ = 1/E[H] and K†
2 is given in Assumption 5.1 (ii).

Because the proof of Theorem 5.3 is a bit lengthy, it is given in Appendix O. Theo-
rems 5.1–5.3 enable us to compute the approximation P approx,nP

k,ℓ (mP) (k, ℓ ≤ K) to Pk,ℓ,
which satisfies (5.29) under Assumption 5.1. We summarize the procedures in Figure
5.2.

Next, we consider the computation of an approximation to Wk,ℓ’s using U(mW).
We first define W (mW) (mW > K) as

W (mW) =

∫ ∞

0
exp[U(mW)t]

(
1−H(t)

)
dt = E[H] ·BW(mW),

where

BW(mW) =

∫ ∞

0
exp[U(mW)t]

1−H(t)

E[H]
dt.

Note here that
(
1 − H(t)

)
/E[H] is the probability density function of the equilibrium

random variable for service times and therefore, we have

BW(mW) =
∞∑
n=0

ηn(mW)V n(mW), (5.45)

where ηn(mW) (n = 0, 1, . . .) denotes a probability function given by

ηn(mW) =

∫ ∞

0
e−θmW

t (θmWt)n

n!

1−H(t)

E[H]
dt,

and V (mW) = I + θ−1
mW

U(mW). In numerical computation, we truncate the infinite
sum in (5.45) at n = nW.

Bcomp,nW
W (mW) =

nW∑
n=0

ηn(mW)V n(mW).
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Input: {(Ck,Dk,Γk); k ∈ Z+}, K, and ϵP.

Output: P
comp,n∗

P

k,ℓ (k, ℓ = 0, 1, . . . ,K).

Let m∗
P := min

(
mP > K; (−CK)−1DK(−CK+1)

−1DK+1 · · ·DmP
e ≤ ϵP

2
e
)
.

Let n∗
P := min

(
nP ≥ 0;

nP∑
n=0

γn(m
∗
P) ≥ 1− ϵP

2

)
.

Compute V
(n)
k,ℓ (m∗

P)’s (n = 0, 1, . . . , n∗
P) by (5.25).

Compute P
comp,n∗

P

k,ℓ (m∗
P) (k, ℓ = 0, 1, . . . ,K) by (5.27) with (5.26),

where P
comp,n∗

P

k,ℓ (m∗
P) = O (k = 3, 4, . . . ,K, ℓ = 1, 2, , . . . , k − 2).

(a) Under Assumption 5.1 (i).

Input: {(Ck,Dk,Γk); k ∈ Z+}, K, and ϵP.

Output: P
comp,n∗

P

k,ℓ (k, ℓ = 0, 1, . . . ,K).

Let m∗
P := min

(
mP > K;

mP−max(K,K†
2)∑

n=0

∫ ∞

0

e−µt (µt)
n

n!
dH(t) ≥ 1− ϵP

2

)
.

Let n∗
P := min

(
nP ≥ 0;

nP∑
n=0

γn(m
∗
P) ≥ 1− ϵP

2

)
.

Compute V
(n)
k,ℓ (m∗

P)’s (n = 0, 1, . . . , n∗
P) by (5.25).

Compute P
comp,n∗

P

k,ℓ (m∗
P) (k, ℓ = 0, 1, . . . ,K) by (5.27) with (5.26),

where P
comp,n∗

P

k,ℓ (m∗
P) = O (k = 3, 4, . . . ,K, ℓ = 1, 2, , . . . , k − 2).

(b) Under Assumption 5.1 (ii).

Figure 5.2: Computational algorithms for Pk,ℓ’s in the non-uniformizable case.

It then follows that for k ∈ ZK
1 , an approximation W comp,nW

k,ℓ (mW) to Wk,ℓ is given by

W comp,nW

k,ℓ (mW)

=



E[H]

nW∑
n=1

ηn(mW)V
(n)
k,0 (mW), ℓ = 0,

E[H]

nW∑
n=ℓ−k

ηn(mW)V
(n)
k,ℓ (mW), ℓ = k, k + 1, . . . ,min(mW, k + nW),

O, otherwise.

(5.46)

We would like to find mW = m∗
W and nW = n∗

W such that for a given ϵW > 0,

∞∑
ℓ=k

(
Wk,ℓ −W comp,nW

k,ℓ (mW)
)
e = E[H]

∞∑
ℓ=k

(
BW,k,ℓ −Bcomp,nW

W,k,ℓ (mW)
)
e ≤ ϵWe, (5.47)

for all k ∈ ZK
1 . Note here that Bcomp,nW

W,k,ℓ (mW) = O for all ℓ > min(mW, k+ nW). Since

Bcomp,nW

W,k,ℓ (mW) ≤ BW,k,ℓ, we have

∞∑
ℓ=k

(
BW,k,ℓ −Bcomp,nW

W,k,ℓ (mW)
)
e ≤

∞∑
ℓ=0

(
BW,k,ℓ −Bcomp,nW

W,k,ℓ (mW)
)
e.
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Therefore, (5.47) holds if

∞∑
ℓ=0

(
BW,k,ℓ −Bcomp,nW

W,k,ℓ (mW)
)
e ≤ ϵW

E[H]
e, k ∈ ZK

1 . (5.48)

Because the left-hand side of (5.48) takes the same form as that of (5.36), we can obtain
the following corollary according to the same line of discussions as for Theorems 5.1–5.3.

Corollary 5.1. For arbitrary K, mW (0 < K < mW) and nW > 0, we have

∞∑
ℓ=0

(
BW,k,ℓ −Bcomp,nW

W,k,ℓ (mW)
)
e ≤ max

i∈M

(
b+W,(K,i)(mP)

)
e+

(
1−

nW∑
n=0

ηn(mW)
)
e, k ∈ ZK

1 ,

where b+W,K(mW) =
(
b+W,(K,1)(mW) b+W,(K,2)(mW) · · · b+W,(K,i)(mW)

)T
is given by

b+W,K(mW) =
(
BW,k,0 −BW,k,0(mW)

)
e+

∞∑
ℓ=mW+1

BW,k,ℓe.

Under Assumption 5.1 (i), for a given ϵ > 0, we have

b+W,K(mW) ≤ ϵe, (5.49)

if mW satisfies (−CK)−1DK(−CK+1)
−1DK+1 · · · (−CmW)−1DmWe ≤ ϵe. On the other

hand, under Assumption 5.1 (ii), (5.49) holds for a given ϵ > 0 if mW satisfies mW ≥
max(K,K†

2) and

1−
mW−max(K,K†

2)∑
n=0

∫ ∞

0
e−µt (µt)

n

n!
· 1−H(t)

E[H]
dt ≤ ϵ,

where µ = 1/E[H] and K†
2 is given in Assumption 5.1 (ii).

Figure 5.3 shows the computational procedures for Wk,ℓ (k ∈ ZK
1 , ℓ ∈ {0} ∪

Zmin(mW,k+nW)
k ) satisfying (5.47). Once we compute W comp,nW

k,ℓ (mW)’s, we can estimate
the error contained in those by

∞∑
ℓ=k

(
Wk,ℓ −W comp,nW

k,ℓ (mW)
)
e ≤ E[H]e−

mW∑
ℓ=0

W comp,nW

k,ℓ (mW)e, (5.50)

which can be derived in the same way as (5.30).

5.6 The augmented truncation approximation to the
imbedded Markov chain

In this section, we discuss the augmented truncation approximation (ATA) to the imbed-
ded Markov chain with the truncated transition probability matrix P (K). In the ATA,
the selection of the augmentation matrix PA(K) in (5.14) is crucial and we briefly sum-
marize how to manage it according to Section 5.2. First of all, we restrict our attention
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Input: {(Ck,Dk,Γk); k ∈ Z+}, K, and ϵW.

Output: m∗
W and W

comp,n∗
W

k,ℓ (k = 1, 2, . . . ,K, ℓ = 0, k, k + 1, . . . ,m∗
W).

Let m∗
W := min

(
mW > K; (−CK)−1DK(−CK+1)

−1DK+1 · · ·DmW
e ≤ ϵW

2E[H]
e
)
.

Let n∗
W := min

(
nW ≥ 0;

nW∑
n=0

ηn(m
∗
W) ≥ 1− ϵW

2E[H]

)
.

Compute V
(n)
k,ℓ (m∗

W)’s (n = 0, 1, . . . , n∗
W) by (5.25).

Compute W
comp,n∗

W

k,ℓ (m∗
W) (k = 1, 2, . . . ,K, ℓ = 0, k, k + 1, . . . ,min(m∗

W, k + n∗
W)).

(a) Under Assumption 5.1 (i).

Input: {(Ck,Dk,Γk); k ∈ Z+}, K, and ϵW.

Output: m∗
W and W

comp,n∗
W

k,ℓ (k = 1, 2, . . . ,K, ℓ = 0, k, k + 1, . . . ,m∗
W).

Let m∗
W := min

(
mW > K;

mW−max(K,K†
2)∑

n=0

∫ ∞

0

e−µt (µt)
n

n!

1−H(t)

E[H]
dt ≥ 1− ϵW

2E[H]

)
.

Let n∗
W := min

(
nP ≥ 0;

nW∑
n=0

ηn(m
∗
W) ≥ 1− ϵW

2E[H]

)
.

Compute V
(n)
k,ℓ (m∗

W)’s (n = 0, 1, . . . , n∗
W) by (5.25).

Compute W
comp,n∗

W

k,ℓ (m∗
W) (k = 1, 2, . . . ,K, ℓ = 0, k, k + 1, . . . ,min(m∗

W, k + n∗
W)).

(b) Under Assumption 5.1 (ii).

Figure 5.3: Computational algorithms for Wk,ℓ’s in the non-uniformizable case.

to the linear augmentation, i.e., PA(K) = (I −P (K))eζ for some 1× (K + 1)M prob-
ability vector ζ, which does not lose generality (cf. Implication 5.1). We then define
πapprox
lv (K; ζ) as the linear ATA solution obtained by

πapprox
lv (K; ζ) = πapprox

lv (K; ζ)
[
P (K) + (I − P (K))eζ

]
, πapprox

lv (K; ζ)e = 1.

Let [ζ](k,i) (k ∈ Z+, i ∈ M) denote the (kM + i)th element of ζ and let [P ](k,i),(ℓ,j)
(k, ℓ ∈ Z+, i, j ∈ M) denote the (kM + i, ℓM + j)th element of P . We then define
Γ+
lv(K) as

Γ+
lv(K) =

{
ζ ∈ R(K+1)M ; ζ ≥ 0, ζe = 1,

[ζ](k,i) > 0 if (k, i) ∈ Jlv(K), [ζ](k,i) = 0 if (k, i) /∈ Jlv(K)
}
,

where Jlv(K) denotes a subset of levels zero to K, whose states are directly reachable
from at least one state in levels K + 1 or higher.

Jlv(K) =
{
(0, i); i ∈ M,

∞∑
k=K+1

[eTΓk]i > 0
}
∪
{
(K, i); i ∈ M

}
. (5.51)

Note that Γ+
lv(K) and Jlv(K) are modified versions of Γ+(K) and J (K) considered in

Chapter 4 for the bivariate imbedded Markov chains (cf. (4.1) and (4.19)). Note also
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Input: P (K) and Jlv(K).
Output: πapprox = (πapprox

lv (K) 0) and εlv(K).

Compute πapprox
lv (K; eT(k,i)) = x(k,i)/x(k,i)e for all (k, i) ∈ Jlv(K),

where x(k,i) is the unique solution of x(k,i)(I − P (K)) = eT(k,i).

Compute πapprox
lv (K) by (5.53) and set πapprox = (πapprox

lv (K) 0).
Compute the error bound εlv(K) by (5.54).

Figure 5.4: A computational algorithm for πapprox = (πapprox
lv (K) 0) in the imbedded

Markov chain.

that there exists ζ∗ ∈ Γ+
lv(K) such that πapprox

lv (K; ζ∗) = πlv(K) because of Theorem
4.2 and Lemma 5.2.

Furthermore, for an arbitrary ζ ∈ Γ+
lv(K), πapprox

lv (K; ζ) is given by a convex combi-
nation of πapprox

lv (K; eT(k,i))’s ((k, i) ∈ Jlv(K)) with positive weights (cf. (5.2) and (5.4)),

where eT(k,i) denotes the unit row vector whose (kM + i)th element is equal to one.
Specifically,

πapprox
lv (K; ζ) =

∑
(k,i)∈Jlv(K)

[α(K; ζ)](k,i)π
approx
lv (K; eT(k,i)),

where α(K; ζ) ∈ Γ+
lv(K) and there is a one-to-one correspondence between ζ and

α(K; ζ) (cf. (5.3)). It then follows from (5.7) that

∥πapprox
lv (K; ζ)− πlv(K)∥1 ≤ max

(k,i)∈Jlv(K)
∥πapprox

lv (K; ζ)− πapprox
lv (K; eT(k,i))∥1. (5.52)

Based on this observation and Implication 5.4, we set πapprox
lv (K) as an approximation

to the conditional stationary distribution πlv(K) as follows:

πapprox
lv (K) =

∑
(k,i)∈Jlv(K)

1

|Jlv(K)|
πapprox
lv (K; eT(k,i)), (5.53)

which presumes that the transition structure in levels higher than K is unavailable, and
the error bound in (5.52) is given by

∥πlv(K)− πapprox
lv (K)∥1 ≤ εlv(K) = max

(k,i)∈Jlv(K)
∥πapprox

lv (K)− πapprox
lv (K; eT(k,i))∥1.

(5.54)
In summary, we compute the approximation πapprox

lv (K) and its error bound εlv(K) by
the procedure in Figure 5.4.

5.7 The error bound in the approximation to ϖ

If we obtain an approximation πapprox to the stationary distribution π of the imbedded
Markov chain {(Ln, Sn)}n=0,1,... and W comp,nW

k,ℓ (mW)’s, we can compute an approxi-

mation ϖapprox = (ϖapprox
0 ϖapprox

1 · · · ) to the stationary distribution ϖ by (5.16)
and (5.17), where Wk,ℓ is replaced by W comp,nW

k,ℓ (mW). Since W comp,nW

k,ℓ (mW) = O

(ℓ > min(mW, k + nW)), the computation of ϖapprox
k ’s stops at ℓ = min(mW,K + nW).
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Recall that for an arbitrary ϵW > 0, W comp,nW

k,ℓ (mW)’s satisfy (5.47). We thus discuss

the error in ϖapprox, assuming that errors in W comp,nW

k,ℓ (mW)’s are negligible, i.e.,

ϖ =
πŴ

πŴe
=

πŴ

E[T ]
, ϖapprox =

πapproxŴ

πapproxŴe
,

where

Ŵ =


(−C0)

−1 (−C0)
−1D0W1,1 (−C0)

−1D0W1,2 (−C0)
−1D0W1,3 · · ·

O W1,1 W1,2 W1,3 · · ·
O O W2,2 W2,3 · · ·
O O O W3,3 · · ·
...

...
...

...
. . .

 ,

and E[T ] = πŴe denotes the average length of two consecutive imbedded points.

Theorem 5.4. If errors in W comp,nW

k,ℓ (mW)’s are negligible, we have

∥ϖ−ϖapprox∥1 ≤
T upper
max

πapproxŴe
∥π−πapprox∥1

(
1+

T upper
max

πapproxŴe− T upper
max ∥π − πapprox∥1

)
.

(5.55)
where T upper

max = E[H] + maxi∈M[(−C0)
−1e]i.

Remark 5.5. (5.19) comes from (5.55) and

T upper
max

πapproxŴe
∥π − πapprox∥1

(
1 +

T upper
max

πapproxŴe− T upper
max ∥π − πapprox∥1

)
=

T upper
max

πapproxŴe

(
1 +

T upper
max

πapproxŴe

)
∥π − πapprox∥1 + o(∥π − πapprox∥1).

Proof. Let Tmax = max(k,i)∈Z+×M[Ŵe](k,i). Because diag−1(Ŵe)Ŵe = e, we have

∥ϖ −ϖapprox∥1 =
∥∥∥πdiag(Ŵe)

πŴe
diag−1(Ŵe)Ŵ − πapproxdiag(Ŵe)

πapproxŴe
diag−1(Ŵe)Ŵ

∥∥∥
1

≤
∥∥∥πdiag(Ŵe)

πŴe
− πapproxdiag(Ŵe)

πapproxŴe

∥∥∥
1

≤
∥∥∥(π − πapprox)diag(Ŵe)

πapproxŴe

∥∥∥
1
+
∣∣∣ 1

πŴe
− 1

πapproxŴe

∣∣∣∥πdiag(Ŵe)∥1

≤ Tmax

πapproxŴe
∥π − πapprox∥1 +

∣∣∣ (πapprox − π)Ŵe

πŴe · πapproxŴe

∣∣∣ · Tmax

≤ Tmax

πapproxŴe
∥π − πapprox∥1 +

T 2
max

πŴe · πapproxŴe
∥π − πapprox∥1.

(5.56)

Note here that Tmax can be bounded from above.

Tmax = max
(k,i)∈Z+×M

E[τn+1 − τn | Ln = k, Sn = i] ≤ E[H] + max
i∈M

[(−C0)
−1e]i. (5.57)
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Note also that πŴe can be bounded from below.

πŴe = πapproxŴe+ (π − πapprox)Ŵe ≥ πapproxŴe− ∥π − πapprox∥1 · Tmax. (5.58)

Theorem 5.4 now follows from (5.56), (5.57), and (5.58).

We can evaluate the error bound (5.55) for ϖapprox if the upper bound of ∥π −
πapprox∥1 is available. Recall that the upper bound of ∥π−πapprox∥1 is given by 2ξlv(K)+
ϵlv(K) (cf. (5.15)). While the upper bound εlv(K) of ϵlv(K) is given by (5.54), the tail
probability ξlv(K) is hard to evaluate analytically. We will discuss a rough estimation
of ξlv(K) using numerical examples in the next section.

5.8 Numerical examples and discussions

The purpose of this section is two-fold: one is to demonstrate the soundness of our
computational procedure and the other is to discuss how to obtain a qualitatively de-
cent approximation. For these purposes, we consider a single-server queue with balk-
ing and level-dependent disasters, where customers are served on a FIFO basis with
deterministic service times with E[H] = 1.0. We assume that customers arrive accord-
ing to a Markov-modulated Poisson process (MMPP), whose underlying Markov chain
{S(t)}t≥0 is assumed to be a two-state birth-and-death process with identical transition
rate α = 0.01. Note that the stationary distribution ϖU of the underlying Markov chain
{S(t)}t≥0 is given by ϖU = (0.5 0.5). We assume that if S(t) = 1 (resp. S(t) = 2),
customers arrive according to a Poisson process with rate λ1 = 1.2 (resp. λ2 = 1.8). If
a customer finds k (k ∈ Z+) customers on arrival, he/she joins the queue with prob-
ability βk = (2.0 + 0.99k)/3. Let L(t) (t ≥ 0) denote the number of customers in the
system at time t. We assume that when L(t) = k (k ∈ Z+), a disaster occurs at rate
rk = max(0, (k − 200)/100).

The net arrival/disaster process is characterized by {(Ck,Dk,Γk); k ∈ Z+}, where

Ck =

(
ck,1 α
α ck,2

)
, Dk = βk ·

(
λ1 0
0 λ2

)
, Γk = rkI, k = 0, 1, . . . ,

where ck,i = −α− βkλi − rk (k ∈ Z+, i = 1, 2). It then follows that Jlv(K) = {0,K} ×
{1, 2} and θm is given by

θm = max
k∈Zm

1

(
0.01 +

2 + 0.99k

3
· 1.8 + max

(
0,

k − 200

100

))
=

1.804, m = 1, 2, . . . , 254,

1.21 + 0.6 · 0.99k + k − 200

100
, m = 255, 256, . . . .

It is easy to see that {(L(t), S(t))}t≥0 is non-explosive, exp[U t] is non-uniformizable,

and Assumption 5.1 (i) holds with K†
1 = 208. By definition, γn(mP) and ηn(mW)

(n = 0, 1, . . . ) are given by

γn(mP) =
(θmPE[H])n

n!
e−θmP

E[H], ηn(mW) =
1

θmWE[H]
(1−

n∑
i=0

γi(mW)).
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In what follows, we set ϵP = ϵW = 10−14.
In Step 1, we conduct the procedure in Figure 5.2 (a) to compute P (K). Figure

5.5 shows the error bound εP(K) for P comp,nP

k,ℓ (mP)’s in P (K) as a function of K (K >

K†
1 = 208), where

εP(K) = max
k=0,1,...,K

j∈M

[
e−

mP−1∑
ℓ=0

P comp,nP

k,ℓ (mP)e
]
j

≥ max
k=0,1,...,K

j∈M

[ K∑
ℓ=0

(
Pk,ℓ − P comp,nP

k,ℓ (mP)
)
e
]
j
.

Note that the inequality in the above comes from (5.30). We observe that the computa-
tional procedure for P comp,nP

k,ℓ (mP)’s works as designed because we set ϵP = 10−14. We
make a comment on the ripple-like shape of εP(K). As shown in Theorem 5.1, there
are two sources of errors in computing an approximation to {Pk,ℓ}: the truncation of U
(i.e., mP in (5.34)) and the truncation of infinite sums (i.e., nP in (5.34)). The selection
of mP is conservative as shown in the proof of Theorem 5.2, so that the numerical error
due to the truncation of U seems to be negligible. On the other hand, the selection of
nP is rigid and for a fixed nP, the second term on the right-hand side of (5.34) increases
with K because θmP increases with K. This causes a ripple-like shape of εP(K), which
is inherent in the non-uniformizable case.

Next, we consider the ATA in Step 2. According to the procedure in Figure 5.4,
we compute an approximation πapprox

lv (K) to the conditional stationary distribution
πlv(K). Figure 5.6 shows the error bound εlv(K) of πapprox

lv (K) in (5.54) as a function

of K (K > K†
1 = 208). We observe that (i) εlv(K) takes a large value when k is close to

K†
1, (ii) it decreases as K increases, and then, (iii) it takes a ripple-like shape as εP(K)

in Figure 5.5.
Note that the conditional stationary distribution in any ergodic Markov chain with

the same northwest corner submatrix P (K) and the same Jlv(K) defined in (5.51) is
given by a mixture of four probability distributions πapprox

lv (K; eT(k,i)) (k = 0,K; i = 1, 2)
with the positive weights, as stated in Theorem 4.2. Therefore, the degree of freedom
(i.e., the extent to which the transition structure in level K + 1 or higher affects the
conditional stationary distribution πlv(K)) decreases as K increases, which leads to the
above-mentioned observations (i) and (ii). Let P comp(K) denote the computed P with
P comp,nP

k,ℓ (K)’s. When K is large enough to suppress the degree of freedom, ∥P (K) −
P comp(K)∥ becomes the dominant source of errors which leads to the observation (iii).

Figure 5.7 shows approximations to the conditional stationary distribution πk(K)e

(k ≥ 200) for K = 220, 240, . . . , 320. Recall that the drift is negative if L(t) > K†
1 = 208.

Therefore, we expect that πk(K)e (k ≥ 208) is a decreasing function of k, whereas
πapprox
k (K)e takes the minimum value at some k = umin(K) close to K and it turns

upward. This pathological phenomenon is caused by our selection of equal weights in
(5.53) for vk,i(K) = πapprox

lv (K; eT(k,i)) (k = 0,K; i = 1, 2). While v0,i(K) (i = 1, 2) has

a strictly decreasing tail, vK,i(K) (i = 1, 2) takes the minimum value at some k close to
K and it turns upward. The equally-weighted mixture of those distributions results in
this pathological phenomenon. Note that similar phenomena can also occur in standard
augmentation strategies such as last-column/last-column-block augmentations. When



92 CHAPTER 5. IMPLICATIONS AND THEIR APPLICATION
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Figure 5.5: Error bounds εP(K) in P comp,nP

k,ℓ (mP)’s.

K is large enough (i.e., K ≥ 260), however, πapprox
K (K)e is less than ϵP(K) = 10−14,

which suggests that such a K is large enough to obtain a reliable result in finite precision
computation. Furthermore, in such a case, πapprox

k (K)e for k less than and not close to
umin(K) seems to have a decent accuracy as they are indistinguishable from πapprox

k (K)e
for K = 320. In what follows, we restrict our attention to K = 300.

We attempt to eliminate an inaccurate tail in {πapprox
k (K); k ∈ ZK

0 } by utilizing
the results in Section 4.4 and the last 2 paragraph of Section 5.2, i.e., we set N (N <
K = 300) and consider an approximation πapprox

k (K; N) to the conditional stationary
distribution πlv(N), based on P (K). Although πapprox

k (K)e ≃ ϵP = 10−14 for k = 257
can be a guideline for it, Figure 5.7 suggests that it would be too conservative because
umin(K) = 286 for K = 300. We thus set N = 280 and obtain an approximation
πapprox
lv (K; N) = (πapprox

0 (K; N) πapprox
1 (K; N) · · · πapprox

N (K; N)), where

πapprox
k (K; N) = πapprox

k (K)
/ N∑

n=0

πapprox
n (K)e, k ∈ ZN

0 .

We adopt πapprox,N = (πapprox
lv (K; N) 0) instead of πapprox = (πapprox

lv (K) 0). Figure
5.8 shows πapprox

k (K)e for K = 300 and πapprox
k (K; N)e for (K,N) = (300, 280).

We then consider the error bound for πapprox,N . We can show that the truncated
approximation πapprox

lv (K; N) lies in the minimum convex polytope shown in Section 4.4.
Let Lℓ := (N + 1)M (ℓ ∈ Z+) denote the number of states in levels ℓ or lower. Recall
that P (K) is the LK ×LK northwest corner submatrix of P and πlv(N) := π(LN − 1)
is the 1×LN probability vector given by normalizing the first LN elements of π. In our
model, it is readily shown that D(LK − 1, LN − 1) defined in Procedure 4.1 is given by
D(LK − 1, LN − 1) = J ∗(LK − 1) = J (LK − 1) = Jlv(K), so that πapprox

lv (K; N) lies
in the minimum convex polytope whose vertex γ(k, i) ((k, i) ∈ Jlv(K)) is given by the
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Figure 5.6: Error bounds εlv(K) in πapprox
lv (K).

normalized first LN elements of πapprox
lv (K; eT(k,i)).

γ(k, i) =
(πapprox

0 (K; eT(k,i)) π
approx
1 (K; eT(k,i)) · · · πapprox

N (K; eT(k,i)))

(πapprox
0 (K; eT(k,i)) π

approx
1 (K; eT(k,i)) · · · πapprox

N (K; eT(k,i)))e
,

(k, i) ∈ Jlv(K).

Furthermore, the upper bound of the error ∥πapprox
lv (K; N) − πlv(N)∥1 is obtained by

(5.8).

∥πapprox
lv (K; N)− πlv(N)∥1 ≤ max

(k,i)∈Jlv(K)
∥πapprox

lv (K; N)− γ(k, i)∥1 =: εlv(K; N).

As a result, we have εlv(K; N) ≃ 2.1084 · 10−13 for πapprox
lv (K; N), while εlv(K) ≃

2.1270 · 10−13 for πapprox
lv (K). Therefore, in terms of 1-norm, the difference between two

approximations πapprox
lv (K; N) and πapprox

lv (K) is negligible.
Next we consider a rough estimation of the upper bound of the tail probability ξlv(N)

in (5.15). Because the magnitude of the negative drift increases with k (k ≥ 208), we
expect that the tail probability decreases more rapidly than any exponential function,
as suggested in Figure 5.8. Noting πapprox

257 (K; N)e ≃ ϵP = 10−14, we assume that

πke ≤ πapprox
N (K; N)e · rk−N , k = N + 1, N + 2, . . . ,

where rN−257 = πapprox
N (K; N)e/πapprox

257 (K; N)e ≃ 1.2338 · 10−8. We thus have r ≃
0.4530 and ξlv(N) ≤ πapprox

N (K; N)e · r/(1 − r) ≃ 7.9031 · 10−23, which indicates that
N = 280 is large enough to ignore the error due to the truncation at N .

Let πapprox,N = (πapprox
lv (K; N) 0). We then have ∥πapprox,N − π∥1 ≤ 2ξlv(K) +

εlv(K; N) ≤ 2.1084 · 10−13. In a similar way, we also obtain ∥πapprox − π∥1 ≤ 3.2362 ·
10−13. Moreover, ∥πapprox − πapprox,N∥1 ≃ 2.2151 · 10−15. We thus conclude that in
terms of 1-norm, the difference between πapprox,N and πapprox is not significant.
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Figure 5.7: Examples of πapprox
k (K)e’s.

Finally, in Step 3, we compute an approximation to the stationary distribution ϖ.
We first compute W comp,nW

k,ℓ (mW)’s according to the procedure in Figure 5.3 (a), where
for K is replaced by N = 280 and we obtain m∗

W = 332, and n∗
W = 21. We then obtain

the error bound in (5.50) for N = 280.

max
k=1,2,...,N

j∈M

[ ∞∑
ℓ=k

(Wk,ℓ −W
comp,n∗

W
k,ℓ (m∗

W))e
]
j
≤ max

k=1,2,...,N
j∈M

[
E[H]e−

m∗
W∑

ℓ=0

W
comp,n∗

W
k,ℓ (m∗

W)e
]
j

≃ 4.2188 · 10−15.

This result shows that the procedure for W
comp,n∗

W
k,ℓ (m∗

W)’s works as designed because

ϵW = 10−14.
We then compute {ϖapprox

k (K; N); k ∈ Z+} and construct the stationary distribu-
tion of the number of customers.

ϖapprox,N = (ϖapprox
0 (K; N) ϖapprox

1 (K; N) · · ·ϖapprox
301 (K; N) 0 0 · · · ),

where we use min(m∗
W, N +n∗

W) = 301 for N = 280. Figure 5.9 shows ϖapprox,N , where
the corresponding result for ϖapprox based on πapprox

lv (K) for K = 300 is also plotted
for reference. The error bound (5.55) for ϖapprox,N is given by 1.092 · 10−12, where we

use T upper
max ≃ 1.8311 and πapprox,NŴe ≃ 1.0004. It thus seems that ϖapprox,N is not

only a qualitatively but also quantitatively decent approximation.

5.9 Conclusion

In this chapter, we first considered implications of the results in Chapter 4 for the
augmented truncation approximation (ATA). Specifically, we showed that the linear
ATA solution has the same degree of freedom as the general ATA solution does. We
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Figure 5.8: The conditional stationary distribution in the imbedded Markov chain.

also showed that the error bound for an arbitrary approximation to the conditional
stationary distribution can be evaluated using the probability vectors that constitute
the ATA solutions.

Next we considered applications of the implementations to single-server queues with
level-dependent arrivals and disasters and generally distributed service times. We first
discussed how to compute the truncated transition probability matrix P (K) of the
imbedded Markov chain. If the continuous-time Markov chain representing arrivals and
disasters is not uniformizable, the computation of P (K) is not straightforward. In
this chapter, we developed numerical procedures for computing P (K) that satisfies a
predefined error bound, under some stability conditions. We also briefly discussed how
to construct the augmentation matrix in the ATA and how to obtain the error bound
of the approximate solution to the stationary queue length distribution. Numerical
examples demonstrated that our procedure works well as designed.

We also demonstrated numerically that the ATA solution with the sufficiently large
truncation point K may require the further truncation of the solution. We showed
that the truncated ATA solution also lies in the minimum convex polytope defined in
Section 4.4. The numerical examples indicated that the (K,N)-skip-free sets are useful
for obtaining a qualitatively good approximation.
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6 Conclusion

In this dissertation, we studied the conditional stationary distribution in ergodic, time-
homogeneous, continuous-time Markov chains on a countably infinite state space. In
almost all the existing works, the (conditional) stationary distribution has been studied
based on systems of linear equations because it is given by the unique solution of the
global balance equation. We took different approaches from those and characterized
the conditional stationary distribution via systems of linear inequalities. Note that
such a system of linear inequalities specifies a convex cone on the first orthant and the
conditional stationary distribution lies in a convex region given by the intersection of
such a convex cone and the hyperplane containing all probability vectors. Furthermore,
we studied the limit of those convex regions and based on it, we developed numerical
algorithms for computing the conditional stationary distribution. The main results in
this dissertation are summarized as follows.

In Chapter 2, we first obtained a convex polytope P+
k,ℓ that contains the conditional

stationary distribution πℓ in a general bivariate Markov chain, where P+
k,ℓ is given in

terms of the reverse-directional R-matrix Nk,ℓ. We then showed the limiting formula
that each vertex spanning P+

k,ℓ converges to πℓ as k goes to infinity. Note that this
limiting formula holds in any ergodic Markov chain and reveals the essential property
of reverse-directional R-matrices with respect to the conditional stationary distribution.
In addition, we showed the inclusion property P+

k+1,ℓ ⊆ P+
k,ℓ for Markov chains of LD-

M/G/1-type.

In Chapter 3, we considered computation of the conditional stationary distribution
in Markov chains of LD-M/G/1-type, based on reverse-directional R-matrices. The
main body of the numerical algorithm is identical to that in [Taki16]. Note, however,
that owing to the results in Chapter 2, we eliminated the assumption that downward
transition rate matrices Qℓ,ℓ−1 are nonsingular, which is put in [Taki16]. We developed
the stopping criterion in terms of the error bound of the output of the algorithm (i.e.,
the conditional stationary distribution), which is a notable feature of our algorithm.
Through numerical examples, we confirmed that our algorithm works well as designed.

In Chapter 4, we considered the conditional stationary distribution π(N) in an
ergodic Markov chain based on northwest corner submatrices of the infinitesimal gen-
erator. We first derived a system of linear inequalities that π(N) satisfies from the
(N + 1) × (N + 1) northwest corner submatrix Q(1,1)(N). This result was refined by
taking account of the structural information J (N). Next, we considered π(N) using the
(K+1)×(K+1) northwest corner submatrix Q(1,1)(K), where K > N . We then identi-
fied convex polytopes containing π(N). We further discussed the inclusion and limiting
properties of those convex polytopes and identified the minimum convex polytope by
introducing a new structural property called (K,N)-skip-free sets.
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In Chapter 5, we considered an application of the ATA to a single-server queue with
level-dependent arrivals and disasters, where service times are assumed to be generally
distributed. We first provided some implications of the results in Chapter 4 for the ATA.
Next, we considered the above-mentioned queueing model by the following standard
approach: (i) The construction of the imbedded Markov chain, (ii) the computation of
the stationary distribution in the imbedded Markov chain, and (iii) the computation of
the stationary distribution in the original model. In Step (i), we developed an error-
controllable computational method for transition probabilities in the imbedded Markov
chain. In Step (ii), we applied the ATA to the computation of the stationary distribution
in the imbedded Markov chain, taking account of the above-mentioned implications.
In Step (iii), we discussed how to adjust the inaccurate tail distribution, along with
numerical examples.

In this dissertation, we characterized the conditional stationary distribution in er-
godic Markov chains via systems of linear inequalities, which determine convex regions
that the conditional stationary distribution lies in. The convexity is useful in numerical
computation, i.e., we can obtain approximations to the conditional stationary distribu-
tion, together with their error bounds. We also showed that the sequences of convex re-
gions converge to the singleton containing the conditional stationary distribution. These
results guarantee that in principle, we can obtain a good approximation to the stationary
distribution in compensation for computational cost. We hope that the results in this
dissertation will be a basis for the future development of efficient and accurate numerical
algorithm for the stationary distribution in Markov chains.



Appendices

A Proof of Eq. (2.24)

Let Fℓ,ℓ (ℓ ∈ Z+) denote anMℓ×Mℓ matrix whose (i, j)th (i, j ∈ Mℓ) element represents
the conditional probability that the recurrence time to level ℓ ends at state (ℓ, j), given
that it starts from state (ℓ, i). Since the imbedded Markov chain {(Ln, Jn)}n=0,1,...

is irreducible and positive-recurrent, Fℓ,ℓ is an irreducible stochastic matrix with an
invariant probability vector ρℓ determined uniquely by

ρℓ = ρℓFℓ,ℓ, ρℓe = 1. (A.1)

It then follows from (2.20) and (A.1) that

(kρ̂ℓ(i)− ρℓ) (I − Fℓ,ℓ + eρℓ) = kρ̂ℓ(i) (I − Fℓ,ℓ) + ρℓ − ρℓ

= kρ̂ℓ(i)(kF̂ℓ(i)− Fℓ,ℓ).

Since Fℓ,ℓ is irreducible, I − Fℓ,ℓ + eρℓ is nonsingular. We thus have

kρ̂ℓ(i) = ρℓ + kρ̂ℓ(i)(kF̂ℓ(i)− Fℓ,ℓ)(I − Fℓ,ℓ + eρℓ)
−1. (A.2)

For an arbitrarily fixed ℓ (ℓ ∈ Z+), if

lim
k→∞

kFℓ,ℓ = Fℓ,ℓ, (A.3)

we have limk→∞(Fℓ,ℓ − kFℓ,ℓ)e = limk→∞(I − kFℓ,ℓ)e = 0, and therefore it follows from
(2.19) and (A.3) that for i ∈ Mℓ,

lim
k→∞

kF̂ℓ(i) = lim
k→∞

kFℓ,ℓ + lim
k→∞

(I − kFℓ,ℓ)ee
T
i = lim

k→∞
kFℓ,ℓ = Fℓ,ℓ. (A.4)

Therefore, if (A.3) holds, taking the limit k → ∞ on both sides of (A.2) and using (A.4)
yield (2.24). In what follows, we will show (A.3).

We define τℓ (ℓ ∈ Z+) as the first passage time to level ℓ.

τℓ = inf(n ∈ N; Ln = ℓ).

We also define events Ωℓ(i), kΩℓ(i) and k+Ωℓ(i) (ℓ ∈ Z+, k ∈ Z∞
ℓ+1) as

Ωℓ(i) = {L0 = ℓ, J0 = i, τℓ < ∞},
kΩℓ(i) = {L0 = ℓ, J0 = i, τℓ < ∞, Ls ̸= k (s = 1, 2, . . . , τℓ − 1)},

k+Ωℓ(i) = {L0 = ℓ, J0 = i, τℓ < ∞, Ls < k (s = 1, 2, . . . , τℓ − 1)}.
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Note that

[kFℓ,ℓ]i,j = Pr(kΩℓ(i) ∩ {Jτℓ = j} | L0 = ℓ, J0 = i),

[Fℓ,ℓ]i,j = Pr(Ωℓ(i) ∩ {Jτℓ = j} | L0 = ℓ, J0 = i).

Let k+Fℓ,ℓ (ℓ ∈ Z+, k ∈ Z∞
ℓ+1) denote an Mℓ × Mℓ matrix whose (i, j)th (i, j ∈ Mℓ)

element is given by

[k+Fℓ,ℓ]i,j = Pr(k+Ωℓ(i) ∩ {Jτℓ = j} | L0 = ℓ, J0 = i).

By definition, k+Ωℓ(i) ⊂ kΩℓ(i) ⊂ Ωℓ(i) (k ∈ Z∞
ℓ+1). It then follows that

k+Fℓ,ℓ ≤ kFℓ,ℓ ≤ Fℓ,ℓ, k ∈ Z∞
ℓ+1. (A.5)

Furthermore, because k+Ωℓ(i) ⊂ (k+1)+Ωℓ(i) (k ∈ Z∞
ℓ+1) and limk→∞ k+Ωℓ(i) = Ωℓ(i),

we have limk→∞ k+Fℓ,ℓ = Fℓ,ℓ. (A.3) now follows from (A.5), which completes the proof.

B The main error source of the algorithm in Figure 3.1
[Taki16, Appendix 3]

The main source of numerical errors in the algorithm in Figure 3.1 is the computation
of the inverse of T (= Tk). By definition, Tk is given in terms of Zℓ’s (ℓ ∈ Zk−1

0 )
being composed of (−Tℓ)’s. In other word, values (including errors) of (−Tk)

−1 tend
to oscillate since the inverse matrix is calculated recursively. We make an adjustment
to suppress the oscillation as follows. As stated in [Taki16], Tk can be interpreted as a
part of an infinitesimal generator, and since the row some of the infinitesimal generator
is equal to zero, it satisfies

Tke+

∞∑
n=1

Qk,ne+

k−1∑
n=0

Zk−1Zk−2 · · ·Zn

∞∑
ℓ=k+1−n

Qn,n+ℓe = 0.

We can rewrite it to be

(−Tk)
−1
( ∞∑

n=1

Qk,ne+
k−1∑
n=0

Zk−1Zk−2 · · ·Zn

∞∑
ℓ=k+1−n

Qn,n+ℓe
)
= e. (A.6)

Therefore, we normalize every row of (−Tk)
−1 in such a way that (A.6) holds. It is

claimed in [Taki16] that this adjustment worked to the stability of large-scale computa-
tion, and its effect is confirmed in our examples.

C Proof of Lemma 3.2

We first consider (3.22). For ℓ ∈ ZN∗
0 , we have

πapprox,N+1
ℓ (N) =

νN+1,N ·NN,ℓ

νN+1,N ÑNe
=

eTNN+1,N

eTNN+1,Ne
·

NN,ℓ

νN+1,N ÑNe

=
eTNN+1,ℓ

eTNN+1,Ne · νN+1,N ÑNe
=

eTNN+1,N∗NN∗,ℓ

eTNN+1,Ne · νN+1,N ÑNe

=
eTNN+1,N∗e

eTNN+1,Ne · νN+1,N ÑNe
· νN+1,N∗NN∗,ℓ,
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and therefore

πapprox,N+1
ℓ (N) = cN,N∗ · πapprox,N+1

ℓ (N∗), n = 0, 1, . . . , N∗,

where cN,N∗ is a constant depending only on N and N∗.

cN,N∗ =
eTNN+1,N∗e

eTNN+1,Ne
·
νN+1,N∗ÑN∗e

νN+1,N ÑNe
.

We thus have
πapprox,N+1
− (N ;N∗) = πapprox,N+1

lv (N∗).

It then follows that

∥πapprox,N+1
lv (N)− πlv(N)∥1

≤ ∥(πapprox,N+1
− (N ;N∗) 0 0 · · · 0)− πlv(N)∥1 + ∥πapprox,N+1

+ (N ;N∗)∥1
= ∥(1− ε2) · (πapprox,N+1

− (N ;N∗) 0 0 · · · 0)− πlv(N)∥1 + ε2

≤ ∥(πapprox,N+1
− (N ;N∗) 0 0 · · · 0)− πlv(N)∥1

+ ε2∥πapprox,N+1
− (N ;N∗)∥1 + ε2

= ∥(πapprox,N+1
lv (N∗) 0 0 · · · 0)− πlv(N)∥1 + 2ε2, (A.7)

and an adaptation of (3.21) (i.e., (1.25)) yields

∥(πapprox,N+1
lv (N∗) 0 0 · · · 0)− πlv(N)∥1 ≤ ε1 + 2Pr(L(0) > N∗ | L(0) ≤ N). (A.8)

(3.22) now follows from (A.7) and (A.8).
Next we consider (3.23). It follows from Theorem 3.1 that

Pr(L(0) > N∗ | L(0) ≤ N)

≤ |πapprox,k
+ (N ;N∗)e− Pr(L(0) > N∗ | L(0) ≤ N)|+ πapprox,k

+ (N ;N∗)e

≤ ∥πapprox,k
+ (N ;N∗)− (πN∗+1(N) πN∗+2(N) · · · πN (N))∥1 + πapprox,k

+ (N ;N∗)e

≤ ∥πapprox,k
lv (N)− πlv(N)∥1 + πapprox,k

+ (N ;N∗)e

≤ eN (k,N)

νk,N wN
+ πapprox,k

+ (N ;N∗)e,

from which (3.23) follows.

D Proof of Corollary 4.2

Substituting (4.14) and (4.15) into (4.11) yields (4.16). We thus consider (4.14) and
(4.15) below. Because

H(N) = (−Q(1,1)(N))−1 =

∫ ∞

0
exp[Q(1,1)(N)t]dt,

we have

[H(N)]i,j = E
[∫ T

(2)
n

T
(1)
n

1l(X(t) = j)dt | X(T (1)
n ) = i

]
, i, j ∈ ZN

0 ,
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and therefore

[H(N)]i,j =
1

E
[
T
(2)
n − T

(1)
n | X(T

(1)
n ) = i

]E[∫ T
(2)
n

T
(1)
n

1l(X(t) = j)dt | X(T (1)
n ) = i

]
,

from which (4.14) follows.

We also have π(1)(N) = π(2)(N)Q(2,1)(N)H(N) from (4.3) and (4.8), so that

π(1)(N)e = π(2)(N)Q(2,1)(N)diag(H(N)e)e.

It then follows from (4.9) and (4.11) that

α∗(N) =
π(2)(N)

π(1)(N)e
·Q(2,1)(N)diag(H(N)e) =

ζ∗(N)diag(H(N)e)

ζ∗(N)diag(H(N)e)e
,

where

ζ∗(N) =
π(2)(N)Q(2,1)(N)

π(2)(N)Q(2,1)(N)e
. (A.9)

It is readily seen that

[ζ∗(N)]i = Pr(X(T (1)
n ) = i), i ∈ ZN

0 .

We thus have

[α∗(N)]i =
1

E
[
T
(2)
n − T

(1)
n

]E[∫ T
(2)
n

T
(1)
n

1l(X(T (1)
n ) = i)dt

]
,

=
1

E
[
T
(2)
n − T

(1)
n

]E[∫ T
(2)
n

T
(1)
n

1l(I(t) = i)dt
]
, i ∈ ZN

0 ,

from which (4.15) follows.

E Equivalence between (4.21) and (4.22) for J (N) ̸= ZN
0

Suppose J (N) ̸= ZN
0 . We partition H(N) into two matrices:

H(N) =

( ZN
0

J (N) H+(N)

ZN
0 \J (N) H0(N)

)
.

Note that (4.22) for J (N) ̸= ZN
0 is equivalent to

{x ∈ RN+1; x = αH+(N), α ≥ 0, αe = 1}.
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We now rewrite (4.21) to be

P+(N) =
{
x ∈ RN+1; x(−Q

(1,1)
+ (N)) ≥ 0, x(−Q

(1,1)
0 (N)) = 0, xe = 1

}
=
{
x ∈ RN+1; x(−Q

(1,1)
+ (N)) = y, x(−Q

(1,1)
0 (N)) = 0, y ≥ 0, xe = 1

}
=
{
x ∈ RN+1; x(−Q

(1,1)
+ (N) −Q

(1,1)
0 (N)) = (y 0), y ≥ 0, xe = 1

}
=
{
x ∈ RN+1; x(−Q(1,1)(N)) = (y 0), y ≥ 0, xe = 1

}
=
{
x ∈ RN+1; x = (y 0)H(N), y ≥ 0, xe = 1

}
=
{
x ∈ RN+1; x = (y 0)diag(H(N)e)H(N), y ≥ 0, xe = 1

}
=
{
x ∈ RN+1; x = (ydiag(H+(N)e) 0)H(N), y ≥ 0, xe = 1

}
=
{
x ∈ RN+1; x = ydiag(H+(N)e)H+(N), y ≥ 0, xe = 1

}
=
{
x ∈ RN+1; x = αH+(N), α ≥ 0, αe = 1

}
,

where the last equality follows from the same reasoning as in (4.10).

F Proof of Corollary 4.4

.
We first prove (4.45) by showing β ∈ Γ(N) ⇒ α ∈ Γ(N) in (4.43), i.e.,

β ≥ 0, βe = 1 ⇒ α ≥ 0, αe = βe (= 1).

For this purpose, we consider (4.34). By definition, we have for i, j ∈ ZN
0 ,

[R(K,N)]i,j = Pr(X(T
(1)
n+1) = j, X(t) ∈ ZK

N+1 (T
(2)
n ≤ t < T

(1)
n+1) | X(T (1)

n ) = i),

and therefore R(K,N) is sub-stochastic, i.e.,

R(K,N) ≥ O, R(K,N)e ≤ e, R(K,N)e ̸= e.

It follows that

(I −R(K,N))−1 =
∞∑
n=0

(
R(K,N)

)n ≥ O.

Recall that H(N) ≥ O and H̃(K,N) ≥ O. We thus conclude β ≥ 0 ⇒ α ≥ 0 from
(4.43). Furthermore, we have

αe = βdiag−1(H̃(K,N)e)(I −R(K,N))−1H(N)e

= βdiag−1(H̃(K,N)e)H̃(K,N)e

= βe.

Next we show (4.46). For this purpose, we consider the censored process on ZN
0 ∪

Z∞
K1+1 whose generator is given by Q̃(K1, N). We then apply Theorem 4.1 with N =

K = K1 and obtain Γ̃(K1, N). Moreover, we apply Theorem 4.4 to the above censored
process on ZN

0 ∪ Z∞
K1+1 with K = K2 and obtain Γ̃(K2, N). (4.46) now follows from

(4.45), where Γ̃(K1, N) and Γ̃(K2, N) correspond to Γ(N) and Γ̃(K,N) in (4.45).
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G Proof of Corollary 4.5

We first consider (4.58). If J (N) = ZN
0 , (4.58) is immediate because

Γ̃+(K,N) ⊆ Γ̃(K,N) ⊆ Γ(N) = Γ+(N).

We thus assume J (N) ̸= ZN
0 . Noting (4.49), we partition ZN

0 into three subsets

J̃ (K,N), J (N) \ J̃ (K,N), and ZN
0 \ J (N).

Q(2,1)(K,N) =
( J̃ (K,N) J (N)\J̃ (K,N) ZN

0 \J (N)

Q
(2,1)
+ (K,N) Q

(2,1)
++ (K,N) O

)
. (A.10)

Note here that J (N) \ J̃ (K,N) may be empty and if this is the case, we simply ignore
the corresponding terms. It follows from (4.34) that

(I −R(K,N))−1 = I + (I −R(K,N))−1R(K,N) = I +BQ(2,1)(K,N), (A.11)

where

B = (I −R(K,N))−1(−Q(1,1)(K,N))−1Q(1,2)(K,N)(−Q(2,2)(K,N))−1 ≥ O.

Suppose α ∈ Γ̃+(K,N), i.e., there exists nonnegative vector β such that

β =

J̃ (K,N) J (N)\J̃ (K,N) ZN
0 \J (N)

( β1 0 0 ), β1 ≥ 0, β1e = 1,

and

α =
( J̃ (K,N) J (N)\J̃ (K,N) ZN

0 \J (N)

α1 α2 α3

)
= (β1 0 0)diag−1(H̃(K,N)e)(I −R(K,N))−1diag(H(N)e).

It follows from (4.45) and (4.56) that Γ̃+(K,N) ⊆ Γ(N), so that αe = 1 and α ≥ 0.
Moreover, using (A.10) and (A.11), we rewrite α to be

α = (β1 0 0)diag−1(H̃(K,N)e)diag(H(N)e)

+ βdiag−1(H̃(K,N)e)B
(
Q

(2,1)
+ (K,N) Q

(2,1)
++ (K,N) O

)
diag(H(N)e),

and therefore α3 = 0, which completes the proof of (4.58).
We omit the proof of (4.59) because the proof is almost the same as that of (4.46) in

Corollary 4.4, where we use Theorem 4.2, Theorem 4.5, and (4.58), instead of Theorem
4.1, Theorem 4.4, and (4.45), respectively.

H Proof of Theorem 4.6

Without loss of generality, we assume ZN
0 ∪ X ∗ = ZM

0 , where M = |ZN
0 ∪ X ∗| − 1. It

then follows from Theorem 4.4 with N := M that

π(M) ∈ P̃(K,M),
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where from (4.40) and (4.44),

P̃(K,M) = P̂(K,M) =
{
x ∈ RM+1; x = βMH̃(K,M), βM ∈ Γ(M)

}
.

Note here that if X(0) ∈ Z∞
K+1, the first passage time to ZM

0 ends on X ∗. Therefore,
following a discussion similar to the proof of Theorem 4.5, we obtain

π(M) ∈ P̂+(K,M ; X ∗) for X ∈ S(K,N), (A.12)

where

P̂+(K,M ; X ∗) =
{
x ∈ RM+1; x = βMH̃(K,M),

βM ∈ Γ(M), [βM ]i = 0 (i ∈ ZM
0 \ X ∗)

}
. (A.13)

For a proper X ∗, we have X ∗ ∩N0(K,N) = ∅, i.e., the probability that the first passage
time from Z∞

K+1 to ZM
0 ends on state i is strictly positive for all i ∈ X ∗. We thus have

X ∗ = J̃ (K,M) for X ∗ ∈ S∗(K,N) and therefore from Theorem 4.5,

π(M) ∈ ri P̃+(K,M ; X ∗) for X ∗ ∈ S∗(K,N).

Since ZN
0 ∪ X ∗ = ZM

0 , π(N) can be expressed in terms of π(M). Specifically, we

first partition π(M) and H̃(K,M) as follows.

π(M) =
( ZN

0 ZM
N+1

π(1)(M ; N) π(2)(M ; N)
)
,

H̃(K,M) =
( ZN

0 ZM
N+1

H̃(∗,1)(K,M ; N) H̃(∗,2)(K,M ; N)
)
.

It then follows from (A.12) and (A.13) that π(1)(M ; N) ∈ P̂+(1)
M (K,M ; X ∗), where

P̂+(1)
M (K,M ; X ∗) =

{
x ∈ RN+1; x = βMdiag−1(H̃(K,M)e)H̃(∗,1)(K,M ; N),

βM ∈ Γ(M), [βM ]i = 0 (i ∈ ZM
0 \ X ∗)

}
. (A.14)

By definition, π(N) = π(1)(M ; N)/π(1)(M ; N)e. It then follows from (A.14) that

π(1)(M ; N) is given by a weighted sum of row vectors of H̃(∗,1)(K,M ; N). On the

other hand, it follows from Remark 4.2 that if ZN
0 ∪ X ∗ = ZM

0 , H̃(K,M) is identical
to the (M + 1)× (M + 1) northwest corner block of H(K). Therefore, the row vectors

corresponding to state i ∈ X ∗ in H̃(∗,1)(K,M ; N) and in H(∗,1)(K; N) are identical.

Therefore, replacing H̃(∗,1)(K,M ; N) by H(∗,1)(K; N) and normalizing π(1)(M ; N),
we obtain

π(N) ∈ P̂+(K,N ; X ∗) for X ∈ S(K,N),

where

P̂+(K,N ; X ∗) =
{
x ∈ RN+1; x = βdiag∗(H(∗,1)(K; N)e)H(∗,1)(K; N),

β ∈ Γ(K), [β]i = 0 (i ∈ ZK
0 \ X ∗)

}
. (A.15)
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In particular, for a proper X ∗, we have

π(N) ∈ ri P̂+(K,N ; X ) for X ∗ ∈ S∗(K,N).

Note that P̂+(K,N ; X ∗) in (A.15) is a convex polytope on the first orthant of RN+1.

The proof of (4.65) will complete if

P̂+(K,N ; X ∗) = P+(K,N ; X ∗), (A.16)

which will be shown below. Note that H(∗,1)(K; N) are given in terms of H̃(K,N) in
(4.36).

H(∗,1)(K; N) =

(
ZN
0 I

ZK
N+1 (−Q(2,2)(K,N))−1Q(2,1)(K,N)

)
H̃(K,N). (A.17)

It then follows from (4.41) and (A.17) that

βdiag∗(H(∗,1)(K; N)e)H(∗,1)(K; N)

= βdiag∗(H(∗,1)(K; N)e)

(
I

(−Q(2,2)(K,N))−1Q(2,1)(K,N)

)
H̃(K,N)

= βU(K,N)H(N),

so that P̂+(K,N ; X ∗) is identical to P+(K,N ; X ∗) in (4.66). The equivalence between
(4.65) and (4.66) can be shown in the same way as in the proof of Theorem 4.2, so that
we omit it.

I Proof of Lemma 4.2

If X ∗
A = X ∗

B, Lemma 4.2 holds. We thus assume X ∗
A ̸= X ∗

B. Note that for X ∈ S(K,N),

P+(K,N ; X ∗) is equivalent to P̂+(K,N ; X ∗) in (A.15), i.e.,

P̂+(K,N ; X ∗) =
{
x ∈ RN+1; x = βH

(∗,1)
(K; N),

β ∈ Γ(K), [β]i = 0 (i ∈ ZK
0 \ X ∗)

}
, (A.18)

where

H
(∗,1)

(K; N) = diag∗(H(∗,1)(K; N)e)H(∗,1)(K; N).

Let η
(∗,1)
j (K; N) and η

(∗,1)
j (K; N) (j ∈ ZK

0 ) denote the jth row vectors of H(∗,1)(K; N)

and H
(∗,1)

(K; N). Note that the lemma is proven if

η
(∗,1)
i (K; N) ∈ P̂(K,N ; X ∗

B), i ∈ X ∗
A. (A.19)

It is clear that (A.19) holds for i ∈ X ∗
A ∩ X ∗

B. We thus show (A.19) for i ∈ X ∗
A \ X ∗

B

below.
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For a fixed i ∈ X ∗
A\X ∗

B, we consider a censored Markov chain {X̃(t)}t≥0 by observing

{X(t)}t≥0 only when X(t) ∈ ZN
0 ∪ X ∗

B ∪ {i} ∪ Z∞
K+1. The infinitesimal generator Q̃ :=

Q̃(K,N,X ∗
B, i) of the censored Markov chain {X̃(t)}t≥0 takes the following form:

Q̃ =

( ZN
0 ∪X ∗

B∪{i} Z∞
K+1

ZN
0 ∪X ∗

B∪{i} Q̃(1,1) Q̃(1,2)

Z∞
K+1 Q̃(2,1) Q̃(2,2)

)
,

where, with ZB = ZN
0 ∪ X ∗

B,

Q̃(1,1) =

( ZB {i}

ZB Q̃
(1,1)
ZB ,ZB

q̃
(1,1)
ZB ,i

{i} ϕ̃
(1,1)
i,ZB

−q̃
(1,1)
i,i

)
.

Note here that

ϕ̃
(1,1)
i,ZB

=
( ZN

0 \X ∗
B X ∗

B

0 ϕ̃
(1,1)
i,ZB ,+

)
, (A.20)

since i ∈ X ∗
A \ X ∗

B and (4.67) holds sample path-wise. We define H̃ := H̃(K,N,X ∗
B, i)

as

H̃ =
(
− Q̃(1,1)

)−1
=

( ZB {i}

ZB H̃ZB ,ZB
h̃ZB ,i

{i} η̃i,ZB
h̃i,i

)

=

( ZB {i}

ZB H̃ZB ,ZB
h̃ZB ,i

{i} (q̃
(1,1)
i,i )−1ϕ̃

(1,1)
i,ZB

H̃ZB ,ZB
h̃i,i

)
.

Note here that if we partition H̃ZB ,ZB
as

H̃ZB ,ZB
=

( ZN
0 ZB\ZN

0

ZN
0 \X ∗

B H̃
(1,1)
ZB ,ZB

H̃
(1,2)
ZB ,ZB

X ∗
B H̃

(2,1)
ZB ,ZB

H̃
(2,2)
ZB ,ZB

)
,

the row vector of H̃
(2,1)
ZB ,ZB

, corresponding to j ∈ X ∗
B, is identical to η

(∗,1)
j (K; N). Fur-

thermore, noting (A.20), we have

ϕ̃
(1,1)
i,ZB

H̃ZB ,ZB
=

(
ϕ̃
(1,1)
i,ZB

(
H̃

(1,1)
ZB ,ZB

H̃
(2,1)
ZB ,ZB

)
ϕ̃
(1,1)
i,ZB

(
H̃

(1,2)
ZB ,ZB

H̃
(2,2)
ZB ,ZB

))
=
(
ϕ̃
(1,1)
i,ZB ,+H̃

(2,1)
ZB ,ZB

ϕ̃
(1,1)
i,ZB ,+H̃

(2,2)
ZB ,ZB

)
,

and

η
(∗,1)
i (K; N) = (q̃

(1,1)
i,i )−1ϕ̃

(1,1)
i,ZB ,+H̃

(2,1)
ZB ,ZB

.
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Therefore, η
(∗,1)
i (K; N) (i ∈ X ∗

A \ X ∗
B) is given by a linear combination of η

(∗,1)
j (K; N)

(j ∈ X ∗
B) with nonnegative weights αi,j .

η
(∗,1)
i (K; N) =

∑
j∈X ∗

B

αi,jη
(∗,1)
j (K; N).

We thus conclude that η
(∗,1)
i (K; N) (i ∈ X ∗

A \ X ∗
B) is given by a convex combination of

η
(∗,1)
j (K; N) (j ∈ X ∗

B), i.e.,

η
(∗,1)
i (K; N) =

∑
j∈X ∗

B

βi,jη
(∗,1)
j (K; N),

where

βi,j =
αi,jη

(∗,1)
j (K; N)e

η
(∗,1)
i (K; N)e

, j ∈ X ∗
B.

Note that βi,j ≥ 0 and
∑

j∈X ∗
B
βi,j = 1, which completes the proof.

J Proof of Lemma 4.3

We first prove that D(K,N) is an (s, t)-node cut in G(K,N) and then we show its
minimality. To prove the former, we show that the graph G(K,N ; −D(K,N)), which is
obtained from G(K,N) by removing all nodes in D(K,N), has no directed paths from
s to t. To show this fact, we assume that G(K,N ; −D(K,N)) has a directed path P
from s to t and we show contradiction. Since J (K) is the set of all neighboring nodes
of s, P must contain node v ∈ J (K) \ D(K,N), where we assume that v is the closest
to t if P contains more than one node in J (K) \ D(K,N). Because the directed path
from v to t has no edges incoming to any nodes in J (K), G∗(K,N) should contain the
sub-path Pv,t of P from v to t. This, however, contradicts that D(K,N) contains all
nodes in J (K) from which t is reachable in G∗(K,N).

Next we show the minimality of D(K,N). For each node v ∈ D(K,N), G∗(K,N)
contains a directed path Pv,t from v that visits t without passing through any other
nodes in J (K). As a result, edge (s, v) ∈ E(K,N) and Pv,t form a directed path from
s to t in G(K,N) and thereby v ∈ D(K,N) must be included in any (s, t)-node cut
X ⊆ J (K) in G(K,N). We thus conclude that D(K,N) ⊆ X for any X such that
X ⊆ J (K) and X ∈ S(K,N), which completes the proof.

K Proof of Theorem 4.7

We have x ∈ riP+(K,N ; J ∗(K)) from Lemma 4.4 and P+(K,N ; J ∗(K)) = P̂+(K,N ;
J ∗(K)) from (A.16), where P̂+(K,N ; J ∗(K)) is given in (A.15). We thus have x ∈
ri P̂+(K,N ; J ∗(K)) and therefore, there exists β ∈ Γ(K) such that [β]i > 0 (i ∈
J ∗(K)), [β]i = 0 (i ∈ ZK

0 \ J ∗(K)), and

x = βdiag∗(H(∗,1)(K; N)e)H(∗,1)(K; N).
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On the other hand, it follows from (4.68) that J (K)\J ∗(K) = J (K)∩N (3)
0 (K,N).

Therefore, we have from (4.63),

η
(∗,1)
i (K; N) = 0, i ∈ J (K) \ J ∗(K),

where η
(∗,1)
i (K; N) (i ∈ ZK

0 ) denotes the ith row vector of H(∗,1)(K; N). Let γ ∈ RK+1

denote
γ = βdiag∗(H(∗,1)(K; N)e) +

∑
i∈J (K)\J ∗(K)

ei,

where ei ∈ Γ(K) (i ∈ ZK
0 ) denotes the unit vector whose ith element is equal to one.

Note here that

[γ]i > 0. i ∈ J (K), (A.21)

[γ]i = 0, i ∈ ZK
0 \ J (K). (A.22)

We thus have

γH(∗,1)(K; N) = x+
∑

i∈J (K)\J ∗(K)

η
(∗,1)
i (K; N) = x.

Let y = γH(∗,2)(K; N). We then have

(x y)(−Q(1,1)(K)) = γ.

It then follows from (A.21) and (A.22) that

[(x y)Q(1,1)(K)]i > 0, i ∈ J (K),

[(x y)Q(1,1)(K)]i = 0, i ∈ ZK
0 \ J (K).

Furthermore, (x y)e = γH(K)e > 0 since H(K)e > 0. We thus have (x y)/((x y)e) ∈
riP+(K) and therefore,

(x y) > 0,

from Lemma 4.1. We then define ζ(x,y) as

ζ(x,y) =
(x y)(−Q(1,1)(K))

(x y)(−Q(1,1)(K))e
=

γ

γe
.

Note that ζ(x,y) ∈ ri Γ+(K), where

Γ+(K) =
{
α ∈ RK+1; α ≥ 0, αe = 1, [α]i = 0 (i ∈ ZK

0 \ J (K))
}
.

We now consider a Markov chain whose infinitesimal generator Q is given by

Q =

( ZK
0 Z∞

K+1

ZK
0 Q(1,1)(K) (−Q(1,1)(K))ez

Z∞
K+1 eζ(x,y) −I,

)
. (A.23)

where z denotes a 1×∞ positive probability vector. Note here that the Markov chain
with Q in (A.23) is a member of M(Q(1,1)(K),J (K)) if it is ergodic, i.e., the global
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balance equation πQ = 0 has a unique, positive solution π satisfying πe = 1, where
πQ = 0 is written to be

π(1)(K)Q(1,1)(K) + π(2)(K)eζ(x,y) = 0,

π(1)(N)(−Q(1,1)(K))ez − π(2)(K) = 0.

Solving the above with π(1)(K)e+ π(2)(K)e = 1, we obtain

π =
(
π(1)(K) π(2)(K)

)
=

1

(x y)e+ (x y)(−Q(1,1)(K))e

(
(x y) (x y)(−Q(1,1)(K))e · z

)
=

1

1 + ye+ γe

(
(x y) γe · z

)
> 0,

especially,

π(1)(N) = π(1)(K,N) =
1

1 + ye+ γe
· x.

We thus conclude that the Markov chain with Q in (A.23) is a member of M(Q(1,1)(K),
J (K)) and it has π(N) = x.

L Comparison of the results in Chapter 2 and Chapter 4
in Markov chains of LD-M/G/1-type

We first compare results in Chapter 2 and those in Chapter 4. To this end, we apply the
results in Chapter 4 to an ergodic, bivariate Markov chain {(L(t), J(t))}t≥0. We define
Lℓ
k (k, ℓ ∈ Z+, k < ℓ) and L∞

k (k ∈ Z+) as

Lℓ
k =

ℓ⋃
m=k

Lm, L∞
k =

∞⋃
m=k

Lm.

We then partition the infinitesimal generator Q as follows.

Q =

( LK
0 L∞

K+1

LK
0 Q

(1,1)
lv (K) Q

(1,2)
lv (K)

L∞
K+1 Q

(2,1)
lv (K) Q

(2,2)
lv (K)

)
.

We define Hlv(K) and partition it as follows.

Hlv(K) = (−Q
(1,1)
lv (K))−1 =


L0 L1 ··· LK

L0 H0,0(K) H0,1(K) · · · H0,K(K)
L1 H1,0(K) H1,1(K) · · · H1,K(K)
...

...
...

. . .
...

LK HK,0(K) HK,1(K) · · · HK,K(K)

. (A.24)

Note that Q
(1,1)
lv (K) = Q(1,1)(LK −1) and Hlv(K) = H(LK −1) because of |LK

0 | = LK .
Theorem 4.4 implies that for N < K,

πN ∈ {x ∈ RMN ; x =
N∑
k=0

αkHk,N (K),
N∑
k=0

αke = 1, αk ≥ 0 (k ∈ ZN
0 )}. (A.25)
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Recall that Hk,N (K) = diag−1(Hk,N (K)e)Hk,N (K).
We define Jlv(K) := J (LK − 1).

Jlv(K) = {(ℓ, j) ∈ LK
0 ; [Qk,ℓ]i,j > 0 for some (k, i) ∈ L∞

K+1}.

If {(L(t), J(t))}t≥0 is of LD-M/G/1-type, it is clear that Jlv(K) ⊆ LK .

Jlv(K) = {(K, j) ∈ LK ; [QK+1,K ]i,j > 0 for some i ∈ MK+1}.

In the rest of this section, we assume that {(L(t), J(t))}t≥0 is of LD-M/G/1-type. We
define MJ(K) as follows.

MJ(K) = {j ∈ MK ; (K, j) ∈ Jlv(K)}
= {j ∈ MK ; [QK+1,K ]i,j > 0 for some i ∈ MK+1}. (A.26)

Let η(K,i),N (K) (i ∈ MK) denote the ith row vector ofHK,N (K). By applying Theorem
4.6, (A.25) is refined as follows.

πN ∈ P+
H,K,N ,

where P+
H,K,N denotes a convex polytope spanned by η(K,i),N (K) (i ∈ MJ(K)).

P+
H,K,N = {x ∈ RMN ; x =

∑
i∈MJ(K)

α(i)η(K,i),N (K), (A.27)

∑
i∈MJ(K)

α(i) = 1, α(i) ≥ 0 (i ∈ MJ(K))}.

Corollaries 4.6 and 4.7 imply that

lim
K→∞

P+
H,K,N = {πN}. (A.28)

By definition, we can show stochastically that

NK+1,N = QK+1,KHK,N (K). (A.29)

Because of QK+1,K ≥ O, (A.26), and (A.29), we have

P+
K+1,N ⊆ P+

H,K,N ,

which implies that Theorem 2.3 can be shown by Corollary 4.6. On the other hand, we
can show algebraically that

HK,N (K) = (−Tk)
−1NK,N ,

where Tk is given in (3.3). Because of (−Tk)
−1 ≥ O, we have

P+
H,K,N ⊆ P+

K,N ,

which implies that Corollary 4.6 can be shown by Theorem 2.3. Therefore, the limit
formulas in Chapter 2 and those in Chapter 4 are essentially identical in Markov chains
of LD-M/G/1-type.

We next compare numerical computation based on Chapter 2, i.e., the algorithm in
Figure 3.1, and that based on Chapter 4. The numerical computation based on Chapter
2 is stabler than that based on Chapter 4 because the former utilizes the stochastic
property of levels. Specifically, we can obtain the relation πn(N) = πk(N)Nk,n (N ∈
Z+, n < k ≤ N) between πn(N) and πk(N) exactly. Therefore, the algorithm in Figure
3.1 rarely output an inaccurate tail like Figure 5.7. We thus recommend the algorithm
based on Chapter 2 for Markov chains in LD-M/G/1-type.
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M Proof of Lemma 5.1

Since AL(N) ⊆ A(N), we have TL(N) ⊆ T (N). We thus show T (N) ⊆ P(N) and
P(N) ⊆ TL(N), from which the lemma follows.

We first prove T (N) ⊆ P(N). Suppose x ∈ T (N), i.e., x[Q(1,1)(N) +QA(N)] = 0
for some QA(N) ∈ A(N). Post-multiplying both sides of this equation by H(N) =
(−Q(1,1)(N))−1 and rearranging terms, we obtain

x = xQA(N)H(N) = αH(N),

where α = xQA(N)diag(H(N)e). Note here that α ∈ Γ(N) because α ≥ 0, xe = 1,
and xe = αH(N)e = αe. We thus obtain x ∈ P(N) from (4.7), so that T (N) ⊆ P(N).

Next, we prove P(N) ⊆ TL(N). For an arbitrarily fixed x ∈ P(N), let y =
x(−Q(1,1)(N)) ≥ 0 (cf. (4.6)). Since xe = 1 and Q(1,1)(N) is nonsingular, we have

y ̸= 0. We then consider a linear augmentation matrix Q†
A(N) given by

Q†
A(N) = (−Q(1,1)(N))e · y

ye
= (−Q(1,1)(N))e · y

x(−Q(1,1)(N))e
.

It is clear that Q†
A(N) ∈ AL(N) and

x[Q(1,1)(N) +Q†
A(N)] = −y + x · (−Q(1,1)(N))e

x(−Q(1,1)(N))e
· y = 0,

which implies x ∈ TL(N), so that P(N) ⊆ TL(N).

N Proof of Lemma 5.2

If J (N) = ZN
0 , Lemma 5.2 immediately follows from Lemma 5.1. We thus assume

J (N) ̸= ZN
0 . Implication 5.2 with ζ ∈ Γ+(N) implies T +

L (N) ⊆ P+(N). We thus show
P+(N) ⊆ T +

L (N) below. For an arbitrarily fixed x ∈ P+(N), let y = x(−Q(1,1)(N)).
Since xe = 1 and Q(1,1)(N) is nonsingular, y ̸= 0. Furthermore, by definition,

x(−Q
(1,1)
+ (N)) ≥ 0 and x(−Q

(1,1)
0 (N)) = 0, where Q

(1,1)
+ (N) and Q

(1,1)
0 (N) are given

in (4.17). We then partition y into two parts.

y =
( J (N) ZN

0 \J (N)

y+ 0
)
,

where y+ ≥ 0 and y+e > 0. We now consider a linear augmentation matrix Q†
A(N)

given by

Q†
A(N) = (−Q(1,1)(N))e · y

ye
= (−Q(1,1)(N))e · (y+ 0)

x(−Q(1,1)(N))e
.

It is clear that
(y+ 0)

x(−Q(1,1)(N))e
∈ Γ+(N),

and

x[Q(1,1)(N) +Q†
A(N)] = −y + x · (−Q(1,1)(N))e

x(−Q(1,1)(N))e
· y = 0,

which implies x ∈ T +
L (N), so that P+(N) ⊆ T +

L (N).
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O Proof of Theorem 5.3

Suppose that a service of length H starts at time 0. Let T1 denote the first occurrence
time of arrivals after time 0 and we define Tn (n = 2, 3, . . .) as the inter-arrival time of
the (n − 1)st and nth arrivals after time 0. We also define Γ1 as the first occurrence
time of disasters after time 0. We then have

b+P,(K,i)(mP)

= Pr
(
T1 + T2 + · · ·+ TmP−K+1 ≤ min(H,Γ1) |

(
L(0), S(0)

)
= (K, i)

)
, i ∈ M.

Associated with the Markov chain {(L(t), S(t))}t≥0, we consider a Markov chain

{(L♮(t), S♮(t))}t≥0 characterized by {(C♮
k,Dk); k = 0, 1, . . . }, where C♮

k is introduced in
Lemma 5.3. In what follows, we use the following convention: For any symbol X related
to the original Markov chain {(L(t), S(t))}t≥0, X

♮ denotes the corresponding quantity
for the Markov chain {(L♮(t), S♮(t))}t≥0. It then follows from Lemma 5.3 (i) that

b+P,K(mP) =

∫
· · ·
∫

t1+t2+···+tmP−K+1≤y

exp[CKt1]DK · · · exp[CmPtmP−K+1]DmPedH(y)

≤
∫

· · ·
∫

t1+t2+···+tmP−K+1≤y

exp[C♮
Kt1]DK · · · exp[C♮

mP
tmP−K+1]DmPedH(y),

so that

b+P,(K,i)(mP) ≤ Pr
(
T ♮
1 + T ♮

2 + · · ·+ T ♮
mP−K+1 ≤ H |

(
L♮(0), S♮(0)

)
= (K, i)

)
. (A.30)

Moreover, associated with the Markov chain {(L♮(t), S♮(t))}t≥0, we introduce a
Markov chain {(L∗(t), S∗(t))}t≥0 characterized by {(C∗

k(xk),D
∗
k(xk)); k = 0, 1, . . . },

where

C∗
k(xk) = C♮

k − diag(xk), D∗
k(xk) = Dk + diag(xk)(−C♮

k)
−1Dk, k = 1, 2, . . . ,

for xk ≥ 0. We use the superscript ∗ to represent quantities related to the Markov chain
{(L∗(t), S∗(t))}t≥0. It then follows from Lemma 5.3 (iii) that for k = 1, 2, . . .,

Pr
(
T ♮
1 ≤ τ, S♮(T ♮

1) = j |
(
L♮(0), S♮(0)

)
= (k, i)

)
=
[∫ τ

0
exp[C♮

kt]Dkdt
]
i,j

≤
[∫ τ

0
exp
[(
C♮

k − diag(xk)
)
t
]
D∗

k(xk)dt
]
i,j

= Pr
(
T ∗
1 ≤ τ, S∗(T ∗

1 ) = j |
(
L∗(0), S∗(0)

)
= (k, i)

)
.

Note here that Lemma 5.3 (ii) implies

Pr
(
S♮(T ♮

1) = j |
(
L♮(0), S♮(0)

)
= (k, i)

)
= Pr

(
S∗(T ∗

1 ) = j |
(
L∗(0), S∗(0)

)
= (k, i)

)
.

(A.31)
It then follows that

Pr
(
T ♮
1 ≤ τ |

(
L♮(0), S♮(0)

)
= (k, i), S♮(T ♮

1) = j
)

≤ Pr
(
T ∗
1 ≤ τ |

(
L∗(0), S∗(0)

)
= (k, i), S∗(T ∗

1 ) = j
)
,
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which implies that T ♮
1 is larger than T ∗

1 in a sense of the usual stochastic order under the
condition that the states of the Markov chains at time zero and the phases immediately
after the next arrival are given. Let S♮

n = S♮(a♮n) and S∗
n = S∗

n(a
∗
n) (n = 1, 2, . . .), where

a♮n = T ♮
1 + T ♮

2 + · · · + T ♮
n and a∗n = T ∗

1 + T ∗
2 + · · · + T ∗

n . Because T ♮
n’s (resp. T ∗

n ’s) are

conditionally independent given (L♮(0), S♮(0)) and S♮
n’s (resp. (L∗(0), S∗(0)) and S∗

n’s),
it follows from [Sha07, Theorem 1.A.3 (b)] that for m = 1, 2, . . .,

Pr
(
T ♮
1 + T ♮

2 + · · ·+ T ♮
m ≤ x |

(
L♮(0), S♮(0)

)
= (K, i), S♮

n = jn (n = 1, 2, . . . ,m)
)

≤ Pr
(
T ∗
1 + T ∗

2 + · · ·+ T ∗
m ≤ x |

(
L∗(0), S∗(0)

)
= (K, i), S∗

n = jn (n = 1, 2, . . . ,m)
)
.

Furthermore, it follows from (A.31) that

Pr
(
S♮
n = jn (n = 1, 2, . . . ,m) |

(
L♮(0), S♮(0)

)
= (K, i)

)
= Pr

(
S∗
n = jn (n = 1, 2, . . . ,m) |

(
L∗(0), S∗(0)

)
= (K, i)

)
.

We thus have

Pr
(
T ♮
1 + T ♮

2 + · · ·+ T ♮
mP−K+1 ≤ x |

(
L♮(0), S♮(0)

)
= (K, i)

)
≤ Pr

(
T ∗
1 + T ∗

2 + · · ·+ T ∗
mP−K+1 ≤ x |

(
L∗(0), S∗(0)

)
= (K, i)

)
.

(A.32)

It then follows from (A.30) and (A.32) that

b+(K,i)(mP) (A.33)

≤ Pr
(
T ∗
1 + T ∗

2 + · · ·+ T ∗
mP−K+1 ≤ H |

(
L∗(0), S∗(0)

)
= (K, i)

)
≤ Pr

(
T ∗
n(K,K†

2)
+ T ∗

n(K,K†
2)+1

+ · · ·+ T ∗
mP−K+1 ≤ H |

(
L∗(0), S∗(0)

)
= (K, i)

)
,

(A.34)

where n(K,K†
2) = max(0,K†

2 −K) + 1 ≥ 1.

We now set xk = 0 for k = 1, 2, . . . ,K†
2−1 and xk = µe−Dke for k = K†

2,K
†
2+1, . . ..

Note that xk ≥ 0 (k = 1, 2, . . .) under Assumption 5.1 (ii). Furthermore, we have

D∗
k(xk)e = µe (k = K†

2,K
†
2+1, . . .), which implies that if L∗(t) ≥ K†

2, arrivals after time
t occur at constant rate µ, regardless of S∗(t). In other words, when (L∗(0), S∗(0)) =

(K, i), T ∗
n ’s (n = n(K,K†

2), n(K,K†
2) + 1, . . .) are i.i.d. exponential random variables.

The theorem now follows from (A.34) and this observation.
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