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0. Introduction

In this article, we study the central limit theorem for current-valued proc-
esses induced by the geodesic flows over a compact Riemannian manifold.
Recently several works concerning the central limit theorems for current-valued
processes have been done. N. Ikeda [7] (see also Ikeda-Ochi [8]) discussed
several limit theorems for a class of current-valued processes induced by various
stochastic processes. In this direction, Ochi [13] proved the central limit
theorem for a current-valued process induced by diffusion process on mani-
fold. In this paper, we establish a similar result for geodesic flows over
compact Riemannian manifolds of negative curvature. Since the first half of our

results can be treated for transitive Anosov K-flows, we formulate the problem
in the framework of Anosov flows. Let M be a compact, connected Riemannian
manifold. Let {T*} be a transitive Anosov K-flow on M. By using Markov
partition, we can construct a special representation {5'} of {T*}. For
invariant measure μ of {T*} , we consider one which is constructed from invariant

measure P of {S*} (see Section 1). Let Λj(M) be the space of all smooth

1 -forms on M. For αeΛ^M), we consider the following line integral

where Γ([0, £], ξ)={T*ξ\ Q<s<,t}. We consider {Yt} as a random process on
the probability space (M, μ). Then we can regard {Yt} is a Λ^My-valued
process in the sense of K.Ito ([10]). If we denote by X the vector field on M
which generates the flow {ϊ1*}, Yt(oή can be expressed as follows:

JO

We consider a family of Λx (M) '-valued processes Y(λ)={Y(/°} defined by
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We set /[«](« =/[α](f)-/[α], where /[«](£) = <«, X> (ξ) and /[«] =

f[ά\(ξ)μ(dξ).
M

The first result of this paper is the following theorem.

Theorem 1. The family of ^(M)' -valued processes {F(/°(α)} converges to
a A1(M)/ -valued Wiener process with mean functional 0 and covariance functional

(t/\s)ρ(a, β). The continuous bilinear functional p(a, β) is determined by

lim
λ-> I

(See Proposition 2.1. for this formula and for continuity of p).

Our next concern is the nondegeneracy of p. We confine ourselves to the

case that the flow {Γ*} is the geodesic flow {G*} over a ^-dimensional compact,
connected Riemannian manifold V of negative curvature. In this case, M is

the unit tangent bundle of V: M={ξ=(x, v)\x<=V, v^TxV, |M| = 1} We
consider {Yt} the Λ1(F)/-valued process. From the definition, p is a nonnega-

tive definite bilinear functional on Λ^F), but may be degenerate. In fact, for

any exact form a=dh, we have p(dh, dh)=0. Therefore it is an interesting

problem to show that p is nondegenerate on A^V)-{exact forms}.
Before stating our result, we mention several results concerning the non-

degeneracy. In the case of usual central limit theorems, there are few researches
which proved the nondegeneracy of the limit distribution. Among them, in
the paper concerning the homological position of geodesic flows, Gelfand-

Pyateckii-Shapiro [5] considered the integral \ a (a: harmonic form)

for the geodesic flow over the Riemann surface of constant negative curvature.
They showed p(ay tf)>0 by using the theory of unitary representations. Sinai
[16] gave a condition for nondegeneracy of limit distribution, but it seems

difficult to verify this condition.

We consider the nondegeneracy problem under more general situations.

Recall that V is called ^-pinched if for any x£ΞV, there exists a positive constant
A such that

κ_+ί

where K is the sectional curvature of V.

We note that if V has constant negative curvature, then V is 1/rf-ρinched.

Our result is the following

Theorem 2. Let V be \\d-pinched. Then p is nondegenerate on Λ

{exact forms}.
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From this we see that the limit process in Theorem 1 is in fact infinite-

dimensional.

If we drop the pinching condition, we do not succeed yet to prove the

statement in Theorem 2. But we can show the following proposition. Before

stating the proposition, we prepare notations. Let Es(Ett) be the stable (unstable)

subbundle and Z be the one-dimensional subbundle along the trajectories of

TM =ES+Z+E" .

For αeΛ^F), we define a one form a on M (see Guillemin-Kazhdan [6.

Appendix]) by

, X+> = -Γ (<7pr+M/[α])Λ,
Jo

where

Proposition 1. If p(a, α)=0, then cί is exact.

Acknowledgement. The authors express their hearty thanks to Prof.

N. Ikeda for directing them to this problem. We also express our hearty

thanks to Prof. T.Sunada who kindly informed us the result of [7], which plays

a crucial role for the proof of Theorem 2 and the proofs of Remark 4.1. Finally

we wish to thank the referee for his comments.

1. Preliminaries

In this section, we collect several facts concerning Markov partitions and

symbolic representations of geodesic flow, which will be used later sections. It

is well-known that any transitive Anosov flow admits a Markov partition. This

partition determines a matrix τr=(πij)1^ifj^ry πij=Q, 1 of order r, such that for

some integer m>0, the elements of the matrix πm are positive. Using this matrix,

one can construct the space Ω=ΩΛC{1, 2, " ,r}z of sequences ω^ίωjT — «,,
CO

τrω|tω/+1=l. The metric d of ίl is defined by d(ω, ωf)= Σ 2~m(l — δωί>ω;), where

8atί> is the Kronecker delta. Let φ be the shift onΩ: (φω), =ωf +1, for any i.

One can define a special flow {S*} acting in the space Ω={(ω, T); ωGEΩ,

0<τ</(ω), (ω, /(ω))=(φω, 0)}, where / is a Holder continuous positive function

on Ω. The special flow S*(ω, r) is defined as follows:
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(1.1) S*(ω, τ) =

where

(1.2) 4(ω)

Σ/(Φ*ω),
* = 0

0, » = 0,

Σ

It is known that there exists a continuous mapping -ψ : β->M such that
ψS*= jΓ' ψ. For an {5'} -invariant measure P on Ω, we define a probability
measure μ on M by μ(A)=v(ty~lA). The flow {5'} in (fί, ?) is isomorphic to
{T1*} in (M, /Λ). The measure V on β induces a φ-invariant measure z; on Ω

such that dV = (dvXdt)—y where </> = \ l(ω)dv(ω). (Ω, i/, φ) has the fol-
</> Jo

lowing mixing property (see Bowen [2]): There exist positive constants C19 C2

such that

(1.3) sup I v(A Π B)-v(A)v(E) \ <

where 9JIJ is the σ-field generated by ωf, a<i<b.
Throughout this paper, we shall use the following notations. For

), we set/*(έδ)=/oψ(δ) and F(ω)=^ f*(S\ω, 0))Λι.

2. Convergence of finite dimensional distributions

In this section, we show the convergence of finite dimensional distributions
of {Y/}. Throughout sections 2 and 3, we always assume that {T*} is a
transitive Anosov flow. It is known (Denker-Philipp [3]) that the following
limit exists:

(2.1) p(a) = lim -L ( dμ(ξ}( (' 'f[ά\(T'ξ)d*Y
λ->ββ \ J M JQ

We define p(α, yS) by

(2.2) P(α, /8) = ±[p(

With this notation, we can show the following

Proposition 2.1. Le£ w iβ an arbitrary positive integer. For any
t1< "<tn and any elements a(ί), •••, a(n) of Alt the n-dimensional random variable
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^(α(1)), •••, Yγ^(a(n))) converges as X->oo to n-dimensίonal Gaussian distribution
whose mean is 0 and covariance matrix (possibly degenerate) is ((tjΛtk)p(au\ α(*})).

Proof. Let φ(Q. tn be the characteristic function of (Y(^(α(1)), —, Y(/tWΛ))):

Γ n

where 21} , ZH e C. We want to show that

(2.3) limpffi., (*!,-,*.) =
λ >~ T Λ

We first remark that if t1= = tny then by noting the linearity of Y(

t

λ):

Σ *yyι(αϋ))= y,(Σ *yαϋ))> (2 3) follows from Theorem 1 of Sinai [17]. In the

following, we consider only the case n=2, since the general case can be treated
similarly. By the linearity, we can write

CLLL\ c t exp |*'*'i •* / \^^ / ι ^ 2 t? \^^ /J

Define /1(e)=/[ar1α°>+*1α
{I'](f), /2(?)=/[^2«

(2)](f) and
j=l, 2. Then we have

M

Using the following inequality

(2.4) sup sup |Γ/*( S"(ω,τ))-Γ/*(S>,0))Λ|^2||/|U|/|U
/,*> O^T^/Cω) Jo Jθ

we have only to consider the integral

/(λ) = f rf»(δ) exp Γ~J= ("7f (5'(ω, 0))^M + -̂  Γ* /2*(S>,
JQ LV X Jo v X Jλίi

which can be written as follows

-1- ( dv(ω)l(ω) exp Γ-4= - , -
X Jo V X
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Let N(t, ω) be the integer N such that

(2.5)
V ' y=o - ' 7=0

Since

Jo 3 ' y=o J Jo

j=l, 2, using the following inequality ([3], Lemma 2),

(2.6) v(sup I {*f*(Sn(ω, τ))ώι— J^F(φlω) \ < C3)Jo y=o

we have

Denote by ^4j, ^42 the differences

-I

=(> y=o

-f

A=Γ/γ( Σ ^(φ'ω)- Σ ^V A ./=

We have ^4y~>0 in probability as λ -> oo , j= 1 , 2. In fact, for any β > 0, we have

CλV</>3

= K I A> |e, I Σ

<, v( I ̂  I >£, I ̂ (λ ,̂ ω) — [λfXO] I < const. λ2/3)

Σ /(ΦM

The second term tends to zero as X — >oo. The first term can be estimated as
follows.

V(\A!\ >£, I N(t\ί9 ω) — [α!/</>] I < const. λ2/3)

sup . I 23 F
. \2/3 y=

const. ^ Λ/9 f\— — — X4/3-»0 as
£4λ2
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Here we used the stationarity and the following fact which follows from Lemma
3.2 of Ratner [14] and Theorem B of Serfling [15].

(2.7) ( max IΣ F(φiω) |4^<C4||F||ln2,
J mζn ι=0

for any Holder continuous function on Ω, with I Fdv = 0. The statement for
JΩ

A2 can be proven entirely in the same way. Thus we have only to estimate

2 -,
-τ=^ Σ F2(φlώ) ,
V λ y=[λ/1/</>]+[Cλ/1/</»β] J

where 0<#<l/2. Approximating Fy by an ^LYxV^/^i-measurable function

^/,Du ι/</>] (y=l> 2) and using the inequality

\^HKdv-\Hdv^Kdv\<g(n)\\H\\p\\K\\q, (g(n)-+Q, as n^oo)

forH: 5011.0-measurable and ̂ : 2JlΓ+«-measurable (H<=LP, K£ΞLq, — +— =lY
1. > /> ^7 /we have ^ ^

Λ r i EλΊ/<'>]
JQ

 dv(ω)lktι/<ι>M exP L^Y Σ

[λ/2/<'>]
X

-
\
Jo λ y-

+ negligible term .

Now by the central limit theorem, we have

exp

(ίyΛί*)p(αW>, α*)*,*. 1 ,
1 J

which proves Proposition 2.1 for n=2.

3. Tightness of {Γ(λ)}

In this section, we shall show that the tightness of {Y^}. Recall the
topology of Λ! and Λί (see Ochi [13]). Let {{7Λ}«iι be a finite open covering
of M satisfying
(i) for each n, Un is a coordinate neighborhood,
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(ii) for each n, Un is homeomorphic to an open cube IndRd. Let {9>«}«iι be
a partition of unity subordinate to {£/Λ}*iι. We define \\a\\p by

(3-1) ||α||J = Σ Σ ll(-Δ)%v*, )(*)lli*</,,>,
d

where Δ is the Laplacian on Rd and a=^ai(x)dxi on Un. The topology

determined by {|| ||̂ }ie« is consistent with Schwartz topology and for p,

with q>p-\ ,|| | | j><ffsll l l t f > that is, for an orthonormal basis {ek}keN on

(A!, || Hf), it holds that

Σ J I W U < ° o .

We denote by (Λ^ the completion of Aj/Ker| | \\p. We use the same notation

|| \\p for the induced norm on (Λ^. Let ((Λ^, || \\p) be the dual space of

II IW, where \\A\\'t= sup \A(ά)\.
flβeCAj)^, HΛ||^=I

Proposition 3.1. The family {y(λ)} is tight in the space C([0, cx))->Λί).

Proof. It is sufficient to show that there exists a sufficiently large p>0
for which the following holds:

For any ?7>0, £>0, there exists a δ with 0<δ<l and a λ0>0 such that for

λ>λ0

sup | |Y (f λ ) — Ylλ)||£>£})<97 , for all
O sζt£s+δ

Let us consider a partition of [0, 1]:

0 = ίo<^ι< " <tjf = 1 >

such that
Γ*

-7/12 fnr ' 1 ...
' > lv/1 J 1, ,

Set /*[α](ω, τ)=/[α]o ψ (ω, T), then F(

(

λ)(α) can be written as

V X Jo

By the triangular inequality,

where ίΛ is the nearest point of t with tk<t and ί, is the nearest point of s with

tj>s. Using Sobolev's lemma, we have
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ιιy(,λ)- Y$\\
n

where

sup !/*[«] I

Similarly,

Therefore it suffices to estimate

μ({feM; sup

We write

FΛ(ω) = (/(W)/*[a](S>, 0))<fc , TJ = [\tjtJo

Set

Then we have

Let {α(w)}m-ι be an orthonormal basis of (A^, then

/IIV( λ ) VC^II'l•ill-^ ί Λ ~ * tjllpf

-
111=1 IV λ, ί=Ty

where we set Fm=Faw and Z<^=Z,5 . Thus

; supΣ

Λ\ I 2

sup* ι«=ι
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2; sup

= /+//.

The term / can be estimated by Chebyshev's inequality.

81 P Γ «• ( 1 τ*~* I2!2

f̂ dv Σ sup -/= I Σ F.(φ'ω) I
£ jQl L»»=l A IV X ί=Ty J J

r i τ*~1 i 2 ί i τ*~* i2

Σβup Γ-U|Σ3F.(φ'«)| sup r^lΣί'.ίΦ'ω)!
m,n k V.V A i=Ty ^ yfe I V Λ ί = Ty )

81 /Γ ί 1 τ*~x Ί 4\ 1 / 2

« ί 1 τ*-1

Λ βϊp{vT"/2

To estimate the last sum, we need the following fact:

There exists a sequence {am} of positive numbers such that

(3.2a)

and

(3.2b)

This inequality can be proven as follows. Using stationarity, we have

f T*-1 Λ r-i
dv sup I Σ Fβ(φ'ω) 1 4 = \ dv sup I Σ Fm(φ'ω) | 4 .

J * ί = Ty J O^T^[λi/</>J ί = 0

By (2.7),

( Λ sup Γiϊ JF.(φ'ω)|^C4||FJ|i(MY .
J 0^τ^[λδ/</>] i = 0 X/X

Since ||FJ|oo^C5 sup sup \φja
(im\x)\ ^C0||α

(lll)||ff, for some β+-L<jp>, we have
/=i,...,»0*ez7/ 4

Σ llί Jli^Cl Σ l|a(e)lli«« , which proves (3.2).

By virtue of (3.2), we now obtain

We therefore obtain /^ 897/3, if we choose δ so small that
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(Σ V

Next we estimate //.

where ώ=(ω, r). By (2.4), we have

To estimate £2(
w)> we divide z2(m) into two terms.

First we estimate =/ίw). Noting that ||/Ϊ||L ̂  const. ||α(wι)||^, for some

ϊ+— <ί, we have Σ II/^IH < const. Σ l|α(ΛI)||^< oo. Using Chebyshev's

inequality, we have

sup Σl/n 2 >πτλ< Σj+B m J

λ 7/12 1

where we used the fact that the number of k which satisfies the requirement

does not exceed Sλ7/12<λ7/12 for δ<—. For the estimate of -4=71"°, note that

' 2 V λ

= Σ
i=0

Then

sup s i /n 2 >2z< Σ
144 / ι=k \ m 144

[λ7/12]

= Σ
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[λ7/12]

Σ *

Cλ7/12]

Σ

+ Σ K I Σ /(Φ'ω)-</>τ* I >λ2'3) = A+B, say .
A=l ί=0

The second term can be estimated as follows.

[λ7/12] Λ ^

Σ λ~8'3 I Σ/(Φ'»)-<Oτ*|4^(ω)
*=2 J »=0

tλ'/12ί U7/12]

^ C Σ λ-8/3(λί*)2 = Cλ-ys Σ! ίί .

By the definition of the partition, tk~k\~1/l2. Therefore we have

U7/12]
4/12 Σ A2

* = 1

[λ7/12]
For the first term, we write A= Σ

*=1

sup I £

sup
m?ι

sup

By (3.2), we have

2
This implies Λ^— r^""1/12 So we have Π<—-ηS, for sufficiently large λ.
Thus we obtain

-!„( sup
O *&ζs+

for sufficiently small δ>0 and λ>X0, which completes the proof of tightness.
To prove the continuity of ρ(α, /?), it is sufficient to show that there exists a
constant C>0 such that pλ(ct, a) <C \\a\\p for any Λ^ϊ7). But this can be
shown by similar argument used in the above proof.

4. Nondegeneracy of /»(<t, β)

In this section, we consider the nondegeneracy of p(α, β). Let us recall the
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setting of Theorem 2. Let V be a rf-dimensional compact, connected Riemannian

manifold of negative curvature. We assume V is 1/J-pinched. {G'} is the
geodesic flow on the unit tangent bundle M of V. We denote by μ the
normalized invariant measure given by μ(dξ) = const. m(dx)σx(dv)y where m is

the Riemannian volume and σx is the uniform measure on {v^Tx(V}\ \\v\\ = \}.

Note that y(,λV; £)=-i- ( a=~4- Γ/M(G ff)Λ, αeA^F). In
, \/λ Jc([o,λ*],*> V\ Jo,
tact,

- 0a, J

Proof of Theorem 2*. We make use of Theorem 4 of Guillemin-Kazhdan

[7]. Following [7], we denote by H*(V) the totality of C°°-f unctions f(x, v) on

My each of which is a harmonic polynomial as a function of v of degree k for

each *. We note that H\V)=C°°(V). Recall /[α](f)=<»*α, ^> (αeA^Γ)),
where -X" is the vector field generating the geodesic flow {G*} (in local coordi-

nates, X(XιV) = (vid/dxi—ΓίιVkvld/dvi). Since π*X=vid/dxi, we see that

f[a]<=ΞH\V), because /[«](£)=<**«, XXf)=<α, *>(*). Assume that p(α)=0.
Then by a result (for stationary processes) of Leonov [11], there exists an
L2(M, μ)-function u such that

(4.1)

Furthermore for transitive Anosov flows, Livsic [12. Theorem 9] showed that

the function u in (4.1) can be chosen as a continuous function. Therefore

5 τr*α = I f[a](G'ξ)ds=Q for any periodic geodesic. By virtue of Theo-
G(Co,f],£) Jo

rem 4 of Guillemin-Kazhdan [7], there exists an h^H°°(V)=C00(V) such that

Xh=f[ά\. It follows that f[a]=Xh=<dπ*hy Xy=<jt*dh, Xy. Since /[α] =
<τr*α, Xy=<\a> vy and <τr*JA, Xy=ζdhy ί;>, we have <jx.—dh, v^=0 for any

with ||u||:=l, which implies a=dh. This proves Theorem 2.

REMARK 4.1. We do not know whether Theorem 2 holds without the

pinching condition. But for closed 1 -forms this holds: Let a be closed. Then

p(α, a)=0 if and only if a is exact. The following proof is due to T. Sunada.
By the Theorem H of Fried [4], the closed orbits of the geodesic flow generates

, R). Therefore, in view of (4.1),

) A
a = 0 , for any cycle A in V.

By de Rham's theorem, this implies that a is exact.

* We thank to T. Sunada, who kindly informed us the literature [7],
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Proof of Proposition 1. By (4.1), p(α) = 0 implies the assumption of
Theorem A.3 of Guillemin and Kazhdan [6], Proposition 1 is a special case
of their result.
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