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0. Introduction

In this article, we study the central limit theorem for current-valued proc-
esses induced by the geodesic flows over a compact Riemannian manifold.
Recently several works concerning the central limit theorems for current-valued
processes have been done. N. Ikeda [7] (see also Ikeda-Ochi [8]) discussed
several limit theorems for a class of current-valued processes induced by various
stochastic processes. In this direction, Ochi [13] proved the central limit
theorem for a current-valued process induced by diffusion process on mani-
fold. In this paper, we establish a similar result for geodesic flows over
compact Riemannian manifolds of negative curvature. Since the first half of our
results can be treated for transitive Anosov K-flows, we formulate the problem
in the framework of Anosov flows. Let M be a compact, connected Riemannian
manifold. Let {7} be a transitive Anosov K-flow on M. By using Markov
partition, we can construct a special representation {S’} of {T?*. For
invariant measure u of {T*}, we consider one which is constructed from invariant
measure ¥ of {S’} (see Section 1). Let A,(M) be the space of all smooth
1-forms on M. For asA(M), we consider the following line integral

Y‘(a) - Yt (a; E) - ST([o,t].E) %, tZO’ EEM

where T([0, t], £)={T°E; 0<s<t}. We consider {Y,} as a random process on
the probability space (M, u). Then we can regard {Y,} is a A,(M) -valued
process in the sense of K.Ito ([10]). If we denote by X the vector field on M
which generates the flow {7}, Y,(cx) can be expressed as follows:

t
Yi; &) = | <a, X)(T*gys.
We consider a family of A, (M)’-valued processes Y ®={Y ™} defined by

Y@ £) = == (Yalas ©)—217Ta)) .
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We set flal@)=/lal@—ffa, where flal®)=<a, X>(@) and flal=
[ floa®nag).

The first result of this paper is the following theorem.

Theorem 1. The family of A,(M) -valued processes {Y M(a)} converges to
a A (M) -valued Wiener process with mean functional 0 and covariance functional
(ENAs)p(a, B). The continuous bilinear functional p(ct, B) is determined by

lim | Y@ YPOE) = 1o, B), @, BEAM)

A->oo

(See Proposition 2.1. for this formula and for continuity of p).

Our next concern is the nondegeneracy of p. We confine ourselves to the
case that the flow {7} is the geodesic flow {G*} over a d-dimensional compact,
connected Riemannian manifold V' of negative curvature. In this case, M is
the unit tangent bundle of V: M={t=(x, v)|xV, veT,V, |lv||=1}. We
consider {Y,} the A (V') -valued process. From the definition, p is a nonnega-
tive definite bilinear functional on A,(V’), but may be degenerate. In fact, for
any exact form a=dh, we have p(dh, dh)=0. Therefore it is an interesting
problem to show that p is nondegenerate on A,(V)-{exact forms}.

Before stating our result, we mention several results concerning the non-
degeneracy. Inthe case of usual central limit theorems, there are few researches
which proved the nondegeneracy of the limit distribution. Among them, in
the paper concerning the homological position of geodesic flows, Gelfand-

Pyateckii-Shapiro [5] considered the integral S e’ (ar: harmonic form)
G(lo,t],

for the geodesic flow over the Riemann surface of constant negative curvature.
They showed p(a, a¢)>0 by using the theory of unitary representations. Sinai
[16] gave a condition for nondegeneracy of limit distribution, but it seems
difficult to verify this condition.

We consider the nondegeneracy problem under more general situations.
Recall that V is called a-pinched if for any x &V, there exists a positive constant
A such that

' K — 41 ‘ >a,
where K is the sectional curvature of V.
We note that if 7 has constant negative curvature, then V is 1/d-pinched.

Our result is the following

Theorem 2. Let V be 1/d-pinched. Then p is nondegenerate on A,(V)-
{exact forms}.



THE CENTRAL LiMiT THEOREM 193

From this we see that the limit process in Theorem 1 is in fact infinite-
dimensional.

If we drop the pinching condition, we do not succeed yet to prove the
statement in Theorem 2. But we can show the following proposition. Before
stating the proposition, we prepare notations. Let E*(E*) be the stable (unstable)
subbundle and Z be the one-dimensional subbundle along the trajectories of

{G%}:
TM =E*4+Z+E*".

For a=A(V), we define a one form & on M (see Guillemin-Kazhdan [6.
Appendix]) by

<@, X> = flal(f),
<ay X*> = =" GAX(flal)dt,

0
<@, X7 = (GLX)(flad)at,
where £ M.
Proposition 1. If p(a, a)=0, then & is exact.

Acknowledgement. The authors express their hearty thanks to Prof.
N. Ikeda for directing them to this problem. We also express our hearty
thanks to Prof. T.Sunada who kindly informed us the result of [7], which plays
a crucial role for the proof of Theorem 2 and the proofs of Remark 4.1.  Finally
we wish to thank the referee for his comments.

1. Preliminaries

In this section, we collect several facts concerning Markov partitions and
symbolic representations of geodesic flow, which will be used later sections. It
is well-known that any transitive Anosov flow admits a Markov partition. This
partition determines a matrix 7#=(7;;),<;, j<,» 7i;=0, 1 of order r, such that for
some integer m>>0, the elements of the matrix z™ are positive. Using this matrix,
one can construct the space Q=Q,C {1, 2, -+, 7}? of sequences & = {w;} F=—w,

wiois, = 1. The metric d of Q is defined by d(w, w’)=._i 271(1—-38,,,.;), where

8,5 is the Kronecker delta. Let ¢ be the shift on Q: (¢w);=w;4,, for any .
One can define a special flow {S?} acting in the space O={(0, 7); 0 €Q,
0<r<(0), (0, ((w))=(dw, 0)}, where [ is a Holder continuous positive function
on Q. The special flow S¥(w, 7) is defined as follows:

(4
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(0, 7+2), —7<t<—7+)(w),
(1.1) SYo, 7) =1 (§"0, 7+t—1(0)), —T+L(0)<t<—7+1, 4 (0), n=>1,
(%0, T+t+1_4(0), —T—I_(0)<t<—7—I_,)(0), n2>1,

where
z::(thw), n>0,
12)  L@=] 0, n=0,
g:lww), n<0.

It is known that there exists a continuous mapping «r: O— M such that
P St=T'y. For an {S*}-invariant measure ¥ on (3, we define a probability
measure g on M by u(A)=>(yr"'4). The flow {S*} in (£, D) is isomorphic to
{T*} in (M, p). The measure ¥ on O induces a ¢-invariant measure » on

such that dﬂ=(dvxdt)<1~75, where <I>=( U(a)dn(w). (@, v, ¢) has the fol-
Q
lowing mixing property (see Bowen [2]): There exist positive constants C;, C,
such that
(1.3) sup [v(4 N B)—v(A)v(B)| < C,v(A)v(B)e 2,
Aem: ., Bemy,,

where M is the o-field generated by w;, a<i <b.

Throughout this paper, we shall use the following notations. For

FEC=(M), we set f*(@)=foy(&) and F@):Sl‘”’ FH(S"(, 0))du.

2. Convergence of finite dimensional distributions

In this section, we show the convergence of finite dimensional distributions
of {Y,}. Throughout sections 2 and 3, we always assume that {7%} is a
transitive Anosov flow. It is known (Denker-Philipp [3]) that the following
limit exists:

2.1) p@ =lim = [ du@) ([ FlaXT D)y
We define p(a, B) by
@2 plet, ) = - lpla-+B)—pl@—)].

With this notation, we can show the following

Proposition 2.1. Let n be an arbitrary positive integer. For any
4<--<t, and any elements a®, ---, @™ of A,, the n-dimensional random variable



THE CENTRAL LiMIT THEOREM 195

(Ya®), -+, Y (a™)) converges as n—> oo to n-dimensional Gaussian distribution
whose mean is 0 and covariance matrix (possibly degenerate) is ((¢; \t,)p(a?, a®)).

Proof. Let o)., be the characteristic function of (Y{P(a®), -, Y (@™)):
P8y 2 = | du(®) exp li 513, Y @),
where 2, -+, 2,€C. We want to show that
23)  lmeh (e 5) = exp| —L (AL, aP)zz).

We first remark that if #,=---=¢,, then by noting the linearity of Y{:
]2 2; Y (a¥)= Y,(i} z;a9), (2.3) follows from Theorem 1 of Sinai [17]. In the

following, we consider only the case n=2, since the general case can be treated
similarly. By the linearity, we can write

[, 46(6) exp s, V() +43, V()]
- SM du(§) exp [\_/lT S lf[2‘1a(l)+z‘za(2)] (T*E)ds
LY \/— S * Flra®)(T" e)dS]

Define f,(§)=flza®+2a®](), f&)=/Flza®]E) and f}@)=Ff;¥(@),
j=1,2. Then we have

SM du(E) exp [iz, Y P(a®)+iz, Y (a®)]

= [ @) exp [ \/_S FHS S )du+\/"T S::j f';"(S"a‘S)du].

Using the following inequality

@4)  sup sup || 7", 7)—{ FH(S*@, O)ul <27,

0<T<I(w)

we have only to consider the integral

I = g d5(5) exp [ H S *FH(S%(w, 0)du+ - \/_ S 2 1S (o, 0))du]
which can be written as follows

<l>$ dv(w)l(») exp[ S FEHS (o, O))du—l—\/_ S 2 FH(S*(o, 0))du]
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Let N(t, o) be the integer N such that

b4 . N+1
(2.5) Do) <i<> ¢ w).

Since

N (M @)

{71 0= 5} Fisort]”

“Tya g0+

FHS %, u)du,
j=1, 2, using the following inequality ([3], Lemma 2),

t » (2,0 R
(2.6) v(sup| | 74w, )du—"3 Fig/a)| <C) = 1,

we have

. FQH,®
100 = ¢ ,>S o)) exp| 7 B Fi(ghe)
N(Mz w)

N e e urer 2("”“’)+"(1)]

Denote by A4,, 4, the differences

1 N(’“l ) ["’1/<’>]
A, = VN (=2 P Fy(¢/o)— X2 = F\(¢'o))
1 Nty o) At /<]

— iy j
=5 (S TS 3 Flde).

We have 4;—0 in probability as A —oo, j=1,2. In fact, for any & > 0, we have
DT
v(I41>€) =v(|A>18, | 2 Up'e)—<DPMLKD] <)
+o(| Ay >¢, |7]>n%)

<u(|4,|>¢€, |N(Mt, 0)—[Mt,/<ID]| <const. A7)
/<D

Tl 2 Upo)—<DILKD]I>NE).
The second term tends to zero as A—>oco. The first term can be estimated as
follows.
v(| 4,1 >¢€, | N(t\,, m)—[t)»l/<l>] | <const. A%3)
Fy(¢’0)|>Ev/N)

<v sup |
1h-[Aty/¢y ) <const, A%/3 ' j= [m 7]

ch?;t AR >0 as A — oo.
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Here we used the stationarity and the following fact which follows from Lemma
3.2 of Ratner [14] and Theorem B of Serfling [15].

@.7) f max | 33 Fgto) | dv< CJIF o,

for any Holder continuous function on Q with s Fdy=0. The statement for
o
A, can be proven entirely in the same way. Thus we have only to estimate

/<0

1 i ;
10) = g5 |, pei@ e | 5 S Fi@a)
[M2/<5)]

+—= Fy(¢o ] ,
VN smwcritoanraom’ 18
where 0<<a< 1/2. Approximating F; by an SRUyS4 -measurable function

F; byl (J=1, 2) and using the inequality

[SHKdv—SHdvngvlgg(n)IlHll,,llKllq, (g(n) = 0, as n— o)

for H: M? .-measurable and K: M, ,-measurable (H el , Kel’, %+ L= 1),

q

we have

1 /<] _
1) = g5 |, @Mwan@ e [ 7 B Funwer(@)]
1 [M2/<1>) .
- j
Xgo dv(w) exp [\/ A i=[>\f1/<1>1§0\'1/<l>>“]FZ'[M'N)](¢ ®)

~+negligible term .

Now by the central limit theorem, we have
IL(x) — exp[——% p(zla(l)—{—zza(z))tl] exp [—%P(zza(z))(tz—tl)]
= exp [_L 22} (t; A ty) p(a?, a(k))zizk] )
2 ik=1
which proves Proposition 2.1 for n=2.

3. Tightness of {Y®}

In this section, we shall show that the tightness of {Y™}. Recall the
topology of A, and A{ (see Ochi [13]). Let {U,},%, be a finite open covering
of M satisfying
(i) for each m, U, is a coordinate neighborhood,
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(ii) for each m, U, is homeomorphic to an open cube I, CR¢. Let {p,},%: be
a partition of unity subordinate to {U,},%;. We define |||, by

(3.1) lally = 33 33— AY(pat) (e,
where A is the Laplacian on R? and a=i a(x)dx’ on U, The topology
determined by {|| ||,} er is consistent with 'S=clhwartz topology and for p, g=R
with ¢> p—i—%, Il ll,<asll ll;, that is, for an orthonormal basis {e;};ex on
(Ayp, Il 1), it holds that

3 lleslp<oo .

We denote by (A,), the completion of A /Ker|| ||, We use the same notation
|| 1l, for the induced norm on (A,),. Let ((A,) || |[;) be the dual space of
((A))p Il 1l5), where ||4|l;=__ sup |A(e)].

BECAp il =1

Proposition 3.1. The family {Y ™} is tight in the space C([0, oo)—AJ).

Proof. It is sufficient to show that there exists a sufficiently large p>>0
for which the following holds:
For any >0, £>0, there exists a § with 0<<8<<1 and a A,>0 such that for
A>Ng

L ({EEM; sup ||YP—YPl>e)<y, forall se0, 1].

Let us consider a partition of [0, 1]:

0=t<t, < - <ty=1,
such that

%x‘"‘kti—t,-_, <CA",  for j=1,-,N.

Set f*[a](o, T)=Ff[a]oy(w, 7), then Y ¥(a) can be written as
Y@ = - | 7S, )

By the triangular inequality,
NYP—YPI<NYP =YY —YU+NY—-Y M7,

where ¢, is the nearest point of ¢ with ¢,<¢ and ¢; is the nearest point of s with
t;=>s. Using Sobolev’s lemma, we have
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IYP—YRIB< _sup  [IF[alll A< CA2,

EA,. |10l p=

where

sup| f*e]| <II flalll.< Colletll, -
Similarly,
|]YP—Y P <Con~2,
Therefore it suffices to estimate

w{EeM; sup NIYE—YRl;>¢€}).

kitj<t<ti+d

We write

Faw)= [ FHa1(S@, )i, ;= DyKD]
Set
Z8e) = Ya)— = 5 Fu(#a).
Then we have
1 )
| Y P (w)— Y(e) S—\/—T‘_;i F(¢'o)|+1Z0%(0) |+ Z5Kw) | -
Let {a™} -1 be an orthonormal basis of (A,),, then
U7 - YIS Y@m)— Vi a™)|?
o ’l'h—-l o o
<35 {Jr DRI 5 120@)1+3 5 1286
where we set F,,=F,m and Z(’;=2Z em> r Thus
wEEeM; sup Y —YR;>é)
et . 2 g2
<v(coE.Q sup 2 {\/—4 2 F,,,(qS‘co)]} >?)
+25(ae0; sup 31 201> )
o et
- ;m=l k
<s(oci s {751 8 Fawoll] >7)

+29<&3eﬂ; sup E]Zﬁ:}k(a) |2>?)



200 S. ManNaBe AND Y. OcHi

oo 2
_ v(nl)+za(a,eg; sup 331 Z624(3) |2>%)
= I+1II.

"The term I can be estimated by Chebyshev’s inequality.

<3 snldv }_,sup{\/—IEF(dno)l}z]z

m=1

1

&t
<8 ygs?p{\/lﬂlzpm@w);}zs p{\/iITEF(qb'm)l}
< n (v Ereal))”

)"
<(f v sup {5 2“""“’)'})

To estimate the last sum, we need the following fact:
There exists a sequence {a,} of positive numbers such that

Tkl

(3.2a) S dv sup{| 33 Fu(d0) | <a ( ’ 1>>
and
(3.2b) ”i Va, <oo .

This inequality can be proven as follows. Using stationarity, we have

de sup| 33 Fu(do) | = Sduogssg > o1l S Fo (o).

By (2.7),

osrepany

v |3} Fu(@ )< CIRIL( D)

S <>

Since ||F,,|].<Cs sup sup |pjai™(x)]| < Cylla™]],, for some q+%<p, we have
=1, 4€T

3 [|IF||Z<C3 3 [la™||2<oco , which proves (3.2).

By virtue of (3.2), we now obtain

S%‘ = W/ am<<"8_l>>?®/ a, <28T>>2 = 241 <<1>> (Svan)

We therefore obtain I < 6%/3, if we choose § so small that
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(3 Van KIy8e<n3

Next we estimate I1.

2@ = =" TS )du— = [ (S o, O
+ = (8", i = 5 F(da) = 5(m)+am)
where &=(w, 7). By (2.4), we have
|2(m)| <Cy/vV/ N

To estimate z,(m), we divide 2,(m) into two terms.

s = (= 78S @, ONadu— L [ F2(S*(a, 0))du)

1 (lyoee “ 1 i
+(ﬁ J, TS o O ()
](m) _|_\/_ Jm.

First we estimate 7: (™. Noting that ||f#%||2 < const. ||a™||?, for some
g+ %<p, we have 3 ||f¥||2 < const. 3 [|@™|2<<oo. Using Chebyshev’s
inequality, we have

[A7/12)

o( s SRS (Ters )

k; t,st,,gtjw m

x7’ 12 1

<G & = Ls e

where we used the fact that the number of 2 which satisfies the requirement
17\‘ J&, note that

does not exceed SAR2< A"/ for 8<% . For the estimate of
J5™ is of the form

N(Aty,0)-1 -1

ng) = ‘Zﬂ}) Fm(‘b'w)'— igo F,,,(qS‘co) .
Then

7712

o, sup, ST )<

ke tjstkgtﬁ»s m
[)‘7/12]

=2 v(Z‘.IJ%’"’l’> a4 | kEl(gb'w) <l>'r,,|<7\.2/3)

W)
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1/12 Tp=1
+3 u(ZIJs’"’|2> i | S U w)— <l>r,,|>x2/3)
)\7/12
E v<
/2y Tt

+ 2l X l(¢w)—<I>7| >N = A+-B, say .

T [N, @)—n <CA)

The second term can be estimated as follows.
[A7/12
B< 3 x-s'sg| 2 U$w)— Do dv(a)

7/12) A7/12

< C 3 V() = Cn 2 5.
k=1 k=1

By the definition of the partition, #,~kA""",  Therefore we have

7/12

BS C?\._zﬁ)\,—luu 2 k2~C7\'—s/12—14/12+21/12 — C)\,_lllz .
k=1

/14
For the first term, we write A= >) A4,
k=1

4y sw |8 Fgle)> )

" [r,,—ox/lgs[-r,,wxz/a] =Ty

Sv(Z sup | 2 Fo(¢io) |2>
+v(2 sup F w(P ‘;2 )

" [rg-onP1ghgr, TH
2/8] l-‘l'

" rp<aslry+oX

By (3.2), we have

1 C ..
A,LC WMB = =\,
Y &t
This implies Akg_c_x‘”‘z. So we have Il<% 78, for sufficiently large A.
Thus we obtain

—u( sup [IYPP—YPI'>e)<x,

s<i<

for sufficiently small §>0 and A>2x,, which completes the proof of tightness.
To prove the continuity of p(a, B), it is sufficient to show that there exists a
constant C>0 such that p,(a, &)< C|la||} for any A (V). But this can be
shown by similar argument used in the above proof.

4. Nondegeneracy of p(a, 8)

In this section, we consider the nondegeneracy of p(a, 8). Let us recall the
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setting of Theorem 2. Let I be a d-dimensional compact, connected Riemannian
manifold of negative curvature. We assume V is 1/d-pinched. {G?} is the
geodesic flow on the unit tangent bundle M of V. We denote by u the
normalized invariant measure given by w(d&)= const. m(dx)o,(dv), where m is
the Riemannian volume and g, is the uniform measure on {vE T (V); |lv||=1}.

A) _ s
fl;l((:):e that YP(a; &)= \/x S([o’mwa \/x j f[2](G°E)ds, aeA, (V). In

flal= SMf[a](E)dy.(E) - Sv dm(x) <, s(vET,V:IInl|=1) vdo,> =0.

Proof of Theorem 2*. We make use of Theorem 4 of Guillemin-Kazhdan
[7]. Following [7], we denote by H*(V) the totality of C*~-functions f(x, v) on
M, each of which is a harmonic polynomial as a function of v of degree k for
each x. We note that H(V)=C=(V). Recall f[a](&)=<{z*a, XD (a=A,(V)),
where X is the vector field generating the geodesic flow {G*} (in local coordi-
nates, X(,,=(v0/0x'—T};v*v'8/0v’). Since =X =1v'3/0x', we see that
flale H(V), because f[a](§)=<z*a, X )(§)=<a, v)>(x). Assume that p(a)=0.
Then by a result (for stationary processes) of Leonov [11], there exists an
L*(M, u)-function # such that

(1) [} f101(6" &y = u(G*E)—u(e)

Furthermore for transitive Anosov flows, Livsic [12. Theorem 9] showed that
the function # in (4.1) can be chosen as a continuous function. Therefore

S . a= St f[@](G*E)ds=0 for any periodic geodesic. By virtue of Theo-
G(lo,tl, 0

rem 4 of Guillemin-Kazhdan [7], there exists an h& H=(V)=C=(V) such that
Xh=f[a]. Itfollows that fla]=Xh={dn*h, X>={n*dh, X). Since fla]=
{z*a, X>=<a, v) and {z*dh, X>=<dh, v>, we have {a—dh, v>=0 for any
ve T,V with ||v||=1, which implies @=dh. This proves Theorem 2.

Remark 4.1. We do not know whether Theorem 2 holds without the
pinching condition. But for closed 1-forms this holds: Let a be closed. Then
pla, @)=0 if and only if o is exact. The following proof is due to T. Sunada.
By the Theorem H of Fried [4], the closed orbits of the geodesic flow generates
H\(V, R). Therefore, in view of (4.1),

S a=20, for any cycle Ain V.
A

By de Rham’s theorem, this implies that « is exact.

* We thank to T. Sunada, who kindly informed us the literature [7].
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Proof of Proposition 1. By (4.1), p(a)=0 implies the assumption of

Theorem A.3 of Guillemin and Kazhdan [6], Proposition 1 is a special case
of their result.
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